
Exploring, Reasoning with and Validating Directed Graphs
by Applying Formal Concept Analysis to Conceptual
Graphs

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456> and POLOVINA,
Simon <http://orcid.org/0000-0003-2961-6207>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19112/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ANDREWS, Simon and POLOVINA, Simon (2018). Exploring, Reasoning with and
Validating Directed Graphs by Applying Formal Concept Analysis to Conceptual
Graphs. In: CROITORU, Madalina, MARQUIS, Peter, RUDOLPH, Sebastian and
STAPLETON, Gem, (eds.) Graph Structures for Knowledge Representation and
Reasoning : 5th International Workshop, GKR 2017, Melbourne, VIC, Australia,
August 21, 2017, Revised Selected Papers. Lecture Notes in Artificial Intelligence
(10775). Springer, 3-28.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Exploring, Reasoning with and Validating
directed graphs by applying Formal Concept

Analysis to Conceptual Graphs

Simon Andrews and Simon Polovina

Conceptual Structures Research Group, Communication and Computing Research
Centre | Department of Computing, Sheffield Hallam University, Sheffield, UK

{s.andrews, s.polovina}@shu.ac.uk

Abstract. Although tools exist to aid practitioners in the construction
of directed graphs typified by Conceptual Graphs (CGs), it is still quite
possible for them to draw the wrong model, mistakenly or otherwise.
In larger or more complex CGs it is furthermore often difficult–without
close inspection–to see clearly the key features of the model. This paper
thereby presents a formal method, based on the exploitation of CGs as
directed graphs and the application of Formal Concept Analysis (FCA).
FCA elucidates key features of CGs such as pathways and dependencies,
inputs and outputs, cycles, and joins. The practitioner is consequently
empowered in exploring, reasoning with and validating their real-world
models.

1 Introduction

A directed graph–or “digraph”–is a graph whose edges have direction and are
called arcs [9,11]. Arrows on the arcs are used to encode the directional informa-
tion: an arc from vertex A to vertex B indicates that one may move from A to
B but not from B to A. Such graphs for example are used in computer science
as a representation of the paths that might be traversed through a program, or
in higher-level conceptual models where concepts are related to each other by
relations that gain additional semantics (i.e. meaning) by defining the direction
between the source and target concepts. A classic illustration is a cat that sits
on a mat [18]. In this simple example ‘sits-on’ is the semantic relation where the
direction goes from cat to mat and not vice versa.

CGs (Conceptual Graphs) are digraphs that enable modellers to express
meaning in a form that is logically precise whilst being humanly readable, and
serve as an intermediate language for translating between computer-oriented
formalisms and natural languages [14,19]. CGs graphical representation thereby
serve as a readable, but formal specification language for systems design or other
practitioners using this approach [10]. CGs are however drawn by hand. Tools
such as CoGui and CharGer already exist to assist the practitioner in creating
a well-formed CG (Conceptual Graph) that adheres to the prescribed grammar
and syntax [1,2]. However there is no guarantee that a model created using CGs

is correct in terms of its validity. The modeller may have a misconception of the
system being modelled or may simply make mistakes in its construction–things
that still conform to the syntax and grammar but result in an invalid model.

It can be difficult to explore and validate a large and complex CG by in-
spection. It is this problem that this paper addresses by providing an automated
method whereby key features of CGs are captured, reported and visualised. The
modeller would thus be assisted in exploring and validating their CGs. The
method makes use of the inherent direction of Concept-relation-Concept triples
in CGs to transform these triples into binary relations and thus expose them to
Formal Concept Analysis (FCA) [8]. The process is automated in a tool called
CGFCA and has two stages; firstly parsing a CG file (in the ISO common logic
cgif format [19]) to extract the CG triples and secondly, converting these triples
into corresponding binary relations that accentuate the directed pathways in the
original CG, as described next in section 2. The triples-to-binaries function is
carried out using an implementation of the Triples2Binaries algorithm, specifi-
cally described in subsection 2.2.

2 Transforming CG digraphs: triples into binary relations

If triples are extracted from a CG in the form Source Concept → relation →
Target Concept, each such triple can easily be represented as a corresponding
binary relation i.e. Source Concept-relation, Target Concept. Where the Tar-
get Concept then becomes a Source Concept for a following relation, this can
be captured in additional binary relations, where the original Source Concept-
relation is paired with subsequent Target Concepts. To illustrate the source-

Fig. 1: Simple CG Fig. 2: FCL for Simple CG

target structure, Figure 1 shows a simple CG with the CG Concepts, [Cat],
[Mat] and [Colour: Grey]. [Cat] and [Mat] are linked by the CG relation
(sits-on) and [Mat], [Colour: Grey] are linked by (has-attribute). (In
simple English, the CG describes a cat that sits on a grey mat.) We can say
that the target Concept [Mat] is dependent on the source Concept-relation

pair [Cat]→(sits-on) and the target Concept [Colour:Grey] is dependent on
its source Concept-relation pair [Mat]→(has-attribute) (or alternatively, the
source Concept-relation pair [Cat] → (sits-on) results in the target Concept
[Mat] and the source Concept-relation pair [Mat]→(hasattribute) results in
the target Concept [Colour: Grey]). The CG triple ([Cat], (sits-on), [Mat])
can be converted into the binary relation ([Cat]-(sits-on), [Mat]). Likewise
the CG triple ([Mat], (hasattribute), [Colour: Grey]) can be converted into
the binary relation ([Mat](has-attribute), [Colour: Grey]).

There is also a binary relation between [Cat] and [Colour: Grey] indirectly
through [Cat]-(sits-on). Hence [Colour: Grey] also depends (indirectly) on
[Cat], which is of course sitting on that mat.

Simple CG Cat sits-on Mat has-attribute

Cat

Mat ×
Colour : Grey × ×

Fig. 3: The simple CG as a cross-table

The set of binary relations can be simply represented in a cross-table and
Figure 3 shows the corresponding cross-table for this simple example, with rows
representing CG Concepts and columns CG Source Concept-relations. The cross-
table is known as a Formal Context in FCA, so by converting CGs into these
binary relations, FCA can then be applied. Figure 2 displays the resulting Formal
Concept Lattice (FCL). This approach was derived after we compared it with
Wille’s mapping of CGs to FCA (‘Concept Graphs’) in an earlier study [5, 20].
Figures 4, 5, and 6 show the CG, FCL and cross-table (Formal Context) for a
larger CG using the same Cat on Mat example. Figures 7, 8, and 9 show the CG,
FCL and cross-table for a further extended version of this example. This time it
has two input CG Concepts, [Cat: Gwyn] and [Cat: Bumbles] thus depicting
the specific cats Gwyn and Bumbles as the respective CG referent for each CG
Concept as shown.

2.1 Obtaining triples from a Conceptual Graph: a parser for cgif

To automate this process, a parser was created that operates on the standard
CG file format, cgif. To illustrate the format, below is the cgif for the ‘Cats on
the Mat’ CG in Figure 7:

[Material: Fleece] [Cat: Gwyn] [Mat: *x1] [Cat: Bumbles] [Colour: Grey]
(sits-on Bumbles Gwyn ?x1)(has-attribute Fleece Grey)(made-from ?x1 Fleece)

The first line in the cgif defines the CG Concepts and the second line defines
the CG relations. In line with CGs theory where the referent is unknown, cgif
uses generic referents such as x1 and x2, with a preceding * (in CG Concepts)
or ? (in CG relations). Each relation is defined in the cgif with a list of referents

Fig. 4: CG with 4 Concepts Fig. 5: FCL for CG with 4 Concepts

With 4 Concepts Cat sits-on Mat made-from Material: Fleece has-attribute

Cat

Mat ×
Material : Fleece × ×
Colour : Grey × × ×

Fig. 6: The 4 Concept CG as a cross-table

Fig. 7: CG with 2 Input Concepts Fig. 8: FCL for 2 Input Concepts

2 Input Concepts

C
a
t:

B
u
m

b
le

s
si

ts
-o

n
C

a
t:

G
w

y
n

si
ts

-o
n

M
a
t

m
a
d
e-

fr
o
m

M
a
te

ri
a
l:

F
le

ec
e

h
a
s-

a
tt

ri
b
u
te

Cat : Bumbles

Cat : Gwyn

Mat × ×
Material : Fleece × × ×
Colour : Grey × × × ×

Fig. 9: The 2 Input CG as a cross-table

comprising one or more source CG Concept referents and a target CG Concept
referent. The final referent in the list is always the target referent. Thus, in the
relation made-from, x1 is the source and Fleece is the target, and in the relation
sits-on, Bumbles and Gywn are sources and x1 is the target.

The parser first extracts the CG Concepts from the cgif, creating an integer
index for each CG Concept and separating the type labels and referents (see
Table 1a). The parser then extracts the CG relations from the cgif, creating an
integer index for each CG relation and separating the type labels and lists of
referents (see Table 1b).

No. Label Referent

1 Material Fleece
2 Cat Gwyn
3 Mat x1
4 Cat Bumbles
5 Colour Grey

(a) CG Concepts

No. Label Referents

1 sits-on Bumbles Gwyn x1
2 has-attribute Fleece Grey
3 made-from x1 Fleece

(b) CG relations

Table 1:
Information extracted by parser from Cats on the Mat cgif

If there are co-referent CG Concepts or relations, the parser will form the
corresponding joins. For CG Concepts, as each Concept label and referent is
extracted from the cgif, the referent is compared to the list of Concept referents
already extracted. If a match is found, instead of adding a new Concept, the

parser compares the two Concept labels. If they are different, it concatenates
the new label with the existing label in the list, if not the parser simply moves
on to the next Concept in the cgif. A similar process is carried when parsing the
CG relations in the cgif, but here it is the list of referents associated with the
relation that is compared: for two CG relations to be co-referent they must have
the same sources and target. For examples of joining co-referents see Section 4.8.

Once the CG Concepts and relations have been extracted (and any co-referent
joins made), the parser then uses the referents for each relation to create cor-
responding triples by looking up the index number of the relation’s source and
target CG Concepts corresponding to the relation’s referents. Table 2 contains
the triples created from Table 1. The triples thus created are now ready for the
process of converting them to corresponding binary relations.

Source relation Target

4 1 3
2 1 3
1 2 5
3 3 1

Table 2: Cats on the Mat triples

2.2 A triples-to-binaries algorithm

Figure 10 is an algorithm, Triples2Binaries, that along with its subroutine Ad-
dBinary (Figure 11), converts a set of triples, T , into a corresponding set of
binaries, B , exploiting the direction in the triples as explained above. It is a
generalised form of the CGtoFCA algorithm previously presented [5]. Whilst its
application to CGs is the focus of this paper, the more general form makes it
applicable to directed triples obtained from any source, including UML, RDF,
OWL, the Entity-Relation Diagram and linked data. Triples2Binaries also in-
cludes some refinements not present in CGtoFCA, namely; the ability to detect
‘direct pathways’ and cycles in a CG. A direct pathway through a CG is a path
from an input CG Concept to an output CG Concept, where an input CG Con-
cept is one with no edges entering it and an output CG Concept is one with no
edges leaving it. Features such as direct pathways and cycles often have signifi-
cant meaning in a CG but are not always easily apparent (particularly in large
CGs). The main algorithm, Triples2Binaries, simply iterates through the set of
triples, T , sending each triple, (s, r , t) to the subroutine AddBinary. In (s, r , t),
s denotes the source, r denotes the relation and t denotes the target. Each triple
enumerated in Triples2Binaries will be the start of a new pathway. A pathway
is recorded by AddBinary as a set of (source, relation) pairs in path.

AddBinary takes each triple (s, r , t), adds (s, r) to the current path (line 2)
and then adds the corresponding binary ((s, r), t) to the set of binaries, B (line
3).

Line 4 is a test for detecting a direct pathway in the CG: if the current source,
s, is an input CG Concept and the current target, t , is an output CG Concept,
then there is a direct pathway from s to t . In which case, the current path along
with t is recorded as a direct pathway.

Line 6 is the condition for detecting a cycle in the CG: if the current source,
s, is the same as the current target, t , there is a cycle, recorded in line 7 as the
current path along with the current target.

Line 8 defines the terminating condition for recursion (thus preventing infinite
loops around cycles): if the current target, t , is already in the current path then
AddBinary terminates. Otherwise, line 9 iterates through the set of triples, T ,
to test for links (line 10): if the current target, t , also appears as a source, i , in
the set of triples, AddBinary is called recursively (line 11), passing the current
source, s, the current relation, r , and the new target, k .

Note that the condition for a cycle (line 6) cannot be used as the terminating
condition for recursion. This is because the starting point for a cycle can occur at
any point in a pathway. A pathway begins with the source, s, and if the starting
point of a cycle begins later than s, then s will never equal t and we would have
an infinite loop around that cycle.

begin1

path ← ∅2

foreach (s, r , t) ∈ T do3

AddBinary(s, r , t , path)4

end5

Fig. 10: Triples2Binaries(T)

3 The CGFCA Tool

The cgif parser and Triples2Binaries algorithm were implemented together to
form a software tool called CGFCA. The architecture of CGFCA is shown in
Figure 12. The cgif parser inputs a CG in the form of a cgif file and creates
a corresponding set of CG (source Concept, relation, target Concept) triples as
described in Section 2.1. The triples are then passed to Triples to Binaries which
converts them into ((source Concept, relation), target Concept) binaries, includ-
ing the computation of all binaries with indirect target Concepts, as described
in Section 2.2. Triples to Binaries also carries out an analysis of the CG and re-
ports the following features: input Concepts, output Concepts, direct pathways
(from an input Concept to an output Concept), cycles and pathways with mul-
tiple routes (these are multiple pathways from the same input Concept-relation
to the same output Concept). These multiple routes were considered worth de-
tecting and reporting as they may indicate redundant pathways in a CG. The

begin1

path ← path ∪ {(s, r)}2

B ← B ∪ {((s, r), t)}3

if IsInput(s) and IsOutput(t) then4

RecordDirectPathway(path, t)5

if s = t then6

RecordCycle(path, t)7

if ¬∃(x , y) ∈ path | t = x then8

foreach (i , j , k) ∈ T do9

if t = i then10

AddBinary(s, r , k , path)11

end12

Fig. 11: AddBinary(s, r , t , path)

((source Concept, relation), target Concept) binaries computed by Triples to
Binaries are then passed to a simple Formal Context Creator where the (source
Concept, relation) in each binary is treated as a formal attribute and each tar-
get Concept is treated as a formal object. The formal context is output in the
standard cxt format for FCA.

Fig. 12: CGFCA Architecture

The formal context output by CGFCA can then be visualised as a Formal
Concept Lattice (FCL) using an appropriate tool, such as ConceptExplorer (Con-

Exp)1 or as a Formal Concept Tree using In-Close [3, 4]. Such visualisations
clearly highlight further CG features such as cycles and co-referent joins.

4 Highlighting key features of a CG using CGFCA

This Section uses simple CG examples to illustrate the use of the CGFCA tool
in detecting and highlighting features of CGs and how corresponding FCLs allow
a CG to be explored in a formal, hierarchical, visualisation.

4.1 Paths and Dependencies

Figures 13 and 14 respectively illustrate the CG and FCL for the dependen-
cies described earlier in a larger example–as well as two paths–between the
source Concept [Person: Simon] and the target Concept [City: London]. As
well as the intermediate target Concepts that in turn become source Concepts
(i.e. [Coach: #564] and [Hotel: OpenSky]), this example shows CG referents,
namely Simon, #564, OpenSky and London. ([Colour: Grey] from Figure 2
was also a CG Concept with a referent.) The referents are instances of their re-
spective type label in the CG Concept e.g. London is a referent of the type label
City, and #564 the numeric identifier for a Coach that in the context of Figure
13 could be read as the number of the coach that goes to London. In addition

Fig. 13: Paths and Dependencies CG Fig. 14: Paths and Dependencies
FCL

to the direct dependencies such as [Hotel: OpenSky]) on [Person: Simon]-
(books) there are indirect dependencies detected in accordance with AddBinary
line 4 described earlier in subsection 2.2. These are: a) [City: London]) on
[Person: Simon]-(books), and b) [Person: Simon]-(travels-to) through
the other path that has the intermediate Concept [Coach: #564]. The start-
ing (or input) Concepts and ending (or output) Concepts are usefully reported

1 http://conexp.sourceforge.net/

by the CGFCA software i.e. Inputs: “Person: Simon”. Outputs: “City: London”.
The output also states: Direct Pathway: Person: Simon - books - Hotel: OpenSky
- location - City: London and Direct Pathway: Person: Simon - travels-by - Coach:
#564 - destination - City: London.

In simple terms, Simon’s trip to London depends on travelling there by coach
and booking into the OpenSky hotel. Of course in this still-simple example this
knowledge can be gleaned from the CG alone thereby obviating the need for
CGFCA. However it is more likely that these patterns will appear in larger CGs
where it is not so evident, perhaps unknowingly as they are drawn by hand
and obfuscated by the size of the larger model. CGFCA and the consequent
computer-generated FCL will highlight within such digraphs the ‘diamond’ look-
ing patterns that represent multiple pathways thus alerting their existence–hence
validity–to the modeller.

4.2 Cycles

It is natural that digraphs may contain one or more cycles. Figures 15 and
16 respectively illustrate an example of a CG and FCL that is a cycle. Note

Fig. 15: CG that is a cycle Fig. 16: FCL of cycle

that this example is similar to the previous paths and dependencies example
in Figure 13 and 14. This time the direction of the hotel booking path goes in
the opposite direction, thus creating the cycle. The renaming of the relations
i.e. location to location-of and books to booked-by correctly reflect the new
direction. It is common however to name or use relations that cause cycles to
occur inadvertently such as possibly in this example. A cycle may of course
be desired, but the modeller will in any event be alerted to its validity by the
FCL (here Figure 16) in accordance with AddBinary line 7 described earlier in
subsection 2.2. The CGFCA output highlights why the Figure 16 lattice looks as

it does: There are no inputs. There are no outputs. Cycle: City: London - location-
of - Hotel: OpenSky - booked-by - Person: Simon - travels-by - Coach: #564 -
destination - City: London. Every Concept is dependent on all the other Concepts
with no hierarchy, thus they become grouped together in the FCL.

4.3 Joins

Figure 17 and 18 respectively illustrate the CG and FCL for Concepts that are
co-referent. Co-referents occur when Concepts have the same referent, which
in this case is Gywn in Pet and Cat. Where a source and target Concept are

Fig. 17: CG with co-referent concept Fig. 18: FCL with co-referent con-
cept

directly linked by more than one relation, the associated relations are in effect
co-referent. This behaviour is highlighted by Figure 19 and 20.

Fig. 19: CG with co-referent rela-
tions

Fig. 20: FCL with co-referent rela-
tions

Before the Triples2Binaries algorithm in CGFCA is called, the CGFCA cgif
parser detects co-referent CG Concepts and co-referent CG relations and because
they refer to the same object or instance it joins the Concepts and relations
automatically (see Section 2.1). Furthermore it concatenates the Concept type
or relation labels, using ‘;’ as the delimiter.

The outcome is evident in the FCL for Figure 18 (i.e. Pet;Cat) and 20 (i.e.
sleeps-on;sits-on;prefers). This approach is akin to the maximal common
subtype in CGs (or intersection); thus Gywn is a) a Pet Cat, and b) sleeps, sits
on, and likes the Mat2.

A common error (particularly in larger or more complex models) is to give
different types the same referent by mistake. Take for example the CG Figure
19. In that Figure let’s change [Mat: Gwyn’s] to [Mat: Gwyn], assuming that
it was mistyped by the modeller in the first place. As a result, [Mat: Gwyn] will
inadvertently join with the [Cat: Gwyn] and [Pet: Gwyn] CGs from Figure 17.
Figure 21 shows the CGs for this scenario including the mistake, and Figure 22
demonstrates the result. Now Gwyn is not only a Pet Cat but a Mat too! And

Fig. 21: CG with co-referents Fig. 22: Mistakenly Joined CGs FCL

Bumbles sleeps-on, sits-on and prefers Gwyn as a Mat (rather than Gwyn’s Mat)
while Gwyn sits on another Mat, all of which is nonsensical as the FCL reveals.
Like the previous pathways and cycles examples, the practitioner is immediately
presented with a need to reason with and validate their models.

4.4 n-adic

Apart from Figure 7 earlier, the CG relations so far have been 2-adic i.e. only
one source CG Concept pointing to the relation. 2-adic CG relations are also
known as dyadic CG relations. A CG relation may however have more than one
source CG Concept; hence an n-adic CG relation has n source CG Concepts.
The CG relation sits-on in Figure 7 is 3-adic, or triadic.

Figure 23 and Figure 25 highlights the relation sits-on being stated as
being dyadic or triadic respectively. CG relations may any number of source
CG Concepts pointing to them3. Figure 24 and Figure 26 reveal that the FCL

2 Note Mat here has a latent referent, in accordance with CGs theory; hence we can
simply refer to it through the definite article ‘the’.

3 CG relations may however have only one target CG Concept [17].

Fig. 23: CG with 2-adic relation Fig. 24: FCL with 2-adic relation

Fig. 25: CG with 3-adic relation Fig. 26: FCL with 3-adic relation

for Figure 23 and Figure 25 turn out to be identical, thus two representations
of the same meaning. Unsurprisingly, the CGFCA output is identical for both
the 2-adic and the 3-adic: Inputs: ”Cat: Gwyn” ”Cat: Bumbles” Outputs: ”Mat:
Gwyn’s” Direct Pathway: Cat: Gwyn - sits-on - Mat: Gwyn’s Direct Pathway: Cat:
Bumbles - sits-on - Mat: Gwyn’s.

Fig. 27: CG, ‘wrong’ 2-adic share Fig. 28: FCL, ‘corrected’ share

Fig. 29: CG, ‘correct’ 3-adic share Fig. 30: FCL, ‘correct’ 3-adic share

Certain CG relations such as ‘(share)’ inherently can only have certain n-
adic values. For the share case, there need to be two or more things to have
something shared between them, hence share has to be at least triadic i.e. ≥ 3-
adic. As CGFCA would provide the same outcome even if the share CG relation
was modelled as dyadic accidentally by the modeller, it would still be correctly
depicted in the FCL. For completeness, Figures 27, 28, 29 and 30 respectively
demonstrate this outcome.

4.5 Formal Concepts without their own Attributes or Objects

Unlike the examples shown thus far where it has only occurred at the bottommost
(or infimum) Formal Concept in an FCL, CGs may generate an FCL that has
Formal Concepts without their own attributes (i.e. Source Concept-relation) or
objects (i.e. Target Concept) in the middle of the FCL. Figure 31 has generated
such a formal concept as evident in Figure 32.

Fig. 31: CG leading to unlabelled FC Fig. 32: FCL with unlabelled FC

Fig. 33: Larger CG, unlabelled FC Fig. 34: Larger FCL, unlabelled FC

Essentially this is because [Cat: Bumbles] and [Cat: Gywn] both sit-on

the [Mat: Gwyn’s] and have the heritage of [Pedigree: British Blue].
This pattern can be gleaned from the corresponding CGFCA output for Figures
31 and 32:

Inputs: ”Cat: Bessie” Outputs: ”Mat” ”Pedigree: British Blue”
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - sits-on - Mat
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - sits-on - Mat
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - heritage - Pedigree: British Blue

The only way to traverse the FCL to capture these relations is through the
unlabelled Formal Concept in between.

Figure 33 and Figure 34 evidence the pattern in a larger example where,
essentially, [Cat: Bumbles] and [Cat: Gywn] both sit-on the [Mat: Gwyn’s]

and have the heritage of [Pedigree: British Blue], and have as their owner
the [Person: Simon]. The CGFCA output underpins the pattern:

Inputs: ”Cat: Bessie” Outputs: ”Person: Simon” ”Mat: Gwyn’s” ”Pedigree: British Blue”
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - owner - Person: Simon
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - sits-on - Mat: Gwyn’s
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - heritage - Pedigree: British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - owner - Person: Simon
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - sits-on - Mat: Gwyn’s.

4.6 Further Exploring n-adity

For Figure 33 we can also identify the presence of 3-adic (triadic) relations, as
CG Figure 35 reveals. Note once more that the FCL Figure 36 is identical to
Figure 34.

Figure 37 has a CG with heritage as a 4 -adic relation, essentially adding
that [Cat: Bessie] has the heritage of [Pedigree: British Blue] too,
along with [Cat: Bumbles] and [Cat: Gywn]. Through the unlabelled Formal
Concept the 4th adic is highlighted by Figure 38.

4.7 Further Exploring co-referent links

Figure 37’s CG can be restated using a co-referent link as shown by Figure
39. In this Figure, the CG Concept [Pedigree: British Blue] appears twice.
Note also that the 4-adic heritage relation has disappeared, or so it would
appear? Note that Figure 40, which is the FCL for Figure 39 is identical to the
FCL Figure 38. The CGFCA parser applies the CG join operation as before
thus causing the co-referents–as they are the same CG referent–to be joined

Fig. 35: Same CG, 3-adic Fig. 36: Resulting same FCL

Fig. 37: CG, with 4-adic Fig. 38: FCL, with 4-adic

[14, 17, 19]. The significance of this example is that it reminds us that CGs
may be hand-drawn in different ways (e.g. different adity, or using co-referents
advertently–or inadvertently as we saw with [Mat: Gwyn] in CG Figure 21 and
the corresponding FCL Figure 22). However the FCL will represent them in
one way, thus potentially removing multiple, and potentially confusing ways of
stating the same thing differently.

Fig. 39: Same CG, but co-referent Fig. 40: Resulting same FCL

4.8 Larger Joins

Lastly to illustrate the wider behaviour of digraphs through CGs the above-
discussed examples are essentially joined into one CG. Figure 41 shows the re-
sult of joining the other CGs (except Figure 15) with Figure 13, which showed
the dependency from [Person: Simon] to [City: London] without the cycle,
whereas Figure 42 shows the result of joining the other CGs (except Figure 13)
to Figure 15, which showed [Person: Simon] to (and from) [City: London]

with the cycle.

Fig. 41: Joined FCL no cycle Fig. 42: Joined FCL with cycle

5 A Realistic Example

The simple but expressive examples presented thus far demonstrate how di-
graphs can be explored and validated through Triples2Binaries as exemplified
by CGFCA. Previous work has indicated CGFCA’s value in the business infor-
mation systems modelling domain [15]. Based on an example from that work,
a more comprehensive example is now presented from that real-world domain.
Whilst the example uses the terminology of that domain, this example will be
explained such that it can be more widely understood.

5.1 The Current Situation

As explained from the outset, human modellers draw diagrams to elicit the di-
mensions of some problem that becomes too difficult to understand through
discursive narrative alone. We have seen that through CGs, the directed graph
(digraph) offers the significant advantage of capturing the directional informa-
tion i.e. an arc from vertex A to vertex B indicates that one may move from A
to B but not from B to A. As well as their use in computer science as a repre-
sentation of the paths that might be traversed through a program, the examples

Fig. 43: Application Module CG

demonstrate digraphs’ applicability in higher-level conceptual models where con-
cepts are related to each other by relations that gain additional semantics (i.e.
meaning) by defining the direction between the source and target concepts.

CGs (Conceptual Graphs) are an expressive form of digraphs that enable
modellers to express meaning in a form that is logically precise whilst being
humanly readable. As such, they provide a conceptual structure that can for-
mally describe the given problem being modelled. CGs, in common with many
other forms of diagraphs are however drawn by hand, even with the assistance
of software tools such as CoGui suggested earlier [2]. Currently, the modeller
enters the digraphs–in this case CGs–into the tool manually and relies on the
tool to work with the potentially erroneous CGs entered into it. In effect the
tool is as only as good as the fool that uses it, so “a fool with a tool is still a
fool”–a common criticism from industry [12]. While a business (or other) mod-
eller may be no fool, there is no guarantee that a model created using CGs is
correct in terms of its validity. In their exploration of the given problem using
CGs, the modeller may have a misconception of the system being modelled or
may simply make mistakes in its construction–things that still conform to the
syntax and grammar but result in an invalid model. The current situation is too
complicated, and presents an unwarranted burden on the modeller.

Formal Concept Analysis (FCA) claims to add mathematical rigour to the
logical rigour captured in CGs [10]. CGFCA reveals FCA’s effectiveness in this
respect, thereby moving away from the current situation with its unnecessary

Fig. 44: Application Module FCL

complications as described above. We now further test this effectiveness using
business modelling as the more comprehensive illustration.

5.2 Understanding the Complications

The CG Figure 43 describes the components of a software application module
that is part of an information system in an organisation. Applying CGFCA as
above, Figure 44 is the corresponding FCL for this CG Figure. The human busi-
ness modeller draws this CG to capture the entities as CG Concepts and the
CG relations between them. The detailed meaning of each entity and relation
is discussed elsewhere [15], but for the purposes of our understanding the appli-
cation module is denoted by the CG Concept: [Application Module: am1A].
The referent ‘am1A’ uniquely identifies the application module. The remaining
CG Concepts and relations flow down from [Application Module: am1A]. This
is validated by Application Module: am1A being at the supremum (topmost)
Formal Concept of the lattice, Figure 44. The modeller requires each referent
throughout this CG to be unique and have no cycles in it. Figure 44 evidences
that the Application Module as a CG is accurately captured. In practice this is
unlikely to be the case. What are the complications in drawing the model that
can undermine its validity, and how are these complications revealed by CGFCA
and the lattice?

Arrow Direction. A common mistake or misconception that a modeller can
make is to draw the arrows the wrong way round. This is a complication that
may seem obvious on close inspection of the CG but nonetheless easily occurs
even in introductory CGs despite proof-checking [14]. The syntax of the CG is
correct–i.e. it is still a digraph (directed graph)–but this act results a semantic
error. Figure 46, which is an extract of the lattice for the CG Figure 45 shows
that Application Module: am1A is not at the supremum; its place is taken
by Organizational Unit: ou1A. This change of input is also shown by the
CGFCA report: Inputs: ”Organizational Unit: ou1A”. The modeller is alerted to
this deficiency because the arrows between [Application Module: am1A] and
[Organizational Unit: ou1A] in CG Figure 45 were accidentally drawn the
other way, unlike in the correctly-drawn previous CG Figure 43. The modeller
can then correct the model. The modeller may want to manually record the mis-
take for future reference, by shading the ’offending’ (assigned to) CG relation
as shown in Figure 45.

Mispointed Arrows. The CG Figure 47 highlights another common mistake
(or misconception) where a CG relation is pointed to the wrong CG Con-
cept. In this case it’s [Transaction Code: tc3A] → (assigned to) → [IT

Governance: itg4A]. It should be [Transaction Code: tc3A]→ (assigned to)

→ [Data Entity: de3A]. For convenience the offending relation is highlighted
in Figure 47. In practice the modeller would run CGFCA then generate the FCL
(of which Figure 48 is an extract) before highlighting the incorrect CG. From

Fig. 45: Application Module CG, wrong arrow direction

Fig. 46: Application Module FCL extract, wrong arrow direction

FCL Figure 47 the modeller notices that assigned to;measured by is incor-
rectly concatenated in Transaction Code: tc3A assigned to;measured by.
Such concatenations were demonstrated earlier by the FCL Figure 20 (i.e. Cat:
Bumbles sleeps-on;sits-on;prefers), which was correct in CG Figure 19 but
incorrect in CG Figure 47. Again a close inspection of CG Figure 47 would reveal
this complication, but it can easily happen in practice.

Fig. 47: Application Module CG extract, assigned to mispointed

Unwanted Cycles. While cycles may be deliberate, in many cases including
this business modelling scenario they point to a mistake or misconception. That
is the case of the CG Figure 49 that emerges in the FCL of which Figure 50 is an
extract. The cycle is still rather subtle however as the FCA attributes Business
Object: bo3A assigned to, Event: e3A assigned to and Application Task:

at3A assigned to are spread across two Formal Concepts before the FCA
objects Business Object: bo3A, Event: e3A assigned to and Application

Task: at3A are reached showing that the CG Concepts in the attributes (even-
tually) point to themselves as the CG Concept denoted by the FCA object. The
CGFCA report brings it most easily to light:

Cycle: Application Task: at3A - assigned to - Event: e3A - assigned to

- Business Object: bo3A - assigned to - Application Task: at3A.

Fig. 48: Application Module FCL extract, assigned to mispointed

Fig. 49: Application Module CG, cycle

Fig. 50: Application Module FCL extract, cycle

The FCL is nonetheless of value as the Formal Concept that has the three at-
tributes listed above (i.e. Business Object: bo3A assigned to, Event: e3A

assigned to and Application Task: at3A assigned to) doesn’t have its own
object (i.e. target CG Concept). This is highlighted by the bottom half of this
Formal Concept’s circle being transparent due to the other dependencies in the
FCL. The modeller sets those other dependencies aside, as (s)he has identified
that the unwanted cycle is the issue and its correction may also resolve any
other suspect dependencies (which it does). The cause? That common error of
a relation with the arrows pointing the wrong way i.e. the (assigned to) CG
relation that points to [Application Task: at3A] from [Business Object:

bo3A] when the CG relation should be the other way round. This time it causes
a cycle as a revisit to the CG Figure 49 and following this CG relation–using
the CGFCA report as our guide–brings the cycle to light. For the record, the
offending (assigned to) is shaded in the CG Figure 49. The cycle in the FCL
Figure 50 is also highlighted by the rectangles with thick black borders.

Invalid CG referents. Remember in Figure 22 i.e. Cat;Mat;Pet: Gwyn, Gwyn
became not only a Pet Cat but a Mat too! This common error appears in the CG
Figure 51 and becomes evident in FCL Figure 52, where [Application Roles:

ar3A] and [Application Rules: ar3A] accidentally share the same referent
(ar3A); an easy error to make especially as the CG Type Labels Application

Rules and Application Roles look so similar too! In the FCL Figure 52 they
are shown as Application Rules;Application Roles and, for emphasis, high-

Fig. 51: Application Module CG, ar3A referent

lighted in thick black border rectangles. Likewise, and as before, the modeller in
CG Figure 51 shades these offending CG Concepts.

5.3 Resolving the Complications

While the above complications are not exhaustive, and not accounting for com-
binations of complications that could be further highlighted by the approach de-
scribed, we have evidenced through the real-world scenario of business modelling
how the human modeller as a practitioner (business or otherwise) is empowered
by CGFCA and the FCL. In the course of this approach the modeller was able
to explore the CG models, apply his/her reasoning from identifying issues in the
models, thus leading to their correction. Through resolving the complications,
the modeller acts as a human co-creator with the computer-generated CGFCA
reports and FCLs (Formal Concept Lattices) thereby being empowered to pro-
duce useful, validated models.

6 Related Work

CGFCA originated with a comparative study to Wille’s Concept Graphs as
stated earlier, revealing the comparative advantages of CGFCA [5,20]. CGFCA–
hence Triples2Binaries–is however now at a level of maturity that it can play a
useful role whilst recognising the existence of other FCA approaches to triple-
based structures, such as Relational Concept Analysis (RCA), EL-Implications

Fig. 52: Application Module FCL, ar3A referent

and Graph-FCA [6, 7, 16]. Extensive comparative studies in this arena already
exist, pre-CGFCA [13]. While CGFCA fulfills the scope of our study, there is
value in a up-to-date comparative study that includes CGFCA. Such work may
help to identify how all the approaches may best work together for directed
graphs and FCA.

7 Concluding Remarks and Further Work

As well as providing the capability to explore, reason with and validate directed
graphs (digraphs), the FCL representation of CGs are arguably more readable.
As we have seen, the arcs (the arrows) in a CG can lead in any direction. In a
large, complex CG it can be difficult to trace and compare pathways through it,
even more so where there are co-referent links. All FCL pathways are aligned in
a top-to-bottom (inputs to outputs), hierarchical manner and co-referents can
be automatically joined to make more apparent their connections and place in
the graph.

Future work will continue to develop representative exemplars; a worthwhile
endeavour given the value demonstrated by this paper. Furthermore since we
have set the context as exploring and validating digraphs through triples to
binaries rather than just CGs, the further work intends to include directed triples
modelled by practitioners in UML, RDF, OWL, the Entity-Relation Diagram
and linked data as alluded to earlier.

Meanwhile we have demonstrated that CGFCA–hence Triples2Binaries–presents
a formal method that exploits CGs as digraphs through the application of Formal
Concept Analysis (FCA). FCA elucidates key features of CGs such as pathways
and dependencies, inputs and outputs, cycles, and joins. Given the prevalence
of digraphs, the practitioner is consequently empowered in exploring, reasoning
with and validating their models in understanding real-world phenomena.

References

1. Charger - a conceptual graph editor. http://charger.sourceforge.net/. (Accessed
on 02/01/2018).

2. Cogui. http://www.lirmm.fr/cogui/. (Accessed on 02/01/2018).
3. Simon Andrews. In-close2, a high performance formal concept miner, pages 50–62.

Conceptual Structures for Discovering Knowledge. Springer, 2011.
4. Simon Andrews and Laurence Hirsch. A tool for creating and visualising formal

concept trees, volume 1637 of CEUR Workshop Proceedings, pages 1–9. 2016.
5. Simon Andrews and Simon Polovina. A Mapping from Conceptual Graphs to For-

mal Concept Analysis, pages 63–76. Conceptual Structures for Discovering Knowl-
edge. Springer, 2011.

6. Franz Baader and Felix Distel. A Finite Basis for the Set of EL-Implications
Holding in a Finite Model, volume 4933 of Lecture Notes in Artificial Intelligence,
pages 46–61. Springer, 2008.

7. Sébastien Ferré and Peggy Cellier. Graph-FCA in Practice, pages 107–121. Springer
International Publishing, Cham, 2016.

8. Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathematical foun-
dations. Springer Science & Business Media, 2012.

9. Frank Harary. Structural models: An introduction to the theory of directed graphs.
{John Wiley & Sons Inc}, 1965.

10. Pascal Hitzler and Henrik Scharfe. Conceptual Structures in Practice. CRC Press,
2009.

11. Kenneth R. Koehler. Directed graphs. http://kias.dyndns.org/comath/33.html,
2012.

12. Lindsay Parker and HP OpenView Business Unit. A fool with a tool is still a fool!
HP Open View, 2001.

13. Jonas Poelmans, Dmitry I. Ignatov, Sergei O. Kuznetsov, and Guido Dedene. Re-
view: Formal concept analysis in knowledge processing: A survey on applications.
Expert Syst. Appl., 40(16):6538–6560, November 2013.

14. Simon Polovina. An Introduction to Conceptual Graphs, pages 1–15. Conceptual
Structures: Knowledge Architectures for Smart Applications, July 2007, Sheffield,
UK. Springer, 2007.

15. Simon Polovina, Hans-Jürgen Scheruhn, and Mark von Rosing. Modularising the
Complex Meta-Models in Enterprise Systems Using Conceptual Structures, pages
261–283. Developments and Trends in Intelligent Technologies and Smart Systems.
IGI Global, Hershey, PA, USA, 2018. ID: 189437.

16. Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli, and Petko
Valtchev. Relational concept analysis: mining concept lattices from multi-relational
data. Annals of Mathematics and Artificial Intelligence, 67(1):81–108, 2013.

17. J.F. Sowa. Conceptual structures: Information processing in mind and machine.
Addison-Wesley Pub.,Reading, MA, Jan 1983.

18. John F. Sowa. Conceptual graph examples.
http://www.jfsowa.com/cg/cgexampw.htm.

19. John F. Sowa. Conceptual Graphs, pages 213–237. Handbook of Knowledge Rep-
resentation, Foundations of Artificial Intelligence. Elsevier, Amsterdam, volume 3
edition, 2008.

20. Rudolf Wille. Conceptual Graphs and Formal Concept Analysis, pages 290–303.
ICCS ’97. Springer-Verlag, London, UK, UK, 1997.

