
Combining software cache partitioning and loop tiling for
effective shared cache management

KELEFOURAS, Vasileios <http://orcid.org/0000-0001-9591-913X>,
KERAMIDAS, Georgios and VOROS, Nikolaos

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/19064/

This document is the Accepted Version [AM]

Citation:

KELEFOURAS, Vasileios, KERAMIDAS, Georgios and VOROS, Nikolaos (2018).
Combining software cache partitioning and loop tiling for effective shared cache
management. ACM Transactions on Embedded Computing Systems, 17 (3). [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Combining software cache partitioning and loop tiling for effective
shared cache management

Kelefouras Vasilios, Keramidas Georgios, and Voros Nikolaos

One of the biggest challenges in multicore platforms is shared cache management, especially for data dom-
inant applications. Two commonly used approaches for increasing shared cache utilization are cache parti-
tioning and loop tiling. However, state-of-the-art compilers lack of efficient cache partitioning and loop tiling
methods for two reasons. First, cache partitioning and loop tiling are strongly coupled together, thus ad-
dressing them separately is simply not effective. Second, cache partitioning and loop tiling must be tailored
to the target shared cache architecture details and the memory characteristics of the co-running workloads.

To the best of our knowledge, this is the first time that a methodology provides i) a theoretical foundation
in the above mentioned cache management mechanisms and ii) a unified framework to orchestrate these
two mechanisms in tandem (not separately). Our approach manages to lower the number of main memory
accesses by an order of magnitude keeping at the same time the number of arithmetic/addressing instruc-
tions in a minimal level. We motivate this work by showcasing that cache partitioning, loop tiling, data
array layouts, shared cache architecture details (i.e., cache size and associativity) and the memory reuse
patterns of the executing tasks must be addressed together as one problem, when a (near)- optimal solution
is requested. To this end, we present a search space exploration analysis where our proposal is able to offer
a vast deduction in the required search space.

Categories and Subject Descriptors: []

CCS Concepts: rTheory of computation→ Shared memory algorithms; rSoftware and its engineer-
ing→ Compilers; Retargetable compilers;

Additional Key Words and Phrases: cache partitioning, loop tiling, page coloring, data array layouts, memory
management

ACM Reference Format:
ACM Trans. Embedd. Comput. Syst. , , Article (March 2018), 25 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Efficient shared cache utilization in multicore platforms represents one of the most
performance and energy critical problems, especially for data dominant applications.
First, uncontrolled data contention occurs among different tasks, because all the cores
can unrestrictedly access the entire shared cache memory [Tam et al. 2007]. Second,
when the total size of the data structures of the executing application is larger than the
cache size and the data are accessed more than once, the data are loaded and reloaded
many times from the slow and energy demanding main memory. A well-studied direc-
tion to address the first problem is to rely on software (SW) cache partitioning tech-
niques, called page coloring [Tam et al. 2007] [Ding et al. 2011] [Kim et al. 2013] [Ye
et al. 2014]. A fruitful approach to circumvent the second problem is by employing com-
piler level techniques such as loop tiling [Bondhugula et al. 2008b] [Kandemir et al.
2009] [Kim et al. 2007a] and data array transformations [Sung et al. 2012] [Henretty
et al. 2009]. However, when applying the above optimization techniques, most of the
shared cache architecture details and data reuse patterns of the (co-)executing applica-
tions are not appropriately taken into consideration. Most importantly, all the related
approaches address the two above problems separately.

To the best of our knowledge, this is the first time that a methodology addresses
the shared cache partitioning, loop tiling and data array layout techniques in a the-
oretical basis but also in tandem. The proposed memory management methodology
takes as input the underlying hardware architecture details and the memory charac-
teristics of the executing applications and outputs the configuration parameters of the

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:2 Kelefouras Vasilios et al.

mentioned techniques that minimize the number of accesses to main memory; in this
way, the search space for identifying the correct configuration parameters is decreased
by many orders of magnitude. More specifically, we showcase that if the transforma-
tions employed in this paper are included in an iterative compilation process (in order
to test all different related implementations/binaries), the compilation time will last
about 1037 years. On the other hand, using the proposed methodology the compila-
tion time lasts from some minutes to some hours in a commodity processor. Thus, an
efficient point in the search space can be found in a reasonable amount of time.

The major contributions of this paper are the following: i) for the first time, shared
cache partitioning, loop tiling, and data array layout transformations are addressed
theoretically but most importantly in a single framework, i.e., as one problem and not
separately, ii) cache partitioning and loop tiling are addressed by taking into account
the last level cache (LLC) architecture details and the memory characteristics of the
co-running applications, iii) a direct outcome of the two previous contributions is that
the search space (to fine-tune the above memory management techniques) is decreased
by many orders of magnitude.

In the context of this work, we make the following assumptions. We assume that
the applications have already been parallelized into independent tasks and that all
the extracted tasks have been mapped onto the cores at compile time (the mapping is
done either randomly or by the user). As such, no extra tasks are allowed to enter for
execution at runtime. In addition, our model assumes a fixed number of tasks mapped
into a core. The output of our framework is the (near)-optimum tile sizes of the loop
kernels (within the tasks), the shared cache partition sizes, and the data array layouts.
The goal is to reduce, to the extent possible, the number of main memory accesses
keeping at the same time the number of arithmetic instructions (introduced due to
loop tiling transformation) at a minimal level. Additionally, the proposed methodology
can be applied iteratively for all the different mappings between tasks and cores, so
as the best mapping is calculated, i.e., which tasks should run on each core. Finally,
it is important to note that instead of partitioning the shared cache at the task level,
we use per-core cache partitioning which is proved to be more efficient (the reasoning
behind this design decision is further explained in Section 3).

The main steps of our methodology are as follows. First, loop tiling is applied to
all the loop kernels of each task, i.e., the data arrays are partitioned into smaller
ones (tiles) in order to fit and remain in the shared cache during the execution. Loop
tiling is carefully devised to fully exploiting the cache architecture details and data
reuse patterns of the executing tasks. Moreover, as noted, our methodology is based
on a theoretical analysis. According to this, one mathematical inequality is extracted
for each loop kernel. The inequality provides all the efficient cache partition sizes,
tile sizes, and array layouts. The implementations that do not obey to the extracted
inequalities are automatically discarded by our methodology decreasing substantially
the search space. An important observation is that the tile sizes are constrained by
the shared cache architecture details, the shared cache partition size, the number of
the cores/tasks and data reuse patterns. More specifically, the tiles have to be small
enough in order to fit in the allocated cache space and big enough in order to utilize
efficiently the cache size. Since shared caches in multicore processors are subject to
contention from co-running tasks, in our approach the tile sizes and the array layouts
(of all the co-running tasks) are selected in a way to eliminate the resulting cache
interference. The final step in our methodology is to derive the number of main memory
accesses for each different implementation (obviously this step occurs after calculating
the efficient tile sizes and data array layouts). The set of solutions that offers a number
of memory accesses close to the minimum are preserved, while the remaining solutions
are discarded further decreasing the search space.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :3

The problem of finding the number of main memory accesses for each tile set is the-
oretically formulated by exploiting the special memory access patterns of each studied
task. In particular, one mathematical equation for each loop kernel is generated. This
equation provides the number of main memory accesses while the tile sizes serving
as the independent variables of the equation. The goal is to end-up with specific tile
sizes that minimize the above equations, i.e., minimize the number of main memory
accesses taking into account all the co-running tasks. However, the solution offering
the minimum number of main memory accesses does not always provide the mini-
mum execution time of a task due to the additional inserted arithmetic/addressing
instructions required to support the loop tiling transformations. In our methodology,
among the different implementations achieving a main memory access value close to
the minimum, we select (theoretically) the one providing the fewest number of arith-
metic instructions.

The evaluation of the proposed methodology is based on detailed, cycle and power
accurate simulations, using the gem5 [Binkert et al. 2011] and McPAT [Li et al. 2009]
simulators, assuming the x86 instruction set. The selected benchmark suite consists of
eight well known data dominant loop kernels taken from [Pouchet 2012]. Our obtained
evaluation results are reported in terms of compilation time, main memory accesses,
arithmetic instructions, achieved performance and energy consumption.

The remainder of this paper is organized as follows. In Section 2, the related ap-
proaches are provided and the concept of page coloring is introduced. The proposed
methodology is described in Section 3 while experimental results are presented in Sec-
tion 4. Finally, Section 5 concludes this paper.

2. RELATED WORK AND BACKGROUND
2.1. Software Cache Partitioning
A static cache partitioning policy (as assumed in this work) predetermines the amount
of cache blocks allocated to each task(s) and/or core(s) prior to execution. Typically,
cache partitioning mechanisms require specialized hardware support in order to mod-
ify the placement/replacement strategy of the underlying cache taking into account the
task and/or core id. To alleviate this restriction and also make our methodology appli-
cable to commodity processors, our cache partitioning mechanism is based on software
(SW) cache partitioning, also known as page coloring [Tam et al. 2007] [Kim et al.
2013] [Ding et al. 2011] [Ye et al. 2014]. Leveraging the fact that the shared LLC
(the target cache level in this work) is typically physically indexed, the page coloring
technique controls the virtual to physical mappings used by individual tasks [Tam
et al. 2007]. The key to the page coloring technique lies in the mapping between cache
entries and physical addresses [Kim et al. 2013].

2.2. Related Work
Software (SW) cache partitioning, loop tiling and data array layout problems depend
on each other; these dependencies require that the above problems should be opti-
mized together as one problem and not separately. Towards this, various iterative
compilation techniques have been proposed, but not for SW cache partitioning. In iter-
ative compilation, a number of different versions of the program is generated-executed
by applying a set of compiler optimizations at all different combinations/sequences.
These approaches require enormous compilation times, thus they have limited prac-
tical use even by using machine learning compilation techniques [Kulkarni et al.
2004a] [Park et al. 2011] [Monsifrot et al. 2002] [Stephenson et al. 2003] [Tartara
and Crespi Reghizzi 2013] [Agakov et al. 2006], genetic algorithms [Almagor et al.
2004], [Cooper et al. 2005], [Cooper et al. 2006], [Kulkarni et al. 2004b], [Kulkarni

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:4 Kelefouras Vasilios et al.

et al. 2007], [Kulkarni et al. 2009], or statistical techniques [Haneda et al. 2005] to
decrease the search space. However, by employing previous approaches, the remaining
search space is still big enough. The end result is that seeking for the optimal config-
uration is impractical even by using modern supercomputers. This is evidence by the
fact that most of the iterative compilation methods use either low compilation time
transformations only (such as common subexpression elimination) or high compilation
time transformations with partial applicability e.g., in [Knijnenburg et al. 2004], [Kim
et al. 2007b], and [Renganarayanan et al. 2007], loop tiling is used only for a limited
number of tile sizes, specific number of tiling levels, and specific loop unroll factor val-
ues, so as to keep the compilation time in a reasonable level. Our approach differs from
the previous works in two main aspects. First, in the proposed methodology cache par-
titioning and loop tiling are addressed in a theoretical basis and second, the involved
memory management techniques are explored in tandem. Thus, the search space can
be reduced by orders of magnitude and the quality of the end result can be significantly
improved.

Several studies use page coloring techniques to separate the shared cache space
among concurrently executing threads [Kim et al. 2013] [Ding et al. 2011] [Ye et al.
2014] [Zhang et al. 2009] [Moret et al. 2008] [Dybdahl and Stenstrm 2007] [Lin
et al. 2008] [Yu and Petrov 2010] [Chang and Sohi 2014] [Tam et al. 2007]. [Kim
et al. 2013] proposes a practical OS-level cache management scheme for multicore real
time systems that uses partitioned fixed priority preemptive scheduling; in this work,
cache partitions are allocated to cores not to tasks. In [Ding et al. 2011], ULCC (User
Level Cache Control) is presented; a SW runtime library that enables programmers to
explicitly manage space sharing and contention in LLCs by making cache allocation
decisions based on data locality. [Ye et al. 2014] describes the implementation of a
page coloring framework in the Linux kernel, where the colors, i.e., cache partitions,
are allocated to tasks not to cores. [Zhang et al. 2009] proposes a hot-page coloring ap-
proach in which cache partitioning is applied only on a small set of frequently accessed
(or hot) pages for each process. In our approach, the page coloring technique is used
as a SW driven cache partition mechanism. However the assigned cache sub-areas are
extracted through a theoretical methodology that is able to tailor both the cache space
of the co-running tasks, the loop tiling, and the data layout parameters to the target
shared cache architecture details and task memory characteristics.

[Kaseridis et al. 2009] propose a cache partitioning scheme, called Bank-aware,
on realistic last level cache designs that is aware of the banking structure of the L2
cache. [Kandemir et al. 2010] presents a compiler based, cache topology aware code
optimization scheme for multicore systems; this scheme distributes the iterations of
a loop to be executed in parallel across the cores of a target multicore machine and
schedules the iterations assigned to each core. [Bui et al. 2008] address the cache
partitioning problem as an optimization problem and thus they use a genetic algorithm
to find a near optimal solution.

[Reddy and Petrov 2010] and [Sundararajan et al. 2012] use cache partition-
ing to reduce energy consumption in a shared cache. [Reddy and Petrov 2010] of-
fers a methodology for power reduction and inter-task cache interference elimination
through data cache partitioning. [Sundararajan et al. 2012] presents a runtime par-
titioning scheme that reduces both dynamic and static energy in a shared cache by
disabling (power-off) unused cache ways.

Apart from cache partitioning, researchers tried to increase the shared cache uti-
lization by employing compiler transformations and most commonly loop tiling trans-
formations [Bondhugula et al. 2008b] [Kandemir et al. 2009] [Kim et al. 2007a]
[Nikolopoulos 2003] [Sung et al. 2012] [Bao and Ding 2013] [Zhou et al. 2012] [Liu
et al. 2011]. [Bondhugula et al. 2008b] and [Bondhugula et al. 2008a] present PLuTo,

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :5

a fully automatic polyhedral source-to-source transformation framework; PLuTo ap-
plies loop tiling transformation to increase both the resulting parallelism and data
locality directly through an affine transformation framework. [Baskaran et al. 2009]
extends PLuTo by improving task load-balancing for efficient execution on multi-core
systems. [Nikolopoulos 2003] presents SW solutions for partitioning shared caches
on multithreaded processors; according to [Nikolopoulos 2003], loop tiling is the most
important transformation to utilize cache. [Kandemir et al. 2009] restructures the tar-
get code such that the different cores operate on shared data blocks at the same time.
[Kim et al. 2007a] describes a method to automatically generate multi-level tiled code
for any polyhedral iterative transformation. [Liu et al. 2011] presents a cache hierar-
chy aware tile scheduling algorithm for multicore architectures targeting to maximize
both horizontal and vertical data reuses in on-chip caches.

As noted, this is the first work that proposes a combined scheme in which cache
partitioning, loop tiling, and data array layouts are fine tuned in a coordinated way
under a single memory management framework.

3. PROPOSED METHODOLOGY
The proposed methodology takes as input the source code of the executing tasks and
the shared cache architecture details and automatically generates the (near)-optimum
tile sizes, cache partition sizes, and data array layouts. The initial search space is
depicted in Fig. 1. The search space consists of all the different tile sizes and shapes,
cache partition size combinations, two different data array layouts (the default and
the proposed) and all the different iterators nesting level values (all different loop
interchange combinations). As we show in Subsection4.3, if we include the above in an
iterative compilation process, the compilation time will last about 1037 years. On the
other hand, the compilation time of the proposed methodology lasts from some minutes
to some hours in a commodity processor.

 Search space

1. Loop tiling to all the iterators

 All different tile sizes are included (Tileloops)

2. LLC partitioning

 All different LLC partition size combinations (
 𝑚𝑎𝑥𝑐𝑜𝑙𝑜𝑟𝑠 −1 !

 𝑐𝑜𝑟𝑒𝑠 ! × 𝑚𝑎𝑥𝑐𝑜𝑙𝑜𝑟𝑠 −𝑐𝑜𝑟𝑒𝑠 !
)

4. Different data array Layouts (2d_arrays × 2)

5. Loop interchange (2 × 𝑙𝑜𝑜𝑝𝑠!)

Fig. 1. Search space being addressed

In this paper we make the following assumptions. We assume that the paralleliza-
tion/partitioning of the application into tasks and the mapping of the tasks onto the
cores has already been performed. Moreover, we assume that no more than p tasks can
run in parallel (one to each core), where p is the number of the processing cores in the
multicore platform.

The proposed methodology enforces per-core cache partition which differentiates our
method from other cache partitioning techniques that allocate exclusive cache parti-
tions to each task. This approach has two important benefits. First, it allows the core
to execute more tasks than the number of cache partitions allocated to that core. Sec-
ond, it can significantly reduce the waste of cache and memory resources caused by the
memory co-partitioning problem due to page coloring [Kim et al. 2013].

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:6 Kelefouras Vasilios et al.

Regarding target applications, this methodology is applied to static loop kernels; as
it is well known, 90% of the execution time of a typical computer program is spent
executing 10% of the source code (also known as the 90/10 law) [Chang 2003]. The
methodology is applied to both perfectly and imperfectly nested loops, where all the
array subscripts are linear equations of the iterators [Banerjee 1993]. Although not
addressed in this work, our methodology can also be applied to applications containing
vector instructions (SIMD).

An abstract representation of the proposed methodology is illustrated in Fig. 2, while
a detailed description (pseudocode) is depicted in Fig. 3. Going from left to right in
Fig. 2, the first step includes a parsing phase in which all the characteristics of the loop
kernels are extracted, i.e., data dependences, array references, subscript equations,
loop iterators and bounds, and iterator nesting level values. Then, one mathematical
equation is created for each array’s subscript, e.g., (A[2 ∗ i+ j]) and (B[i, j]) give (2 ∗ i+
j = c1) and (i = c21 and j = c22), respectively, where the following integer constants
(c1, c21, c22) are found according to the corresponding loop bound values. Regarding
2-d arrays, two equations are built because the data array layout can be modified, e.g.,
in B[i, j] reference, if N ∗ i + j = c (where N is the number of the array columns) is
considered instead of i = c1 and j = c2, then row-wise layout is enforced which may
not be efficient.

Extract

application

characteristics

Generate all the

efficient tile

sizes, LLC partition

sizes and data array

layouts (sets)

Preserve only

those giving a min

value of main

memory accesses

Loop

interchange

Select the set

giving the lower

num of

arithmetical

instructions

Input

(Source-code)

LLC architecture details

Application characteristics

Initial Search

Space (Fig.1)

Final Search

Space

(decreased by

many orders of

magnitude)

Search Space

(decreased by

orders of

magnitude)

Search Space

(decreased by

orders of

magnitude)

Generate the model

giving the number of

main memory accesses

given the tile sizes

Application characteristics

Compute the number

of main memory

accesses of all the sets

Application characteristics

Fig. 2. Flow chart of the proposed methodology

Each subscript equation defines the memory access patterns of the specific array
reference; data reuse is extracted by these equations.

Definition 3.1. Subscript equations which have more than one solution for at least
one constant value, are named type2 equations. All others, are named type1 equations,
e.g., (2 ∗ i+ j = c1) is a type2 equation, while (i = c21 and j = c22) is a type1 equation.

Arrays with type2 subscript equations fetch their elements more than once, e.g.,
(2i + j = 7) holds for several iteration vectors (data reuse); on the other hand, equa-
tions of type1 fetch their elements only once; in [Kelefouras et al. 2015], a new com-

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :7

Parsing ();

Extract the application characteristics () ;

Transform all the array subscripts into math. equations ();

for i=1, num of all different iterators nesting level values (loop interchange)

 for j=1, num of loop kernels

 Apply loop tiling to all the iterators ();

 Subsect. 3.1 (); // Generate Subsect.3.1 inequalities

 Subsect. 3.2 (); // Generate Subsect.3.2 equations

 end j

 Find candidate shared cache partition sizes ();

 for j=1, num of candidate shared cache partition sets

 for k=1, num of loop kernels

 Produce all the tile sizes from the Subsect.3.1 inequalities ();

 Compute the num of DDR accesses by using the Subsect.3.2 equations ();

 end k

 Compute the overall num of DDR accesses - all the loop kernels ();

 Find the min value of DDR accesses

 Store all the tile and cache partition sets giving a DDR value close to the min ();

 end j

end i

Subsect. 3.4 (); // Select the set giving the smallest num of arithmetical instructions

Fig. 3. The pseudocode of the proposed methodology

piler transformation is given which exploits data reuse of type2 equations. However,
both type1 and type2 arrays may fetch their elements more than once in the case
that the loop kernel contains at least one iterator that does not exist in the subscript
equation, e.g., consider a loop kernel containing k, i, j iterators and B[i, j] reference;
B[i, j] is accessed as many times as k iterator indicates. Obviously, in our methodology
type1 and type2 arrays are treated with different policies as they achieve data reuse
in different ways.

After all the application characteristics have been extracted and all the subscript
equations have been transformed into mathematical equations, one level of tiling is
applied to all the loop kernels of all the tasks. Tiling is applied in order to partition
the data arrays into smaller ones (tiles) which fit and remain in the cache during the
execution; therefore, the data arrays are accessed less times from the slow and energy
demanding main memory. Although we apply loop tiling to all the loop iterators in the
first place, the output schedule/binary may contain tiling to only one or none of the
iterators. The tile size selection procedure is analyzed in Subsection 3.1.

As noted, this is the first time that loop tiling is applied by taking into account cache
size and associativity, data reuse and the data array layouts (Subsection 3.1). In order
to apply loop tiling in an efficient way, we generate one mathematical inequality for
each loop kernel giving all the efficient cache partition sizes, tile sizes and shapes.
This way, we take into account the cache architecture details and the data reuse. The
tiles have to be small enough in order to fit in the cache and big enough in order to
utilize the cache size. In order to satisfy that the tiles remain in cache, the following
four conditions must hold. First, shared cache is divided into p partitions, one for each
core. Second, all the tile elements contain consecutive main memory locations (the data
array layouts are modified accordingly, if required), in order to use consecutive cache
locations. Third, the array tiles directed to the same cache subregions do not conflict
with each other. Fourth, we assign double cache space for the tiles that do not achieve
data reuse in order not to displace the other tile elements (it is explained in Subsection
3.1). The tile and cache partition sizes as well as data array layouts which are different

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:8 Kelefouras Vasilios et al.

to those the proposed equations provide are discarded (they are inefficient), reducing
the search space. We have implemented an automated C to C tool just for the studied
algorithms, but a general tool can be implemented by using Rose [Lidman et al. 2012]
for loop tiling and [Henretty et al. 2009] for data layout transformation.

Given that all the efficient tile and cache partition sizes have been extracted (Sub-
section 3.1), we preserve only those giving a main memory access value close to the
minimum, while all the others are discarded further decreasing the search space. The
problem of finding the number of main memory accesses is theoretically formulated by
exploiting the custom application characteristics (Subsection 3.2). In Subsection 3.2,
one mathematical equation is generated for each loop kernel, giving the correspond-
ing number of main memory accesses. The independent variables of this equation are
the tile sizes; the tile sizes that minimize this equation achieve the minimum number
of main memory accesses. For each candidate cache partition set, we generate all the
efficient tile sizes (according to Subsection 3.1) and we compute the number of main
memory accesses for each different tile size (the partition sizes that are bigger than
the size of the biggest tiles possible, are not considered, decreasing the number of the
candidate cache partition sets). We store and further process only the tile sizes giving
a number of main memory accesses close to the minimum (5%), while the others are
discarded (the previous threshold is empirically derived). The whole procedure is re-
peated for all the loop kernels of all tasks. As noted, the pseudo code of our methodology
is shown in Fig. 3.

The described procedure is repeated for all the different iterator nesting level values
(loop interchange) as loop interchange impacts the generated equations. More specif-
ically, when all the tile and cache partition sets providing a main memory accesses
value close to the minimum have been derived, the procedure of Subsection 3.4 is
applied in order to select (theoretically) the one offering the smallest number of arith-
metic/addressing instructions. In other words, the configuration giving the minimum
number of main memory accesses does not always give good performance due to the
additional inserted arithmetic/addressing instructions required to support loop tiling
that may degrade performance. To proceed with this, among all the tile sizes that give a
main memory access value close to the minimum, we select those that offer the fewest
number of the additional arithmetic instructions (this process is further analyzed in
Subsection 3.4).

Although it is impractical to run all the different schedules (their number is huge)
in order to prove that they give a large number of main memory accesses, a theoretical
explanation can be given. First, the schedules that don’t belong to the aforementioned
inequalities either use only a small portion of the cache or a larger, or they cannot
remain in the cache. Second, for all the remaining schedules, we compute their main
memory access values and we select only those giving a number close to the minimum.
This problem is theoretically formulated in Subsection 3.2 and evaluated in Subsection
4.1 giving small error values. Third, from the best remaining binaries (in terms of main
memory accesses), we select the one giving the less arithmetical instructions. This
problem is theoretically formulated in Subsection 3.4 and evaluated in Subsection 4.3.

The reminder of this section is divided into four subsections explaining in more de-
tail the most complex steps of Fig. 2 and also giving a working example of the first two,
most complex subsections.

3.1. Deriving efficient tile sizes, cache partition sizes, and data array layouts
Loop tiling is a well known technique to reduce the number of data accesses to the
main memory when the data arrays of the executing applications do not fit in the
cache. Therefore, an efficient implementation of loop tiling transformation is the key
to the high performance and low energy SW, especially for data dominant applications

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :9

[Nikolopoulos 2003]. However, as we show in this work, in order to apply loop tiling in
an efficient way, the cache size and associativity and the data array layouts must be
taken into account as they strongly depend on each other. The reason follows.

Let us give an example of a common matrix-matrix multiplication (MMM) algo-
rithm. As noted by many reserachers [Whaley et al. 2001], the accumulated size of
three rectangular tiles (one for each matrix) must be smaller or equal to the cache
size; however, the elements of these tiles are not written in consecutive memory loca-
tions e.g., the tile rows (matrix sub-rows) are not located in consecutive main memory
locations, thus they do not use consecutive cache frames; this means that assuming
a set-associative cache, they cannot simultaneously fit in the cache due to the cache
modulo effect. Moreover, even if the tile elements are located in consecutive memory
locations e.g., by enforcing a different data array layout, the three tiles cannot simul-
taneously fit in the cache if it is two-way associative or direct mapped (although the
elements of each array’s tile are going to be written in consecutive cache locations, the
three tiles are not going to be written in consecutive cache locations, meaning that
they are going to replace one another due to the cache modulo effect). Thus, it is ob-
vious that the benefits of loop tiling can be maximized only when cache size, cache
associativity and data array layouts, are addressed altogether in a single framework.

In order to find suitable tile and cache partition sizes, a shared cache inequality is
produced for each loop kernel providing all the (near)-optimum tile and partition sizes;
each inequality contains i) the tile size of each array and ii) the shape of each array tile.
The tile and partition sizes and data array layouts that differ from the ones derived by
the proposed methodology are automatically excluded decreasing the search space.

The inequality that provides all the efficient tile sizes and shapes for each loop kernel
separately is formulated as:

m ≤ d Tile1
LLCi/assoc

e+ ...+ d Tilen
LLCi/assoc

e ≤ assoc (1)

where LLCi is the LLC size / shared cache partition size used for loop kernel of task i;
the number of different partitions equals to the number of the cores and LLCi = LLC1
for all the tasks mapped onto the first core. assoc is the LLC associativity e.g., for an
8-way associative cache, assoc = 8). m defines the lower bound of the tile sizes and
it equals to the number of arrays in the loop kernel. In the special case where the
number of the arrays is larger than the associativity value is not discussed in this
paper (normally, (assoc ≥ 8)).
Tilei is the tile size of the ith array and it is formulated as follows:

Tilei = T ′1 × T ′2 × T ′n × type× s (2)

where type is the size of each array’s element in bytes and T ′i equals to the tile size
of the i iterator, e.g., in Fig. 4 (explained in subsequent section), the tile of C[i][j] is
TileC = T1 × T2 × 4 (floating point elements; 4 bytes each). s is an integer and (s = 1
or s = 2); s defines how many tiles of each array should be allocated in LLC according
to the data reuse being achieved (it is explained below).

In order to satisfy that the tiles remain in the cache, the following four
conditions must be met.

First, shared cache is divided into p partitions (one for each core) and each core uses
only its assigned shared cache space. As noted, leveraging the fact that the shared
LLC (the target cache level in this work) is typically physically indexed, our cache
partitioning mechanism is based on the well known Operating System (OS) technique
called page coloring [Kim et al. 2013]. In particular, when a tasks’s data have to be

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:10 Kelefouras Vasilios et al.

written onto a specific shared cache color, the tasks, virtual memory pages are mapped
onto specific physical pages that corresponds onto specific page colors (thus into specific
cache areas). The maximum number of partitions (colors) is given by LLC/(assoc ×
page), where LLC, assoc and page are the LLC size, the LLC associativity, and the
main memory page size, respectively. If the maximum number of colors is 32 in a 4-
core system (p = 4), (LLC1 + LLC2 + LLC3 + LLC4 = 32) and (LLCi = (LLC/32)× d)
where d = [1, 32] and (i) is the core id.

Moreover, given that consecutive virtual addresses (array elements) are not mapped
into consecutive physical addresses, we can further modify the OS page table mecha-
nism (as above), in order the virtual main memory pages of each array to be assigned
into consecutive physical pages and therefore shared cache locations (inside the ap-
propriate cache partition). Under this scenario, the physical main memory pages of
each array must contain consecutive color index values. Alternatively, the OS huge
page tables can be used; in this case, the page size is many times larger and thus for
reasonable array sizes, the array elements are written in consecutive physical memory
locations.

Second, in order the tiles to remain in the cache during the whole execution, the
tile elements that do not contain consecutive virtual main memory locations must be
relocated (re-paged) in consecutive virtual main memory locations, known as tile-wise
data array layout, i.e., all array elements are written in main memory in order; new
arrays are created which replace the default ones. However, there are some special
cases where the arrays do not contain consecutive memory locations but their layouts
can remain unchanged. For example, this can happen when the tile size is very small
(Tilei ≺ (LLCi/assoc)/8) (this value has been found experimentally). In this case, the
tile layout should not be changed and it is not inserted in Eq. 1.

Third, the array tiles directed to the same cache subregions do not conflict with
each other; the number of cache lines with identical addresses needed for the array
tiles is not larger than the (assoc) value, in order the tiles not to conflict with each
other due to the cache modulo effect. This is achieved by choosing the correct tile sizes,
tile shapes, and data array layouts. (d Tile1

LLCi/assoc
e) value in Eq. 1 is an integer that

represents the number of LLCi cache lines with identical LLC addresses used for Tile1.
(d Tile1

LLCi/assoc
e + ... + d Tilen

LLCi/assoc
e) value in Eq. 1 gives the number of LLCi cache lines

with identical LLC addresses used for all the tiles; if this value becomes larger than
the (assoc) value, the tiles cannot remain in the cache simultaneously. On the other
hand, by using Eq. 1, an empty cache line is always granted for each different modulo
(with respect to the size of the cache) of tile memory addresses. For the reminder of
this paper we are going to say that (d Tile1

LLCi/assoc
e) cache ways are used for Tile1 (in

other words tiles are written in separate cache ways). A detailed example is given in
Subsection 3.3. In the case that Tilei

LLCi/assoc
would be used instead of d Tilei

LLCi/assoc
e, the

number of cache misses will be larger because tiles would conflict with each other.
Fourth, for the tiles that do not exhibit data reuse, i.e., if a different tile is accessed

in each iteration, we assign cache space twice the size of their tiles; in this way, the
next accessed tile does not conflict with the current ones, satisfying that the tiles re-
main in cache. s value defines how many tiles (one or two tiles) are allocated in LLC
for each array and (s = 1 or s = 2) depending on whether the tile is reused or not,
respectively. s = 1 is selected for all the tiles that either they are accessed only once,
or they are accessed/reused in consecutive iterations (the same tile is accessed in each
iteration). Tiles that achieve data reuse contain the iterators with the smallest nesting
level values (upper iterators). Otherwise, if a different tile is accessed in each iteration,

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :11

s = 2 is selected; in this case, two consecutive tiles are allocated into LLC in order the
second accessed tile not to displace another array’s tile.

Let us give an example of the fourth case above. Consider the second code of MMM
in Fig. 4 assuming that the arrays are written tile-wise in main memory. The three
tiles are accessed many times (data reuse) and thus they must remain in the cache. In
the case that the three array tiles fit in the cache without any empty cache space left,
when the second tile of A and B are loaded and multiplied by each other, some of their
elements are going to be written on the tile of C; thus, some of the tile C elements will
be loaded again. On the other hand, if we choose smaller tiles for A and B such that
one tile of C and two consecutive tiles of A and B fit in the cache, the above problem
will never occur and the number of cache misses will be minimized.

3.2. Deriving the model providing the number of main memory accesses with respect to the
tile sizes

In this subsection the number of main memory accesses is derived theoretically by ex-
ploiting the unique memory behavior of each loop kernel. More specifically, for each
loop kernel one mathematical equation is created providing the corresponding num-
ber of main memory accesses. The independent variables of this equation are the tile
sizes. Normally, the larger the tile sizes are, the lower the number of the main mem-
ory accesses is (assuming the tiles can remain in the cache). Obviously, larger cache
partition sizes implies that larger the tile sizes can be used. However, the tile sizes are
constrained by the shared cache architecture details, the designated cache partition
size, and the number of the cores/tasks.

As mentioned in Subsection 3.1, all the tile elements contain only consecutive phys-
ical main memory locations and the array tiles directed to the same cache subregions
do not conflict with each other. Moreover, the tasks that run in parallel can access only
their assigned shared cache space, thus different task tiles do not conflict with each
other. Based on these observations, no unexpected misses occur and thus the number
of main memory accesses can be calculated as follows.

The overall number of main memory accesses can be extracted by accumulating all
the different loop kernel equations (Eq. 3). For the sake of simplicity, in the reminder
of this paper we assume that each task contains only one loop kernel.

DDR−Acc. =

i=tasks∑
i=1

(TaskiArrays+ codei) (3)

where tasks is the number of the tasks. TaskiArrays and codei represent the number
of main memory accesses due to the thread i data arrays and source code, respectively
(for data dominant applications (TaskiArrays � codei)). The main memory size al-
located for the scalar variables is meaningless and it is ignored. It is important to
mention that (codei) value is slightly affected by the loop tiling transformation and
thus it is inserted in Eq. 3 as a constant value.

For the reminder of this paper, we assume that the underlying memory architecture
consists of separate first level data and instruction caches (vast majority of architec-
tures). In this case, the program code typically fits in L1 instruction cache; thus, it
is assumed that the shared cache space is dominated by the data arrays of the loop
kernels.
TaskiArrays is given by the following equation

TaskiArrays = Type1 array acc.+ Type2 array acc. (4)

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:12 Kelefouras Vasilios et al.

where Type1 array acc. and Type2 array acc. is the number of main memory ac-
cesses of all type1 and type2 arrays, respectively (for task i). Type1 array acc. and
Type2 array acc. are offered by Eq. 5 and Eq. 7, respectively.

Type1 array acc. =

i=arrays1∑
i=1

(ArraySizei × ti + offseti) (5)

where arrays1 is the number of type1 arrays, ArraySizei is the size of array i and
ti represents how many times arrayi is accessed from main memory. offseti gives the
number of main memory data accesses that occur when the data array layout of array
i is changed. Offset is either (offseti = 2 × ArraySizei) or (offseti = 0) depending on
whether the data layout of array i is changed or not; in the case that the layout of array
i is changed, the array has to be loaded and then written again to main memory, thus it
is (offseti = 2×ArraySizei). However, when the array size is bigger or comparable to
the cache size, then (offseti � 2×ArraySizei). This is because the elements are always
loaded in blocks (cache lines) and many blocks are loaded more than once (especially in
the column-wise case). This is why we use a hand optimized code changing the layout
in an efficient way, thus always achieving (offseti = 2×ArraySizei).
ti gives how many times arrayi is accessed from main memory and is given by

ti =

j=N∏
j=1

upj − lowj

stepj
×

k=M∏
k=1

upk − lowk

stepk
(6)

where N is the number of iterators exist above the upper new/tiling iterator of this
array (tiling gives extra loops), M is the number of iterators exist between the new
iterators of this array, if any. upj , lowj , stepj are the bound values of the corresponding
new iterator, e.g., the Eq. 6 the j, k iterators of A,B arrays in Fig. 4 are (none, jj) and
(ii, none), respectively that correspond to (tA = N

T2) and (tB = N
T1), respectively. The

first and the second products of Eq. 6 give how many times the array is accessed due
to the iterators exist above the upper new iterator of this array and between the new
iterators of this array, respectively, e.g., the B array in Fig. 4 does not contain ii iterator
and thus it is loaded (N/T1) times (the same holds for A array which is loaded (N/T2)
times).

The number of main memory data accesses of type2 arrays is calculated as follows:


Type2 array acc. =

∑i=arrays2
i=1 (ti × up1−low1

step1 × ((up2− low2) + step1) + offseti)

Type2 array acc. = ArraySize

(7)

where arrays2 is the number of type2 arrays, ti is calculated by Eq. 6, up1,
low1, step1 are the bound values of the outermost type2 new/tiling iterator (e.g.,
ii iterator for in array in Fig. 4) and up2, low2 are the upper/lower bounds of the
innermost type2 new/tiling iterator (e.g., jj iterator for in array in Fig. 4), e.g.,
(up1, low1, step1, up2, low2) values of in array in Fig. 4 are (N, 0, T4,M, 0); without any
loss of generality we assume that the type2 equations contain only two iterators here.

The first branch of eq. 7 holds when (((pattern size)−tile size) ≥ tile size); otherwise,
the array is accessed only once and eq. 7 takes the value of the second branch. Keep in
mind that (tile size) of A[i + j] equals to (T1 + T2), where (T1, T2) are the tile sizes of
(i, j), respectively.

Regarding type2 equations, the (up1−low1
step1 × (up2 + step1)) value gives the number of

data accesses initiated by the type2 arrays. In practice, type2 arrays are accessed more

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :13

times than type1 arrays because of the extra iterators they contain; when more than
one iterator exists in a single subscript, e.g., A[i + j + 1], data patterns occur which
they are repeated/accessed many times. For example, as the innermost iterator (let
j) changes its value, the elements are accessed in a pattern, i.e., A[3], A[4], A[5] etc, if
i, j = [1, N]. When the outermost iterator (i) changes its value, this pattern is repeated,
shifted by one position to the right (A[4], A[5], A[6] etc), reusing its elements. This holds
for equations with more than 2 iterators too. Thus, the ((up2 − low2) + step1) part in
Eq. 7 gives the size of the pattern while (up1−low1

step1) offer how many times the pattern is
repeated/accessed.

//MMM
for (i=0;i!=N;i++)
for (j=0;j!=N;j++)
for (k=0;k!=N;k++)

C[i][j]+= A[i][k] * B[k][j];

//MMM – after loop tiling
for (ii=0; ii!=N; ii+=T1)

for (jj=0; jj!=N; jj+=T2)
for (kk=0; kk!=N; kk+=T3)

for (i=ii; i!=ii+T1; i++)
for (j=jj; j!=jj+T2; j++)
for (k=kk; k!=kk+T3; k++)

C[i][j]+= A[i][k] * B[k][j];

MMM - Main Memory accesses
C: 2 x N2

A: N3/T2
B: N3/T1
mmm_acc.= 2xN2 + N3/T2 + N3/T1

//FIR
for (i=0;i!=N;i++)
for (j=0;j!=M;j++)
out[i] += in[i + j] * kernel[j];

//FIR – after loop tiling
for (ii=0; ii!=N; ii+=T4)
for (jj=0; jj!=M; jj+=T5)

for (i=ii; i!=ii+T4; i++)
for (j=jj; j!=jj+T5; j++)

out[i] += in[i + j] * kernel[j];

FIR - Main Memory accesses
out: 2 x N
in: N/T4 x (M+T4)
kernel: M x N/T4

fir_acc.= 2xN + N/T4 x (M+T4) + M x N/T4
Equation giving the number of main memory accesses:

DDR-acc = Offset + mmm_acc. + fir_acc. + code (8)

Offset = 0 , if (T3=N & T2=N) (9)

Offset = 2xN2 , if (T3≠N & T2=N) (10)

Offset = 4xN2 , if (T3=N & T2≠N) (11)

Offset = 6xN2 , if (T3≠N & T2≠N) (12)

Equation giving all the efficient tile and LLC partition sizes for MMM

3 ≤
𝑇1 𝑥 𝑇2 𝑥 𝑡𝑦𝑝𝑒
𝐿𝐿𝐶1

𝑎𝑠𝑠𝑜𝑐
 +

𝑇1 𝑥 𝑇3 𝑥 𝑡𝑦𝑝𝑒 𝑥 2
𝐿𝐿𝐶1

𝑎𝑠𝑠𝑜𝑐
 +

𝑇2 𝑥 𝑇3 𝑥 𝑡𝑦𝑝𝑒 𝑥 2
𝐿𝐿𝐶1

𝑎𝑠𝑠𝑜𝑐
 ≤ 𝑎𝑠𝑠𝑜𝑐 (13)

Equation giving all the efficient tile and LLC partition sizes for FIR

3 ≤
𝑇4 𝑥 𝑡𝑦𝑝𝑒

𝐿𝐿𝐶2
𝑎𝑠𝑠𝑜𝑐

 +
 𝑇4+𝑇5 𝑥 𝑡𝑦𝑝𝑒

𝐿𝐿𝐶2
𝑎𝑠𝑠𝑜𝑐

 +
𝑇5 𝑥 𝑡𝑦𝑝𝑒

𝐿𝐿𝐶2
𝑎𝑠𝑠𝑜𝑐

 ≤ 𝑎𝑠𝑠𝑜𝑐 (14)

LLC1+LLC2=LLC (15)

LLC1=LLC/d, d=[1,max_colors] (16)

LLC2=LLC/d, d=[1,max_colors] (17)

(0 < T1, T2, T3, T4 < N) & (0 < T5 < M) (18)

Fig. 4. Motivational example of Subsection 3.1 and Subsection 3.2

3.3. Working example of Subsection 3.1 and Subsection 3.2
For clarity reasons, a working example assuming a two core processor with an 8-way
shared cache and two tasks (loop kernels) is presented (shown in Fig. 4). The selected

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:14 Kelefouras Vasilios et al.

1st LLC
partition
(MMM)

2nd LLC
partition
(FIR)

in

kernel

in

inin

1st LLC
Partition
(MMM)

2nd LLC
Partition
(FIR)

in
kernel

kernelkernelkernel

C

A

A
A

C

A

C B B B

Fig. 5. An example on how data are stored in LLC regarding Fig. 4 (8-way LLC is assumed here). The blocks
which are shown in black indicate ’empty’ cache lines.

loop kernels are: Matrix-Matrix Multiplication (MMM) and Finite Impulse Response
(FIR).

According to the first step of the proposed methodology, loop tiling is applied to all
the iterators giving extra loops and iterators. Then, one mathematical inequality for
each loop kernel is derived providing all the efficient tile sizes and shapes, data array
layouts, and cache partition sizes (Subsection 3.1). These are Eq.13 and Eq.14, for
MMM and FIR, respectively. Eq.13 and Eq.14 satisfy that the tiles fit and remain
in the cache. The two equations imply a large number of different implementations;
moreover, if the tile elements contain no consecutive virtual main memory locations (x-
axis is partitioned), the data array layout is appropriately modified. Eq.15-Eq.17 define
that (LLC1, LLC2) are integers and that each task uses a subset of the max colors
partitions; if more than two tasks exist, LLC1 is used for all the tasks mapped onto
the first core and LLC2 for the others. Finally, Eq.18 gives the range of tile sizes;
it is important to note that if loop tiling has already been applied to the lower level
memories, then extra equations are generated because the shared cache tiles must be
multiples of the lower level cache tiles.

In Fig. 5, an example on how the arrays of Fig. 4 are stored in an 8-way LLC is
shown. In order to satisfy that the tiles remain in the cache, four conditions must be
met (Subsection 3.1). First, LLC is divided into 2 partitions (one for each core); in
Fig. 5, LLC is partitioned horizontally and therefore both MMM and FIR use their
private cache space. Second, all the tiles are written in consecutive LLC addresses,
e.g., in Fig. 5 the C array is written in the 1st, 2nd and 5th LLC ways but in consec-
utive addresses (the empty cache lines in the 5th way are due to the third condition
explained hereafter). Third, the number of cache lines with identical addresses needed
for the array tiles is not larger than the (assoc) value, so as the tiles not to conflict
with each other due to the cache modulo effect, e.g., in Fig. 5, (c = dT1×T2×type

LLC1/assoc
e = 2),

(a = dT1×T3×2×type
LLC1/assoc

e = 3) and (b = dT2×T3×2×type
LLC1/assoc

e = 3), where (c, a, b) represent the
number of LLC1 cache lines with identical LLC addresses used for (C,A,B) arrays; it
is like (C,A,B) arrays solely use (2, 3, 3) cache ways, respectively (although C array is
written in three different cache ways, it is like using just two). Fourth, the next ac-
cessed tiles do not conflict with the current ones (s = 2 for A and B arrays), ensuring
that the tiles remain in cache.

After loop tiling has been applied, one mathematical equation is generated for each
loop kernel to calculate the corresponding number of main memory accesses (Sub-
section 3.2). These equations are generated for each task separately (mmm acc. and
fir acc. in Fig. 4, for MMM and FIR, respectively). mmm acc. and fir acc. have been
generated by using Eq. 3-Eq. 7; note that in array is a type2 array while all the
others are type1 arrays. Regarding MMM algorithm, (C,A,B) arrays are accessed

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :15

(2, N/T2, N/T1) times, respectively; C array is loaded and stored only once as its tiling
iterators (ii, jj) have the smallest nesting level values (outermost ones), A array is
accessed N/T2 times as jj iterator is located between its tiling/new iterators (ii, kk)
and B array is accessed N/T1 times as ii iterator is located upper from its iterators
(jj, kk). Regarding FIR, (out, kernel) arrays are accessed (2, N/T2) times, respectively
(out array is both loaded and stored); as far as the in array is concerned, the (M + T4)
pattern is repeated/loaded (N/T4) times and thus (N/T4× (M + T4)) accesses occur.

The equation giving the number of main memory accesses in total, is Eq.8. The
source code size is a constant value (code value) and it is orders of magnitude smaller
than the mmm acc and fir acc size. The offset value takes four different values (Eq.9-
Eq.12) because different tile shapes result in different data array layouts (regarding
multi-dimensional arrays of MMM); given that the default data array layouts are row-
wise, all the tiles that cut the x-axis do not contain consecutive main memory locations
(and thus cache locations) and this is why their layout is changed, e.g., if (T3 6= N − 1
and T2 = N − 1) the data array layout of C array is changed, thus there is an offset of
2×N2 main memory accesses (C array is both loaded and stored). The solution offering
the minimum number of main memory accesses is that obtaining the tile sizes that
minimize Eq.8. However, the tile sizes and the cache partition sizes are constrained by
Eq.13-Eq.18. If more than two tasks exist, Eq.8 changes accordingly.

3.4. Last touch: Deriving the solutions offering the fewest addressing instructions
Given that there are many different implementations achieving a main memory access
value close to the minimum, we theoretically select the one giving the smallest number
of arithmetic instructions by using a qualitative analysis; in this way the search space
is further decreased.

Loop tiling affects the number of arithmetic/addressing instructions in two ways.
First, according to Subsection 3.1, an extra loop kernel is added for each multidi-
mensional array changing its layout; if the array tiles contain no consecutive virtual
memory locations, the layout of the corresponding array is changed to tile-wise, i.e.,
all the elements are written in main memory in order (with the exact order they are
fetched). Second, loop tiling adds extra loops to the loop kernel, increasing the over-
all number of loop iterations and therefore the number of arithmetic instructions, as
the corresponding loop body code is executed more times (more address computations
occur - addressing instructions). Loop tiling is more expensive (in terms of arithmetic
instructions) when it is applied to the innermost iterator and also when it is applied to
more than one nested loops (a detailed analysis follows).

Obviously, the first reason is by far the one providing more arithmetic instructions
than the second as extra loop kernels are introduced. Thus, we select the solution
changing the layout of the minimum number of elements in total. The other solutions
are discarded, further decreasing the search space. The total number of elements that
change their memory layout is calculated for each case and the ones achieving the
minimum number are preserved while all the others are discarded. Note that it is
more efficient to change the layout of two small matrices than the layout of one big
matrix.

The remaining solutions achieve smaller number of arithmetic instructions than
those have been discarded. However, they are further processed in order to end up
with the one reporting the fewest number of arithmetic instructions, i.e., the one with
the minimum number of overall loop iterations. At this step, the number of arithmetic
instructions depends on the number of the loops being tiled, on their nesting level
values and on their tile sizes. The above values define the overall number of loop iter-
ations and therefore the number of addressing computations (instructions needed for
computing the array addresses). Supposing that loop tiling transformation does not af-

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:16 Kelefouras Vasilios et al.

fect the loop body code, a qualitative analysis on how loop tiling affects the number of
arithmetic instructions follows (there are some special cases that the compiler slightly
changes the loop code - a detailed discussion is given in the last paragraph).

Typically, each loop is transformed into 3 assembly instructions, i.e., 1 increment
(e.g., i = i + 1), 1 compare (compare i to the N) and 1 jump instruction (if i ≺ N jump
back). Moreover, each loop is responsible of executing some code, depending on the
target loop kernel. Thus, the more the loop iterations (in total), the more the arith-
metic instructions. The number of loop iterations for a loop kernel is given by Eq. 19;
Eq. 19 offers a qualitative measurement on the number of addressing instructions. The
smaller the Eq. 19 value, the smaller the number of addressing instructions.

Loop iter. =
∑i=loops

i=1 (
∏j=i

j=1
upj−lowj

stepj
) (19)

where loops is the number of the loops/iterators after loop tiling is applied (including
the new iterators) and (up, low, step) are the corresponding iterator bound values. j = 1
corresponds to the outermost iterator (j is the iterator with the corresponding nesting
level value). In Eq. 19, i = 1 represents the number of loop iterations of the outermost
loop-iterator, i = 2 represents the number of loop iterations of the second outermost
loop etc.

The outcome of Eq. 19 for 8 different MMM loop tiling implementations is given by
Eq. 20-Eq. 27. Eq. 20 refers to the no tiling implementation, Eq. 21-Eq. 23 refers to one
level of tiling, Eq. 24-Eq. 26 refers to two levels of tiling and Eq. 27 refers to the three
levels of tiling implementation, e.g., in Eq. 20, the (i, j, k) iterators change their values
(N,N2, N3) times, respectively. Eq. 21-Eq. 23 give only one extra iterator, Eq. 24-Eq. 26
give two extra iterators and Eq. 27 gives three. Eq. 19 gives a high number of loop
iterations when loop tiling is applied to the innermost iterator (k) and also to more
than one iterators. In the case that loop tiling is applied only to the innermost iterator
(Eq. 23), the (kk, i, j, k) iterators change their values (N/T3, N2/T3, N3/T3, N3) times,
while in the case that loop tiling is applied only to the outermost iterator (Eq. 21) the
(ii, i, j, k) iterators change their values (N/T1, N,N2, N3) times and (N/T3 +N2/T3 +
N3/T3 +N3 � N/T1 +N +N2 +N3).

Addrno = N3 +N2 +N (20)

Addri = N3 +N2 +N +N/T1 (21)

Addrj = N3 +N2 +N2/T2 +N/T2 (22)

Addrk = N3 +N3/T3 +N2/T3 +N/T3 (23)

Addri−j = N3 +N2 +N2/T2 +N2/(T1× T2) +N/T1 (24)

Addri−k = N3 +N3/T3 +N2/T3 +N2/(T1× T3) +N/T1 (25)

Addrj−k = N3 +N3/T3 +N3/(T2× T3) +N2/(T2× T3) +N/T2 (26)

Addri−j−k = N3 +N3/T3 +N3/(T2× T3) +N3/(T1× T2× T3) +N2/(T1× T2) +N/T1 (27)

As it can be observed by Eq. 20-Eq. 27, the increase in the number of arithmetic
instructions is strongly affected by the number of the loops being tiled and by the
innermost iterator tile size (N3/T3).

It is important to note that there are some special cases where different loop tiling
transformation parameters may enable the compiler to slightly change the loop body
code. In that case, noise is inserted to the proposed equations/analysis. However, the
goal of the above analysis is not to approximate/forecast the number of instructions in

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :17

every case above, but to select the loop tiling parameters giving the minimum number
of instructions. Thus, even if there is a special case that our analysis fails to give the
desired loop tiling parameters, it will give other parameters with equally or slightly
larger number of instructions. It is important to note that during our experimental
analysis (Subsection 4), we did not face any such case.

4. EXPERIMENTAL RESULTS
The proposed methodology has been evaluated in terms of compilation time, main
memory accesses, arithmetic instructions, performance and energy consumption. The
experimental results of the proposed methodology are obtained using the well known
gem5 [Binkert et al. 2011] and McPAT [Li et al. 2009] simulators. gem5 is con-
figured to simulate a x86 multi-core architecture at 2Ghz with L2 shared cache.
gem5 is used under system call emulation (SE) mode assuming in all cases an 8-
issue out-of-order microarchitecture with the following instruction window parame-
ters (ROB/IQ/LQ/SQ/Regs 192/64/32/32/256). The cache subsystem consists of a 32K,
64 byte block, 8-way, dual-ported, 2 cycle L1 data and instruction caches and a 16-way,
1MB L2, 20-cycle L2 cache. The characteristics of the simulated main memory are 8GB
size, 60ns access time, and 12.8GB/s bandwidth. We extend the physically indexed L2
cache hashing/mapping policy in order to support the page colouring technique.

The bench-suite used in this study consists of eight well-known data dominant
static kernels of linear algebra taken from PolyBench/C benchmark suite version 3.2
[Pouchet 2012]. These are: Matrix-Matrix Multiplication (MMM), Matrix-Vector Mul-
tiplication (MVM), Gaussian Blur (Gauss.B) (5× 5 filter), Finite Impulse Response fil-
ter (FIR), 2-d Seidel stencil computation (Seidel2d), a kernel containing mixed matrix
vector multiplications (Gesumv), a kernel containing mixed upper triangular matrix
matrix multiplications (Symm) and a multiresolution analysis kernel (Doitgen). The
kernels are compiled using gcc 4.8.4 and icc 17.0.4 compiler with O3 optimization level.
The gem5 simulation results are forwarded as input to McPAT; McPAT provides dy-
namic and leakage power values of both processor and main memory in detail. The
energy consumption is computed by (Etotal = (Pdynamic + Pleakage) ∗ Exec.time). The
rest of section is divided into four parts; each one targeting to evaluate the proposed
approach using a different evaluation metric.

4.1. Validating the approach described in Subsection3.2
In this subsection, an evaluation of the accuracy of the number of main memory data
accesses has been offered. For a more detailed analysis, two different input sizes are
considered for each kernel. Table I illustrates the main memory data accesses calcu-
lated by the equations of Subsection 3.2 and from gem5. The error values are also
depicted. As we can observe, the error is small in both input sizes for all the kernels.
Moreover, it is important to say that the simulator values are larger in all cases. Re-
garding the Gaussian Blur and the Seidel2d kernels, the error is zero because the
critical part of the arrays fits in the shared cache, thus the arrays are accessed only
once from the main memory (no loop tiling is applied). We did not use larger input sizes
for Gaussian Blur and Seidel2d kernels because in our opinion, they are not realistic.

4.2. Reduction of the search space
An evaluation of the reduction of the search space (compared to a typical iterative com-
pilation process) is outlined in this section. Note that the search space consists of all
the different tile sizes and shapes, data array layouts, cache partition sizes and nest-
ing level values (Fig. 1). Our evaluation metric is derived by calculating the number of
different implementations that have to be tested in order to find the best. The size of
the search space, i.e., all different binaries, is given by the following equation

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:18 Kelefouras Vasilios et al.

Table I. Evaluation of the accuracy of Subsection 3.2

DDR data acc. in bytes DDR data acc. in bytes
Loop kernel Input size 1 Subsection 3.2 gem5 Error Input size 2 Subsection 3.2 gem5 Error

MMM (800,800,800) 3.15E+07 3.21E+07 1.85% (1200,1200,1200) 1.94E+08 1.98E+08 2.10%
FIR (20000,4000) 1.96E+05 2.01E+05 2.35% (80000,8000) 7.05E+05 7.00E+05 2.43%

MVM (4000,4000) 6.34E+07 6.41E+07 1.10% (8000,8000) 2.54E+08 2.57E+08 1.20%
Gesumv (4000,4000) 1.27E+08 1.29E+08 1.30% (8000,8000) 5.08E+08 5.15E+08 1.30%
Doitgen (100,100,100,100) 1.99E+06 2.03E+06 2.20% (200,200,200,1000) 3.51E+08 3.59E+08 2.10%
Symm (608,608,608) 1.82E+07 1.87E+07 2.45% (1200,1200,1200) 1.93E+08 1.98E+08 2.51%

Gauss.B (512,512) 2.09E+06 2.09E+06 0.00% (1024,1024) 8.37E+06 8.37E+06 0.00%
Seidel2d (512,512) 4.19E+06 4.19E+06 0.00% (1024,1024) 1.68E+07 1.68E+07 0.00%

Table II. Evaluation of compilation time / search space over iterative compilation

MMM MVM Gesumv FIR Symm Doitgen Seidel2d Gauss.B
Schedules 1.84E+07 1.02E+05 2.05E+05 5.12E+04 1.23E+07 1.47E+09 1.02E+05 3.07E+07

Schedules (in total) 3.37E+44

Schedules =
(max colors− 1)!

(cores!)× (max colors− cores)!
×

×
i=N∏
i=1

(
(2d arraysi × 2)× Tileloopsii × (2× loopsi!)

)
(28)

where N is the number of the loop kernels, cores and max colors are the number
of the cores and cache colors, respectively. 2d arraysi is the number of multidimen-
sional arrays in loop kernel i and indicates that each multidimensional array uses two
different data layouts (the default and the tile-wise), Tilei is the number of different
tile sizes for loop kernel i and loopsi is the number of the loops of kernel i. For a fair
comparison, we use only (Tile = 20) different tile sizes for all the loop kernels.

The number of different cache partition sets among the cores is
((max colors−1)!
(cores!)×(max colors−cores)!), while (2 × loopsi!) gives all different iterator nesting

level values (all different combinations of loop interchange). Finally, (Tileloopsii)
value gives all different tile sets. The overall number of binaries that Eq. 28 pro-
duces is 3.37 × 1044 (Table II) assuming cores = 8 and colors = 32. Given that
1sec = 3.17 × 10−8years and supposing that compilation time takes about 1 sec, the
compilation time will last for 1037 years. On the contrary, instead of testing all those
implementations, relying on the proposed methodology it is able to find the optimal
solution in some minutes to some hours.

The number of different implementations for each loop kernel is also computed (Ta-
ble II). The results in the first row of Table 2 are computed by (

∏i=N
i=1

(
(2d arraysi ×

2) × Tileloopsii × (2 × loopsi!)
)
× colors), where Tile = 20 and color = 32. This equation

gives all the different tile sizes, data array layouts, iterator nesting level values and
colors that an implementation can use.

Regarding the compilation time of the proposed methodology, it is strongly affected
by the k loop (Fig. 3) where all the candidate tile sizes are extracted in order to compute
their DDR access values. So, the compilation time depends on the number of the can-
didate tile sizes in total (all loop kernels). The compilation time in Subsection 4.4 lasts
from 25 minutes to 2 hours, but a smaller/larger simulation time may occur depending
on the above parameters.

Regarding the compilation time of the proposed methodology, it is strongly affected
by the k loop (Fig. 3) where all the candidate tile sizes are extracted in order to compute
their DDR access values. So, the compilation time depends on the number of candidate

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :19

tile sizes in total (all loop kernels). The compilation time in Subsection 4.4 lasts from
25 minutes (3rd set in Table III) to 2 hours (last 3 sets in Table III), but a smaller/larger
simulation time may occur depending on the above parameters. Compilation times are
measured in Linux-based PC machine using just the one core of Intel i7-6700 CPU
running at 3.40GHz.

4.3. Validating the approach described in Subsection 3.4

2.10E+05

2.15E+05

2.20E+05

2.25E+05

2.30E+05

2.35E+05

2.40E+05

1.10E+06

1.15E+06

1.20E+06

1.25E+06

1.30E+06

1.35E+06

1.40E+06

1.45E+06

1.50E+06

1.55E+06

1.60E+06

N 30 20 10 N N N N N N 30 30 30 20 10 30 30 30 20 10 30 30 30 10

N N N N 30 20 10 N N N N N N N N 30 20 10 30 30 30 30 10 30

N N N N N N N 30 20 10 30 20 10 30 30 N N N N N 30 10 30 30

N
u

m
b

er
 o

f
lo

o
p

 it
er

at
io

n
s

in
 t

o
ta

l

N
u

m
b

er
 o

f
ad

d
re

ss
in

g
in

st
ru

ct
io

n
s

Tile sizes (k, j, i)

Gem5

Eq.18

Fig. 6. Evaluation on the number of addressing instructions. Different tile sizes of MMM are shown (square
matrices of size 60× 60)

1.57E+05

1.59E+05

1.61E+05

1.63E+05

1.65E+05

1.67E+05

1.69E+05

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1.00E+06

N 100 50 25 N N N 100 50 25 50 25 100 100

N N N N 100 50 25 100 50 25 100 100 50 25

N
u

m
b

er
 o

f
lo

o
p

 it
er

at
io

n
s

in
 t

o
ta

l

N
u

m
b

er
 o

f
ad

d
re

ss
in

g
in

st
ru

ct
io

n
s

Tile sizes (j, i)

Gem5

Eq.18

Fig. 7. Evaluation on the number of addressing instructions. Different tile sizes of MVM (square matrix of
size 400× 400)

In this subsection, an evaluation of the accuracy of the number of addressing in-
structions is performed for MMM (Fig. 6) and MVM (Fig. 7). The results are similar
for the other algorithms too.

Regarding MMM kernel, square matrices of size (60 × 60) have been selected. Loop
tiling has been applied to one, two and three iterators. The ’N’ letter to the x-axis in-
dicates that no tiling has been applied to this iterator. The left y-axis indicates the

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:20 Kelefouras Vasilios et al.

number of addressing instructions measured by the gem5 simulator while the right y-
axis indicates the Eq. 20-Eq. 27 values, generated by Eq. 19. As it can be deduced from
Fig. 6, apart from the first point, Eq. 19 gives a qualitative measure of the number of
addressing instructions. As we can see, the first point of the red line is higher than it
was expected, because in this case the compiler applies more loop optimizations. As ex-
pected, by applying tiling to more than one loop, the number of arithmetic instructions
increases. Moreover, the number of arithmetic instructions is strongly affected by the
tile size of the innermost iterator, i.e., (N3/T3) value. On the other hand, the fewest
number of arithmetic instructions occurs when no tiling is applied or when tiling is
applied only to the outermost iterator (i iterator) and the second one when tiling is
applied only to the j loop. The tile size affects the number of additional instructions to
a small extent, except from the innermost one.

Regarding MVM loop kernel (Fig. 7), a square matrix of size (400 × 400) is selected.
MVM contains two iterators, i.e., (i, j), where i is the outermost iterator. When loop
tiling is applied only to the outermost iterator, the number of addressing instructions
is close to the minimum (i.e., when no tiling is applied). On the other hand, when loop
tiling is applied to the innermost one, the number of addressing instructions increases
according to the tile size.

4.4. Evaluation in terms of main memory accesses, performance and energy consumption
In order to highlight the practical applicability of the proposed approach, we compare
our method to a) gcc compiler, b) Intel icc compiler which applies automatic loop tiling,
c) hand written loop tiling code, d) the proposed methodology without applying cache
partitioning (Table III and Table IV).

In order to better understand the obtained results, a short analysis of each loop
kernel is given. In general, the MMM, Symm and Doitgen loop kernels are the most
data dominant kernels and this is why they achieve the highest DDR gain values.
These three kernels a) use a large amount of data and b) their arrays are accessed not
once but many times from the main memory (data reuse). Therefore, by providing more
cache space to these kernels, the number of data accesses is reduced accordingly. On
the other hand, Gaussian Blur and Seidel2d are the less data dominant loop kernels as
the cache size of one shared cache color (here 32kb) is enough in order the arrays to be
accessed only once from DDR (for matrix sizes up to (1024× 1024). Thus, in this paper
loop tiling is never applied to these kernels. Consider the MVM and Gesumv kernels,
although they use a large amount of data, most of their data is fetched only once,
thus providing more cache space to those kernels reduces the number of data accesses
disproportionately, e.g., in MVM kernel (Y [i]+ = A[i][j] × X[j]), only Y and X vectors
are accessed more than once (which are of small size) while the big matrix is loaded
just once. Regarding FIR, although it uses a smaller amount of data, by providing more
cache space, the number of data accesses is reduced accordingly.

The first evaluation uses four cores and four/eight loop kernels with fixed input sizes
(Table III). The N value shown at the tile sizes column of Table III indicates that no
tiling has been applied to that iterator, e.g., (100, N, 1) indicates that the tile size of
the first iterator is 100, the tile size of the third is 1 and no tiling has been applied
to the second. The Perf. gain (speedup), DDR gain, and energy gain values have been
computed by using the (defaultvalue/proposedvalue) formula. As far as the tiling col-
umn in Table III is concerned, it refers to hand written code with one level of tiling to
each iterator; square tile sizes are chosen in all cases and the sum of the tiles (of each
loop kernel) is always lower than 256Kbytes (one quarter of the cache); we believe that
it refers to a hand written code generated by a medium experienced programmer. In
Table III, the number of main memory accesses due to the code instructions (source
code) is negligible.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :21

As it was expected, a) icc performs better than gcc, b) hand written loop tiling code is
more efficient than icc in most cases, c) using the proposed methodology without cache
partitioning increases the cache pressure (and therefore the number of main memory
accesses) but not in a high level (from 1.004 up to 1.37 more DDR accesses) as the sum
of the tiles is smaller than the cache size and all the tiles contain consecutive main
memory locations, d) the proposed methodology performs much better than loop tiling
and icc.

Regarding the 1st set of loop kernels in Table III, Doitgen is the most data dominant
kernel, thus it gets the maximum tile and cache size possible. MMM follows occupying
12 colours. Regarding MMM, automatic tiling perfoms very well. The other two kernels
are of smaller size; two colours are enough in order to avoid loop tiling. Regarding the
speedup values, the Doitgen kernel achieves the largest number of cpu cycles, thus the
overall speedup is that of the Doitgen. The 1st set of loop kernels gives the smallest
energy gain value as both the speedup and the DDR gain values are the smallest.

In the second set of kernels (Table III), Doitgen is the most data dominant kernel
too, thus it gets the maximum tile and cache partition size possible. Symm and MMM
follow. Regarding Gesumv, although it uses a large amount of data, providing more
cache space to Gesumv, it reduces the number of data accesses disproportionately. This
is why only 1 color has been assigned to this kernel.

In the third set of kernels (Table III), Symm is the most data dominant kernel, thus
it gets the maximum tile and cache partition size possible. Symm achieves a lower
number of data accesses than in the second set because it uses more cache colours and
thus larger tile size. Regarding FIR, three cache colours are enough in order to avoid
loop tiling and to minimize its number of data accesses. Regarding MVM and Gesumv,
although they use a large amount of data, providing more cache space to these two
kernels, reduces the number of data accesses disproportionately and this is why only
one colour has been assigned to each kernel. The third set of loop kernels achieves
by far the largest speedup and energy gain values; in this case, the thread with the
maximum execution time amongst the four, is the Symm and not Doitgen. Although
the DDR access gain is smaller than the second case, the energy gain is higher because
of the lower execution time being achieved.

As far as the last 3 kernel combinations are concerned (eight loop kernels - Table III),
the overall number of accesses is the smallest in the sixth set and the largest in the
fourth. This means that the mapping of the sixth set is better in terms of main memory
data accesses. The fourth set of kernels gives the largest number of accesses because
the three most data dominant kernels (Doitgen, Symm, MMM) run on a different core,
thus they compete each other for cache space. On the other hand, on the fifth and
sixth sets, two of the three dominant kernels use the same core, thus only two kernels
compete each other for cache space. Therefore, on the fourth and sixth sets, the three
dominant kernels use a higher amount of cache size, reducing the overall number of
accesses. Furthermore, considering the fourth set of loop kernels in Table III, the ker-
nels that run first are more data dominant than the second ones. Thus, the second ones
use more cache space than they need and as a consequence no tiling has been applied
to them. The cache partition sizes are similar to those of the second set of Table III as
the dominant kernels and also their input sizes are the same. As a consequence, the
results are similar.

The last evaluation uses four cores and eight loop kernels for six different task
combinations and for three different input sizes. Table IV shows the average val-
ues among three different input sizes. The task combination numbers correspond to
(1,2,3,4,5,6,7,8)=(MMM, MVM, Symm, FIR, Gesumv, Seidel, Doitgen, gauss). As it was
expected, icc performs better than gcc in all cases. The first and the fourth kernel com-
binations engender a higher cache pressure and they produce the smallest DDR access

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:22 Kelefouras Vasilios et al.

Table
III.

If
not

stated,
the

input
sizes

are
the

follow
ing:

M
M

M
(1200,1200,1200),

S
ym

m
(1200,1200,

1200),
G

esum
v(8000,8000),

M
V

M
(8000,8000),

D
oit-

gen(200,200,200,1000),FIR
(80000,8000),G

auss.B
(1024,1024),S

eidel2d(1024,1024)
G

C
C

IC
C

D
efault

P
roposed

D
D

R
P

erf.
E

n.
T

iling
P

rop.-N
o

D
efault

P
roposed

D
D

R
P

erf.
P

roposed
C

ol-
D

D
R

acc.
D

D
R

acc.
gain

gain
gain

D
D

R
acc.

cache
part.

D
D

R
acc.

D
D

R
acc.

gain
gain

tile
sizes

ors
(bytes)

(bytes)
(bytes)

D
D

R
acc.

(bytes)
(bytes)

c0
M

M
M

(800,800,800)
2.05E

+09
3.11E

+07
65.93

2.39
4.28E

+07
3.11E

+07
5.40E

+07
3.11E

+07
1.73

1.21
(100,N

,1)
12

c1
F

IR
(20000,4000)

7.88E
+05

2.05E
+05

3.84
1.01

7.70E
+05

7.83E
+05

7.79E
+05

2.03E
+05

3.83
1.02

N
o

2
c2

M
V

M
(4000,4000)

6.41E
+07

6.41E
+07

1.00
1.04

6.45E
+07

6.41E
+07

6.40E
+07

6.40E
+07

1.00
0.99

N
o

2
c3

D
oitgen

1.39E
+09

3.59E
+08

3.88
1.43

1.21E
+09

3.61E
+08

1.36E
+09

3.60E
+08

3.23
1.38

(N
,N

,100,N
)

16
O

verall
3.51E

+09
4.55E

+08
7.72

1.43
1.39

1.31E
+09

4.57E
+08

1.48E
+09

4.55E
+08

2.81
1.38

c0
M

M
M

6.92E
+09

1.98E
+08

34.94
2.54

2.65E
+08

1.98E
+08

2.35E
+08

1.98E
+08

1.19
1.12

(40,N
,1)

7
c1

Sym
m

7.25E
+09

1.90E
+08

38.07
2.71

4.90E
+09

1.90E
+08

6.65E
+09

1.91E
+08

34.89
2.72

(N
,25,N

)
9

c2
G

esum
v

5.12E
+08

5.15E
+08

0.99
1.09

5.15E
+08

5.17E
+08

5.17E
+08

5.16E
+08

1.00
1.00

(N
,1600)

1
c3

D
oitgen

1.53E
+10

3.59E
+08

42.65
1.67

2.10E
+09

5.55E
+08

1.42E
+10

3.60E
+08

39.50
1.64

(N
,N

,100,N
)

15
O

verall
3.00E

+10
1.26E

+09
23.76

1.67
1.77

7.71E
+09

1.46E
+09

2.16E
+10

1.26E
+09

17.09
1.64

c0
F

IR
7.17E

+05
7.17E

+05
1.00

1.01
7.17E

+05
7.17E

+05
7.16E

+05
7.16E

+05
1.00

1.00
N

o
3

c1
Sym

m
7.23E

+09
9.27E

+07
77.99

2.69
3.75E

+09
9.28E

+07
7.02E

+09
9.30E

+07
75.00

2.67
(N

,80,N
)

27
c2

G
esum

v
5.12E

+08
5.15E

+08
0.99

0.98
5.15E

+08
5.17E

+08
5.12E

+08
5.15E

+08
0.99

0.99
(N

,1600)
1

c3
M

V
M

2.56E
+08

2.57E
+08

1.00
0.96

2.63E
+08

2.57E
+08

2.56E
+08

2.57E
+08

1.00
1.00

(N
,2000)

1
O

verall
8.00E

+09
8.66E

+08
9.24

2.69
2.86

4.53E
+09

8.68E
+08

7.79E
+09

8.67E
+08

8.99
2.67

c0
M

M
M

-M
V

M
7.18E

+09
4.25E

+08
16.91

2.21
4.50E

+08
4.25E

+08
4.91E

+08
4.25E

+08
1.16

1.10
(48,N

,1),N
o

8
c1

Sym
m

-F
IR

7.06E
+09

1.91E
+08

37.01
2.58

5.03E
+09

1.91E
+08

6.92E
+09

1.91E
+08

36.18
2.51

(N
,25,N

),N
o

9
c2

G
esum

v-Seidel2d
5.29E

+08
5.31E

+08
1.00

1.01
5.31E

+08
5.34E

+08
5.29E

+08
5.34E

+08
0.99

0.99
(N

,1600),N
o

1
c3

D
oitgen-G

auss.B
8.24E

+09
3.67E

+08
22.47

1.70
2.13E

+09
4.46E

+08
7.81E

+09
3.60E

+08
21.72

1.64
(N

,N
,100,N

),N
o

14
O

verall
2.30E

+10
1.51E

+09
15.20

1.70
1.78

8.14E
+09

1.60E
+09

1.58E
+10

1.51E
+09

10.43
1.64

c0
M

M
M

-Sym
m

1.42E
+10

2.48E
+08

57.21
2.69

4.47E
+09

2.51E
+08

7.33E
+09

2.48E
+08

29.51
2.78

(80,N
,1),(N

,40,N
)

14
c1

M
V

M
-F

IR
2.57E

+08
2.57E

+08
1.00

1.05
2.59E

+08
2.57E

+08
2.57E

+08
2.57E

+08
1.00

1.00
N

o,N
o

3
c2

G
esum

v-Seidel2d
5.29E

+08
5.32E

+08
0.99

1.02
5.31E

+08
5.34E

+08
5.29E

+08
5.34E

+08
0.99

0.99
(N

,1600),N
o

1
c3

D
oitgen-G

auss.B
1.95E

+10
3.68E

+08
52.95

1.74
2.09E

+09
8.81E

+08
1.68E

+10
3.60E

+08
46.67

1.71
(N

,N
,100,N

),N
o

14
O

verall
3.44E

+10
1.40E

+09
24.52

1.74
1.85

7.65E
+09

1.92E
+09

2.49E
+10

1.40E
+09

17.80
1.71

c0
G

auss.B
-M

V
M

2.64E
+08

2.58E
+08

1.03
1.01

2.58E
+08

2.72E
+08

2.56E
+08

2.57E
+08

1.00
1.00

N
o,(N

,4000)
2

c1
Sym

m
-F

IR
7.25E

+09
1.38E

+08
52.60

2.51
4.83E

+09
1.38E

+08
7.15E

+09
1.39E

+08
51.58

2.56
(N

,40,N
),N

o
14

c2
G

esum
v-Seidel2d

5.29E
+08

5.30E
+08

1.00
0.95

5.31E
+08

5.33E
+08

5.29E
+08

5.34E
+08

0.99
1.00

(N
,2000),N

o
2

c3
D

oitgen
-M

M
M

2.23E
+10

4.69E
+08

47.52
1.72

2.20E
+09

5.03E
+08

1.75E
+10

4.69E
+08

37.34
1.69

(N
,N

,100,N
),(80,N

,1)
14

O
verall

3.03E
+10

1.39E
+09

21.75
1.72

1.84
7.59E

+09
1.45E

+09
2.55E

+10
1.40E

+09
18.20

1.69

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :23

gain values and consequently the smallest speedup and energy gain values. This is be-
cause in the first and fourth kernel combinations, the three most data dominant ker-
nels (Doitgen, Symm, MMM) run on a different core and thus they compete each other
for cache space. On the other hand, in the other combinations two of the three above
kernels use the same core and thus only two kernels compete each other for cache
space. It is important to say that the speedup values depend only on the kernel giving
the maximum execution time (Doitgen). Thus, the speedup values and therefore the
energy gain values would be much higher in the case that MMM or Symm achieve the
maximum execution time and not Doigen, e.g., MMM/Symm use larger input values.

Table IV. Four cores and eight loop kernels, two to each core (3 different input sizes have been
used)

GCC ICC
kernel combinations DDR gain Perf. gain Energy gain DDR gain Perf. gain

(1-2,3-4,5-6,7-8) 15.48 1.71 1.78 10.6 1.64
(1-3,2-4,5-6,7-8) 25.43 1.75 1.86 18.3 1.71
(8-2,3-4,5-6,7-1) 22.6 1.72 1.85 17.2 1.69
(1-5,4-3,6-7,2-8) 16.31 1.71 1.8 10.9 1.65
(6-8,7-5,3-1,2-4) 26.06 1.76 1.88 18.5 1.71
(6-8,5-2,3-4,1-7) 22.04 1.72 1.84 16.8 1.68

5. CONCLUSION
This paper presents and evaluates a memory management methodology of static data
dominant applications in CMP shared caches. The proposed methodology combines
software based cache partitioning, loop tiling, and data layout transformations in a
single framework. We derive theoretical models that are able to control the cache space
allocated to each task (leveraging the page coloring mechanism) and the loop tiling and
data layout parameters at the same time.

ACKNOWLEDGMENTS

This work is supported by the collaborative project ”WCET-Aware Parallelization of Model-Based Applica-
tions for Heterogeneous Parallel Systems (ARGO),” which is funded by the European Commission under
Horizon 2020 Research and Innovation Action, Grant Agreement Number 688131.

REFERENCES
AGAKOV, F., BONILLA, E., CAVAZOS, J., FRANKE, B., FURSIN, G., O’BOYLE, M. F. P., THOMSON, J., TOU-

SSAINT, M., AND WILLIAMS, C. K. I. 2006. Using Machine Learning to Focus Iterative Optimization.
In Proceedings of the International Symposium on Code Generation and Optimization. CGO ’06. IEEE
Computer Society, Washington, DC, USA, 295–305.

ALMAGOR, L., COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES, S. W., SUBRAMANIAN, D., TORCZON,
L., AND WATERMAN, T. 2004. Finding Effective Compilation Sequences. SIGPLAN Not. 39, 7, 231–239.

BANERJEE, U. 1993. Linear Equations and Inequalities. Springer US, Boston, MA, 49–94.
BAO, B. AND DING, C. 2013. Defensive loop tiling for shared cache. In Proceedings of the 2013 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO). CGO ’13. IEEE Computer So-
ciety, Washington, DC, USA, 1–11.

BASKARAN, M. M., VYDYANATHAN, N., BONDHUGULA, U. K. R., RAMANUJAM, J., ROUNTEV, A., AND
SADAYAPPAN, P. 2009. Compiler-assisted dynamic scheduling for effective parallelization of loop nests
on multicore processors. SIGPLAN Not. 44, 4, 219–228.

BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI, A., BASU, A., HESTNESS, J., HOWER,
D. R., KRISHNA, T., SARDASHTI, S., SEN, R., SEWELL, K., SHOAIB, M., VAISH, N., HILL, M. D., AND
WOOD, D. A. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2, 1–7.

BONDHUGULA, U., HARTONO, A., RAMANUJAM, J., AND SADAYAPPAN, P. 2008a. A practical automatic
polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43, 6, 101–113.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

:24 Kelefouras Vasilios et al.

BONDHUGULA, U., RAMANUJAM, J., AND ET AL. 2008b. Pluto: A practical and fully automatic polyhedral
program optimization system. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI 2008).

BUI, B. D., CACCAMO, M., SHA, L., AND MARTINEZ, J. 2008. Impact of cache partitioning on multi-tasking
real time embedded systems. 2014 IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications 0, 101–110.

CHANG, J. AND SOHI, G. S. 2014. Cooperative cache partitioning for chip multiprocessors. In ACM Interna-
tional Conference on Supercomputing 25th Anniversary Volume. ACM, New York, NY, USA, 80–81.

CHANG, S.-K. 2003. Data Structures and Algorithms. Series on Software Engineering and Knowledge En-
gineering Series, vol. 13. World Scientific.

COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES, S., SUBRAMANIAN, D., TORCZON, L., AND WATER-
MAN, T. 2005. ACME: Adaptive Compilation Made Efficient. SIGPLAN Not. 40, 7, 69–77.

COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES, S., SUBRAMANIAN, D., TORCZON, L., AND WATER-
MAN, T. 2006. Exploring the Structure of the Space of Compilation Sequences Using Randomized Search
Algorithms. J. Supercomput. 36, 2, 135–151.

DING, X., WANG, K., AND ZHANG, X. 2011. Ulcc: a user-level facility for optimizing shared cache perfor-
mance on multicores. In PPOPP, C. Cascaval and P.-C. Yew, Eds. ACM, 103–112.

DYBDAHL, H. AND STENSTRM, P. 2007. An adaptive shared/private nuca cache partitioning scheme for chip
multiprocessors. In HPCA. IEEE Computer Society, 2–12.

HANEDA, M., KHNIJNENBURG, P. M. W., AND WIJSHOFF, H. A. G. 2005. Automatic Selection of Compiler
Options Using Non-parametric Inferential Statistics. In Proceedings of the 14th International Confer-
ence on Parallel Architectures and Compilation Techniques. PACT ’05. IEEE Computer Society, Wash-
ington, DC, USA, 123–132.

HENRETTY, T., ROUNTEV, A., LIN, H., RAMANUJAM, J., LU, Q., FOOK NGAI, T., CHEN, Y., ALIAS, C.,
BONDHUGULA, U., SADAYAPPAN, P., AND KRISHNAMOORTHY, S. 2009. Data layout transformation for
enhancing data locality on nuca chip multiprocessors. Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques 00, 348–357.

KANDEMIR, M., MURALIDHARA, S. P., NARAYANAN, S. H. K., ZHANG, Y., AND OZTURK, O. 2009. Opti-
mizing shared cache behavior of chip multiprocessors. In MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, New York, NY, USA, 505–516.

KANDEMIR, M., YEMLIHA, T., MURALIDHARA, S., SRIKANTAIAH, S., IRWIN, M. J., AND ZHNAG, Y. 2010.
Cache topology aware computation mapping for multicores. SIGPLAN Not. 45, 6, 74–85.

KASERIDIS, D., STUECHELI, J., AND JOHN, L. K. 2009. Bank-aware dynamic cache partitioning for mul-
ticore architectures. In ICPP 2009, International Conference on Parallel Processing, Vienna, Austria,
22-25 September 2009. 18–25.

KELEFOURAS, V., KRITIKAKOU, A., AND GOUTIS, C. 2015. A methodology for speeding up loop kernels by
exploiting the software information and the memory architecture. Computer Languages, Systems and
Structures 41, 21–41.

KIM, D., RENGANARAYANAN, L., ROSTRON, D., RAJOPADHYE, S., AND STROUT, M. M. 2007a. Multi-level
tiling: M for the price of one. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. SC
’07. ACM, New York, NY, USA, 51:1–51:12.

KIM, D., RENGANARAYANAN, L., ROSTRON, D., RAJOPADHYE, S., AND STROUT, M. M. 2007b. Multi-level
Tiling: M for the Price of One. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing.
SC ’07. ACM, New York, NY, USA, 51:1–51:12.

KIM, H., KANDHALU, A., AND RAJKUMAR, R. 2013. A coordinated approach for practical os-level cache
management in multi-core real-time systems. In 25th Euromicro Conference on Real-Time Systems,
ECRTS 2013, Paris, France, July 9-12, 2013. 80–89.

KNIJNENBURG, P. M. W., KISUKI, T., GALLIVAN, K., AND O’BOYLE, M. F. P. 2004. The effect of cache
models on iterative compilation for combined tiling and unrolling. j-CCPE 16, 2–3, 247–270.

KULKARNI, P., HINES, S., HISER, J., WHALLEY, D., DAVIDSON, J., AND JONES, D. 2004a. Fast searches
for effective optimization phase sequences. SIGPLAN Not. 39, 6, 171–182.

KULKARNI, P., HINES, S., HISER, J., WHALLEY, D., DAVIDSON, J., AND JONES, D. 2004b. Fast Searches
for Effective Optimization Phase Sequences. SIGPLAN Not. 39, 6, 171–182.

KULKARNI, P. A., WHALLEY, D. B., AND TYSON, G. S. 2007. Evaluating Heuristic Optimization Phase
Order Search Algorithms. In Proceedings of the International Symposium on Code Generation and Op-
timization. CGO ’07. IEEE Computer Society, Washington, DC, USA, 157–169.

KULKARNI, P. A., WHALLEY, D. B., TYSON, G. S., AND DAVIDSON, J. W. 2009. Practical Exhaustive Opti-
mization Phase Order Exploration and Evaluation. ACM Trans. Archit. Code Optim. 6, 1, 1:1–1:36.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

Combining software cache partitioning and loop tiling for effective shared cache management :25

LI, S., AHN, J. H., STRONG, R. D., BROCKMAN, J. B., TULLSEN, D. M., AND JOUPPI, N. P. 2009. Mcpat: An
integrated power, area, and timing modeling framework for multicore and manycore architectures. In
Proceedings of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO
42. ACM, New York, NY, USA, 469–480.

LIDMAN, J., QUINLAN, D. J., LIAO, C., AND MCKEE, S. A. 2012. Rose:: Fttransform-a source-to-source
translation framework for exascale fault-tolerance research. In Dependable Systems and Networks
Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on. IEEE, 1–6.

LIN, J., LU, Q., DING, X., ZHANG, Z., ZHANG, X., AND SADAYAPPAN, P. 2008. Gaining insights into multi-
core cache partitioning: Bridging the gap between simulation and real systems. In HPCA. IEEE Com-
puter Society, 367–378.

LIU, J., ZHANG, Y., DING, W., AND KANDEMIR, M. T. 2011. On-chip cache hierarchy-aware tile scheduling
for multicore machines. In CGO. IEEE Computer Society, 161–170.

MONSIFROT, A., BODIN, F., AND QUINIOU, R. 2002. A Machine Learning Approach to Automatic Production
of Compiler Heuristics. In Proceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems, and Applications. AIMSA ’02. Springer-Verlag, London, UK, UK, 41–50.

MORET, M., CAZORLA, F. J., RAMREZ, A., AND VALERO, M. 2008. Mlp-aware dynamic cache partitioning.
In HiPEAC (2008-01-23), P. Stenstrm, M. Dubois, M. Katevenis, R. Gupta, and T. Ungerer, Eds. Lecture
Notes in Computer Science Series, vol. 4917. Springer, 337–352.

NIKOLOPOULOS, D. S. 2003. Code and data transformations for improving shared cache performance on
smt processors. In Proceedings of the 5th International Symposium on High Performance Computing
(ISHPC). Vol. 2858. Tokyo-Odaiba, Japan, 54–69. Best Paper Award. Acceptance rate: 24%.

PARK, E., KULKARNI, S., AND CAVAZOS, J. 2011. An evaluation of different modeling techniques for iter-
ative compilation. In Proceedings of the 14th international conference on Compilers, architectures and
synthesis for embedded systems. CASES ’11. ACM, New York, NY, USA, 65–74.

POUCHET, L.-N. 2012. PolyBench/C benchmark suite.
REDDY, R. AND PETROV, P. 2010. Cache partitioning for energy-efficient and interference-free embedded

multitasking. ACM Trans. Embed. Comput. Syst. 9, 3, 16:1–16:35.
RENGANARAYANAN, L., KIM, D., RAJOPADHYE, S., AND STROUT, M. M. 2007. Parameterized Tiled Loops

for Free. SIGPLAN Not. 42, 6, 405–414.
STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND O’REILLY, U.-M. 2003. Meta optimization: im-

proving compiler heuristics with machine learning. SIGPLAN Not. 38, 5, 77–90.
SUNDARARAJAN, K. T., PORPODAS, V., JONES, T. M., TOPHAM, N. P., AND FRANKE, B. 2012. Cooperative

partitioning: Energy-efficient cache partitioning for high-performance cmps. In HPCA. IEEE Computer
Society, 311–322.

SUNG, I.-J., ANSSARI, N., STRATTON, J. A., AND HWU, W.-M. W. 2012. Data layout transformation ex-
ploiting memory-level parallelism in structured grid many-core applications. International Journal of
Parallel Programming 40, 1, 4–24.

TAM, D., AZIMI, R., SOARES, L., AND STUMM, M. 2007. Managing shared l2 caches on multicore systems
in software. In Workshop on the Interaction between Operating Systems and Computer Architecture.

TARTARA, M. AND CRESPI REGHIZZI, S. 2013. Continuous learning of compiler heuristics. ACM Trans.
Archit. Code Optim. 9, 4, 46:1–46:25.

WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. 2001. Automated Empirical Optimization of Software
and the ATLAS Project. Parallel Computing 27, 1–2, 3–35.

YE, Y., WEST, R., CHENG, Z., AND LI, Y. 2014. Coloris: A dynamic cache partitioning system using page
coloring. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation.
PACT ’14. ACM, New York, NY, USA, 381–392.

YU, C. AND PETROV, P. 2010. Off-chip memory bandwidth minimization through cache partitioning for
multi-core platforms. In Proceedings of the 47th Design Automation Conference. DAC ’10. ACM, New
York, NY, USA, 132–137.

ZHANG, X., DWARKADAS, S., AND SHEN, K. 2009. Towards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM European Conference on Computer Systems. EuroSys ’09.
ACM, New York, NY, USA, 89–102.

ZHOU, X., GIACALONE, J.-P., GARZARÁN, M. J., KUHN, R. H., NI, Y., AND PADUA, D. 2012. Hierarchi-
cal overlapped tiling. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization. CGO ’12. ACM, New York, NY, USA, 207–218.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: March 2018.

