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Abstract: This paper evaluates a number of uncertain parameters that affect the accuracy of distribution system state 
estimation, and ranks their importance using an efficient sensitivity analysis technique, Morris screening method. The 
influence of the uncertain parameters on state estimation performance is analysed globally and zonally. Furthermore the 
dependence structure between the critical variable and state estimation accuracy is analysed using copula to establish their 
relationship at different section of the bivariate space. The sensitivity of the critical parameter at different ranges is also 
studied and ranked using Morris screening methods to present the variation of state estimation performance when the 
critical variable is allocated at different sections within the feasible range. Accurate assessment of the importance of 
various uncertain parameters and the analysis of the dependence structure can inform power system operators which 
parameters will require the greatest levels of mitigation or increased monitoring accuracy in order to have satisfactory 
performance of distribution system state estimation. 
 

1. Introduction 

Secure operation of a power system requires proper 

estimate of the status of operating condition [1], which is 

essential for identifying potential critical operating 

conditions and making decision on selecting preventative 

measures if necessary. Given inherent measurement 

inaccuracies, state estimation (SE) is able to smooth out 

measurement errors and provide an optimal estimate of the 

system operating states. With the increased capability of 

data collection in SCADA systems, SE has been widely 

integrated in Energy Management Systems (EMS) for 

operation and management in transmission systems [2].  

Proliferation of active components and changing load 

profiles in distribution networks are affecting the operating 

conditions of distribution networks which change much 

more frequently than ever. Simultaneously more and more 

functionalities developed for smart grids are highly 

dependent on the network state estimation. Therefore it is 

essential to have appropriate observability of the distribution 

networks in order to ensure secure and efficient network 

operation. This need resulted in an intensive research on SE 

at distribution levels, namely Distribution System State 

Estimation (DSSE). Different from transmission networks, 

the ill conditioned matrices and large number of nodes in 

distribution networks impose great difficulty and challenges 

to DSSE. Various techniques have been investigated for 

DSSE in literature [3], e.g., machine learning, heuristic 

intelligence methods and especially Weighted Least Squares 

(WLS) approach [1].  

DSSE relies on continuous measurements and, 

predominantly, pseudo-measurements. Considering that 

measurement bias exists in each measurement, the deviation 

of both measurements and pseudo-measurements can 

appreciably affect the performance of state estimation. With 

the increased attention paid to the study of the influence of 

uncertainties on SE accuracy, a number of dedicated papers 

have studied the impact of different types of measurements 

on the accuracy of SE in order to establish the influence of 

measurement accuracy on the overall estimation accuracy 

[4]. Analytical approach is applied to perform sensitivity 

analysis in [5]. In [6], WLS based SE is used to establish 

under which circumstance and to what extent the SE results 

are affected by measurement uncertainty when a minimum 

number of measurements is used.  

With the increased uncertainties in distribution 

networks, analysis of the influence/sensitivity of uncertain 

parameters on DSSE is becoming more and more important. 

The sensitivity analysis can identify critical uncertain 

parameters and accordingly provide an appropriate resource 

allocation guideline for system operators and other 

stakeholders to develop a cost-effective mitigation strategy 

where appropriate and avoid wasting resources on 

mitigating unimportant uncertainty factors. Identifying and 

ranking important uncertain parameters is therefore essential 

for efficient improvement of the accuracy of DSSE. 

Sensitivity analysis (SA) techniques, which are able to 

provide a framework to rank and identify the most 

influential uncertain parameters, have been widely used to 

determine how input variability propagates through a 

computational model to its output result [7]. In [8], nine SA 

techniques including probabilistic approaches have been 

compared in terms of their performance and efficiency, and 

it has been demonstrated that for many applications, the 

Morris screening approach is most suitable, providing a 

good balance between accuracy and efficiency. The Morris 

screening method has also been successfully applied in 

different areas [9] including the power system studies, 

where the focus has been on generator ranking, load 

classification and frequency support [10]. Morris screening 

approach is selected to perform sensitivity analysis in the 

study. The comparison of different SA techniques is beyond 

the scope of this paper and it can be found in [8].   
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Knowing in general the influence of uncertain 

parameters is not sufficient. It would be also very useful to 

have the correlation and joint probability between the 

critical uncertain parameter and the evaluated performance 

indices. For instance, the uncertain parameters located in 

different sections of the possible range may result in very 

different dependence relationship with the evaluated 

performance index. The investigation of their dependence 

structure can provide more detailed information beyond the 

sensitivity of the variable in general. Copula theory has been 

widely used to construct dependence function by linking 

together univariate distribution functions to form a 

multivariate distribution function [11]. It has been widely 

applied in finance and economics analysis, as well as to 

model stochastic dependence in power system uncertainty 

analysis [12]. Though the aforementioned techniques are 

very useful for uncertainty analysis, they have not been 

applied for DSSE analysis. Comprehensive analysis and 

comparison among the uncertain parameters that affect 

DSSE performance are still needed.  

This paper contributes to comprehensive SA in which 

the analysis not only provides the sensitivity of SE to 

uncertain parameters in general, but also identifies the SE 

sensitivity to parameter location in the network and to the 

subset of the feasible range of variation in parameter values. 

The uncertain parameters are critically evaluated and 

analysed, and copula theory is used to present accurately the 

sensitivity and dependence structure among different 

variables when solving DSSE problem. The paper  justifies  

the necessity for and benefits of performing this deeper level 

of SA anlaysis and for the first time applies Morris 

screening method and copula theory for uncertainty analysis 

in DSSE. The global and zonal sensitivity analysis 

performed in the study is able to identify the critical 

parameters (i.e., which) and the critical locations (i.e., where) 

that should be paid more attention to, and the analysis of 

dependence structure and sensitivity analysis of the critical 

parameter within different sections of the range can 

facilitate the decision on required mitigation levels (i.e., 

how). 

2. Methodology  

2.1. Distribution System State Estimation (DSSE) 
The three-phase state estimation problem can be 

defined as: 

𝑬 = 𝒛 − 𝐻(𝑆)                                     (1) 

where state variable S consists of three-phase voltages and 

voltage angles (Va, Vb, Vc, θa, θb, θc). 𝒛  is a vector of 

measurements, H(S) represents a nonlinear set of 

measurement functions that describe the measurements in 

terms of state variable S. 𝑬 is a measurement error vector. 

The DSSE problem can be solved by weighted least squares 

(WLS) technique which is to minimise the equation as 

follows: 

min𝑆[𝑧 − 𝐻(𝑆)]𝑇𝑹−1 [𝑧 − 𝐻(𝑆)]             (2) 

where R is the covariance matrix of measurement errors, i.e., 

the weights associated with measurement tolerance. The 

uncertainties/tolerance of pseudo-measurements and real 

measurements are taken into account by adding normally 

distributed errors to their actual values before being used for 

estimation. To account for the uncertainties, Monte Carlo 

simulations are used in conjunction with DSSE. In the study, 

the real measurement (of voltage and power) and pseudo-

measurements (of power and network parameters) have 

different measurement tolerances, resulting in different 

weights associated with different measurement errors in (2). 

The tolerance of pseudo-measurements (power and network 

parameters) is further discussed in Section 3.2. The three-

phase weighted least squares (WLS) state estimator is 

applied to solve DSSE. Further details on DSSE can be 

found in [13].  

 

2.2. Uncertainty Analysis 
The uncertainty variables used for sensitivity analysis 

(denoted as x) are the tolerances of uncertain measurements. 

In the study, x represents the confidence of measurement 𝒛, 

and determines the deviation of the  measurements from 

their actual values before the measurements are used as 

inputs to DSSE. The generation of distribution of 𝒛 based on 

x is discussed in Section 3.2. Parameter x also determines 

the weights of R in (2). Therefore x to some extent 

influences state estimation performance. Given 𝒙 , state 

estimation error can be evaluated by: 

𝑦(𝒙) =
1

𝑁𝑏𝑢𝑠
∑ (∑

|𝑉𝑖,𝑎𝑐𝑡
𝑗

−𝑉𝑖,𝑒𝑠𝑡
𝑗

(𝐱)|

𝑉
𝑖,𝑛𝑜𝑚
𝑗

3
𝑗=1 )

𝑁𝑏𝑢𝑠
𝑖=1 × 100 (%)       (3) 

where 𝑁𝑏𝑢𝑠 denotes the total number of buses in the network. 

𝑉𝑖,act
𝑗

, 𝑉𝑖,est
𝑗

 and 𝑉𝑖,𝑛𝑜𝑚
𝑗

represent the actual, estimated and 

nominal voltages at phase j of bus i respectively. The 

objective of sensitivity analysis in this paper is to study the 

impact of 𝒙 on the state estimation error 𝑦(𝒙), and to find 

out the relationship/dependence structure between 𝒙  and 

𝑦(𝒙). The application and discussion in the rest of the paper 

are performed surround this objective. 

 

2.2.1 Morris Screening Method: Morris screening method 

is a randomized One-At-a-Time design. During screening 

procedure, only one variable changes at a time by a 

magnitude of Δ. The standardized effect of a positive or 

negative Δ change (or step) of an input variable can be 

evaluated by Elementary Effect (EE) defined as: 

𝐸𝐸𝑖(𝒙) =
[𝑦(𝑥1,𝑥2,…,𝑥𝑖−1,𝑥𝑖+∆,𝑥𝑖+1,…𝑥𝑘)−𝑦(𝐱)]

∆
             (4) 

where Δ is the multiple of 1/(p-1) representing the 

magnitude of step, p is the number of levels, k is the number 

of variables, and x=[ 𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑘]. The Morris method 

creates a trajectory through the variable space by changing 

one variable at a time by Δ as shown in Fig. 1. 

 

 
Fig. 1. Illustration of Morris screening trajectory 

 

Each trajectory is constructed via a series of matrices 

[14]. r (r=p-1) trajectories are constructed, and r EEs are 

obtained for each input variable [7]. The finite distribution 

of EEs that contributed to variable i is denoted as Di. Each 

Di contains r independent EEs. Based on Di the sensitivity 

indices (or importance measures) can be evaluated by 
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calculating the mean (𝜇∗) and standard deviation (𝜎∗) of the 

set of EEs for each input variable [14, 15]: 

𝜇𝑖
∗ =

∑ |𝐸𝐸𝑛|𝑟
𝑛=1

𝑟
                                (5) 

𝜎𝑖
∗ = √

1

𝑟
∑ (𝐸𝐸𝑛 − 𝜇𝑖)2𝑟

𝑛=1                           (6) 

Index 𝜇∗  provides the overall sensitivity of the i
th 

input 

variable from the perspective of the output response. Large 

𝜇∗ suggests that the output has a high sensitivity to the input 

variable. Index 𝜎∗ is used to determine the spread (variance) 

of the finite distribution of the EEi distribution, which 

indicates the independence of the corresponding variable [8, 

9]. The larger index 𝜎∗  is, the more independent the 

corresponding variable is. Further details about Morris 

screening method can be found in [8]. 

 

2.2.2 Copula Analysis and Dependence: Copula theory 

is able to capture the dependence between random 

observations and also allows the decomposition of a joint 

distribution into its marginal distributions and its 

dependence function. Consider two random observations v 

=[v1,v2], with joint distribution F and marginal distribution 

of observations v1 and v2 (denoted as F1 and F2). The 

mapping from the individual distribution functions to the 

joint distribution function can be defined by a copula [11]: 

𝑭(𝒗) = 𝐂(𝐹1(𝑣1), 𝐹1(𝑣2)),     ∀𝒗 ∈ 𝑅𝑛               (7) 

From any multivariate distribution F, the marginal 

distributions Fi can be extracted, and the copula C can be 

obtained. The information contained in copula C is the 

information about the dependence between different 

variables. In this study, the copula is used to construct the 

dependence relationship between the tolerance of 

measurements and the corresponding state estimation error 

in order to establish whether the tolerance of measurements 

allocated at different sections of the possible ranges would 

affect the performance of the state estimation. The inputs to 

copula analysis are a series of observed 𝒙 and 𝑦(𝒙), denoted 

as 𝑣1 and 𝑣2 respectively. 

The copula model which fits the data the most is used 

to represent the structural dependence of the given data. 

Fitting copula models to observed data is implemented by 

applying widely used maximum likelihood estimation (MLE) 

[11,16] method. The observations are assumed to have a 

known probability distribution with unknown copula 

parameters (denoted as 𝐶𝜃 ). The joint probability density 

function F of the given observation v can be written in terms 

of these unknown parameters 𝐶𝜃. The copula log-likelihood 

function defined as (8) [16] is used to estimate the copula-

based models and will attain its peak value when the 

unknown parameters are chosen to be closest to their actual 

values. Hence, MLE is actually an optimisation problem and 

its objective is to maximise the copula log-likelihood 

function (8) by varying the assumed parameters 𝐶𝜃  of the 

copula models, in order to give the maximum likelihood 

estimates for the parameters of interest. 

maximize LL=log 𝐅(𝐯;  𝐶𝜃)                     (8) 

The larger the calculated LL is, the better the estimation is. 

In the study, nine widely used copulas are considered, 

as listed in Table 1 [16]. The notations of the unknown 

copula parameters 𝐶𝜃 to be estimated during MLE procedure 

are also given in Table 1. The nine copulas comprise almost 

all of the copulas which are widely applied in statistics and 

economics. Among these copulas, the normal, Student’s t 

and Plackett copula generate symmetric dependence, 

whereas the Gumbel, Clayton, and Joe-Clayton copula 

generate asymmetric dependence. More details on copula 

analysis in general, including the nine copulas used together 

with their copula parameters can be found in [16]. 

Table 1 Nine Copulas Used in the Study 

Index Copula 𝐶𝜃 

1 Normal Copula 𝜌 

2 Clayton's copula 𝜃 

3 Rotated Clayton copula 𝜃 

4 Plackett copula 𝜋 

5 Frank copula 𝜆 

6 Gumbel copula 𝛿 

7 Rotated Gumbel copula 𝛿 

8 Student's t copula 𝜌, 𝑣 

9 Symmetrised Joe-Clayton copula (SJC) 𝜏𝑈, 𝜏𝐿 

 

3. Results and Analysis  

3.1. Network Settings 
In the study, a 295-bus generic distribution network 

(GDN) [17] is used, as shown in Fig. 2. The GDN network 

was originally developed as a reference netwrok for the 

purpose of distribution netwrok studies in the UK, and all 

GDN parameters are based on realistic UK distribution 

networks. Unbalance phenomenon is generated by 

unbalanced loads [17]. The network is divided into 5 zones 

as marked in Fig. 2. Zone 1 consists of buses at voltage 

levels larger than 11kV; while zones 2-5 are allocated at 

11kV level (starting from 33kV-11kV substations) and they 

are divided based on feeders. 
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Fig. 2. Single-line diagram of the 295-bus generic 

distribution network (GDN) 

 

The study is carried out using two different, arbitrary, 

sets of monitor locations for illustrative purposes. (The 

optimal monitor placement for state estimation is not the 

focus of this study). These meters provide measurements 

detailed in Section 3.2. 

C1: Meters are placed at substations only. In total 20 meters 

are placed at 20 substations. 

C2: Meters are placed at both substations and 11kV buses. 

18 out of the 20 meters used in case 1 remain at 

substations   while the remaining two meters are placed 

at 11kV buses (one in zone 4 and one in zone 5), as 

marked in Fig. 2. 
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3.2. Uncertainties 
In general, there are uncertainties associated with 

measurements as well as with parameters of network models. 

The types of real measurements and pseudo-measurements 

used in the study are based on [13]. Real measurements can 

be characterized by their own ranges of measurement errors 

which are primarily determined by the corresponding 

measurement devices [18]. The accuracy of pseudo-

measurements is highly dependent on the estimation 

methodologies and the confidence of data resources based 

on which the estimation is performed. To have more 

accurate pseudo-measurements, various types of data in 

distribution networks have been explored for the purpose of 

DSSE [19]. Pseudo-measurements of load demand profiles, 

for example, can be further improved by the non-

synchronized measurements coming from smart meters 

based on the credibility of each available measurement. The 

load estimation accuracy based on available data is not 

considered here and the SA analysis is carried out with the 

tolerances provided in literature. 

1) Real measurements: As per IEC60044-2, there are 

accuracy classes 0.1, 0.2, 0.5, 1.0 and 3.0 of voltage 

transformers (VTs), with phase displacement ranges from 

0.15 to 1.2 centiradians [20]. As per IEC61000-4-30, the 

measurement uncertainty of r.m.s value of the voltage 

magnitude ∆𝑈  for class A and B performance shall not 

exceed ±0.1%  and ±0.5%  , respectively, of the declared 

supply voltage by a transducer ratio respectively [21]. 

Combing the chain uncertainty introduced by both 

measurement and VTs, the range of the tolerance of voltage 

(U) measurements is set to [0.14%, 3.04%] [22]. The 

standard accuracy classes for   current transformers (CTs) 

are 0.1, 0.2, 0.5, 1, 3 and 5, with phase displacement ranging 

from 0.15 to 1.8 centiradians [20].  As per IEC61000-4-30, 

the measurement uncertainty of r.m.s value of the current 

magnitude ∆𝐼  for classes A and B performance shall not 

exceed ±0.1%  and ±2%  , respectively,  of the full scale 

[21]. Considering both VTs and CTs as well as 

measurement uncertainty, the range for the tolerance of 

power measurement is set to [0.17%, 6.16%] [22].  

2) Pseudo-measurements (PMs): PMs are typically 

calculated using load forecasting methods or historical data. 

They are much less accurate than the real-time 

measurements and are usually assigned with low weights in 

R (i.e., high error variances). For buses for which there are 

no data recorded, PMs of the load demand can be generated 

from other buses   with similar types of customers. In [13, 

23], 20% to 50% errors are considered in PMs. In [4], the 

maximum error of 50% with respect to the reference values 

for the active and reactive powers (P&Q) drawn by the loads 

is used for PMs. In [24], 10%, 30% and 50% errors are used 

for error of P&Q load. Generally, more information such as 

energy bill data and scheduled power, etc., can be used for 

more accurate active power estimation. Therefore it is 

assumed that the error of pseudo-measurement of P is 

smaller than that of Q. 

3) Network Parameters: Loadings of the network 

were extracted from 2010 survey of different types of loads 

(including commercial, industrial and residential loads) [25]. 

In EN 50160, the required level of voltage unbalance factor 

is limited by 2% for 95% of the week in low and medium 

voltage distribution systems [26]. It can be expected that 

negative sequence component of the supply voltage shall be 

within the range 0%–2% of the positive sequence 

component. In some areas, unbalances up to about 3% at 

three-phase supply terminals may occur [4]. The tolerance 

of the line impedances could change from zero to 20 % [27]. 

In [28], the tolerance of short-circuit impedances for 

transformers is 7.5%-15% of the declared values. In [29] the 

variation of OLTCT impedance due to the tap changing is 

found to be between 10%-15% of its nominal value. Based 

on the statistics given above, the ranges of uncertainty 

variables are set as listed in Table 2. 
  

Table 2 List of input variables for sensitivity analysis 
Index Variables x ranges 

1 Loadings of the network 26%-100% 

2 Voltage unbalance severity 0-2%  

3 Tolerance of real measurements of U 0.14%-3.04% 

4 Tolerance of real measurements of 

power (P and Q) 

0.17%-6.16% 

5 Tolerance of pseudo measurement of P 10%-40%  

6 Tolerance of pseudo measurement of Q 20%-50%  

7 Tolerance of network parameters of line 

impedance 

0-20%  

8 Tolerance of network parameters of 

leakage admittance in transformer 

7.5-15%  

 

4) Transfer from tolerance to standard deviation: For 

a given percentage of the maximum allowed deviation (i.e., 

tolerance) from the mean 𝜇, as given in Table 2, the standard 

deviation of the measurement error can be derived based on  

𝜎 =
𝜇×%error

3×100
 [23]. For each setting of variable x, the 

measurements (i.e., the input to DSSE) for Monte Carlo 

simulations are generated based on PDF(𝜇, 𝜎) with 3-sigma. 

It should be mentioned that DSSE, Morris screening 

method and copula estimation have their own different 

inputs. For instance, the inputs to DSSE are the 

measurements. The inputs to Morris screening method are 

uncertainty/tolerance of measurements i.e., the uncertainty 

variables listed in Table 2, denoted as 𝒙 . The inputs to 

copula analysis are the observations of 𝒙  and 𝑦(𝒙) 

calculated from (3), denoted as v. 

 

3.3. Sensitivity Analysis through Morris Method 
The uncertainty variables listed in Table 2 are ranked 

using Morris screening method, and the results are presented 

in Fig. 3 in which the mean of EEs is plotted against the 

standard deviation of EEs, with p=10, (typically p=4-10 [8]). 

As mentioned in Section 2.2, variables with large μ
*
 have 

higher influence on the DSSE performance. It can be seen 

from Fig. 3(a) that loading of the network, voltage 

unbalance severity, tolerance of the line impedance and real 

measurement of U are the most important and sensitive 

variables in case 1. The state estimation performance is 

greatly impacted by loading of the network partly due to its 

direct influence on the deviation of measurements. If the 

point is further away from the red line such that 𝜎∗ ≪ 𝜇∗, 

the result is more linearly dependent on the influential inputs 

[8]. It can be seen from Fig. 3(a) that variables 1, 3 and 7 

(see Table 2) have more linear influence on the DSSE 

performance than others. Variables located on the line and 

nearby have a more non-linear influence on the output 
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distribution. Variables with low values of 𝜇∗ are considered 

as non-influential and have negligible impacts on the DSSE 

results. From the perspective of monitoring reinforcement 

for the purpose of DSSE, therefore, the focus should be 

placed on the analysis and improvement of the accuracy of 

influential variables (i.e., the critical uncertainty variables). 

Morris screening method is also applied to case 2, 

and the results are presented in Fig. 3 (b). For all variables 

(except for variable 3), the 𝜇∗ and 𝜎∗ of the EEs obtained in 

case 2 are greatly reduced compared with the results of 

corresponding variables in case 1. It suggests that in case 2 

the uncertainty variables (except for variable 3) become less 

influential on  DSSE performance compared with the case 1. 

The ranking of the variables is similar as in case 1, except 

that the variable 3 moved from the 4
th

 to the 2
nd

 place in 

terms of importance. The 𝜇∗ of EEs of variable 3 (i.e., the 

tolerance of real measurement of U) is increased from 0.29% 

to 0.38%, which suggests that variable 3 becomes more 

influential when the meter placement is given as case 2. 
 

 
a                                  b  

Fig. 3. 𝜇∗  and 𝜎∗  of the EEs of various uncertain 

parameters 

(a) Case 1, (b) Case 2 

 

The variable ranking based on Morris method for 

case 2 is 1>3>2>7>8>4>5>6. Variables 4 and 8, and 5 and 6, 

have very similar 𝜇∗ , as shown in Fig. 3(b). The Pearson 

correlation coefficient [10] is used to rank the importance of 

variables for case 2 and compared with Morris method. 

With the same number of simulations as Morris method, the 

Pearson approach generates the ranking of 

1>3>2>5>8>7>6>4, i.e., similar but not exactly the same as 

Morris method. When the number of Monte Carlo 

simulations is increased to 500, the ranking is changed to 

1>3>2>7>4>8>5>6, i.e., almost exactly the same as Morris 

method (only the rank of variables 8 and 4 was swapped). It 

can be seen that with increased number of simulations, the 

Pearson approach yields almost exactly the same results as 

Morris method, which demonstrates the efficiency of Morris 

method, as discussed in Section 1.  

EE presents the change/variation of state estimation 

error when one variable changes at a time, and it does not 

present the accuracy (or error) of the state estimation with a 

set of given measurements. To present state estimation 

accuracy, further simulation is carried out as follows. The 

uncertainty variable 𝒙  (as given in Table 2) is set to a 

number of values evenly distributed within the pre-defined 

range, and other variables are set to base values. Given 𝒙, 

estimation errors  𝑦(𝒙)  are obtained by performing DSSE. 

For each variable in Table 2, the mean and maximum of the 

obtained set of 𝑦(𝐱) are calculated and provided in Table 3, 

in which Yμ and Ymax denote the mean and maximum of 𝑦(𝐱) 

respectively. Yμ and Ymax represent the state estimation 

performance rather than the variation of state estimation 

performance as presented by Morris screening method. It 

can be seen that the state estimation errors obtained in case 2 

are on average 31% smaller than those obtained in case 1. 

As discussed in Section 3.2, the 𝜇∗ of EEs of variable 3 in 

case 2 is increased compared to case 1. This can be also 

reflected in Table 3 by the fact that the difference between 

Yμ and Ymax is larger in case 2 (0.18%) than in case 1 

(0.14%). Although variable 3 becomes more influential and 

sensitive in case 2, case 2 actually outperforms case 1 in 

terms of state estimation accuracy, given the same settings 

of variable 3. It can be seen from Table 3 that case 2 

improves the estimation performance by 11.54% (
0.52−0.46

0.52
×

100) compared to case 1. 
 

Table 3 State Estimation Error (Yμ and Ymax) for Variables in 

Table 2 
Case Index 1 2 3 4 5 6 7 8 

1 Yμ (%) 0.89 0.64 0.52 0.46 0.46 0.45 0.45 0.43 

Ymax(%) 1.43 0.94 0.66 0.51 0.48 0.49 0.55 0.48 

2 Yμ(%) 0.61 0.37 0.46 0.31 0.30 0.32 0.31 0.31 

Ymax(%) 0.92 0.49 0.64 0.33 0.33 0.33 0.35 0.33 

Case 2 is selected for further analysis in this study 

due to its accurate state estimation results. As presented in 

Section 3.2, the top two sensitive parameters in case 2 are 

variables 1 and 3. The focus therefore should be on the 

improvement of these variables when developing mitigation 

strategy. Between the two variables, variable 1 cannot be 

reinforced as the loading of the network is highly dependent 

on customers’ behavior, and in practice it cannot be 

arbitrarily controlled by DNOs or other stakeholders in the 

network. As for the tolerance of real measurement of 

voltage U, i.e., variable 3, it could be improved by the 

enhancement of measurement devices.  

 
Fig. 4. 𝜇∗ and 𝜎∗ of the EEs of parameter 3 at five different 

zones 

 
It is not feasible though, to replace the measurement 

devices at all monitoring locations in the network. It would 

be useful and cost efficient if the analysis can show in which 

zone of the network the accuracy of variable 3 has greater 

influence on the accuracy of DSSE. For this purpose, the 

Morris screening method is applied to rank the variable 3 in 

different zones (in total five zones), and the results are 

presented in Fig. 4. It can be seen that the tolerance of real 

measurement of U in zone Z5 has the largest influence on 

the accuracy of DSSE compared to measurements of U in 

other zones. Therefore, the improvement of the accuracy of 

measurement of U should be attempted in zone Z5. To 

demonstrate the effectiveness of the zone-based uncertainty 

mitigation, the VTs in zone Z5 are changed from class 3 to 

0.5 (with measurement performance of class A), and the 

measurement tolerance of U in other zones is kept at base 

value. By doing this the accuracy of state estimation 
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improved by 37.5% (
0.48−0.30

0.48
), which demonstrates the 

effectiveness of the mitigation of variable 3 in zone Z5. 

 
3.4. Sensitivity Analysis through Copula Analysis 

1) Modelling: The analysis given in Section 3.3 only 

presents the sensitivity of different uncertainty variables and 

suggests the general linearity characteristic of these 

variables. However, knowing general sensitivity and 

marginal distributions is not sufficient to describe the 

dependence relationship between different observations. 

Dependence functions, for example, might present various 

dependence levels at different uncertainty ranges. Copulas 

can be used to reveal this dependence structure as they are 

able to describe nonlinear dependence among multivariate 

data independent from their marginal probability 

distributions.  

As discussed in Section 3.3, variable 3 (tolerance of 

real measurements of U) is the main concern in the study. In 

this subsection, variable 3 is further analysed. Copulas are 

applied to model the dependence structure between variable 

3 and state estimation performance. The marginal 

distribution of variable 3 is given in Fig. 5, which is the 

probability density estimate of all potential combination of 

VTs and measurement classes listed in Section 3.2. Variable 

3 is set to a set of values which are generated randomly 

based on the probability density given in Fig. 5, and the 

corresponding estimation errors are calculated and plotted 

by red solid line in Fig. 6. Copulas are used to model the 

dependence structure between the two series of data, v1 and 

v2, which denote the observations of variable 3 and the 

corresponding estimation errors respectively. Let u1 and u2 

be the “probability integral transform” of v1 and v2 

respectively, as introduced in Section 2.2, 𝒖 = [𝑢1, 𝑢2]’~𝑪. 

Thus, the scatterplot of u1 against u2, which is equivalent to 

the copula, is shown in Fig. 7 to visualize the dependence 

structure. It can be seen that the scattered points are more 

tightly clustered around the diagonal in the upper tail (higher 

part of uncertainty range), indicating stronger dependence in 

joint events in upper tail than that in lower tail (lower part of 

uncertainty range).  

 
Fig. 5. Marginal distributions of variable 3  

 

Fig. 6. PDF of estimation errors 

               
Fig. 7. Scatterplot of u1 against u2 for illustration of 

dependence function 

The nine copulas given in Section 2.2 are used to fit 

the two series of observations. Based on the ranking of log-

likelihood among the nine copulas, the first four copulas as 

listed in Table 4 can adequately present the structural 

relationship between u1 and u2, while the others do not fit 

the given data due to their poor log-likelihood results. It can 

be seen that among the copulas, the rotated Clayton’s copula 

has the best performance in modeling the dependence 

structure between u1 and u2, followed by SJC and Gumbel. 

The rotated Clayton’s copula implies greater dependence for 

upper tail than for lower tail. The Gumbel’s copula implies 

the same. As for SJC, the estimated upper and lower tail 

dependence coefficients, 𝜏𝑈 and 𝜏𝐿 , are 0.7817 and 2.9E-7 

respectively; this also suggests low dependence in lower tail 

and high dependence in upper tail. For the purpose of 

comparison, the lower and upper tail dependence 

coefficients obtained by each copula are calculated and 

provided in Table 4 as well. It can be seen that the first three 

copulas present similar dependence structures with similar 

tail dependence coefficients, which are in line with the 

scatterplot in Fig. 7.   

To demonstrate the appropriateness of using the 

estimated copula to represent the structural dependence of 

the observed data, bivariate data u1 and u2 are estimated 

based on rotated Clayon’s copula together with its estimated 

copula parameter, i.e., the fittest copula provided in Table 4, 

using inverse CDF transformation. The probability density 

of the state estimation error obtained based on the estimated 

bivariate data is given by dash-dot line in Fig 6. It can be 

seen that the shape of the PDF obtained based on the 

estimated data is very similar to that of the actual data, i.e., 

the solid line in Fig 6, which demonstrates the accuracy of 

the copula estimated. 
 

Table 4 Ranking of Estimated Copulas for Distribution in 

Fig. 5 
Rank Copula 

index 

Copula 𝐶𝜃 Tail dependence 

Lower Upper 

1 3 Rotated Clayton  2.7573 0     0.7777 

2 9 SJC 0.7817 2.9E-7 2.9E-7 0.7817 

3 6 Gumbel  2.4865 0 0.6785 

4 4 Plackett  20.3437 0 0 

 

Furthermore, the sensitivity of variable 3 is analysed 

at the upper tail and lower tail respectively by Morris 

screening method. The Morris ranking shows that variable 3 

at upper tail (𝜇∗ =0.21%) is more sensitive to variable 3 at 

the lower tail ( 𝜇∗ =0.17%), as greater 𝜇∗  suggests higher 

sensitivity, as discussed in Section 2.2. To further 

demonstrate this, within lower tail, variable 3 is changed 

from 1.1% to 0.1% (improvement of 1%). This resulted in 

the improvement of state estimation performance by 25% 

with absolute improvement of 0.11%. On the other hand, 
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within upper tail, variable 3 is set from 3.0% to 2% 

(improvement of 1% as well), resulting in estimation 

performance improvement by 30.8% with absolute 

improvement of 0.2%. It can be concluded therefore that the 

improvement of measurement tolerance at the upper tail 

results in greater improvement of state estimation 

performance. In this case, if the tolerance is located at the 

upper tail, the improvement of the measurement tolerance 

can be recommended due to the high dependence between 

the tolerance improvement and the improvement of state 

estimation. This analysis provides useful information for 

making decision on mitigation levels (i.e., how much 

uncertainty mitigation is needed) which might vary 

depending on the present location of the concerned variables 

within the possible range. 

4. Conclusions 

This paper presents the strategy/procedure that 

analyses and models the sensitivity and dependence 

structure of uncertain parameters in distribution system sate 

estimation. The sensitivity analysis technique of Morris 

screening method and copula theory are explored for this 

purpose and illustrated on a 295-bus realistic network model 

of a generic distribution system. The sensitivity of the 

critical variable in different zones is analysed and ranked in 

the study. It shows that the sensitivity level of the critical 

variable varies zonally. Due to the non-linear characteristic 

between the critical variable and SE performance, their 

dependence structure is analysed using copula theory with 

nine widely used copulas. It shows that whether the 

improvement of tolerance should take place is also 

depending on the dependence section the tolerance currently 

locates in.  

The performed analysis provides useful information 

for planning monitoring reinforcement and developing 

efficient and effective mitigation strategies. Accurate 

assessment of the importance among different uncertainties 

and analysis of the dependence structure can guide power 

system operators towards variables that require the greatest 

mitigation or increased monitoring accuracy, and such assist 

them in making decisions about the location and accuracy of 

monitors for the purpose of state estimation. 
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