Sheffield
Hallam _
University

The influence of uncertainties and parameter structural
dependencies in distribution system state estimation

LIAO, Huilian <http://orcid.org/0000-0002-5114-7294>, MILANOVIC, Jovica V.,
HASAN, Kazi N. and TANG, Xiaoqing

Available from Sheffield Hallam University Research Archive (SHURA) at:
https://shura.shu.ac.uk/18987/

This document is the Accepted Version [AM]
Citation:

LIAO, Huilian, MILANOVIC, Jovica V., HASAN, Kazi N. and TANG, Xiaoqing (2018).
The influence of uncertainties and parameter structural dependencies in distribution
system state estimation. IET Generation, Transmission & Distribution, 12 (13), 3279-
3285. [Atrticle]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk


http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

The Influence of Uncertainties and Parameter Structural Dependencies in

Distribution System State Estimation

Huilian Liao?, Jovica V. Milanovi¢ %, Kazi N. Hasan ?, Xiaoging Tang?

! power, Electrical and Control Engineering Group, Sheffield Hallam University, Sheffield, S1 1WB, UK
2School of Electrical and Electronic Engineering, The University of Manchester, PO Box 88, Manchester, M60

1QD, UK.
“milanovic@manchester.ac.uk

Abstract: This paper evaluates a number of uncertain parameters that affect the accuracy of distribution system state
estimation, and ranks their importance using an efficient sensitivity analysis technique, Morris screening method. The
influence of the uncertain parameters on state estimation performance is analysed globally and zonally. Furthermore the
dependence structure between the critical variable and state estimation accuracy is analysed using copula to establish their
relationship at different section of the bivariate space. The sensitivity of the critical parameter at different ranges is also
studied and ranked using Morris screening methods to present the variation of state estimation performance when the
critical variable is allocated at different sections within the feasible range. Accurate assessment of the importance of
various uncertain parameters and the analysis of the dependence structure can inform power system operators which
parameters will require the greatest levels of mitigation or increased monitoring accuracy in order to have satisfactory

performance of distribution system state estimation.

1. Introduction

Secure operation of a power system requires proper
estimate of the status of operating condition [1], which is
essential for identifying potential critical operating
conditions and making decision on selecting preventative
measures if necessary. Given inherent measurement
inaccuracies, state estimation (SE) is able to smooth out
measurement errors and provide an optimal estimate of the
system operating states. With the increased capability of
data collection in SCADA systems, SE has been widely
integrated in Energy Management Systems (EMS) for
operation and management in transmission systems [2].

Proliferation of active components and changing load
profiles in distribution networks are affecting the operating
conditions of distribution networks which change much
more frequently than ever. Simultaneously more and more
functionalities developed for smart grids are highly
dependent on the network state estimation. Therefore it is
essential to have appropriate observability of the distribution
networks in order to ensure secure and efficient network
operation. This need resulted in an intensive research on SE
at distribution levels, namely Distribution System State
Estimation (DSSE). Different from transmission networks,
the ill conditioned matrices and large number of nodes in
distribution networks impose great difficulty and challenges
to DSSE. Various techniques have been investigated for
DSSE in literature [3], e.g., machine learning, heuristic
intelligence methods and especially Weighted Least Squares
(WLS) approach [1].

DSSE relies on continuous measurements and,
predominantly, pseudo-measurements. Considering that
measurement bias exists in each measurement, the deviation
of both measurements and pseudo-measurements can
appreciably affect the performance of state estimation. With
the increased attention paid to the study of the influence of
uncertainties on SE accuracy, a number of dedicated papers

have studied the impact of different types of measurements
on the accuracy of SE in order to establish the influence of
measurement accuracy on the overall estimation accuracy
[4]. Analytical approach is applied to perform sensitivity
analysis in [5]. In [6], WLS based SE is used to establish
under which circumstance and to what extent the SE results
are affected by measurement uncertainty when a minimum
number of measurements is used.

With the increased uncertainties in distribution
networks, analysis of the influence/sensitivity of uncertain
parameters on DSSE is becoming more and more important.
The sensitivity analysis can identify critical uncertain
parameters and accordingly provide an appropriate resource
allocation guideline for system operators and other
stakeholders to develop a cost-effective mitigation strategy
where appropriate and avoid wasting resources on
mitigating unimportant uncertainty factors. Identifying and
ranking important uncertain parameters is therefore essential
for efficient improvement of the accuracy of DSSE.
Sensitivity analysis (SA) techniques, which are able to
provide a framework to rank and identify the most
influential uncertain parameters, have been widely used to
determine how input variability propagates through a
computational model to its output result [7]. In [8], nine SA
techniques including probabilistic approaches have been
compared in terms of their performance and efficiency, and
it has been demonstrated that for many applications, the
Morris screening approach is most suitable, providing a
good balance between accuracy and efficiency. The Morris
screening method has also been successfully applied in
different areas [9] including the power system studies,
where the focus has been on generator ranking, load
classification and frequency support [10]. Morris screening
approach is selected to perform sensitivity analysis in the
study. The comparison of different SA techniques is beyond
the scope of this paper and it can be found in [8].
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Knowing in general the influence of uncertain
parameters is not sufficient. It would be also very useful to
have the correlation and joint probability between the
critical uncertain parameter and the evaluated performance
indices. For instance, the uncertain parameters located in
different sections of the possible range may result in very
different dependence relationship with the evaluated
performance index. The investigation of their dependence
structure can provide more detailed information beyond the
sensitivity of the variable in general. Copula theory has been
widely used to construct dependence function by linking
together univariate distribution functions to form a
multivariate distribution function [11]. It has been widely
applied in finance and economics analysis, as well as to
model stochastic dependence in power system uncertainty
analysis [12]. Though the aforementioned techniques are
very useful for uncertainty analysis, they have not been
applied for DSSE analysis. Comprehensive analysis and
comparison among the uncertain parameters that affect
DSSE performance are still needed.

This paper contributes to comprehensive SA in which
the analysis not only provides the sensitivity of SE to
uncertain parameters in general, but also identifies the SE
sensitivity to parameter location in the network and to the
subset of the feasible range of variation in parameter values.
The uncertain parameters are critically evaluated and
analysed, and copula theory is used to present accurately the
sensitivity and dependence structure among different
variables when solving DSSE problem. The paper justifies
the necessity for and benefits of performing this deeper level
of SA anlaysis and for the first time applies Morris
screening method and copula theory for uncertainty analysis
in DSSE. The global and zonal sensitivity analysis
performed in the study is able to identify the critical
parameters (i.e., which) and the critical locations (i.e., where)
that should be paid more attention to, and the analysis of
dependence structure and sensitivity analysis of the critical
parameter within different sections of the range can
facilitate the decision on required mitigation levels (i.e.,
how).

2. Methodology

2.1. Distribution System State Estimation (DSSE)
The three-phase state estimation problem can be
defined as:

E=z—-H(S) Q)
where state variable S consists of three-phase voltages and
voltage angles (Va, Vi, Ve 6., 6, 6. z is a vector of
measurements, H(S) represents a nonlinear set of
measurement functions that describe the measurements in
terms of state variable S. E is a measurement error vector.
The DSSE problem can be solved by weighted least squares
(WLS) technique which is to minimise the equation as
follows:

ming[z — H(S)]"R™ [z — H(S)] )
where R is the covariance matrix of measurement errors, i.e.,
the weights associated with measurement tolerance. The
uncertainties/tolerance of pseudo-measurements and real
measurements are taken into account by adding normally
distributed errors to their actual values before being used for
estimation. To account for the uncertainties, Monte Carlo
simulations are used in conjunction with DSSE. In the study,

the real measurement (of voltage and power) and pseudo-
measurements (of power and network parameters) have
different measurement tolerances, resulting in different
weights associated with different measurement errors in (2).
The tolerance of pseudo-measurements (power and network
parameters) is further discussed in Section 3.2. The three-
phase weighted least squares (WLS) state estimator is
applied to solve DSSE. Further details on DSSE can be
found in [13].

2.2. Uncertainty Analysis

The uncertainty variables used for sensitivity analysis
(denoted as x) are the tolerances of uncertain measurements.
In the study, x represents the confidence of measurement z,
and determines the deviation of the measurements from
their actual values before the measurements are used as
inputs to DSSE. The generation of distribution of z based on
x is discussed in Section 3.2. Parameter x also determines
the weights of R in (2). Therefore x to some extent
influences state estimation performance. Given x, state
estimation error can be evaluated by:

Vijac _Vije ()
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where N, denotes the total number of buses in the network.
v, ., V. and V. _represent the actual, estimated and

i,act' "iest i,nom
nominal voltages at phase j of bus i respectively. The
objective of sensitivity analysis in this paper is to study the
impact of x on the state estimation error y(x), and to find
out the relationship/dependence structure between x and
y(x). The application and discussion in the rest of the paper

are performed surround this objective.

2.2.1 Morris Screening Method: Morris screening method
is a randomized One-At-a-Time design. During screening
procedure, only one variable changes at a time by a
magnitude of A. The standardized effect of a positive or
negative A change (or step) of an input variable can be
evaluated by Elementary Effect (EE) defined as:

EEi (x) _ [y(xl,xz,...,xi_l,xi-OA—A,le,...xk)—y(x)] (4)
where A is the multiple of 1/(p-1) representing the
magnitude of step, p is the number of levels, k is the number
of variables, and x=[ x4, x5, ..., x;, ... x; ]. The Morris method
creates a trajectory through the variable space by changing
one variable at a time by A as shown in Fig. 1.
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Fig. 1. llustration of Morris screening trajectory
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Each trajectory is constructed via a series of matrices
[14]. r (r=p-1) trajectories are constructed, and r EEs are
obtained for each input variable [7]. The finite distribution
of EEs that contributed to variable i is denoted as D;. Each
D; contains r independent EEs. Based on D; the sensitivity
indices (or importance measures) can be evaluated by
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calculating the mean (u*) and standard deviation (¢*) of the
set of EEs for each input variable [14, 15]:

pi = Bn=tfind (5)
0 = A Zhes (BB — 2 ©)

Index u* provides the overall sensitivity of the i" input
variable from the perspective of the output response. Large
W” suggests that the output has a high sensitivity to the input
variable. Index ¢* is used to determine the spread (variance)
of the finite distribution of the EE; distribution, which
indicates the independence of the corresponding variable [8,
9]. The larger index o* is, the more independent the
corresponding variable is. Further details about Morris
screening method can be found in [8].

2.2.2 Copula Analysis and Dependence: Copula theory
is able to capture the dependence between random
observations and also allows the decomposition of a joint
distribution into its marginal distributions and its
dependence function. Consider two random observations v
=[v,Vv,], with joint distribution F and marginal distribution
of observations v; and v, (denoted as F; and F,). The
mapping from the individual distribution functions to the
joint distribution function can be defined by a copula [11]:

F(v) = C(F1 (v), Fl(vz)), Vv € R" @)

From any multivariate distribution F, the marginal
distributions F; can be extracted, and the copula C can be
obtained. The information contained in copula C is the
information about the dependence between different
variables. In this study, the copula is used to construct the
dependence relationship between the tolerance of
measurements and the corresponding state estimation error
in order to establish whether the tolerance of measurements
allocated at different sections of the possible ranges would
affect the performance of the state estimation. The inputs to
copula analysis are a series of observed x and y(x), denoted
as v, and v, respectively.

The copula model which fits the data the most is used
to represent the structural dependence of the given data.
Fitting copula models to observed data is implemented by
applying widely used maximum likelihood estimation (MLE)
[11,16] method. The observations are assumed to have a
known probability distribution with unknown copula
parameters (denoted as Cy). The joint probability density
function F of the given observation v can be written in terms
of these unknown parameters Cy. The copula log-likelihood
function defined as (8) [16] is used to estimate the copula-
based models and will attain its peak value when the
unknown parameters are chosen to be closest to their actual
values. Hence, MLE is actually an optimisation problem and
its objective is to maximise the copula log-likelihood
function (8) by varying the assumed parameters Cy of the
copula models, in order to give the maximum likelihood
estimates for the parameters of interest.

maximize LL=log F(v; Cy) (8)
The larger the calculated LL is, the better the estimation is.

In the study, nine widely used copulas are considered,
as listed in Table 1 [16]. The notations of the unknown
copula parameters Cy to be estimated during MLE procedure

are also given in Table 1. The nine copulas comprise almost
all of the copulas which are widely applied in statistics and
economics. Among these copulas, the normal, Student’s t
and Plackett copula generate symmetric dependence,
whereas the Gumbel, Clayton, and Joe-Clayton copula
generate asymmetric dependence. More details on copula
analysis in general, including the nine copulas used together
with their copula parameters can be found in [16].

Table 1 Nine Copulas Used in the Study
Index Copula

Normal Copula

Clayton's copula

Rotated Clayton copula

Plackett copula

Frank copula

Gumbel copula

Rotated Gumbel copula
Student's t copula P,V
Symmetrised Joe-Clayton copula (SJC) Y, z*
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3. Results and Analysis

3.1. Network Settings
In the study, a 295-bus generic distribution network
(GDN) [17] is used, as shown in Fig. 2. The GDN network
was originally developed as a reference netwrok for the
purpose of distribution netwrok studies in the UK, and all
GDN parameters are based on realistic UK distribution
networks. Unbalance phenomenon is generated by
unbalanced loads [17]. The network is divided into 5 zones
as marked in Fig. 2. Zone 1 consists of buses at voltage
levels larger than 11kV; while zones 2-5 are allocated at
11kV level (starting from 33kV-11kV substations) and they

are divided based on feeders.
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- - Meters placed for case 2
Fig. 2. Single-line diagram of the 295-bus generic
distribution network (GDN)

The study is carried out using two different, arbitrary,
sets of monitor locations for illustrative purposes. (The
optimal monitor placement for state estimation is not the
focus of this study). These meters provide measurements
detailed in Section 3.2.

C1: Meters are placed at substations only. In total 20 meters
are placed at 20 substations.

C2: Meters are placed at both substations and 11kV buses.
18 out of the 20 meters used in case 1 remain at
substations  while the remaining two meters are placed
at 11kV buses (one in zone 4 and one in zone 5), as
marked in Fig. 2.



3.2. Uncertainties
In general, there are uncertainties associated with

measurements as well as with parameters of network models.

The types of real measurements and pseudo-measurements
used in the study are based on [13]. Real measurements can
be characterized by their own ranges of measurement errors
which are primarily determined by the corresponding
measurement devices [18]. The accuracy of pseudo-
measurements is highly dependent on the estimation
methodologies and the confidence of data resources based
on which the estimation is performed. To have more
accurate pseudo-measurements, various types of data in
distribution networks have been explored for the purpose of
DSSE [19]. Pseudo-measurements of load demand profiles,
for example, can be further improved by the non-
synchronized measurements coming from smart meters
based on the credibility of each available measurement. The
load estimation accuracy based on available data is not
considered here and the SA analysis is carried out with the
tolerances provided in literature.

1) Real measurements: As per IEC60044-2, there are
accuracy classes 0.1, 0.2, 0.5, 1.0 and 3.0 of voltage
transformers (VTs), with phase displacement ranges from
0.15 to 1.2 centiradians [20]. As per IEC61000-4-30, the
measurement uncertainty of r.m.s value of the voltage
magnitude AU for class A and B performance shall not
exceed +0.1% and +0.5% , respectively, of the declared
supply voltage by a transducer ratio respectively [21].
Combing the chain uncertainty introduced by both
measurement and VTs, the range of the tolerance of voltage
(U) measurements is set to [0.14%, 3.04%] [22]. The
standard accuracy classes for current transformers (CTs)
are 0.1, 0.2, 0.5, 1, 3 and 5, with phase displacement ranging
from 0.15 to 1.8 centiradians [20]. As per IEC61000-4-30,
the measurement uncertainty of r.m.s value of the current
magnitude Al for classes A and B performance shall not
exceed +0.1% and +2% , respectively, of the full scale
[21]. Considering both VTs and CTs as well as
measurement uncertainty, the range for the tolerance of
power measurement is set to [0.17%, 6.16%] [22].

2) Pseudo-measurements (PMs): PMs are typically
calculated using load forecasting methods or historical data.
They are much less accurate than the real-time
measurements and are usually assigned with low weights in
R (i.e., high error variances). For buses for which there are
no data recorded, PMs of the load demand can be generated
from other buses with similar types of customers. In [13,
23], 20% to 50% errors are considered in PMs. In [4], the
maximum error of 50% with respect to the reference values
for the active and reactive powers (P&Q) drawn by the loads
is used for PMs. In [24], 10%, 30% and 50% errors are used
for error of P&Q load. Generally, more information such as
energy bill data and scheduled power, etc., can be used for
more accurate active power estimation. Therefore it is
assumed that the error of pseudo-measurement of P is
smaller than that of Q.

3) Network Parameters: Loadings of the network
were extracted from 2010 survey of different types of loads
(including commercial, industrial and residential loads) [25].
In EN 50160, the required level of voltage unbalance factor
is limited by 2% for 95% of the week in low and medium

voltage distribution systems [26]. It can be expected that
negative sequence component of the supply voltage shall be
within the range 0%-2% of the positive sequence
component. In some areas, unbalances up to about 3% at
three-phase supply terminals may occur [4]. The tolerance
of the line impedances could change from zero to 20 % [27].
In [28], the tolerance of short-circuit impedances for
transformers is 7.5%-15% of the declared values. In [29] the
variation of OLTCT impedance due to the tap changing is
found to be between 10%-15% of its nominal value. Based
on the statistics given above, the ranges of uncertainty
variables are set as listed in Table 2.

Table 2 List of input variables for sensitivity analysis

Index Variables x ranges

1 Loadings of the network 26%-100%

2 Voltage unbalance severity 0-2%

3 Tolerance of real measurements of U 0.14%-3.04%
4 Tolerance of real measurements of 0.17%-6.16%

power (P and Q)

5 Tolerance of pseudo measurement of P 10%-40%

6 Tolerance of pseudo measurement of Q ~ 20%-50%

7 Tolerance of network parameters of line  0-20%
impedance

8 Tolerance of network parameters of 7.5-15%

leakage admittance in transformer

4) Transfer from tolerance to standard deviation: For
a given percentage of the maximum allowed deviation (i.e.,
tolerance) from the mean u, as given in Table 2, the standard
deviation of the measurement error can be derived based on

=% [23]. For each setting of variable x, the

measurements (i.e., the input to DSSE) for Monte Carlo
simulations are generated based on PDF(u, o) with 3-sigma.

It should be mentioned that DSSE, Morris screening
method and copula estimation have their own different
inputs. For instance, the inputs to DSSE are the
measurements. The inputs to Morris screening method are
uncertainty/tolerance of measurements i.e., the uncertainty
variables listed in Table 2, denoted as x. The inputs to
copula analysis are the observations of x and y(x)
calculated from (3), denoted as v.

3.3. Sensitivity Analysis through Morris Method

The uncertainty variables listed in Table 2 are ranked

using Morris screening method, and the results are presented
in Fig. 3 in which the mean of EEs is plotted against the
standard deviation of EEs, with p=10, (typically p=4-10 [8]).
As mentioned in Section 2.2, variables with large 4~ have
higher influence on the DSSE performance. It can be seen
from Fig. 3(a) that loading of the network, voltage
unbalance severity, tolerance of the line impedance and real
measurement of U are the most important and sensitive
variables in case 1. The state estimation performance is
greatly impacted by loading of the network partly due to its
direct influence on the deviation of measurements. If the
point is further away from the red line such that o* « u*,
the result is more linearly dependent on the influential inputs
[8]. It can be seen from Fig. 3(a) that variables 1, 3 and 7
(see Table 2) have more linear influence on the DSSE
performance than others. Variables located on the line and
nearby have a more non-linear influence on the output
4



distribution. Variables with low values of u* are considered
as non-influential and have negligible impacts on the DSSE
results. From the perspective of monitoring reinforcement
for the purpose of DSSE, therefore, the focus should be
placed on the analysis and improvement of the accuracy of
influential variables (i.e., the critical uncertainty variables).
Morris screening method is also applied to case 2,
and the results are presented in Fig. 3 (b). For all variables
(except for variable 3), the u* and o of the EEs obtained in
case 2 are greatly reduced compared with the results of
corresponding variables in case 1. It suggests that in case 2
the uncertainty variables (except for variable 3) become less
influential on DSSE performance compared with the case 1.
The ranking of the variables is similar as in case 1, except
that the variable 3 moved from the 4" to the 2" place in
terms of importance. The u* of EEs of variable 3 (i.e., the

tolerance of real measurement of U) is increased from 0.29%

to 0.38%, which suggests that variable 3 becomes more
influential when the meter placement is given as case 2.
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Fig. 3. u* and ¢* of the EEs of various uncertain
parameters
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The variable ranking based on Morris method for
case 2 is 1>3>2>7>8>4>5>6. Variables 4 and 8, and 5 and 6,
have very similar u*, as shown in Fig. 3(b). The Pearson
correlation coefficient [10] is used to rank the importance of
variables for case 2 and compared with Morris method.
With the same number of simulations as Morris method, the
Pearson  approach  generates the  ranking  of
1>3>2>5>8>7>6>4, i.e., similar but not exactly the same as
Morris method. When the number of Monte Carlo
simulations is increased to 500, the ranking is changed to
1>3>2>7>4>8>5>6, i.e., almost exactly the same as Morris
method (only the rank of variables 8 and 4 was swapped). It
can be seen that with increased number of simulations, the
Pearson approach yields almost exactly the same results as
Morris method, which demonstrates the efficiency of Morris
method, as discussed in Section 1.

EE presents the change/variation of state estimation
error when one variable changes at a time, and it does not
present the accuracy (or error) of the state estimation with a
set of given measurements. To present state estimation
accuracy, further simulation is carried out as follows. The
uncertainty variable x (as given in Table 2) is set to a
number of values evenly distributed within the pre-defined
range, and other variables are set to base values. Given x,
estimation errors y(x) are obtained by performing DSSE.
For each variable in Table 2, the mean and maximum of the
obtained set of y(x) are calculated and provided in Table 3,
in which Y, and Y. denote the mean and maximum of y(x)
respectively. Y, and Ym. represent the state estimation

performance rather than the variation of state estimation
performance as presented by Morris screening method. It
can be seen that the state estimation errors obtained in case 2
are on average 31% smaller than those obtained in case 1.
As discussed in Section 3.2, the u* of EEs of variable 3 in
case 2 is increased compared to case 1. This can be also
reflected in Table 3 by the fact that the difference between
Y, and Yp. is larger in case 2 (0.18%) than in case 1
(0.14%). Although variable 3 becomes more influential and
sensitive in case 2, case 2 actually outperforms case 1 in
terms of state estimation accuracy, given the same settings

of variable 3. It can be seen from Table 3 that case 2
improves the estimation performance by 11.54% (% X

100) compared to case 1.

Table 3 State Estimation Error (Y, and Yma) for Variables in
Table 2

Case Index 1 2 3 4 5 6 7 8

1 Y, (%) 08

9 064 052

Ymax(%) 143 0.94 0.66

2 V(%) 06
Yrax(%) 0.9

1 037 046
2 049 064

046 046 045 045 043
051 048 049 055 048
031 030 032 031 031
033 033 033 035 033

Case 2 is selected for further analysis in this study
due to its accurate state estimation results. As presented in
Section 3.2, the top two sensitive parameters in case 2 are
variables 1 and 3. The focus therefore should be on the
improvement of these variables when developing mitigation
strategy. Between the two variables, variable 1 cannot be
reinforced as the loading of the network is highly dependent
on customers’ behavior, and in practice it cannot be
arbitrarily controlled by DNOs or other stakeholders in the
network. As for the tolerance of real measurement of
voltage U, i.e., variable 3, it could be improved by the
enhancement of measurement devices.
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N
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ol "
Z
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ok
0 0.2 0.4 0.6 0.8 1

u* (%) of EE
Fig. 4. u* and ¢ of the EEs of parameter 3 at five different
zones

It is not feasible though, to replace the measurement
devices at all monitoring locations in the network. It would
be useful and cost efficient if the analysis can show in which
zone of the network the accuracy of variable 3 has greater
influence on the accuracy of DSSE. For this purpose, the
Morris screening method is applied to rank the variable 3 in
different zones (in total five zones), and the results are
presented in Fig. 4. It can be seen that the tolerance of real
measurement of U in zone Z5 has the largest influence on
the accuracy of DSSE compared to measurements of U in
other zones. Therefore, the improvement of the accuracy of
measurement of U should be attempted in zone Z5. To
demonstrate the effectiveness of the zone-based uncertainty
mitigation, the VTs in zone Z5 are changed from class 3 to
0.5 (with measurement performance of class A), and the
measurement tolerance of U in other zones is kept at base
value. By doing this the accuracy of state estimation
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improved by 37.5% (0'4:::30), which demonstrates the

effectiveness of the mitigati'on of variable 3 in zone Z5.

3.4. Sensitivity Analysis through Copula Analysis

1) Modelling: The analysis given in Section 3.3 only
presents the sensitivity of different uncertainty variables and
suggests the general linearity characteristic of these
variables. However, knowing general sensitivity and
marginal distributions is not sufficient to describe the
dependence relationship between different observations.
Dependence functions, for example, might present various
dependence levels at different uncertainty ranges. Copulas
can be used to reveal this dependence structure as they are
able to describe nonlinear dependence among multivariate
data independent from their marginal probability
distributions.

As discussed in Section 3.3, variable 3 (tolerance of
real measurements of U) is the main concern in the study. In
this subsection, variable 3 is further analysed. Copulas are
applied to model the dependence structure between variable
3 and state estimation performance. The marginal
distribution of variable 3 is given in Fig. 5, which is the
probability density estimate of all potential combination of
VTs and measurement classes listed in Section 3.2. Variable
3 is set to a set of values which are generated randomly
based on the probability density given in Fig. 5, and the
corresponding estimation errors are calculated and plotted
by red solid line in Fig. 6. Copulas are used to model the
dependence structure between the two series of data, v, and
V,, which denote the observations of variable 3 and the
corresponding estimation errors respectively. Let u; and u,
be the “probability integral transform” of v; and v,
respectively, as introduced in Section 2.2, u = [uy, u,]'~C.
Thus, the scatterplot of u, against u,, which is equivalent to
the copula, is shown in Fig. 7 to visualize the dependence
structure. It can be seen that the scattered points are more
tightly clustered around the diagonal in the upper tail (higher
part of uncertainty range), indicating stronger dependence in
joint events in upper tail than that in lower tail (lower part of

uncertainty range).
0.8

0.6
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Fig. 5. Marginal distributions of variable 3
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Fig. 6. PDF of estimation errors

Fig. 7. Scatterplot of u; against u, for illustration of
dependence function

The nine copulas given in Section 2.2 are used to fit
the two series of observations. Based on the ranking of log-
likelihood among the nine copulas, the first four copulas as
listed in Table 4 can adequately present the structural
relationship between u; and u,, while the others do not fit
the given data due to their poor log-likelihood results. It can
be seen that among the copulas, the rotated Clayton’s copula
has the best performance in modeling the dependence
structure between u; and u,, followed by SJC and Gumbel.
The rotated Clayton’s copula implies greater dependence for
upper tail than for lower tail. The Gumbel’s copula implies
the same. As for SJC, the estimated upper and lower tail
dependence coefficients, t¥ and t*, are 0.7817 and 2.9E-7
respectively; this also suggests low dependence in lower tail
and high dependence in upper tail. For the purpose of
comparison, the lower and upper tail dependence
coefficients obtained by each copula are calculated and
provided in Table 4 as well. It can be seen that the first three
copulas present similar dependence structures with similar
tail dependence coefficients, which are in line with the
scatterplot in Fig. 7.

To demonstrate the appropriateness of using the
estimated copula to represent the structural dependence of
the observed data, bivariate data u; and u, are estimated
based on rotated Clayon’s copula together with its estimated
copula parameter, i.e., the fittest copula provided in Table 4,
using inverse CDF transformation. The probability density
of the state estimation error obtained based on the estimated
bivariate data is given by dash-dot line in Fig 6. It can be
seen that the shape of the PDF obtained based on the
estimated data is very similar to that of the actual data, i.e.,
the solid line in Fig 6, which demonstrates the accuracy of
the copula estimated.

Fig. 5

Rank Copula Copula Cy Tail dependence
index Lower  Upper

1 3 Rotated Clayton  2.7573 0 0.7777

2 9 SJC 0.7817 29E-7 29E-7 0.7817

3 6 Gumbel 2.4865 0 0.6785

4 4 Plackett 20.3437 0 0

Furthermore, the sensitivity of variable 3 is analysed
at the upper tail and lower tail respectively by Morris
screening method. The Morris ranking shows that variable 3
at upper tail (u* =0.21%) is more sensitive to variable 3 at
the lower tail (u*=0.17%), as greater u* suggests higher
sensitivity, as discussed in Section 2.2. To further
demonstrate this, within lower tail, variable 3 is changed
from 1.1% to 0.1% (improvement of 1%). This resulted in
the improvement of state estimation performance by 25%
with absolute improvement of 0.11%. On the other hand,
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within upper tail, variable 3 is set from 3.0% to 2%
(improvement of 1% as well), resulting in estimation
performance improvement by 30.8% with absolute
improvement of 0.2%. It can be concluded therefore that the
improvement of measurement tolerance at the upper tail
results in greater improvement of state estimation
performance. In this case, if the tolerance is located at the
upper tail, the improvement of the measurement tolerance
can be recommended due to the high dependence between
the tolerance improvement and the improvement of state
estimation. This analysis provides useful information for
making decision on mitigation levels (i.e., how much
uncertainty mitigation is needed) which might vary
depending on the present location of the concerned variables
within the possible range.

4, Conclusions

This paper presents the strategy/procedure that
analyses and models the sensitivity and dependence
structure of uncertain parameters in distribution system sate
estimation. The sensitivity analysis technique of Morris
screening method and copula theory are explored for this
purpose and illustrated on a 295-bus realistic network model
of a generic distribution system. The sensitivity of the
critical variable in different zones is analysed and ranked in
the study. It shows that the sensitivity level of the critical
variable varies zonally. Due to the non-linear characteristic
between the critical variable and SE performance, their
dependence structure is analysed using copula theory with
nine widely used copulas. It shows that whether the
improvement of tolerance should take place is also
depending on the dependence section the tolerance currently
locates in.

The performed analysis provides useful information
for planning monitoring reinforcement and developing
efficient and effective mitigation strategies. Accurate
assessment of the importance among different uncertainties
and analysis of the dependence structure can guide power
system operators towards variables that require the greatest
mitigation or increased monitoring accuracy, and such assist
them in making decisions about the location and accuracy of
monitors for the purpose of state estimation.
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