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Abstract 
With the rapidly increasing demands from surveillance and security industries, crowd behaviour 

analysis has become one of the hotly pursued video event detection frontiers within the computer 

vision arena in recent years. This research has investigated innovative crowd behaviour detection 

approaches based on statistical crowd features extracted from video footages. In this paper, a new 

crowd video anomaly detection algorithm has been developed based on analysing the extracted 

spatio-temporal textures. The algorithm has been designed for real-time applications by deploying 

low-level statistical features and avoiding complicated machine learning and recognition processes. 

In the experiments, the system has been proved as a valid solution for detecting anomaly behaviours 

without strong assumptions on the nature of crowds, for example, subjects and density. The 

developed prototype shows improved adaptability and efficiency against chosen benchmark systems. 
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1. Introduction 
The increasing demands of intelligent surveillance applications have triggered many innovative 

developments in automated video event detection areas. These techniques, such as crowd anomaly 

detection, can be used in monitoring and tracking emergency situations occurred in crowded scenes, 

including busy motorways, high streets, sporting events, and open air concerts. 

Modelling crowd scenes from video recordings present tough challenges due to severe occlusion 

problems among crowd subjects. Traditional top-down approaches, which focused on accurately 

tracking and identifying the so-called “abnormal” behaviours of crowd entities, have been proved 

inefficient and inaccurate for crowd-based anomaly detection [1]. Crowd scenes often contain 

uncertainties such as changes of subject density, average subject size, shape, and boundaries of 

these entities that can bring ambiguities to the definition and interpretation of the meaning and 

natures of crowd anomalies. For tackling those problems, it has been widely acknowledged that the 

modelling of all (or most of) the crowd behaviours through analysing their constituent subjects 

characteristics in a chosen feature space is unavoidable (the so-called bottom-up process). 

While the visual appearance of individual subject’s behaviour in a crowd scene may vary, their intra-

/inter- group dynamics within certain quantifiable feature space are often statistically identical, for 

example, bird flocks, fish schools, and even vehicles on motorway. The swarm behaviours are 

constructed of similar “visual trials” for a studied scene. In the case of crowd anomaly analysis, such 

as people’s sudden gathering or dispersion, complex interactions of crowd subjects changes the 

appearances of the local/global image observations, which triggers this research to model the crowd 



scene “changes” through analysing their overall grouping dynamics by forming a real-time (or near 

real-time) anomaly warning applications. 

It is worth noting that the “normal” and “abnormal” events are intrinsically ambiguous on semantic 

level. Certain crowd behaviours are normal in one scenario but may become hazardous in others. 

For example, crowds running in a marathon are “normal”, but the lot suddenly start running in a 

shopping mall may present an accident and emergency scenario. Based on the nature of surveillance 

applications, the occurrence of anomaly events usually counts a very small percentage of the entire 

surveillance cycle and demands immediate verification and response. In this research, it is 

considered reasonable to define normal crowd behaviours as dominate pattern. Instead of 

composing complex event models for semantic interpretation, a normality crowd model in this 

research can be learnt and self-updated by abstracting the visual features along its timeline.  

The core research problem highlighted in this research is to abstract effective visual features which 

can accurately describe normal crowd activities by learning marked instances along the spatial and 

temporal domain, and to derive highly robust decision making algorithm in real-world settings. Due 

to the application-oriented nature of this research, the system should also be easily adopted by 

closed-circuit television (CCTV) systems and run in real-time with a minimum lag. 

In this paper, a crowd anomaly detection algorithm has been introduced based on image textures 

formulated by spatio-temporal information. The so-called spatio-temporal texture (STT) has been 

proven as an effective dynamic representation media and mechanism for single human action 

detection. This research explores its characteristics in maintaining the statistical consistency across 

normal crowd events domain and its sensitivity to anomalies, or sudden changes. A “redundancy” 

feature space has been built based on the STT structure through wavelet-based texture 

representations, which allows a flexible multi-criteria binary decision making mechanism to be 

constructed for detecting the crowd scene anomalies.  

This paper is structured as follows: a literature review of the related crowd modelling techniques 

have been introduced in Section 2. Section 3 focuses on the design of STT-based crowd modelling 

approach. An innovative crowd anomaly detection algorithm has been developed in the research 

and presented in Section 4. System evaluations against benchmarking approaches have been 

highlighted in Section 5. Section 6 concludes the research with a discussion on the pros-and-cons of 

the devised approach and envisaged future improvements.  

2. Literature Review 
Crowd behaviour analysis using computer vision (CV) techniques have attracted attentions in the 

research and application domains since 1990s [2].Various algorithms and techniques for assisting the 

precision and speed of the processes were developed in the last two decades. In general, there are 

three representative approaches: the individual feature-based; the flow field-oriented and spatio-

temporal feature driven approaches. 

In the first category, crowd behaviour is often treated as an assembly of individual activities 

aggregated from each crowd entity. For example, a crowd movement along a busy street can be 

recognized as a group of people walking in a same direction. In general, these methods focused on 

describing crowd attributes by locating, isolating and analysing each crowd member. Benefited from 



recent development on machine learning theories and practices, those methods, such as tracking 

and locating pedestrians through face detection [3] from crowd scenes, estimating crowd size 

through head contour counting [4], have been proved as powerful individual-oriented tracking 

strategies for complex video processing [2, 5]. The reported practical techniques in this category 

treat the crowd as the complex dynamic background and paying more attention on the behaviours 

of the individual crowd members. 

Methods in the second category define the crowd scene as a dynamic flow field, which is the most 

popular approach to-date, for analysing crowd features. Early studies, such as the “Minkowski fractal 

dimension” model [6], and the flow-based “crowd motion” model [7], had focus on the extraction of 

crowd attributes from the vector fields to describe crowd density, moving directions, and boundaries. 

In recent years, more attention has shifted towards application-oriented techniques to improve 

crowd pattern interpretation [8-10]. In 2007, Ali [11] first introduced a crowd scene model based on 

“finite time Lyapunov exponent field” - an extension of the flow-filed model - for segmenting 

extremely dense crowd scenes recorded in videos.  The segmentation outputs are then been used in 

the so-called “floor field model” calculation for tracking specific individuals from high density human 

crowds [12]. This model has also been applied in group tracking that containing multiple or 

intersected crowd entities [13]. Rodriguez’s off-line dominating crowd moving direction learning 

algorithm [14] has also been proven an effective flow-based tracking approach. Similar researches, 

such as Crowd Kanade-Lucas-Tomasi (KLT) corners [15], multi-label optimisation [16] and Lagrangian 

particle trajectories (“work-flow” model) [17], developed anomaly crowd visual features from flow-

filed information. Those methods demonstrated their potentials in tracking the dynamic crowd 

under extremely crowded and partial occluded conditions but are bound to pre-defined crowd 

patterns (i.e., “human” crowd) and specific applications. 

Different from the first category, the flow field-oriented techniques are mainly based on the so-

called “global” crowd motions. The impact of the “local” and individual crowd members is often 

ignored. However, it is often observed that acts from localized entity or entity group can bring 

significant changes to the crowd consistency and break the harmony in between the prior-

knowledge of the flow field and the dominant motions. For analysing crowd entity characteristics, a 

more generic crowd model should be established for describing the interactions of both the local 

and group entity features. This is also one of the motivations of this research. 

The third significant approach defines the crowd scene videos as Spatio-temporal Volume (STV), 

which combines global video dynamics into a three-dimensional feature space. For example, in 2009, 

Benezeth [18] introduced a motion labelling method based on the co-occurrence of features defined 

in STV. The model has been implemented as a potential function in the Markov Random Field (MRF) 

process for anomaly detection. Kratz [19] introduced STV-based motion patterns in 3D volumetric 

environment to highlight the spatial-temporal statistical characteristics of extremely crowded scenes.  

In 2012, Bertini [20] developed a STV-based anomaly location detection approach through using 

localised cuboids in an unsupervised learning framework across the entire STV domain. The method 

has been proven a valid approach when modelling spatio-temporal features without parameter 

settings.  

Recently, another important “post-” processing model employing information fusion techniques has 

been introduced into crowd behaviour understanding studies. Pilot research outputs, such as 



Mehran’s “social force model” [21] and its optimised versions such as “interaction force” [22, 23] 

have been adopted in practices to serve as the preliminary assumptions for crowd behaviours and 

crowd scene simulations. The model requires pre-defined conditions to be satisfied before operation, 

for example, the majority of a crowd should move towards same target area or congregation 

locations, which restricts its flexibility in real-world applications.  

It is also worth noting that un-/self- supervised machine learning algorithms are becoming popular 

for detecting anomaly crowd events. Those studies define normal crowd behaviours as dominate 

pattern and anomaly events can be distinguished by learning those patterns. For example, Feng 

introduced an online self-organizing map (SOM) [24] to model crowd scene, which keep updating its 

patterns by using new on-line observations.  Jiang [25] used unsupervised clustering algorithm to 

compare individuals and its neighbours. Any different behaviours between them were recognised as 

abnormalities.  

In this research, an innovative anomaly crowd detection strategy based on the statistical crowd 

features extracted from spatio-temporal video slices has been devised. The texture models contain 

strong statistical characteristics for describing repetitiveness and randomness of recorded scenes, 

which inherently combines local and global crowd entity features. It is based on the assumption that 

a crowd scene and its related dynamic patterns can be encapsulated in texture models and to be 

perceived by human perception and intuitions. While many similar approaches also combine texture 

features with spatio-temporal information such as Mahadevan [26] and Ryan [27], the proposed 

method can detect real-time anomaly events without time-consuming machine learning and 

environment pre-assumptions.  

3. Spatio-temporal Texture Modelling 
Spatio-temporal Texture (STT) model is a statistical model developed in this research. STT is sensitive 

to the changes of crowd motion and can be used for monitoring crowd activates in real-time.  

Figure 1 illustrates the main steps for defining STT from raw video data. In this pipeline, STT is 

composed by using spatio-temporal volume and its slices. The slices contain image texture 

information and can be analysed by using wavelet transforms. After transforming each slice from 

spatio-temporal domain to wavelet space, the STT is then modelled by statistic and correlation 

calculations on related wavelet sub-band images. 

3.1. STV Texture Patterns  
As illustrated in Figure 2, a Spatio-temporal Volume (STV) is defined in a 3D Cartesian space denoted 

by X, Y, and T (time) axes. In this structure, the concept of an individual frame is replaced by a 

continuous 3D volume section, in which its density, envelop and slices are all factors to the final 

interpretation of the model. 

The STV data structure transforms the video event detection process from a conventional 2D frame-

based mechanism into a 3D model analysis operation. Through this transformation, dynamic 

 
Figure 1. STT construction pipeline 
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information of a crowd’s movement can be represented by the variation of 3D shapes, flows or point 

clouds. Various pattern recognition, shape analysis and matching algorithms can be applied to the 

volumetric natured crowd events. 

As shown on the right hand side of Figure 2, a slice is generated by inserting a clipping plane at 

chosen position (dash-line marked region) and going through the STV along the T axis. In this 

research, the position and direction of each STV slice are controlled by the local crowd region 

(shaded segments on the clipping plane), which will be explained in detail in Section 4.1. 

3.2. Texture Pattern Similarity  
Based on the viewpoint of human intuition, a static crowd texture contains spatially homogeneous 

image regions composed of the crowd members in random locations, of varied colours, and sizes. As 

illustrated in Figure 3(a), each frame marked by the dash lines has been cropped evenly into four 

sub-regions displayed alongside the original image. The “appearance” of each crowd member is 

different, but the sub-regions are quite similar and even visually indistinguishable. This similarity was 

caused by the pre-attentive decision of the human observer and stemmed from human vision 

biology and psychology. It is from this angle that this research set to investigate the spatial similarity 

and of crowded scenes using extracted STV slices as pattern textures. 

 
 

 

 

(a) crowd image scenes (b) crowd STV slice from Figure 2 

Figure 3. Visual randomness and similarity of crowd images 

The spatial attributes shown in Figure 3(a) are also applicable for modelling crowd dynamic. For 

example, captured by the STV slice shown in Figure 3(b), sub-regions divided by dashed line denote 

the different time sections along the video stream. Because the Marathon example used in Figure 2 

does not have sudden changes in terms of crowd behaviours, although the sub-regions contain 

different individual details, their compositing pattern textures are identical. 

 
Figure 2. A STV video section and its spatio-temporal slice 



In case of an anomaly crowd event shown in Figure 4, where a CCTV footage containing a sudden 

gathering and dispersing of a group of people during a shop rob has been studied, the top row 

displays four snapshots at some key time points (t1, t2, t3 and t4). Between time t1 and t2, 

pedestrians were walking normally along the street. After t3, people start to rush into a shop. The 

changed patterns of pedestrians were encapsulated in the corresponding STV slices as shown in the 

bottom of the figure.  The differences of the STV slices segments [t1, t2] and [t3, t4] are obvious to 

human observers, hence, the visual differences in STV slices can represent changes from crowd 

videos, which can be used for modelling a detection model of anomaly crowd events.   

3.3. STT feature extraction 
Visual similarity is an intuitive concept based on the image appearance. Specifically, this visually 

undistinguished image contains both randomness and similarity. One of the classic mathematic 

models for describing this relationship from finite lattice is called Homogeneous Random Field (HRF) 

which was first introduced by Julesz [28] and then formalized by Zhu et al. [29] in 2000. It had since 

been widely adopted in nature image understanding [30] and texture feature modelling based on 

the statistical principles theories. In this research, HRF has been used for composing the STT feature 

space. 

3.3.1. Steerable pyramid wavelet transformation 

The fine-to-coarse-based image description schemes have been widely used in image recognition 

and analysis. Since a crowded scene contains rich information in both local and global feature levels 

over the entire STV space, an efficient translation- and rotation-invariant wavelet scheme based on 

the so-called “steerable pyramid” [31] has been used in this research. 

The input image for each transformation is a sub-region of STV slice captured by a sliding window 

along the time (T) axis. Since the low pass band is subsampled by a factor of two along both axes, the 

size of the image need to be normalised to 2𝑛 × 2𝑛. 

 
Figure 4. An anomaly crowd event and one of its texture patterns of the STV slices  



Figure 5 illustrates the core of a steerable pyramid where an image is treated as a linear combination 

of wavelet sub-bands from each layer of the pyramid. After splitting the input image into the high- 

and low-pass bands, the low-pass band is further decomposed into a group of oriented sub-bands 

and henceforth. The filers of this wavelet transformation are polar-separable in the Fourier domain, 

which is a complex pair of even- and odd-symmetric filters corresponded by the real and imaginary 

parts of the filtering results. 

The wavelet filter can be written as 
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In the Equation, 𝑟, 𝜃 are polar frequency coordinates, 𝐿(𝑟, 𝜃) is low-pass band filter, and 𝐵𝑛(𝑟, 𝜃) 

denotes the oriented filter with N directions.  The initial value of the low- /high- pass filter can be 

defined by: 
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Figure 5. Steerable pyramid implementation strategy  



For example, as shown in Figure 6, the initial input of the process pipeline is the grayscale subarea of 

the STV slices from marathon video clip. In this 3-scale and 4-orientation wavelet sub-bands, the 

magnitudes hold important structural information of the pattern images. 

3.3.2. HRF principles and STT features 

Based on the wavelet transformation, HRF highlights three groups of visual features. The crowd 

model can be constructed based on HRF for texture modelling, which has been summarised as: 

 Fundamental low-level features 

The grayscale distributions extracted from each low-pass band and the down-sampled image of the 

steerable pyramid. The measurement is based on calculation of means, variance, skewness, kurtosis 

minimum and maximum values of every input STV slice sub-region, variance of the high-pass band, 

and skewness and kurtosis of the every low pass image at each scale.  

 Coefficient features 

The coefficient features are the local auto-correlations of the wavelet sub-bands. The features have 

been used for evaluating the periodical and long range correlations of the image distributions. Since 

the steerable pyramid can be an over-sampled linear representation introducing redundant feature 

dimensions, this research deployed an improved coefficient feature scheme based on auto-

correlation at each low-pass band only for creating the scale-invariant model. Specifically, for 

measuring the characters of the texture frequencies and regularities, raw auto-coefficient 

correlations on each low pass band need to be measured. 

 Magnitude features 

As shown in Figure 6, the large magnitudes appear seemingly at the same locations in each image 

scale, which represents the “edges”, “corners” and “bars” in the sub-bands. Using texture analysis 

techniques, such as “second-order” texture features [32], the correlation of magnitudes from image 

sub-bands have been integrated into the design. This type of features is calculated by using cross-

correlation of the pairs at adjacent positions, orientations and scales. Central samples of the auto-

correlation of magnitude of each sub-band, cross-correlation of each sub-band magnitudes with 

those of other orientations at the same scale and coarser scales are recorded. The edge characters 

 
Figure 6. Real parts of band pass images from 3-scales and 4-orientations example steerable pyramid  



based on cross-correlation of the real part of coefficients with both the real and imaginary part of 

the phase-doubled coefficients at all orientations at the parent’s scales are also calculated. 

During system testing, the total number of feature points is 710 on a 4-scales and 4-orientations 

wavelet transforms. In this paper, a redundant STT feature space has been designed. It is 

emphasised that the redundancy is caused by overlapped calculation of HRF components. For 

example, the variation of low pass image is also included in the autocorrelation. During the test, it is 

discovered that the overlapping actually act as a “double check” mechanism which can significantly 

improve robustness of the decision making algorithm.   

4. System implication of real-time crowd anomaly detection 
As illustrated in Figure 7, the system starts from building up a video buffer only containing certain 

number of video frames before STV construction for real-time purpose. In the experiment, the 

buffer has been setup less than 90 frames allowance because crowd anomaly is usually occurred 

within 3 seconds by using 30 frames per second (fps) video settings. 

The system contains two modules: learning and detection. Both modules share the similar STT 

construction algorithm illustrated in Figure 1.  In this research, a normality crowd model has been 

learnt by abstracting the normal instances’ STT features. Any crowd events different from normality 

should be alarmed.  

4.1. Crowd region detection 
The video footages contain not just rich dynamic data, but also signal noises and unwanted 

background information. It is essential to rapidly locate the crowded region and filtering out the 

noises. As shown in the Figure 7, the learning module detects the moving crowd regions before 

composing the STV slices, and shares the information for detection. This operation allows more 

dynamic information rather than static background and noises to be recorded on STV slices. 

 
Figure 7.  Real-time crowd anomaly detection pipeline 



During the development, so-called “average flow field” has been used in the prototype to evaluate 

the dynamic level of image scenes. The average flow field is composed by a group of binary 

calculations on optical flow field. Specifically, given a video clip containing 𝐿𝑣 frames, the average 

flow field 𝑈(𝑥, 𝑦) ∈ ℝ2 can be defined by 

 U = ∑ uii     , and (6) 

 𝑢𝑖 = {
1,      |𝑣𝑖|

2 ≥ 𝑚𝑒𝑎𝑛(|𝑣𝑖|
2)

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   , (7) 

where 𝑚𝑒𝑎𝑛(•):ℝ2 → ℝ  calculate the average magnitude value of each flow filed.  𝑣𝑖  denotes the 

Horn-Schunck optical flow field [33]calculated between the ith and the i+1th frame. During the 

learning, the set of each flow field output can be denoted as  𝑉 = [𝑣1, 𝑣2, … 𝑣𝐿𝑣−1].  

Figure 8(b) shows an example of  𝑈 calculated by using video clips of Figure 8(a). In the average flow 

field, higher values denote more dynamic changes across the timeline which is mainly caused by the 

crowd movement.  Lower values, on the other hand, are usually caused by noise and insignificant 

changes. In the experiment, locations where 𝑈(𝑥, 𝑦) ≤ 5 have been ignored based on experience for 

further processing.  

  
(a) image scene (b) average flow field 

  
(c) boundary of average flow filed (d) Slices on XT and YT direction guided by the boundary 

Figure 8: Location and direction calculation of STV slices based on average flow filed 

Figure 8(c) highlights the boundary of 𝑈, which has been detected by using a group of morphological 

operations such as “open”, and “convex hull”. Those boundaries limited the width of STV slices along 

the time line.  Based on the definition of STV slices introduced in Section 3.1, a group of STV slices 

need to be sampled inside the region of 𝑈. For simplification, only XT (horizontal) slices and YT 

(vertical) slices are used. As illustrated in the Figure 8(d), each sampled slice has been marked by 

lines across the XY (the frame) field.  For keeping the detection accuracy and efficiency, it is not 

necessary to sample each slice per pixel, the distance between each slices is set between 10 and 50 

depending on the image size and resolution. 

4.2. Normality crowd modelling 
The average flow field provides the size, locations and directions for a group of STV slices. During the 

video buffering, those slices’ distribution information is set up as constants. The slices are renewed 
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𝐿 = 𝐿𝑣 − 𝐿𝑏 + 1 times for the whole learning process, where 𝐿𝑣 is the length of the video and  𝐿𝑏 

denotes the length of video buffer. 

Given a group of STV slices for learning, the statistical texture features can be abstracted for 

establishing the model of crowd activities. Each STV slice instance has its own STT feature space 

𝐹𝑖𝑗 = [𝑓𝑖𝑗1, 𝑓𝑖𝑗2, … 𝑓𝑖𝑗𝑁] , ( 𝑖 = 1,2,… , 𝐿; 𝑗 = 1,2,… , 𝑆 ), where 𝑓𝑖𝑗𝑘 , (𝑘 = 1,2,… ,𝑁)  denotes the 

elements from STT feature space summarised in Section 3.3 and 𝑆 denotes the total number of slices 

used in the video. Those operations generate 𝑆 × 𝐿 STT features in total for calculating the statistical 

distributions for the learning.  

During the experiment, it has been discovered that with fixed 𝑗, 𝑘  values,  𝑓1𝑗𝑘 , 𝑓2𝑗𝑘 , … , 𝑓L𝑗𝑘 

approximately obey Gaussian distribution 𝒩(𝜇, 𝜎2).  This empirical approximation works well on 

many testing videos for anomaly detection (see Section 5), and has been used for modelling the 

normal crowd activities in this research. For each learning video, 𝜇𝑗𝑘 , 𝜎𝑗𝑘  is defined as 

 𝜇𝑗𝑘 =
1

𝐿
∑ 𝑓𝑖𝑗𝑘𝑖  , (8) 

 𝜎𝑗𝑘 = √
1

𝐿
∑ (𝑓𝑖𝑗𝑘 − 𝜇𝑗𝑘)

2
𝑖   . (9) 

4.3. Online crowd anomaly detection 
Crowd anomaly detection is a binary decision making task that the system should label “normality” 

or “abnormality” to the video samples through comparing the detected STT features with normality 

crowd model. For online purpose, the decision is made for each buffered video clips during the video 

playing. Same as learning progress, the STT features are extracted from STV slices located at 𝑆 

positions by average flow field.  

Denoting the STT feature for crowd anomaly detection as 𝐹̃𝑗 = [𝑓𝑗𝑘], (𝑗 = 1,2,… , 𝑆; 𝑘 = 1,2,… ,𝑁). 

In this research, the binary decision for each STT element is simply judged by whether the element 

obeys 3-sigma rule of Gaussian distribution, which is  

 𝑑𝑗𝑘 = {
1 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)          𝑓𝑗𝑘 ∈ [𝜇𝑗𝑘 − 3𝜎𝑗𝑘, 𝜇𝑗𝑘 + 3𝜎𝑗𝑘]

0 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (10) 

This operation has composed 𝑁 sub-decisions for one STV slice. For making a “final” decision, 𝐷𝑗, a 

“voting ” mechanism has been introduced: 

 𝐷𝑗 = {
1            

1

𝑁
∑ 𝑑𝑗𝑘𝑘 > 𝑇

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (11) 

Equation 11 starts from calculating a positive rate for all sub-decisions. A threshold, 𝑇, is then 

compared with the positive rate for making a final decision for the STV slice.  In the voting 

mechanism, the threshold can be recognised as a pass-rate for the decision. Higher pass-rate means 

that the final positive decision for a slice requires more votes from its positive voters (𝑑𝑗𝑘 = 1).  

Since STV slices are independently distributed inside the average flow filed, 𝐷𝑗 can be recognised as 

the local decision for a crowd image scene. Each 𝐷𝑗 can mark the normality or abnormality crowd 

event of its local area.   



The designed prototype is an effective decision making system. The time consumption of the 

algorithm is much lower than the time used for video buffering and playing (see details in Section 

5.1). By using parallel programming strategy, the anomaly crowed can be detected before clearing 

current video segment from buffer, which guarantees the real-time performance of decision making 

during the video play.  

5. System evaluations 
In this research, a prototype system has been implemented to test the devised anomaly crowd 

detection model. The prototype has been run on a host PC with a 64bit Core i7 CPU (2X3.07GHz) and 

4GB RAM.  

During the evaluation, this work has been compared with many benchmarking approaches such as 

Spatio-temporal Compositions (STC) [1] and Inference by Composition (IBC) [34], The STC highlights 

its real-time performance and the IBC has been considered as one of the most accurate method for 

anomaly detection. All the methods have been tested under same hardware and software settings.  

2 popular online video databases, UMN [35] and UCSD [20], have been used for the system tests. 

The UMN Dataset has been adopted for testing the system design under a controlled environment. 

It contains 11 scenarios subjecting to 3 different indoor and outdoor backgrounds (UMN1, UMN2, 

and UMN3). Each video records a group of people wondering in the scene and then escaping. The 

UCSD dataset contains two video scenes (Ped1 and Ped2) of pedestrians walking along the road. The 

anomaly events have been defined as some cars or bicycles quickly go through those pedestrians 

which could build up hazard road situation.  

During the experiments, the video buffer has been set up for holding 3 seconds video clips for all the 

tests. All the video frames have been resized into 320×240 pixels. Only grayscale channel have been 

used. For extracting STT features, 3-scales and 4-orientations steerable pyramid wavelet transforms 

have been applied. The size of input STV slices has also been normalised into 256×256 pixels through 

Bicubic interpolation. 

5.1. Algorithm real-time performance 
The designed feature extraction and decision making algorithm is an effective solution for anomaly 

crowd detection. This test is used for evaluating the time consumption of each step of the detection 

algorithm.   



 
Figure 9. Time consumption of algorithm  

As illustrated in Figure 9, the time consumption is calculated by measuring and averaging elapsed 

time of each step 50 turns based on different video footages. For a buffered video clip, the algorithm 

takes averagely 1658ms (18.4ms/frame based on 30fps video clip) for normal/abnormal event 

detection. The break-down time consumption of anomaly detection has also been illustrated in the 

figure by using different colour labels. 

It is also worth noting that although some time consuming steps such as STV construction, wavelet 

transforms and STT construction take 3.3ms/frame to 5.6ms/frame for their calculations, the whole 

time used by detection is still less than the video buffering. During the experiment, an optimised 

prototype has been developed by running video buffering and anomaly crowd detection as two 

parallel processes. The video can play without any delaying caused by the detection process, which 

is suitable for applications of real-time surveillance system. 

The time consumption of this algorithm has also been compared with the popular approaches 

illustrated in Table 1. 

Dataset 
Method 

STT STC IBC 

UMN1 15 17 1818 

UMN2 18 19 2200 

UMN3 16 15 2712 

UCSD-Ped1 18 19 2100 

UCSD-Ped2 18 22 2900 

Table 1. Efficiency tests on different databases (unit: ms/frame) 

In the table, the STT feature-based approach introduced in this research performs faster than all the 

other three benchmarking approaches. During the test, it also takes fewer memories for the data 

processing and storage, which is important advantage for many intelligent surveillance systems.  

5.2. Accuracy performance on public database 
To test the accuracy and robustness of developed anomaly crowd event detection system, receiver 

operating characteristic (ROC) curve is deployed during the test. The points on ROC curve are 

defined by true- and false-positive rate of the detection system. Firstly, each video frame has been 

hand-marked by labels (i.e. “normality” and “abnormality”) as ground truths. The true-positive is 

then counted when a normality ground truth is marked correctly by the detection system. Otherwise, 
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the false-positive will be recorded. For making a ROC curve, threshold T used as voting pass-rate (see 

Section 4.3) should be increased from 0% to 100% with 10% steps, which generates 11 points for a 

ROC curve. 

 UMN database 

Figure 10 shows some video snapshots of UMN dataset. 5 seconds video sampled from beginning of 

each clip has been used for learning the normal crowd behaviours. Those 5 seconds records only 

contain a group of people wondering in the scene. During the detection, the system should show 

alarms when those group of people are escaping. 

UMN1 

   

UMN2 

   

UMN3 

   
Figure 10 UMN examples 

Figure 11 shows the OCR curves for detecting anomaly crowd events from UMN dataset in the scene 

1, 2 and 3. In the figure, STT feature-based approach developed in this research shows much better 

performance in all three scenes compared with STC and IBC. Because the anomaly crowd event in 

UMN datasets are occurred in the entire image scene, the better accuracy and robustness 

performances are contributed by the nature of STT model that both local randomness and global 

similarity can be described together along the spatio-temporal domain. 

   
UMN1 UMN2 UMN3 

Figure 11. UMN OCR tests and comparison 

 UCSD database 

As illustrated in Figure 12, the anomaly event defined in UCSD database is more “locally” than UMN. 

In the UCSD, only localised image visual features are changed. During the test, the crowd video 

samples only contain pedestrians have been used for training. The system should show several 

alarms when road hazards are occurred such as cars, bicycles, and skateboarders passing through 

slowly moving pedestrians. 
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Figure 12. UCSD examples and detection results 

Figure 12 also illustrates some detection results, the horizon and vertical lines marked on the video 

frames are the locations of XT and YT slices which have been detected as “abnormal”. Since each STV 

slice is defined independently, the marks can located the local areas containing crowd anomaly. 

  
UCSD-Ped1 UCSD-Ped2 

Figure 13. UCSD OCR tests and comparison 
Same evaluation strategy has been used for evaluating the system performance on UCSD dataset. 

The test results have been represented by the OCR curves shown in Figure 13, the proposed STT 

method shows comparable results of STC and IBC, also uses less time and system memory resources, 

which is contributed by the simple and effective decision making algorithm introduced in Section 4. 

5.3. STT feasibility test 
The STT features are designed by using STV slices based on HRF texture features. Actually, for 

describing the visually undistinguished image, many texture models have been developed in recent 

years. In this test, many other texture models such as textons [36], and multivariate image analysis  

(MIA) [37] are compared with proposed STT model. Those texture models are used to represent STV 

slices by using N-dimensional feature vectors. Same strategies introduced in Section 4.2 and 4.3 have 

been applied for evaluating their performance. 
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Figure 14. OCR tests based on different texture models 

 

As shown in the Figure 14, the detection accuracy performance evaluated by using OCR curves on 

UCSD video datasets. Compared with other texture model, the devised approach and algorithms in 

this research have shown promising characteristics and for detecting crowd anomaly. It has been 

proved that the wavelet-based texture model is a superior tool for representing local randomness 

and global similarity. In addition, because the STT features contains redundant feature sets, many 

other texture models can be recognised as a subsets of this feature space, which cannot 

comprehensively describe the visual appearance of visually undistinguished images. 

6. Conclusions and future work 
In this research, an innovative spatio-temporal texture based crowd anomaly detection method has 

been developed. The prototype system starts from transforming video footages into an STV 

structure. After applying benchmarking average flow field templates extracted from live video feeds, 

the highly dynamic areas from the crowd scenes can be quickly identified, which then guides the 

auto-selection of sizes, locations and directions of the sampling STV slices for further study. For 

distinguishing crowd “normalities” from abnormal behaviours, the sampled STT texture patterns are 

then analysed based on a Gaussian approximation model on the normal and abnormal crowd 

behaviour ratio. A weighted multi-binary evaluation algorithm has also been devised for online 

decision making based on the STT comparison output.   The prototype system has shown satisfactory 

real-time performance during the tests and some promising characteristics for future intelligent 

CCTV surveillance applications. 

The statistical STT features encapsulate both the local variations as well as global similarities of the 

established video volumes. Comparing with the state-of-the-art techniques, the devised method has 

shown increased efficiency, accuracy and flexibility. Based on the rotation- and translation- invariant 

wavelet transforms, STT models can be composed for more detailed analysis based on the similarity 

statistics between two crowd scenes along the timeline. The low-level texture feature-based 

thresholding algorithm in this project ensures the real-time performance of the system.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

STT

textons

MIA



Although the current approach and system strategy are well-suited for high- and medium-dense 

crowd scenes of highly homogeneous STT feature patterns, for low-dense crowd scenes where 

individual crowd element’s behaviour may have significantly larger impact on the STT slice, the 

devised algorithm will gradually lose its performance superiority and robustness over other 

conventional image/frame-based approaches. Future work will see a crowd density estimation 

algorithm being investigated and embedded to the system for adaptive feature selection and 

pattern recognition, which can open up new revenues for exploring more intelligent and adaptive 

crowd monitoring and early warning systems for real-life applications. 
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