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The regulation of nerve and blood vessel ingrowth in aneural and 

avascular intervertebral disc and articular cartilage 

ALA Binch1, AK Cross1, CL Le Maitre1* 
 
     

 Abstract 
Introduction 
This review will discuss the 
regulatory mechanisms of both 
innervation and vascularisation 
within normally aneural and avascular 
tissues, and how they may become 
altered in degeneration enabling new 
nerve and blood vessel formation 
which is hypothesised to be a source 
of pain. 
Conclusion 
Normal intervertebral discs and 
articular cartilage are the largest 
aneural and avascular tissues in the 
human body yet during intervertebral 
disc degeneration and osteoarthritis 
these tissues become increasingly 
vascularised by small blood vessels 
and innervated by peptide containing 
sensory nerve fibres. The mechanism 
by which this process occurs remains 
largely unknown. Published data 
suggests that various factors present 
within the healthy tissues such as 
aggrecan, chondromodulin and 
semaphorins may act as repulsive 
barriers to neurite and endothelial cell 
invasion. During degeneration 
however, the synthesis of these 
molecules becomes disrupted, 
potentially leading to vascularisation 
and innervation of the tissue. 
 

Introduction 
Innervation and vascularisation 
depend on the ability of growth cones 
on axons and endothelial tip cells on 
endothelial cells to guide them to their 
final destinations. This process is 
regulated by guidance molecules 
within the native tissue niche1,2. In 

many tissues, these guidance 
molecules regulate the entry of nerves 
and blood vessels, yet in disease 
states, these mechanisms may become 
disrupted leading to the inappropriate 
entry of both nerves and blood vessels 
which can generate unwanted 
affects3,4,5,6. Studies have shown that 
typically aneural and avascular tissues 
such as the intervertebral disc (IVD) 
and articular cartilage (AC) become 
increasingly vascularised by small 
blood vessels and innervated by 
peptide containing sensory nerve 
fibres, which are hypothesised to elicit 
pain3,4,7,8,9,10. Normal IVDs and AC are 
suggested to be the largest aneural 
and avascular tissues within the 
human body, and are composed of 
proteins and matrix components 
which are inhibitory to the ingrowth 
of both nerve and blood vessels11,12,13. 
  
This review aims to discuss the 
regulatory mechanisms of both 
innervation and vascularisation 
within normally aneural and avascular 
tissues, and how they may become 
altered in degeneration enabling new 
nerve and blood vessel formation, 
which is hypothesised to be a source 
of pain generation3,4,5,6. 
 

Discussion 
The authors have referenced some of 
their own studies in this review. These 
referenced studies have been 
conducted in accordance with the 
Declaration of Helsinki (1964) and the 
protocols of these studies have been 
approved by the relevant ethics 
committees related to the institution 
in which they were performed. All 
human subjects, in these referenced 
studies, gave informed consent to 
participate in these studies. 
 
 
 
 

The intervertebral disc 
The IVD is crucial for providing the 
structure and function of the spine, 
allowing movement and flexibility yet 
preventing hyperextension. IVDs are 
composed of three distinct anatomical 
regions; the nucleus pulposus (NP) 
which is constrained by the annulus 
fibrosus (AF) and cartilaginous end 
plates (CEPs)14. The highly specialized 
composition of the matrix within the 
IVD allows movement and offers 
resilience to compressive forces and 
loads. 
 
Articular cartilage 
AC is a specialized connective tissue 
covering bony surfaces permitting 
smooth frictionless movement of 
synovial joints, and allowing the joint to 
withstand pressure and weight-bearing 
activities. Components of AC are very 
similar to those found within the IVD in 
that the dense extracellular matrix 
(ECM) is composed of predominantly 
type II collagen and proteoglycans 
which allows AC to resist tensile and 
compressive forces. 
 
Mechanisms of innervation and 
angiogenesis 
In order to investigate how largely 
aneural and avascular tissues permit 
the entry and/or formation of nerves 
and blood vessels during disease states, 
this review will describe the factors 
present within healthy tissues which 
prevent nerve and blood vessel 
ingrowth. 
 
Within both the IVD and AC, a number 
of repulsive factors exist which prevent 
nerve and endothelial cell ingrowth. In 
vitro proteoglycans, chondromodulin 
and semaphorins have been shown to 
inhibit neuronal and endothelial cell 
migration, all of which are expressed in 
vivo in the IVD and AC. 
 

*Corresponding author 
Email: c.lemaitre@shu.ac.uk 

1
 Biomedical Research Centre, Sheffield 

Hallam University, Sheffield, UK. 
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Prevention of innervation & 
vasularisation in Normal IVDs and 
AC 

Proteoglycans and Glycosaminoglycans 
(GAGs) 
Proteoglycans have been widely 
investigated for their inhibitory 
properties towards both neurite 
outgrowth and endothelial cell 
adhesion and migration by a number 
of groups worldwide11,12,15. In vitro 
studies demonstrated aggrecan 
isolated from IVD11 and AC12 inhibits 
endothelial cell adhesion, migration 
and spreading. Thus suggesting that 
the loss of aggrecan, a natural anti-
angiogenic factor during 
degeneration11 may lead to 
unopposed entry of blood vessels into 
these tissues. 

Chondromodulin 
Chondromodulin-I (ChM-I), a 25kDa 
glycoprotein is a novel growth 
regulating factor16, which is important 
in the maintenance of avascular 
regions of AC and IVDs. Studies by 
Hiraki et al., concluded that ChM-I was 
an inhibitor of endothelial cell tube 
formation17, in addition to this, recent 
studies by Miura et al., found that 
ChM-I inhibits chemotactic migration 
of endothelial cells by destabilising 
the actin cytoskeleton of lamellipodia 
extensions18. 
 
Developmental studies in mice have 
identified that ChM-I expression is 
induced during the process of 
chondrogenesis and occurs in 
conjunction with production of type II 
collagen19. Shukunami et al., 
demonstrated that the level of ChM-I 
expression was substantially reduced 
in calcified zones of AC19. During 
gestational periods, 
immunohistochemistry studies 
identified a high percentage of ChM-I 
expression in ECM and chondrocytes 
of the IVD, which decreased after 
maturation, suggesting that ChM-I 
may regulate the degree of 
vascularisation that occurs during 
development20. Interestingly, 
immunopositivity of NP cells for ChM-
I increased with degree of IVD 
degeneration20 suggesting that ChM-I 

attempts to reduce the threat of 
vascularisation during disease states. 

Semaphorins 
Semaphorins are present within both 
healthy IVDs and AC13,21. They 
comprise a large family of axonal 
guidance molecules which are either 
membrane bound exerting their 
effects locally, or secreted and these 
can exert effects over a long 
distance22. Axonal guidance molecules 
signal via receptor complexes which 
ultimately regulate growth cone 
morphology via alterations to the 
actin cytoskeleton23,24,25. The 
Semaphorins share a highly conserved 
500 amino acid 'Sema' domain 
followed by a PSI (plexin semaphorin 
integrin) domain, and are further 
subdivided into 8 classes based on 
their C-terminal structures26. Class 3 
semaphorins are among the most well 
characterised members and are the 
only soluble form found within 

vertebrates. 
 
Semaphorins signal their response 
through two prominent semaphorin 
receptors; the neuropilins (NRP) and 
the plexins27,28,29,30. Whilst the majority 
of membrane bound semaphorins 
signal via plexins alone, class 3 
semaphorins require the neuropilin as 
an obligate co-receptor generating a 
high affinity holoreceptor complex30,31. 

Class 3 Semaphorins (Sema3) 
Sema3A has been studied for its role in 
axonal repulsion of both sensory and 
sympathetic neurons in chick32 and 
humans33. De Wit et al., localised 
sema3A to axons and dendrites on 
cortical neurons together with NRP-134. 
More recently sema3A has been 
identified within the IVD at both gene 
and protein level along with its 
receptors the neuropillins and 
plexins13. Tolofari et al., revealed that 
sema3A and sema3F were present 

Figure 1: Schematic diagram of the regulation of axonal guidance of cells and their 
effects on directional growth concerning aneural and avascular tissue. The growth cone 
situated at the leading edge of the growing axon is able to sense and respond to cues 
within the environment. The growth cone is composed of lamellipodia which contains 
actin filaments and tensile structures composed of actin bundles known as the filopodia. 
In response to an attractive cue, F-actin is assembled and stabilised, whereas a repulsive 
cue would cause depolymerisation of F-actin, leading to the retraction of the filopodia. 
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within the AF of healthy IVD tissue, 
whereas sema3A was decreased 
significantly in this region of 
degenerated discs13. Thus suggesting 
that the presence of sema3A within 
the healthy AF prevents the ingrowth 
of both nerves and blood vessels13. 
Sema3F has more recently been 
localised to the outer layers of the 
retina where it is thought to have 
vasorepulsive properties towards 
retinal and choroidal capillaries, as 
levels are seen to deplete in patients 
with pathologic neovascularisation of 
the outer retina35. Class 3 
semaphorins are unique in that 
sema3B and sema3C exert 
bifunctional activity, and are able to 
act as repulsive or attractive cues, and 
block the collapsing action of sema3A 
on dorsal root ganglia (DRG) 
neurons36. 

Interactions between semaphorins and 
the cytoskeleton 
During neuronal development, the 
axonal growth cone responds to 
various guidance cues within the 
surrounding environment. The 
growth cone selectively stabilises or 
destabilises the actin cytoskeleton in 
lamellipodia and filopodia to achieve 
directional growth37 (Figure 1). The 
mechanism by which semaphorins 
interact with the cytoskeleton is a 
continued area of research, so far it 
has been reported that semaphorins 
alter the neuronal cytoskeleton by 
causing depolymerisation of F-
actin23,24,38. Various signalling proteins 
are linked to semaphorin induced 
cytoskeletal changes within neuronal 
cells including the members of the 
Rho family of small GTP-binding 
proteins39,40,41,42, collapsin response 
mediator proteins (CRMPs) and 
intracellular protein kinases. Plexins 
within the holoreceptor complex 
generate an intracellular response to 
semaphorin binding, ultimately 
resulting in altered cytoskeletal 
dynamics and cell migration. Plexins 
have intrinsic GAP (GTPase activating 
protein) activity that activates R-Ras, 
a GTPase responsible for sustained 
integrin activation43,44. Activation of R-
Ras enhances focal adhesion 
formation, cell adhesion and cell 

spreading, as well as favouring the 
activation of PI3K45. The binding of 
semaphorin to plexin receptors on the 
surface of growth cones therefore 
inactivates R-Ras which prevents 
integrin mediated cell adhesion, 
blocking downstream PI3K. 
Additionally, semaphorin-plexin 
interaction also activates other 
pathways such as Rac and Rho 
resulting in the depolymerisation of 
actin and endocytosis (Figure 2). 
 
Ben-Zvi et al., demonstrated that 
sema3A application induced cell death 
of NGF, BDNF and NT3 dependant 
DRG neurons, and identified the 
mechanism was through the 
phosphorylation of c-jun/JNK 
pathway [100]. Repulsive agents 
arrest or completely collapse growth 
cones and neurite outgrowth38, as 
shown for sema3A which results in a 
loss of focal adhesions shortly 
followed by contraction of the 
cytoskeleton within endothelial 
cells46. A recent study by Yu et al., 
demonstrated sema3A inhibited both 

migration and tube formation of 
HUVECs and significantly inhibited 
phosphorylation of the JNK and 
P38MAPK signalling pathway 
suggesting effects on vascularisation as 
well as innervation47. Neural 
connectivity and path finding is reliant 
on axonal guidance cues which either 
act as attractants or repellents on 
growth cones and endothelial tip cells 
during neovascularisation and 
innervation, causing the filopodia and 
lamellipodia to turn towards or away 
from the stimulus achieving directional 
growth (Figure1). 

Alternative roles of semaphorins in the 
regulation of angiogenesis 
Extensive studies of class 3 
semaphorins have revealed their 
involvement in several non-neuronal 
processes such as angiogenesis 
35,48,49,50,organogenesis51,52,53, 
tumorigenesis50,54,55,56,57, immune cell 
function58 and more recently a 
suggested role in osteoprotection59 
suggesting they may elicit a pleothora 
of actions within these tissues. 

 
Figure 2: Semaphorin receptors and their intracellular signalling pathways. 
Semaphorin receptors can cause activation of a number of different intracellular 
signalling pathways [155]. Semaphorins can regulate integrin function and 
cytoskeletal alterations via the activation of R-Ras GAP activity of plexins. The 
binding of semaphorins to holoreceptor complex formed by NRP ligand and plexin 
signal transducing element leads to the dissociation of FARP2 from plexinA1 
leading to an increase in Rac activity, this allows the association of Rnd1 and 
Plexin A1 stimulating the GAP activity of plexinA1 which is needed to inhibit R-Ras 
and thus preventing integrin mediated cell adhesion (119). Other signalling 
pathways such as Rac/Rho are thought to be involved in the depolymerisation of 
F-actin (120, 121). 



Page 4 of 10 

Licensee OAPL (UK) 2014. Creative Commons Attribution License (CC-BY) 

FOR CITATION PURPOSES: Binch ALA, Cross AK, Le Maitre CL. The regulation of nerve and blood vessel ingrowth in 
aneural and avascular intervertebral disc and articular cartilage. OA Arthritis 2014 Feb 10;2(1):4.  

 

Review 
 

 

C
o

m
p

et
in

g
 in

te
re

st
s:

 N
o

n
e 

d
ec

la
re

d
. 

 C
o

n
fl

ic
t 

o
f 

in
te

re
st

s:
  N

o
n

e 
d

ec
la

re
d

.  
A

ll 
a

u
th

o
rs

 c
o

n
tr

ib
u

te
d

 t
o

 c
o

n
ce

p
ti

o
n

 a
n

d
 d

es
ig

n
, m

a
n

u
sc

ri
p

t 
p

re
p

a
ra

ti
o

n
, r

ea
d

 a
n

d
 a

p
p

ro
ve

d
 t

h
e 

fi
n

a
l m

a
n

u
sc

ri
p

t.
  

A
ll 

a
u

th
o

rs
 a

b
id

e 
b

y 
th

e 
A

ss
o

ci
a

ti
o

n
 f

o
r 

M
ed

ic
a

l E
th

ic
s 

(A
M

E)
 e

th
ic

a
l r

u
le

s 
o

f 
d

is
cl

o
su

re
. 

 

  
Angiogenic Factors 
Several angiogenic growth factors 
have been localised to AC such as 
vascular endothelial growth factor 
(VEGF)60, fibroblastic growth factor 
(FGF-2)61 and transforming growth 
factor beta (TGFβ)62 yet AC and IVD 
are unique in that they remain largely 
avascular. The process of angiogenesis 
is complex and includes local 
degradation of the basement 
membrane, migration and 
proliferation of endothelial cells 
followed by the formation of new 
capillary sprouts. Various molecules 
have been studied for their potential 
anti-vascular properties such as 
elastase and proteinase inhibitors 
which ultimately prevent the 
degradation of the basement 
membrane. Tissue inhibitors of 
metalloproteinase-1 (TIMP-1) and 
TIMP-2 have also been speculated to 
be involved in preventing 
angiogenesis63, due to the inhibition of 
MMPs and thus decreasing matrix 
degradation. 
 
In addition, although sema3A is 
classically known to repulse axonal 
growth cones32 and cause apoptosis of 
NGF dependant sensory neurons64 via 
the activation of JNK/c-jun signalling 
pathways65, sema3A has now been 
shown to have similar effects on 
endothelial cells46. 

Other regulators of innervation and 
angiogenesis 
ECM molecules located in both AC and 
the IVD have been studied for their 
role in angiogenesis. Proteoglycans 
found within the IVD and AC ECM 
such as decorin are known to inhibit 
endothelial cell migration, tube 
formation and VEGF production15. 
Thrombospondin-I (TSP-I) exerts 
similar effects on endothelial cell 
formation63, and it is known that 
decorin binds to TSP-1 and 
potentiates the ability to block tube 
formation66. Various other anti-
angiogenic molecules have been 
identified within AC and IVD such as 
troponin 167 angiostatin and 
endostatin68. Endostatin is a 20kDa c-
terminal fragment of collagen type 

XVIII, first identified by O Reiley et al., 
from haemangioendothelioma in 
mice68 and has since been recognised 
for its ability to inhibit VEGF induced 
endothelial cell migration69 and 
neovascularisation70.  
 
Pufe et al., was the first group to 
identify the presence of endostatin 
within human cartilage71. Endostatin 
blocks angiogenesis by directly 
interacting with VEGFR272 which have 
been identified on the surface of 
hypertrophic and osteoarthritic 
chondrocytes73,74,75.  
 
Endostatin has also been shown to 
inhibit VEGF induced activation of 
MMP-1 and -2 from endothelial cells76 
and AC77,78. 
 

Disease mechanisms which lead to 
innervation and angiogenesis 
There are various mechanisms within 
the normal IVD and AC which are 
thought to prevent the ingrowth of 
nerves and blood vessels. During 
disease states, these processes become 
disrupted which is suspected to allow 
the inappropriate entry of both nerves 
and blood vessels; ultimately leading to 
pain generation. 

Characteristic changes in disease 
The human IVD and AC undergo major 
biochemical alterations during 
degeneration which cause disruption to 
matrix homeostasis leading to the 
decreased synthesis of both collagen 
type II and proteoglycans, which are 
key features of degenerative 
processes79,80. Additionally, 

 
Figure 3: Figure 3: Schematic diagram of the IVD in a non-degenerate and degenerate 
state. In a non-degenerate "healthy" IVD, both anabolic and catabolic processes are 
balanced, and various factors are present which help maintain the aneural and avascular 
environment of the IVD. These include aggrecan which is abundant in the healthy NP, 
along with semaphorins 3A and 3F which are localised to the outer AF. Elastin and 
chondromodulin are also present within the NP and AF and have been shown to have 
vasorepulsive roles towards endothelial cells. In a degenerate state, anabolic and catabolic 
processes are imbalanced in favour of catabolic processes which cause a decrease in 
matrix synthesis and an increase in matrix degradation, this process is enhanced by the 
action of proinflammatory cytokines known to regulate factors such as MMP's and 
ADAMTS enzymes which subsequently leads to a decrease in aggrecan and thus 
dehydration of the NP. Semaphorin 3A and 3F are significantly reduced within the 
degenerate outer AF which would create a permissive environment for the entry of both 
nerves and blood vessels. 
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components which inhibit nerve and 
blood vessel ingrowth such as 
chondromodulin and semaphorins are 
also lost during degeneration which 
may lead to the innervation and 
vascularisation of the tissue13,20. 

Upregulation of matrix degrading 
enzymes 
Early stages of degeneration are 
characterised by the imbalance of 
catabolic and anabolic processes81, 
which ultimately results in the loss of 
matrix components vital to the 
structure and function of both IVD and 
AC tissues. Cytokines, particularly IL-
1β and TNFα have been implicated to 
mediate the destruction in OA82,83 and 
IVD degeneration84,85,86,87,88,89,90,91,92,93. 
These pro-inflammatory cytokines are 
known for their potent activity in 
increasing the production of matrix 
metalloproteinases (MMPs) and a 
disintergrin and metalloproteinase 
with thrombospondin-motif 
(ADAMTS) from chondrocytic cells of 
AC and IVD85,86,94,95, leading to loss in 
normal matrix, facilitating the 
unimpaired ingrowth of nerves and 
blood vessels. 

Loss of proteoglycans and collagen type 
II 
The loss of proteoglycans and collagen 
type II is one of the earliest changes 
identified during degeneration, 
characterised by a switch in the type 
of proteoglycans and collagens 
synthesised. A decrease in aggrecan 
production is replaced by biglycan, 
decorin and versican96,97, along with 
the switch in production of collagen 
from type II to type I98 leaving the 
tissue dehydrated and unable to 
withstand compressive loads and 
forces. 
 
Proteoglycans are known for their 
inhibitory effects on neurite ingrowth 
and so their presence within the 
healthy IVD and AC is pivotal not only 
for the structure and function of the 
tissues, but also in regulating the 
aneural and avascular environment11. 
As shown by Johnson et al., and Bara 
et al., aggrecan derived from the IVD 
and AC is able to prevent cell adhesion 
and migration11,12, thus endothelial 

cell adhesion would be prevented in 
the normal disc and so NGF expressed 
by endothelial cells would not be able 
to enhance the survival of incoming 
neuronal cells. 

Altered expression of inhibitory factors 
during degeneration 
ChM-I is a matrix component of both 
AC and IVD known for maintaining the 
avascular environment, however 
during degeneration ChM-I is seen to 
decrease. Hayami et al., identified the 
presence of ChM-I within healthy 
avascular adult AC, and found that in 
early OA, levels of ChM-I decreased 
slightly within the superficial zone, yet 
in advanced OA, ChM-I was decreased 
in all zones of AC alongside an 
increase in the number of VEGF 
expressing chondrocytes99.  
 
Immunohistochemistry identified the 
localisation of incoming vascular 
endothelial cells within close 
proximity to VEGF expressing cells 
where there was lowered expression 
of ChM-I. 
 
Semaphorins are thought to act as a 
barrier to neural and vascular 
ingrowth within healthy IVD and AC; 
this was suggested by Tolofari et al., 
who identified the presence of 
sema3A within the outer AF in healthy 
IVDs13.  
 
During degeneration however, 
sema3A was significantly decreased 
within the AF and immunopositivity 
increased around cell clusters within 
the degenerate NP. Invading nerves 
and blood vessels can be seen 
entering regions within the outer AF13, 
suggesting that during degeneration, 
the loss of the inhibitory semaphorin 
barrier allows inappropriate 
vascularisation and innervation.  
 
Okubo et al., also identified an 
overexpression of sema3A within 
osteoarthritic cloned chondrocytes a 
feature associated with degeneration. 
The increase in sema3A within AC was 
also shown to inhibit VEGF induced 
chondrocyte migration by competitive 
binding to NRP-121. 

Inappropriate entry of nerves and blood 
vessels 
Pain felt by patients with OA is 
sometimes described as a burning pain, 
which is characteristic of the pain 
generated by the presence of fine 
unmyelinated nerve fibres100. 
Mechanisms concerning the entry of 
nerve and blood vessels into usually 
avascular and aneural tissue is still 
incompletely understood. Various 
studies have reported the presence of 
cytokines: IL-1β and TNFα, which are 
potent pro-inflammatory mediators 
present in IVD 
degeneration84,85,88,89,92,101,102,103 and 
OA82 which cause disruption to the ECM 
composition. 
The majority of sensory nerve fibres 
within IVDs and AC are associated with 
blood vessels, as they grow along 
endothelial cells after angiogenesis has 
occurred104,105. Freemont et al., were 
the first to identify the presence of 
small unmyelinated peptide-containing 
sensory nerve fibres and microvessels 
within degenerate lumbar IVDs of 
patients experiencing pain4.  
 
Later studies by the same group3 
observed microvessels expressing the 
neurotrophic factor NGF, whilst 
accompanying nerves expressed the 
high affinity receptor Trk A. Early 
observations identified neuronal 
growth alongside endothelial cells. 
Neurotrophic factors NGF, BDNF and 
NT3 and their receptors, the tyrosine 
kinases are involved in the survival of 
neurons and have been identified at 
gene and protein level within IVD and 
AC106,107,108,109,110,111,112; Recently Krock 
et al., demonstrated NGF and BDNF 
protein production by IVD organ 
cultures from degenerate disc were 
significantly higher than those from 
healthy discs113 this agreed with 
previous studies which had shown 
increased levels of NGF expression in 
surgical degenerate IVD compared to 
postmortem tissues111,114.  
 
In contrast Purmessur et al., found high 
levels of NGF and BDNF within IVDs, 
with no significant changes between 
regions of the IVD and disease 
severity109 demonstrating this area 
requires further investigation. 
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Inflammatory cytokines present 
within the degenerate IVD and AC 
have been shown to regulate the 
expression of these neurotropic 
factors106,108,109,112,115. NGF dependant 
neurons are known to synthesise pain 
related peptides, substance P and 
calcitonin gene related peptide 
(CGRP)10,114,116,117,118 leading to pain 
sensitisation, and these have been 
shown to be regulated by cytokines109. 
 

Conclusion 
To conclude, there are numerous 
native molecules which exert 
inhibitory effects towards neural and 
vascular ingrowth within healthy non-
degenerate IVDs and AC (Figure 3). 
Whilst during degeneration the 
depletion of these inhibitory factors 
and production of nerve and 
endothelial growth factors (Figure 3) 
leads to the inappropriate entry of 
nerves and blood vessels. 
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