
HPC-GAP: engineering a 21st-century high-performance 
computer algebra system

BEHRENDS, Reimer, HAMMOND, Kevin, JANJIC, Vladimir, KONOVALOV, 
Alexander, LINTON, Steve, LOIDL, Hans-Wolfgang, MAIER, Patrick 
<http://orcid.org/0000-0002-7051-8169> and TRINDER, Phil

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/18621/

This document is the Published Version [VoR]

Citation:

BEHRENDS, Reimer, HAMMOND, Kevin, JANJIC, Vladimir, KONOVALOV, 
Alexander, LINTON, Steve, LOIDL, Hans-Wolfgang, MAIER, Patrick and TRINDER, 
Phil (2016). HPC-GAP: engineering a 21st-century high-performance computer 
algebra system. Concurrency and Computation: Practice and Experience, 28 (13), 
3606-3636. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 28:3606–3636
Published online 15 January 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3746

HPC-GAP: engineering a 21st-century high-performance
computer algebra system‡

Reimer Behrends1, Kevin Hammond2, Vladimir Janjic2, Alexander Konovalov2,
Steve Linton2, Hans-Wolfgang Loidl3, Patrick Maier4 and Phil Trinder4,*,†

1Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany
2School of Computer Science, University of St Andrews, Fife, UK

3School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
4School of Computing Science, University of Glasgow, Glasgow, UK

SUMMARY

Symbolic computation has underpinned a number of key advances in Mathematics and Computer Science.
Applications are typically large and potentially highly parallel, making them good candidates for parallel
execution at a variety of scales from multi-core to high-performance computing systems. However, much
existing work on parallel computing is based around numeric rather than symbolic computations. In particu-
lar, symbolic computing presents particular problems in terms of varying granularity and irregular task sizes
that do not match conventional approaches to parallelisation. It also presents problems in terms of the struc-
ture of the algorithms and data. This paper describes a new implementation of the free open-source GAP
computational algebra system that places parallelism at the heart of the design, dealing with the key scala-
bility and cross-platform portability problems. We provide three system layers that deal with the three most
important classes of hardware: individual shared memory multi-core nodes, mid-scale distributed clusters of
(multi-core) nodes and full-blown high-performance computing systems, comprising large-scale tightly con-
nected networks of multi-core nodes. This requires us to develop new cross-layer programming abstractions
in the form of new domain-specific skeletons that allow us to seamlessly target different hardware levels.
Our results show that, using our approach, we can achieve good scalability and speedups for two realistic
exemplars, on high-performance systems comprising up to 32 000 cores, as well as on ubiquitous multi-core
systems and distributed clusters. The work reported here paves the way towards full-scale exploitation of
symbolic computation by high-performance computing systems, and we demonstrate the potential with two
major case studies. © 2016 The Authors. Concurrency and Computation: Practice and Experience Published
by John Wiley & Sons Ltd.
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1. INTRODUCTION

This paper considers how parallelism can be provided in a production symbolic computation system,
GAP (Groups, Algorithms, Programming [1]), to meet the demands of a variety of users. Sym-
bolic computation has underpinned several key advances in Mathematics and Computer Science,
for example, in number theory, cryptography and coding theory. Computational algebra is an impor-
tant class of symbolic computation, where applications are typically characterised by complex and
expensive computations.
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Many symbolic problems are extremely large, and the algorithms often exhibit a high degree
of potential parallelism. This makes them good candidates for execution on both large and small-
scale parallel systems, including high-performance computing (HPC) systems. With the widespread
availability of multi-core systems, there is an increasing need to provide effective support for sym-
bolic computation on small shared-memory computers. The size and complexity of the problems
that are being tackled means, however, that there is also a significant demand for symbolic compu-
tation on clusters of distributed-memory systems and potentially for full-blown HPC systems. The
HPC–GAP systems described in this paper aim to meet those diverse needs in a way that is idiomatic
for the GAP programmer and easy for the domain specialist to exploit.

There are, however, numerous practical challenges that must be overcome if the parallelism
potential is to be exploited. Firstly, symbolic algorithms tend to employ complex data and control
structures that are not generally studied by the parallel programming community. Secondly, the par-
allelism that is present is often both dynamically generated and highly irregular, for example, the
number and sizes of subtasks may vary by several orders of magnitude. These properties present
significant challenges to conventional parallelisation techniques. Finally, the developers of sym-
bolic computing applications are not parallelism experts: they are typically mathematicians or other
domain experts, who usually do not possess a background in computer science and who have lim-
ited time and inclination to learn complex system interfaces. What is needed is a simple, but highly
scalable, way to deal with massive parallelism in symbolic computing systems, which is consistent
with existing symbolic programming approaches.

This paper studies how these challenges may be overcome in the context of the widely used GAP
computational algebra system. Our work establishes symbolic computation as a new and exciting
application domain for HPC. It also provides a vade mecum for the process of producing effective
high-performance versions of large legacy systems. The primary research contributions of this paper
are as follows:

1. The systematic description of HPC-GAP as an integrated suite of new language extensions
and libraries for parallel symbolic computation. These are a thread-safe multi-core implemen-
tation, GAP5 (Section 2); an MPI binding to exploit clusters (Section 3) and the SymGridPar2
framework that provides symbolic computation at HPC scale (Section 4). Collectively, these
allow us to address scalability at multiple levels of abstraction up to large-scale HPC systems
(Section 5).

2. We provide two substantial case studies to demonstrate the effectiveness of the language mech-
anisms for irregular symbolic computations. Specifically, we consider Orbit calculations and
a Hecke Algebra representation theory calculation on the HECToR HPC system. The datasets
for these, and other experiments in the paper, are available at [2] (Section 6).

3. SymGridPar2 re-establishes symbolic computation as an application domain for HPC for the
first time in 20 years (Sections 4, 5.3 and 6).

Novelty: We provide the first complete and systematic description of HPC-GAP. Many of the
individual components of HPC-GAP and associated case studies have been previously reported
piecemeal: with descriptions of GAP5 [3], SymGridPar2 [4], the MPI-GAP case study [5] and the
SymGridPar2 case study [6]. A key part of the systematic presentation of the HPC-GAP components
is to provide a common SumEuler benchmark to facilitate comparison of the programming models
and performance at different scales. Moreover, some key aspects of the components are presented
for the first time, for example, Section 4.2, describing the interface between GAP and SymGridPar2.
Section 5 that uses SumEuler as a basis for a performance evaluation of the HPC-GAP components,
and discusses their interworking, is almost entirely new.

1.1. Computational algebra and the GAP system

GAP (‘Groups, Algorithms and Programming’ [1]) is the leading open source system for computa-
tional discrete algebra. GAP supports very efficient linear algebra over small finite fields, multiple
representations of groups, subgroups, cosets and different types of group elements, and backtrack
search algorithms for permutation groups. The GAP system and extension packages now comprise
360K lines of C and 900K lines of GAP code that is distributed under the GNU Public License. To
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date, GAP has been installed at over 2000 sites and is cited in more than 1000 publications. GAP has
been used in such landmark computations as the ‘Millennium Project’ to classify all finite groups
of order up to 2000 [7]. From its inception, GAP was designed to be natural to use for mathemati-
cians, powerful and flexible for expert users and freely extensible so that it can encompass new areas
of mathematics as needed. All three objectives have been met comprehensively. Our achievements
were recently recognised by the award of the ACM/SIGSAM Richard D. Jenks Memorial Prize for
Excellence in Software Engineering applied to Computer Algebra.

GAP fills an important need in the computer algebra community. Unlike GAP, general ‘computer
algebra systems’ such as Maple [8], Mathematica [9] or MATLAB [10] simply do not address com-
putation in abstract algebra in any serious way. Maple, for example, can compute with some finite
permutation groups, but is many orders of magnitude slower than GAP and can handle only ‘toy’
examples. Only MAGMA [11] and Sage [12] have any significant overlap with GAP in its core areas
of computational algebra and discrete mathematics. MAGMA has a strong focus on number theory
and cryptography, and unlike GAP, is closed source, monolithic and difficult to extend. Sage [12]
incorporates and derives much of its algebraic functionality from GAP, as permitted by the GNU
Public License. Neither of these systems supports parallelism well: Sage has limited support for
client-server style distributed computing, but does not support large-scale parallel computing; and
MAGMA currently has no support for parallelism.

1.2. Parallelism and high-performance computing

With the widespread adoption of multi-core processors, parallelism has become mainstream. While
most laptops, desktops and even mobile platforms comprise single multi-core systems, higher-
performance systems will cluster several multi-cores into a single coherent system, connected either
by a high-speed network or by a shared memory bus. HPC systems provide a further level of hier-
archy, connecting multiple clusters into a coherent, highly parallel supercomputing platform. While
the general problems of identifying and controlling parallelism are similar in each level, the increas-
ing scale and complexity of larger systems means that more powerful programming models are
needed to deal with them effectively. These models should abstract over low-level architectures, in
order to provide scalable parallelism up to HPC-size architectures.

While low-level programming models are still dominant for HPC applications, this low level of
abstraction is in stark contrast to the high level of abstraction sought for in the domain of symbolic
computation. A typical user of a computational algebra system will naturally aim to develop theories
and programs in a style close to mathematical notations and therefore refrain from (prematurely)
constraining how the theories are executed. In fact, the bigger gap between model and implementa-
tion found in symbolic computation makes parallel realisation of these problems relatively rare, and
some exceptions are discussed in [13].

While there are instances of explicit coordination infrastructures in this domain, and we discuss
them in the following sections, the most natural combination of technology and domain is a mostly
declarative programming style, and the main part of our survey here focuses on such systems.

1.2.1. Threading and message-passing approaches. The most commonly used technologies on
today’s HPC systems start from established, if not dated, sequential host languages, such as For-
tran or C, and provide added functionality for parallelism in the form of libraries or compiler
annotations. Different technologies are often combined, reflecting the underlying architecture, for
example, using an explicit message passing library (e.g. MPI) between nodes combined with a dedi-
cated shared memory model (e.g. OpenMP in the form of compiler annotations) within a multi-core
node. This combination aims to use the most efficient technology on each level, but necessarily
complicates software design. This development is aggravated by the heavy use of Graphic Pro-
cessing Units (GPUs) and many-core co-processors, such as Xeon Phis, on the latest generation of
supercomputers.

In contrast to the mixed paradigm approach common in HPC codes, we advocate a unified, high-
level approach. Such an approach abstracts over low-level machine details, reducing the complexity
of the parallel programming task, while still enabling the tuning of key parallel execution charac-
teristics, such as the size of the parallel tasks and the distribution of the application data. The latter
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is becoming increasingly important with modern applications often being extremely data intensive
and the memory-per-core ratio falling. In this aspect, symbolic computation software technology
is ahead of mainstream HPC, because symbolic applications often require enormous and complex
intermediate data structures. Hence, bespoke libraries have been developed to deal with huge data
structures efficiently have been developed, for example, the Roomy library discussed in Section 1.3.
Hence, control of data, in addition to control of tasks, features prominently in the design of
HPC-GAP.

1.2.2. Parallel patterns and skeletons. Parallel pattern that abstracts and re-uses common paral-
lelism idioms is an increasingly important technology [14]. Algorithmic skeletons [15] provide
specific implementations of patterns in the form of functions that have effective parallel implemen-
tations and that are instantiated with concrete parameters to specify functionality and behaviour. The
practical relevance of such approaches is underlined by recent practitioner oriented textbooks on
parallel patterns [16, 17] and by high levels of activity in projects such as Google’s MapReduce [18]
and Apache’s Hadoop [19].

Well-known skeleton systems include P 3L [20], Skil [21] and the SCL coordination lan-
guage [22], which are all based on a functional coordination language. Moreover, numerous skeleton
libraries provide skeletons that can be used from a mainstream sequential host language, for
example, SkePU [23], Müsli [24] and eSkel [25], which are all embedded in C/C++.

While general purpose skeleton libraries like those mentioned previously can be used across
domains, some packages encode domain-specific patterns. One such example is the LinBox [26]
exact linear algebra library, which provides a wide selection of linear algebra operations operating
over arbitrary precision numbers. Another example is our work on the Orbit pattern [5], a commonly
occurring pattern in symbolic computation applications used as a case study in Section 6.1.

An important development in the area of programming languages for HPC systems is the emer-
gence of partitioned global address space (PGAS) languages as a new model of high-level parallel
programming. The basic idea in these languages is to provide language support for distributing
large data structures, typically flat arrays, over a collection of distributed memory nodes. Paral-
lelism is then expressed in the form of data parallelism, with constructs to place a computation on
the machine that holds the relevant segment of the data structure, and synchronisation and com-
munication become implicit. While the focus is on data parallel constructs, general fork-and-join
parallelism is also available, although less frequently used. First generation PGAS languages that
defined these concepts have been developed by major HPC vendors: Chapel [27] by Cray, X10 [28]
by IBM and Fortress [29] by Sun/Oracle. More recently, PGAS constructs have been integrated into
mainstream languages: Unified Parallel C [30] and Coarray Fortran [31].

1.3. Parallel computational algebra

Several computer algebra systems offer dedicated support for parallelism and/or distribution
([32, Sec 2.18] and [33]). Early systems focused on shared-memory architectures, and some promi-
nent examples are Aldor [34], PARSAC2 [35] and PACLIB [36]. Because our focus is on distributed
memory systems, we do not discuss these further.

Distributed Maple [37] provides a portable Java-based communication layer to permit the interac-
tion of Maple instances over a network. It uses future-based language constructs for synchronisation
and communication and has been used to parallelise several computational geometry algorithms.
Unlike our system, it does not provide specific multi-core or HPC support, however. The Sugarbush
[38] system is another distributed memory extension of Maple, which uses Linda as a coordination
language. The GAPMPI [39] package is a distributed-memory parallel extension to GAP, which pro-
vides access to the MPI interface from within GAP. Unlike our work, no higher-level abstractions
are provided to the programmer.

The TOP-C system provides task-oriented parallelism on top of a distributed shared memory sys-
tem [40], implementing several symbolic applications, including parallel computations over Hecke
algebras [41] on networks of workstations.

The Roomy system [42] takes a data-centric view of parallel symbolic computation, recognis-
ing that many applications in the domain manipulate enormous data structures. Roomy provides a
library for the distribution of data structures and transparent access to its components, implemented
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on top of the MPI message passing library. Example applications implemented on top of Roomy
include a determinisation algorithm for non-deterministic finite state automata.

Two decades ago, there were several projects that parallelised algebraic computations, but there
has been little work in this area since. Sibert et al. [43] describe the implementation of basic arith-
metic over finite fields on a Connection Machine. Roch et al. [44] discuss the implementation of
the parallel computer algebra system PAC on the Floating Point System hypercube Tesseract 20 and
study the performance of a parallel Gröbner Basis algorithm on up to 16 nodes. Another parallel
Gröbner Basis algorithm is implemented on a Cray Y-MP by Neun and Melenek [45] and later on a
Connection Machine by Loustaunau and Wang [46]. We are not aware of any other work within the
last 20 years that targets HPC for computational algebra.

More recently mainstream computer algebra systems have developed interfaces for large-scale
distribution, aiming to exploit Grid infrastructures [47]. The community effort of defining the Sym-
bolic Computation Software Composability Protocol (SCSCP) for symbolic data exchange on such
infrastructures supports distributed execution and interchange between different computer algebra
systems [48]. In contrast to these Grid-based infrastructures, our SymGridPar2 framework targets
massively parallel supercomputers.

2. PARALLELISM SUPPORT IN GAP5

The shared-memory component of HPC-GAP, which we refer to for this paper as GAP5 reimple-
ments the latest version of GAP (GAP4) to include support for parallelism at a number of levels [3].
This has a number of implications for the language design and implementation. Distributed mem-
ory implementations of memory hungry symbolic computations can duplicate large data structures
and may even lead to memory exhaustion. For example, the standard GAP library already requires
several 100 MB of memory per process, much of which is data stored in read-only tables; a multi-
threaded implementation can provide access to that data to multiple threads concurrently without
replicating it for each thread. This is why it is crucial to use shared memory to achieve efficient
fine-grained parallelisation of GAP applications. Secondly, we need to maintain consistency with
the previous version of the GAP system, refactoring it to make it thread-safe. Achieving this has
involved rewriting significant amounts of legacy code to eliminate common, but unsafe, practices
such as using global variables to store parameters, having mutable data structures that appear to be
immutable to the programmer, and so on.

The overall GAP5 system architecture aims to expose an interface to the programmer that is as
close to the existing GAP4 implementation as possible in order to facilitate the porting of algorithms
and libraries. The two primary new concepts that a GAP5 programmer may need to understand is
that of tasks (an implementation of futures [49]) and regions, a GAP-level abstraction for areas of
shared memory. Existing sequential code will run largely unchanged, and sequential code can
also use parallelised libraries transparently. Only code that exploits GAP5 concurrency or kernel
functionality needs to be adapted to the new programming model.

2.1. Task introduction and management

GAP5 adopts a future-based task model [49], identifying tasks using the RunTask primitive:
td := RunTask(f, x1, ... xn);Here, f is a GAP function, and the xi are the arguments
to be passed to that function. A call to RunTask introduces a future into the runtime system, which
will eventually yield a parallel task executing f .x1; : : : ; xn/. RunTask returns a task descriptor,
td, which can be used to further control or observe the task behaviour. In particular, the result of
a task can be obtained using a blocking call to the TaskResult primitive; WaitAnyTask can
be used to block until one of a number of tasks has completed; and ScheduleTask is a variant
of RunTask that allows the creation of a task at some future point when the specified condition
becomes true.

result := TaskResult(td);
...
td1 := ScheduleTask(cond, f, x1, ..., xn);
...
tdx := WaitAnyTask(td1, td2, td3);
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The return value of TaskResult is the value returned by the task. The return value of
ScheduleTask is a task descriptor. WaitAnyTask returns a positive integer that denotes which
of the tasks passed as arguments (via their descriptors) completed first, starting with 1 for the
first argument. In the aforementioned example, tdx would be 1 if td1 completes first, 2 if td2
completes first or 3 if td3 completes first.

2.2. SumEuler in GAP5

We use the SumEuler computation as a common example to demonstrate the GAP5, MPI-GAP and
SymGridPar2 components of HPC-GAP. SumEuler is a symbolic computation that computes the
sum of Euler’s totient function over an integer interval. The computation is a fold (the sum) of a map
(of the totient function). The computation is irregular as the time required to compute the totient of
a large integer is greater than for a small integer. We use chunked data parallel versions here. That
is, the time to compute the totient of a single integer is small, so tasks typically compute the totients
for a ’chunk’ or interval of integers.

Figure 1 illustrates how to express SumEuler in GAP5, the source cade for this and all other exam-
ples is available at [2]. SumEulerSeq is a simple sequential implementation, using the standard
GAP implementation of the totient function, Phi. The GAP List function implements a functional
map operation: taking a list as its first argument and a function or closure as its second, applying that
function to each element in the list and returning the resulting list. SumEulerPar is a very simple
parallelisation of the same code. It starts a task for each number in the range n1 through n2, then
collects the results of those tasks. While simple, this is also inefficient because most computations
of Phi(x) will be very short and the overhead will therefore be high. SumEulerPar2 is a more
efficient implementation that reduces the overhead by aggregating the data into intervals of size 100.

2.3. Shared regions in GAP5

Safe mutable state in GAP5 is handled through the concept of shared regions. A region is a set
of GAP objects; each object in GAP5 belongs to exactly one region, and each region has exactly
one associated read-write lock. The GAP5 runtime ensures that an object is only accessed by a
thread that has either a read or write lock on the region containing the object. Each thread has an

Figure 1. SumEuler in GAP5.
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associated thread-local region, on which it has a permanent write lock. By default, newly created
GAP objects are created in the thread-local region of the current thread. The goal of thread-local
regions (in particular, the thread-local region of the main thread) is to present programmers with a
quasi-sequential environment. This environment is protected against unexpected interference from
other threads, because only the thread associated with the thread-local region can ever access it, thus
allowing programmers controlled use of concurrency features.

A programmer can create any number of shared regions. The ShareObj(ob) primitive takes
a GAP object as an argument, creates a new shared region and migrates the object and all its sub-
objects to the shared region. The ShareSingleObj(ob) variant migrates only ob and not any
sub-objects. Objects in a shared region must be accessed using the GAP5 atomic statement, as
shown as follows.

1 S h a r e d L i s t := ShareObj ( [ ] ) ;
2
3 AddShared := f u n c t i o n ( x )
4 atomic r e a d w r i t e S h a r e d L i s t do
5 Add ( S h a r e d L i s t , x ) ;
6 od ;
7 end ;
8
9 L a s t S h a r e d := f u n c t i o n ( )

10 atomic r e a d o n l y S h a r e d L i s t do
11 re turn S h a r e d L i s t [ Length ( S h a r e d L i s t ) ] ;
12 od ;
13 end ;

Note that we never operate on a region directly. The atomic statement operates on GAP objects,
and the corresponding region is inferred by the runtime system. The atomic statement also allows
the simultaneous locking of multiple regions by providing multiple arguments. These regions are
then guaranteed to be acquired atomically and without causing deadlock. The following code
fragment illustrates this usage of atomic.

1 atomic ob1 , ob2 do
2 DoSomethingWith ( ob1 , ob2 ) ;
3 od ;

A special case of a shared region is the read-only region. Every thread holds a permanent read-
lock for that region, and objects can be migrated to it using the MakeReadOnly primitive. This
is primarily intended for the convenient storage of large, constant tables in order to access them
without the overhead and inconvenience of an atomic statement.

Objects can be migrated between shared regions or between the current thread-local region
and a shared region. Unlike copying, migration is generally a cheap operation, which only
changes the region descriptor of the underlying GAP object (a single word). As already men-
tioned, ShareObj(ob) implicitly migrates its argument to the new region. More generally,
MigrateObj(ob1, ob2) migrates ob1 and any sub-objects to the region containing ob2. For
this to succeed, the current thread must have a write lock on both regions. The AdoptObj(ob)
primitive is a special case of MigrateObj that migrates ob and any sub-objects to the current
thread-local region.

Figure 2 shows how this works in practice for the parallel multiplication of two square thread-
local matrices. ParMatrixMultiplyRow is the usual GAP code to multiply the i-th row vector
of m1 with the matrix m2. It is identical to the sequential version except that it is declared
to be atomic, and m1 and m2 are declared to be readonly. ParMatrixMultiply con-
tains the actual parallel matrix multiplication code. This extends the sequential version slightly.
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Figure 2. Parallel matrix multiplication in GAP5.

Firstly, in lines 18–19, m1 and m2 are placed in shared regions. Then, in lines 21–23, each row
vector of m1 is multiplied with m2 using its own GAP task. Line 24 collects the results. Finally,
in lines 26–30, m1 and m2 are migrated to the current thread-local region using atomic calls
to AdoptObj.

2.4. Comparison with other parallel computational algebra systems

Symbolic Computation Software Composability Protocol. The computational algebra commu-
nity has defined a common protocol for combining computer algebra systems, the SCSCP [48].
Essentially, it is possible to make a remote procedure call from one system to another, and both
protocol messages and data are encoded in the OpenMath format. SCSCP compliant components
may be combined to solve scientific problems that cannot be solved within a single CAS, or
may be organised into a system for distributed parallel computations. The SCSCP has become a
de facto standard for mathematical software with implementations available for seven CAS and
libraries for C/C++, Java Haskell, and so on. On a single multicore, GAP5 provides higher per-
formance by allowing direct functions manipulating GAP objects, rather than an SCSCP RPC
where the function and arguments are encoded as OpenMath XML objects. Moreover, while
SCSCP’s explicit RPC mechanism is suitable for small-scale parallel execution, SymGridPar2 scales
onto HPCs.

GAP4. The current stable release of GAP4 provides two ways to run distributed memory par-
allel computations: (i) the ParGAP package that uses MPI and (ii) an SCSCP package. Both
provide basic implementations of the ParList skeleton plus low-level tools to develop new par-
allel GAP code. Both approaches are prone to limitations of the distributed memory approach
concerning serialisation, and so on. In particular, it may not be straightforward or may
even be impossible to transmit complex GAP objects from one node to another, limiting
performance [50].

Sage has some rudimentary facilities for distributed memory parallel calculations, which are
still under development. The current design focuses on task parallelism and uses Python’s
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decorator concept to add parallel execution functionality to existing methods. While this adds
concurrency to the programming model, it does not provide means of explicit synchronisation or
communication. Another parallelism primitive is a parallel iterator. The implementation of paral-
lelism is also seriously hampered by the central scheduler lock in the Python runtime-system.

Maple supports multithreading on shared memory architectures through a task program-
ming model. While its kernel is thread-safe, work on a thread-safe library is still in progress.
On distributed memory architectures parallelism is supported by the Maple Grid Toolbox [47]. It
is implemented on top of MPI and can be configured in either MPI (cluster) or HPC mode. The
latter allows for integration with batch job scheduling middleware, whereas the former is targeted
at dynamic, self-assembling Grid infrastructures. In terms of language support for parallelism, the
Maple Grid Toolbox mainly provides MPI-level primitives for synchronisation and communication.
Support for higher-level primitives is rudimentary and at the moment restricted to a parallel map
operation. The older Distributed Maple [37] system, with its higher-level coordination primitives,
has been discussed in Section 1.3.

MAGMA is a single-threaded application that does not support parallelism [11]. Distributed
memory computations could be emulated by, for example, interfacing multiple copies to Sage, or
by using an SCSCP wrapper for MAGMA [48].

TRIP is dedicated to celestial mechanics, specialising in operations with polynomials
[51]. Its single-core implementation is multithreaded, reporting good parallel performance on sparse
polynomial operations [52], and SCSCP can be used for small-scale distributed memory parallelism.

MATLAB. The MATLAB parallel computing toolbox supports multicores, GPUs and clusters
using a number of simple primitives to expose data parallelism and loop-parallelism, based on
parallel for-loops [10]. Support for heterogeneous devices is provided through a Cuda interface.

Using the MATLAB Distributed Computing Server, parallelism can be orchestrated on large-
scale, distributed memory configurations. The preferred programming mode is data parallelism over
the pre-defined data structure of distributed arrays. Additionally, a general map-reduce structure is
available. On a lower level, primitives for single-program multiple-data parallelism and explicit
message passing are also available.

The current version of MATLAB’s symbolic computation toolbox, MuPAD, does not support
parallel computing. However, earlier versions of MuPAD provided master-work parallelism on
distributed systems in the form of ‘macro parallelism’ [53].

Mathematica. Starting with Mathematica 7, the internal Wolfram Language also supports paral-
lel computation. The focus of the language support is on data-parallelism, with pre-defined parallel
map and combine operations. Parallel iterators are provided for common data structures. Specu-
lative parallelism is also supported, enabling the programmer to try several approaches to solve a
problem and pick up the first successful computation. More generally, fork-and-join parallelism can
be defined, using lower-level thread creation and synchronisation primitives. However, the language
design favours the usage of the higher-level primitives, in particular for defining map-reduce-style
computations. Support for heterogeneous devices is provided through separate interfaces to Cuda
and to OpenCL. In a distributed memory setting, the parallelism generated by the primitives is man-
aged by the gridMathematica system, originally developed for large-scale Grid architectures [54].
This system automatically handles marshalling and communication of data structures, as well as
retrieving the results from a remote execution. Through the usage of the higher-level parallelism
primitives, the details of the architecture are mostly hidden, although aspects such as communication
latency need to be taken into account for parallel performance tuning.

Reflection. Thus, we see that the majority of existing computational algebra system only pro-
vide support for (independent) distributed parallel calculations, or else have limited computational
algebra functionality. The work described in this paper considers a wider class of parallel com-
putation, including shared-memory multicores, clusters and HPC system, as well as distributed
systems. Through the free GAP system, it makes the benefits of parallelism available to a much
wider, open source community. Achieving this, while obtaining significant real speedups, represents
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a major technical challenge: GAP is a large dynamically typed, interpreted system, with a complex
implementation that manipulates large and complex data structures.

3. MPI-GAP DESIGN AND IMPLEMENTATION

MPI-GAP is an extension of GAP5, which targets distributed-memory systems by building on the
de facto standard MPI message passing library. MPI-GAP provides both a high-level programming
model that supports the same set of high-level parallel task constructs as the shared-memory ver-
sion of GAP5, CreateTask, RunTask, TaskResult, and so on, and a low-level programming
model that offers more control of distributed task and data placement when required. MPI-GAP is
implemented in a layered manner (Figure 3), where each layer builds on the constructs provided by
the layer below to offer a higher level of abstraction.

Object marshalling layer. This layer consists of operations that transform GAP objects into an
equivalent binary representation that can be transmitted using MPI primitives. MPI-GAP currently
supports two classes of marshalling operations: native serialisation, implemented as kernel opera-
tions, and IO pickling, implemented as GAP-level operations. Native serialisation is much faster, but
it is architecture dependent and currently only allows certain GAP objects to be marshalled. IO pick-
ling is significantly slower but is architecture independent and more customisable – more data struc-
tures are supported, and programmers can provide functions to marshal custom data structures. In
general, if an application needs to transfer large amounts of ‘simple’ data (e.g. lists of simple objects
and matrices) and the underlying data processing is sufficiently fine-grained, native serialisation is
preferred. Conversely, when transferring smaller objects or when the underlying data processing is
coarse-grained, IO pickling should be used.

MPI binding layer. This layer consists of GAP bindings to raw MPI functions to send and receive
messages, based largely on ParGAP [55]. Currently, only a small subset of MPI functions are sup-
ported on the GAP side, including blocking and non-blocking MPI send and receive functions,
probing, and so on. Object marshalling primitives must be used to marshal GAP objects so that they
can be transmitted using these operations.

Global object pointer layer. This layer supports operations on GAP objects (handles) that repre-
sent pointers to other GAP objects that may live on remote computing nodes. Handles can be copied

Figure 3. MPI-GAP layers and the associated primitives/operations.
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between different GAP processes and can then be used to access the same physical GAP object
from different nodes. Handles, and the underlying GAP objects, are managed in a semi-automatic
way – handles are created, opened, closed and destroyed manually, but a reference-counting mecha-
nism prevents unsafe operations, for example, destroying a handle that exists on multiple distributed
nodes and, so, possibly garbage-collecting the underlying object.

Handles are created using the CreateHandleFromObj operation that takes a GAP object
and returns a handle to it. Depending on the required level of automatic control, handles can be
read-only, read-write or volatile. Objects referred to by read-only handles can be freely
copied between nodes, but cannot be modified using SendHandle, GetHandleObj or
SetHandleObj. Objects referred to by read-write handles can be freely modified, but the
underlying objects cannot be copied between nodes. They can, however, be migrated. Finally,
volatile handles are unrestricted, that is, a programmer has full control and is responsible for han-
dling consistency of cached copies, and so on. Handles can be transferred between nodes using
the SendHandle operation. They can be read and modified using the GetHandleObj and
SetHandleObj operations.

Shared object layer. This layer supports operations on objects that are shared between multi-
ple distributed nodes and accessed via handles from the global object pointer layer. Objects can
be copied using the RemoteCopyObj or RemoteCloneObj operations and migrated using the
RemotePushObj and RemotePullObj operations, where, in each case, the first version is
used by the sender and the second by the recipient. Depending on the handle type, certain oper-
ations might be prohibited for safety reasons, for example, RemoteCopyObj is prohibited on
read-write handles.

Figure 4. SumEuler in MPI-GAP.
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Distributed task layer. This layer supports the same task creation and management operations
as shared-memory GAP5, for example, CreateTask, RunTask and TaskResult. In addition,
it also supports explicit task placement using the SendTask operation. Task distribution between
nodes in MPI-GAP uses a random work stealing work stealing approach, which has been shown
to perform well in low-latency settings. Tasks that are not yet executed are kept in node-local task
pools. Each node apart from the master starts in the idle mode and requests work from another
randomly chosen node. If a node that has more than one task receives a message requesting work, it
offloads one of its tasks. This distributes tasks among the nodes on an as-needed basis.

3.1. SumEuler in MPI-GAP

Figure 4 shows the implementation of SumEuler in MPI-GAP. Line 1 declares a global function to
map the Euler totient function over a list of values and sum the results. In lines 2–11, we implement
this function, passing it a handle to a list of positive integers. We first open the handle (line 4),
in order to inform the reference-counting mechanism that the handle is in use by the current thread.
We then read the list that the handle points to (line 5). After applying the EulerPhi function to all of
the elements of the list, to produce a list of results resList (line 6), we close the handle (line 8) to
inform the reference-counting mechanism that the current thread has finished using the handle.

The main function, SumEuler (lines 12–35), is only called by a master GAP process (i.e. the GAP
instance that controls the execution). We first determine the sizes of the chunks of work that will be
sent to each worker GAP process (line 15) and initialise a list of tasks (line 16). For each worker
process, we create a handle to a list of positive integers (line 19), send the handle to the worker
process (line 20), migrate the actual list (line 21), create a task that calls the Euler function on the
handle (line 22) and finally send the task.

The program implements eager work distribution by explicitly assigning tasks to the processes.
After sending work to each worker process, the master process does its own chunk of work (line
26), and then fetches and sums the results of the tasks (lines 28–31).

4. THE DESIGN AND IMPLEMENTATION OF SYMGRIDPAR2

SymGridPar2 (SGP2) is middleware for coordinating large-scale task-parallel computations
distributed over many networked GAP instances. SymGridPar2 inherits its architecture, and specifi-
cally, its skeleton-based programming model, from SymGridPar [56]. The key new feature is the use
of HdpH (Haskell distributed parallel Haskell), a novel domain-specific language (DSL) for task-
parallel programming on large-scale networks, including HPC platforms. The SGP2 middleware
comprises three layers:

1. the HdpH DSL for parallel coordination, embedded into Haskell (Section 4.1);
2. a Haskell binding for GAP (Section 4.2); and
3. a set of algorithmic skeletons, written in HdpH and calling into GAP (Section 4.3).

Figure 5 illustrates the SGP2 architecture and its interaction with GAP. In the figure, the outer
dotted rectangles represent a host, possibly multi-core, and while two instances are shown, there
may be an arbitrary number. The solid rectangles represent operating system processes, and the
arrows represent communication.

The intention is that a GAP program invokes appropriate skeletons, essentially GAP functions
with parallel semantics, for example, parList([40..60], fibonacci) may create 21 tasks
to compute the Fibonacci function of the integers between 40 and 60. The GAP skeleton corresponds
to an HdpH skeleton that distributes the subproblems to multiple hosts where they are passed to
local GAP instances to be solved, and the solutions are returned to the caller.

As the GAP skeleton library has not yet been constructed, SGP2 applications are HdpH
programs. While this section presents some key Haskell code, it is intended to be comprehensible
without knowledge of Haskell. The skeletons generate tasks, which are distributed and executed by
the HdpH runtime; HdpH provides sophisticated distributed work stealing built on top of an MPI
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Figure 5. SymGridPar2 architecture.

Figure 6. Type signatures of a minimal HdpH API.

communication layer. Tasks will typically call GAP functions through the GAP binding. Each SGP2
instance can transparently coordinate a pool of several GAP4 or GAP5 servers running on the same
host. Communication between SGP2 and these GAP servers is via Unix IPC. SGP2 requires one
dedicated core per host, the remaining cores can be used by GAP servers. On an n-core host, one
SGP2 instance will typically coordinate n � 1 GAP4 instances or a single GAP5 instance running
n � 1 threads. To reduce memory bus contention on large Non-Uniform Memory Access (NUMA)
servers, it is also possible to coordinate several multi-threaded GAP5 instances, each bound to its
own NUMA region. Section 5.4 contains some example deployments.

4.1. Coordination DSL

SGP2 exposes parallel patterns to the programmer as algorithmic skeletons [15], implemented in
HdpH. HdpH is described in detail elsewhere [57, 58], and here, we discuss only the small part of
the API which users of the SGP2 skeleton library are exposed to, as outlined in Figure 6. As is cus-
tomary in functional programming languages, the HdpH DSL is embedded into the host language,
Haskell, by wrapping DSL computations in a special computation type. In HdpH, this is performed
by the Par type constructor, which forms a monad, the standard Haskell construct for effectful
computations. Almost all HdpH and SGP2 primitives create or transform Par computations; ulti-
mately, an SGP2 program is one large Par computation. The primitive runParIO takes such a
computation and executes it on the HdpH runtime system.

In HdpH, parallel computations return results asynchronously through futures. These are repre-
sented by the type constructor IVar. Futures are created by a number of skeletons as well as by
the GAP binding. A user may read the value stored in a future by calling the primitive get, which
blocks the caller until the value is available.
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As a distributed DSL, HdpH exposes locations (i.e. hosts) as values of type Node. SGP2
programs can query the current node and obtain a list of all nodes by calling the primitives
myNode and allNodes, respectively. Crucially, the API in Figure 6 does not list any primitives
for creating or distributing parallel tasks. This functionality is hidden in the skeletons discussed in
Section 4.3.

4.2. GAP binding

HdpH is a DSL for coordinating task-parallel computations. Ordinarily, HdpH tasks evaluate
function calls in Haskell. To coordinate computations in GAP, SGP2 has to provide a way to call
from HdpH into GAP. This is performed by providing a GAP binding, that is, a library of Haskell
functions to call GAP functions, including marshalling arguments from Haskell to GAP and results
from GAP to Haskell.

Additionally, the GAP binding also provides functions for starting and stopping GAP servers.
Each HdpH node can launch one or more GAP servers, running as independent operating system
processes on the same host as the HdpH node and communicating via pipes. The API distinguishes
between stateful GAP servers, each with a distinct identity, and stateless GAP servers, which are
anonymous and interchangeable.

4.2.1. Controlling stateful GAP servers. Figure 7 shows the HdpH API for controlling GAP
servers; primitives ending in ST are concerned with stateful servers. HdpH can start a GAP server
by calling startST, which expects information on how to call GAP and a list of GAP function
calls used to initialise the server. The primitive startST immediately returns a future that will
eventually provide a handle to the GAP server, once the server is up and running. The primitive

Figure 7. HdpH Primitives for controlling GAP servers.
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barrierST takes a server handle and blocks until the server is idle, that is, no longer busy execut-
ing a previous function call. Similarly, stopST blocks until the server is idle and then terminates
the server (after which the handle is void). Finally, the primitive callST posts a function call to
the given server. It blocks until the server is idle and then immediately returns a future that will
eventually yield either an error or the result of the call. GAP function calls (type GAPCall) are
simply strings. For convenience, they can be constructed by applying a GAP function name (type
GAPFunction) to a list of encoded GAP objects using the function mkGAPCallFuncList; the
encoding is discussed in Section 4.2.3.

Note that all primitives operate on stateful GAP servers running on the same host as the calling
HdpH node; calls to distributed stateful GAP servers are provided by the higher-level skeletons
discussed in Section 4.3. More precisely, any stateful GAP server can only be controlled by the
HdpH node that started it, as identified by the primitive atST, and a GAP handle is only valid on
the node indicated by atST.

4.2.2. Controlling stateless GAP servers. Many SGP2 applications interact with GAP in a stateless
fashion, that is, GAP calls are proper function calls that do not manipulate hidden state on the server.
For this case, HdpH offers primitives to coordinate a pool of stateless GAP servers.

The stateless primitives mirror the stateful ones (Figure 7). The start primitive takes the same
information about calling and initialising GAP. Of course, the GAP calls used to initialise a state-
less GAP server, like startST, change the system state, that is, are themselves stateful. The
start function takes an additional pool size argument and returns nothing. The choice of pool
size is critical for performance, for example, performance suffers if the pool size exceeds the num-
ber of physical cores. Because stateless servers are interchangeable, they can be anonymous, so
there is no need to return a handle. The primitives barrier and stop behave like their state-
ful counterparts, except that they block until the whole pool of servers is idle, and terminate the
whole pool.

The primitive call posts a function call to any stateless server. It blocks until a server is idle
and then immediately returns an IVar that will eventually yield either an error or the result of
the call. Note that the GAP function call is expected to be stateless in the sense that any side
effects on the GAP server do not affect subsequent calls. Violating this restriction may result in
unpredictable behaviour.

4.2.3. Marshalling data to and from GAP. Marshalling data between GAP and HdpH requires an
encoding and a Haskell representation of encoded GAP objects; the latter is provided by the data
type GAPObj. A GAPObj can represent the GAP constant Fail, GAP Booleans, GAP integers,
GAP rationals, lists of GAP objects, the empty GAP list [], GAP strings or opaque GAP objects;
opaque objects are all those that are not explicitly listed in the aforementioned enumeration. The
encoding assumes that GAP can print the object to be marshalled into a string that can be parsed
back later; objects that do not support this need to be explicitly serialised to a GAP string prior
to marshalling.

The bottom of Figure 7 displays the API for accessing GAPObjs. There are a number of func-
tions testing which GAP type the encoded GAPObj represents. And there are two overloaded
functions toGAP and fromGAP, defined on types instantiating class GAPEnc, for encoding to
and decoding from GAPObj. The Haskell types, which are instances of GAPEnc, are the standard
base types (), Bool, Integer and Rational, as well as ByteString (which encodes GAP
strings). Standard list, pair and Maybe data types can also be encoded, provided their components
are encodable.

Opaque GAP objects cannot be decoded and remain opaque as there is no instance of class
GAPEnc which they can be decoded to. This is justified because, as a coordination layer, SGP2
mainly needs to decode containers (lists or tuples) and numbers; other GAP objects are simply
passed as is from one GAP server to another.
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4.3. The SymGridPar2 programming model

SGP2 exposes parallel patterns to the programmer as algorithmic skeletons [15] where the com-
putations coordinated are GAP functions. Figure 8 lists some basic SGP2 skeletons for starting,
stopping and calling stateful and stateless GAP servers. These skeletons use the coordination
features of HdpH to extend the scope of the GAP binding in that they transparently control GAP
servers beyond the current node.

The startGAP skeleton initiates starting a stateful GAP server on a remote node (using the
primitive startST); it returns a future that will eventually, when the server is up and running,
yield a handle. The startGAPEverywhere skeleton starts pools of stateless GAP servers on all
nodes (using the primitive start). However, unlike startGAP, this skeleton blocks until all GAP
servers are up and running, and then returns nothing. The started GAP servers can be terminated
by stopGAP and stopGAPEverywhere; both skeletons block until the servers in question have
actually quit.

The pushGAPCall skeleton is a generalisation of the primitive callST for calling a stateful
GAP server on any node, transparently marshalling call and result across the network. The skeleton
returns a future, which will eventually hold the result of the call. In contrast, the parGAPCalls
skeleton is a generalisation of the call primitive for calling stateless GAP servers, handling both
lists of calls as well as balancing load between all GAP servers in the system (relying on HdpH ran-
dom work stealing). Unlike pushGAPCall, the parGAPCalls skeleton blocks and only returns
the list of results after the last result has come in; the skeleton will return the empty list if any of the
GAP calls failed.

4.3.1. SumEuler in SymGridPar2. Figure 9 shows the implementation of the SumEuler example in
SGP2. The parSumEuler starts a number of GAP servers before computing the sum of Euler’s
totients in parallel. The computation divides the input interval into smaller chunks and then pro-
ceeds by using the skeleton parGAPCalls, converting its results (GAPObjs encoding integers)
into Haskell integers, and summing up. Incidentally starting GAP servers may take several sec-
onds and hence is usually performed at the start of an application rather than immediately before
parGAPCalls as here.

The list of GAP calls passed to parGAPCalls consists of calls to the GAP function SumEuler,
the definition of which is passed to every GAP server during the start up phase coordinated by
startGAPEverywhere. In Haskell, this function definition is a literal string embedded into the
Haskell code. Alternatively, the definition can be read from a file.

Figure 8. Example SGP2 skeletons and GAP interface.
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Figure 9. SumEuler in SGP2.

4.4. Advanced features

The capabilities of SymGridPar2 described so far match largely those of SymGridPar. SGP2 goes
beyond SGP in its support for large architectures. Where SGP assumes a uniform communication
latency between any two cores, SGP2’s scheduling algorithm can take into account a non-uniform
hierarchy of latencies; such latency hierarchies are common in large compute clusters.

Abstract model of hierarchical distances. The coordination DSL HdpH exposes node-to-node
latencies abstractly to the programmer as distances in a metric space. More precisely, the distance
between nodes is a real-valued binary function satisfying the axioms of ultrametric spaces. As a
result, the programmer need not be concerned with actual latencies and can instead express task
scheduling constraints in terms of relative distances like here, close by or far away. We refer the
reader to [58] for more detail about ultrametric distances in HdpH.

Task scheduling HdpH offers two modes of work distribution: on-demand implicit task placement
and eager explicit task placement.

On-demand implicit task placement is realised by a distributed work stealing algorithm. Upon
creation, a task is stored in the creating node’s local task pool. Stored with the task is its radius,
as chosen by the programmer. The task radius is the maximum distance the task may travel away
from its originating node. HdpH’s work stealing algorithm is based on random stealing and has
two properties relating to radii: the task radius is a strict bound on the distance between victim and
thief; thieves prefer to steal tasks within small radii. The radius can be viewed as expressing a size
constraint on a task, where larger radii mean bigger tasks. Adopting this view, HdpH’s work stealing
algorithm prefers to keep small tasks near their originating nodes, similar to [59], in the hope of
minimising communication overheads related to work stealing.

Many basic SGP2 skeletons, for instance parGAPCalls, rely on HdpH work stealing, typically
without imposing constraints on work stealing distances; we refer to [4] for examples of SGP2
skeletons that make use of radii for bounding work stealing.
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On-demand random task placement performs well with irregular parallelism. However, it tends to
under-utilise large scale architectures at the beginning of the computation. To combat this drawback,
HdpH offers eager explicit task placement as a complementary placement mode. Explicit placement
ships tasks to selected nodes, where they are executed immediately, taking priority over any implic-
itly placed tasks. Eager execution implies that these tasks are meant to perform coordination, e. g.
create further tasks, rather than actual computation.

The downside of explicit placement is that the programmer has to select target nodes, which
may jeopardise portability. Fortunately, HdpH’s abstract ultrametric distances offer some help for
the purpose of flooding large architectures with work. More precisely, the HdpH runtime iden-
tifies an equidistant basis, that is, a maximal set of nodes such that any two basis nodes are
maximally far apart. At the beginning of a parallel computation, the programmer can explicitly
place large tasks at the basis nodes, where each will generate smaller tasks that can be stolen
quickly by nearby nodes; stealing may or may not be bounded, depending on the irregularity of the
small tasks.

SGP2 offers a number of skeletons implementing such a two-level task distribution, for example,
the parMap2Level and parMap2LevelRelaxed skeletons used in Section 5.3, and detailed
in [4].

Reliability. The coordination DSL HdpH is designed for transparent fault tolerance and [60]
presents an alternative work stealing scheduler that monitors nodes and pessimistically replicates
tasks that may have been lost to node failure. The fault tolerant work stealing is shown to have low
runtime overheads. The fault tolerance properties of HdpH are, however, not yet inherited by SGP2
because the current GAP binding is not fault tolerant.

5. PERFORMANCE EVALUATION

This section reports a performance and interworking evaluation of the HPC-GAP components. The
primary comparators are the SumEuler benchmark implementations from the preceding sections,
although we investigate some GAP5 concurrency overheads using microbenchmarks. We measure
strong scaling, that is, speedups and runtimes, for GAP5 on a multicore (Section 5.1), and for MPI-
GAP and SymGridPar2 (Sections 5.2 and 5.4) on Beowulf clusters. Only weak scaling is appropriate
for large architectures, and we measure SymGridPar2 on up to 32K cores of the HECToR HPC
(Section 5.3).

Section 5.2 demonstrates the interworking MPI-GAP and GAP4, and Section 5.4 demonstrates
the interworking SymGridPar2 with both GAP4 and GAP5.

5.1. GAP5 evaluation

We consider both the overheads on sequential programs introduced by managing concurrency in
GAP5 and demonstrate the performance gains that can be obtained through parallelisation.

5.1.1. Sources of concurrency overheads. GAP5 exposes essentially the same programming
language and libraries as GAP4, augmented with the task and region features described in Section 2.
However, supporting multithreading requires many, and often significant, changes even where the
functionality is unchanged. While these changes should be transparent to GAP programmers, they
affect the performance of purely sequential code. These performance differences can be attributed
to one or more of the following factors.

1. Whereas GAP4 has a sequential, generational, compacting garbage collector, GAP5 has a
concurrent, non-generational, non-compacting garbage collector. Depending on the workload,
either GAP4 or GAP5 can perform better; GAP4 where the generational collection wins out,
GAP5 where concurrent collection (with a sufficient number of processors) makes it faster.
Generational collection generally wins out when a program allocates a large number of short-
lived objects.
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2. Memory allocation in GAP4 occurs through a very fast bump allocator made possible by the
compacting garbage collector. Memory allocation in GAP5 is more complicated in that it has to
support concurrent allocation, which incurs a small, but non-zero, overhead. Most allocations
occur through the thread-local allocator, which is nearly as fast as the GAP4 bump allocator,
but larger chunks of memory cannot be handled this way and require that their allocation be
serialised.

3. To ensure memory safety, the GAP5 kernel code had to be instrumented with checks that no
GAP object is being accessed without the corresponding lock being held. Like bound checks
for arrays, this incurs an unavoidable overhead. While this instrumentation can be disabled if
speed is essential, it is generally assumed that users want these checks to be enabled when
running parallel code. The instrumentation is currently performed (almost) fully automatically
by a separate tool as part of the build process that performs dataflow analysis and attempts
to optimise the instrumentation (such as hoisting checks out of loops). This automated instru-
mentation can be manually overridden where the optimiser fails to correctly identify such
possibilities, though so far, we make very little use of that.

4. The current GAP5 implementation does not yet fully support GAP-to-C compilation for all
new features. As a result, some core GAP modules that are compiled in GAP4 are still being
interpreted in GAP5.

5. A few internal data structures of the GAP kernel had to be redesigned in order to make them
thread-safe. One example is the implementation of global variables in GAP, which required
non-trivial changes to ensure that multiple threads can access them concurrently, even where
they, and their contents, are immutable.

The overhead varies from program to program, and the combined effect of the concurrency over-
heads is that sequential code typically executes between 10% and 40% more slowly in GAP5 than
in GAP4, based on our observations with various synthetic benchmarks and existing GAP code.
Sections 5.1.3 and 5.3 report the overheads for specific programs, and it is reassuring to see that
the overheads fall as the parallel system scales. We also expect to be able to eliminate the remain-
ing avoidable overheads in the medium term. Nevertheless, our plans for GAP5 include a purely
sequential build option for code that cannot effectively exploit parallelism.

5.1.2. Quantifying concurrency overheads. The first GAP 5 concurrency overhead we investigate
is that of instrumenting the GAP5 kernel with guards against race conditions. We execute the

Figure 10. Microbenchmarks to measure GAP5 instrumentation overheads.
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Table I. GAP5 instrumentation runtime overheads.

GAP5 GAP5
(no checks) (checks) Overhead

benchmark_base 3.4 s 3.4 s 0%
benchmark_inc 12.8 s 13.7 s 7%
benchmark_index 50.7 s 66.5 s 31%

Figure 11. GAP5 SumEuler runtimes and speedups (multicore).

micro-benchmarks in Figure 10 with and without instrumentation, taking the median value over five
runs. All of the micro-benchmarks allocate only a small and fixed amount of memory and do not
access global variables, so neither garbage collection nor global variable access has a measurable
effect on their performance. Measurements in this section are performed on a 64-core machine with
AMD Opteron 6376 processors.

The results in Table I show that for benchmark_base there is almost no overhead for a basic
for loop. The benchmark_inc result shows that there is a small amount of overhead for
performing local variable increments. The benchmark_index result shows that there is around
a 33% overhead (after subtracting the time for the for loop) for performing increments on an array
element. In fact, there are no checks in the C code that performs local variable increments, so the
performance differences for benchmark_inc are probably due to other effects, such as changes
in memory locality as a side effect of instrumentation.

The overhead for benchmark_index is not surprising, because for each iteration, three checks
are performed. This is suboptimal as our tool inserts two checks for the assignment (one, before
checking that the length of the list is at least 1, and another, before performing the assignment)
where one would suffice. So the overhead could be reduced by a third.

Garbage collection overhead can vary greatly by workload. Allocating many short-lived objects
can result in an overhead of 30% or more; more typical for GAP applications is an overhead in the
range of 10%–20%. In cases where allocations of long-lived objects dominate, the GAP5 garbage
collector can also be faster than the GAP4 garbage collector, as it can parallelise its work, while the
GAP4 garbage collector gains little from its generational features.

5.1.3. SumEuler performance. We investigate the performance of the GAP5 version of SumEuler
outlined in Section 2.2 (page 3611). GAP’s standard implementation of Euler’s totient function relies
heavily on cache-based implementation of factorisation routines. This can have unpredictable effects
on performance, depending on how number ranges are being broken into chunks and how these
chunks are assigned to threads. In order to obtain reproducible results, we therefore use a cache-less
implementation of the totient function for this benchmark.
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Figure 11 shows the runtime and relative speedup of the GAP5 SumEuler up to 16 cores, taking
the median value of three successive runs. The sequential SumEuler runs in 16.5 s on GAP4, so
GAP5 (22.0 s) is 33% slower.

5.2. MPI-GAP evaluation

We investigate the performance of the MPI-GAP version of SumEuler outlined in Section 3.1
(page 3617). The evaluation was conducted on a 32-node Beowulf cluster, with each node having
8-core Intel Xeon E5504 2 GHz processor with 16 GB RAM. One node was designated as a master
node, and it distributes chunks of work to the slave nodes, who then execute them on a single-
threaded GAP4 instance. To exercise a cluster, the input is larger than that for a single GAP5 instance
in Section 5.1.3.

The runtime for a single-threaded GAP4 SumEuler computation is 211.7 s, and for the MPI-GAP
version on one node is 217.3 s. So the overhead incurred by the MPI-GAP on a single node is
approximately 3% for this benchmark. The MPI-GAP runtime on 32-nodes is 9.9 s. These runtimes
are reflected in the speedup graph in Figure 12, which shows near-linear speedups up to a maximum
of 22 on 32 cores.

5.3. SGP2 evaluation

We investigate the performance of the SymGridPar2 version of SumEuler outlined in Section 4.3.1
(page 16) on the HECToR supercomputer. At the time (2013), HECToR was the UK’s largest pub-
lic HPC with approximately 90 000 cores [61]. Figure 13 studies weak scaling of two variants of
the SumEuler benchmark from 1 to 1024 HECToR nodes (i.e. 32 to 32K cores). The two variants
differ only in their use of the underlying skeleton: One uses parMap2Level, and the other uses
parMap2LevelRelaxed both outlined in Section 4.4.

Figure 12. MPIGAP SumEuler speedups (Beowulf cluster).

Figure 13. SymGridPar2 SumEuler runtimes and efficiency (weak scaling on HECToR HPC).

© 2016 The Authors. Concurrency and Computation:
Practice and Experience Published by John Wiley & Sons Ltd.

Concurrency Computat.: Pract. Exper. 2016; 28:3606–3636
DOI: 10.1002/cpe



HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 3627

The benchmarks start with an input interval of 6.25 million integers on 32 cores, doubling the size
of the interval as the number of cores doubles, so that on 32K cores, for example, the interval is 6.4
billion integers long. Doubling the size of the input interval increases the amount of work by more
than a factor of 2; by sampling the sequential runtime of small subintervals, we estimate a runtime
curve for ideal scaling.

The runtime graphs in Figure 13 show that the two benchmarks do not scale perfectly. However,
even on 32K cores, their runtimes are still within 50% of the ideal. Efficiency is calculated with
respect to the estimated ideal scaling, and the curves show that efficiency declines steadily, yet
remains above 70% even on 32K cores. These graphs also show that the parMap2LevelRelaxed
skeleton offers a small efficiency advantage (of 3–4%) over parMap2Level. This is probably
because parMap2LevelRelaxed copes better with the irregularity of the benchmark in the final
stages of the computation, because unlike parMap2Level, it can utilise nodes that have run out
of work early.

5.4. HPC-GAP interworking

Section 5.2 demonstrated MPI-GAP coordinating single-threaded GAP4 servers, and this section
focuses on the performance implications of SymGridPar2 coordinating GAP4 (version 4.7.6)
and multi-threaded GAP5 (version alpha_2015_01_24) servers. We investigate the speedup
of SumEuler on the interval Œ1; 108� on a Beowulf cluster with 256 cores, distributed over 16
nodes (Intel Xeon CPUs, 2 GHz, 64 GB RAM per node). The input interval is subdivided evenly
into subintervals, and the SGP2 instances distribute the resulting SGP2 tasks by work steal-
ing. When co-ordinating GAP4, each SGP2 instance further subdivides the current task interval
and distributes calls to function SumEulerSeq (Figure 1) to 15 single-threaded GAP4 servers.
When co-ordinating GAP5, each SGP2 instance calls a single GAP5 server (running on 15 cores)
which in turn subdivides the interval and uses the GAP5 RunTask primitive to evaluate calls to
SumEulerSeq on subintervals in parallel.

Table II records optimal values for the numbers of SGP2 tasks, GAP calls per SGP2 task and
GAP tasks per GAP call. These optima are determined by exhaustive experiment. The table also
reports sequential runtimes for GAP4 and GAP5, from which the average runtime of a GAP task,
that is, mean time to compute SumEulerSeq, is derived. Given the discussion of GAP5 overheads
in Section 5.1, it is unsurprising that the sequential GAP5 runtime is 24% greater than for GAP4.

Table II. SGP2 with GAP4/GAP5 optimal configurations and runtimes.

Seq. SGP2 GAP calls per GAP tasks per Mean GAP
runtime tasks SGP2 task GAP call task runtime

SGP2/GAP4 2160.0 s 320 15 1 450 ms
SGP2/GAP5 2836.1 s 400 1 300 24 ms

Figure 14. SGP2 with GAP4 and GAP5 SumEuler runtimes (Beowulf).
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Figure 15. SGP2 with GAP4 and GAP5 SumEuler speedups (Beowulf).

Figures 14 and 15 show log/log plots of runtime and absolute speedup for SGP2/GAP4 and
SGP2/GAP5. The numbers of SGP2 tasks, GAP calls and GAP tasks are fixed to the optimal values
from Table II, and the runtime data is the median over 11 runs. We find that variance, measured as
standard error, is consistently between 1% and 2%.

Figure 14 shows that while SGP2/GAP4 has consistently lower runtime, the advantage falls from
about 24% on one core to 6% on one node to only about 2% on 16 nodes. The absolute speedups
in Figure 15 are computed with respect to the sequential runtime of the respective GAP version.
The curves show that both systems scale similarly, yet the speedup of SGP2/GAP5 is consistently
about 25% greater than for SGP2/GAP4. On 1 node, SGP2/GAP5 achieves an absolute speedup of
11.5, corresponding to 76% efficiency: ideal speedup is 15 because only 15 cores are available to
GAP while the 16th core is dedicated to SGP2. On 16 nodes, SGP2/GAP5 efficiency drops to 71%,
corresponding to a speedup of 170.

Symbolic computations are memory hungry, and on large shared-memory architectures,
SGP2/GAP5 can use a small number of GAP processes (possibly just one), where SGP2/GAP4
must use as many GAP4 processes as there are cores. Sampling memory residency for SumEuler
(using Unix tools like ps) consistently shows a total per-node residency of SGP2/GAP4 (i.e.
15 GAP4 processes plus 1 SGP2 process) of about 2 GB. In contrast, the residency of SGP2/GAP5
(one GAP5 process plus one SGP2 process) is only 240 MB, or approximately 1/8th of the residency
of SGP2/GAP4.

In conclusion, SGP2/GAP5 is able to almost entirely eliminate the GAP5 overheads by achiev-
ing better speedups even on mid-scale parallel architectures. While we have not been able to
demonstrate SGP2/GAP 5 outperforming SGP2/GAP4, we anticipate this may happen on larger
architectures. A second advantage of SGP2/GAP5 over SGP2/GAP4 is greatly reduced memory
residency on large shared-memory architectures.

6. CASE STUDIES

We present two case studies to demonstrate the capability of the HPC-GAP components to deliver
good parallel performance for typically irregular algebraic computations on both NUMA and HPC
architectures.

6.1. Orbits in GAP5

Enumerating an orbit is a typical algebraic computation and can be described as follows.

Definition 1 (Orbit of an element)
Let X be a set of points, G a set of generators, f W X � G ! X a function (where f .x; g/ will be
denoted by x � g) and x0 2 X a point in X . The orbit of x0, denoted by OG.x0/, is the smallest set
T � X such that
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Figure 16. Sequential Orbit pseudocode.

1. x0 2 T
2. for all y 2 T and all g 2 G we have y � g 2 T .

Often the set X can be very large and is not given a priori.
The sequential orbit algorithm in Figure 16 maintains a hash table T of orbit points discovered

so far and a list U of unprocessed points. The hash table facilitates a fast duplicate test (line 6).
Initially both T and U contain only x0, and thereafter, we iterate, in each step removing the first
point x from U , applying all generators g 2 G to x and adding any new points to both T and U .
The computation terminates when there are no unprocessed points (line 2).

As an example of how the algorithm works, let X D ¹1; 2; 3; 4; 5º, x0 D 2, G D ¹g1; g2º and f
be given by the following table:

x 1 2 3 4 5

x � g1 1 3 2 4 5
x � g2 5 2 4 3 1

The following table shows the steps in evaluating the orbit T of x0:

Step 1 2 3 4
T ¹2º ¹2; 3º ¹2; 3; 4º ¹2; 3; 4º

U Œ2� Œ3� Œ4� ;

6.1.1. The parallel orbit skeleton. At first glance, it may seem that the sequential Orbit algorithm
can be parallelised by carrying out step 5 for all generators and all points in U independently. How-
ever, synchronisation is required to avoid duplicates (steps 6–8), and this requires communication
among the tasks that apply generators to different elements of U .

Our Parallel Orbit skeleton uses two different kinds of threads:

� Hash server threads, which use hash tables to determine which points are duplicates, and
� Worker threads that obtain chunks of points from hash servers and apply generators to them,

so producing new points.

This means that we have explicit two-way communication between each hash server and each
worker, but no communication between different hash servers or different workers. Where there are
multiple hash servers, we use a distribution hash function to decide which hash server is responsible
for storing each point. Figures 17 and 18 show the pseudocode for a worker thread and a hash server
thread, respectively. Initially, all hash servers and input queues are empty, and all workers are idle.
We first feed a single point into one of the hash servers, which immediately creates some work.
This hash server then sends this work to a worker which, in turn, produces more points that are
then sent to the corresponding hash servers, bootstrapping the computation. The number of points
in the system increases and, eventually, all input queues become completely full, and the system
as a whole becomes busy. Towards the end of the computation, fewer new points are discovered.
Eventually, all generators will have been applied to all points and the computation terminates. Now,
all workers are idle again and the hash servers collectively know all the points in the orbit. In our
GAP implementation, we maintain one channel for the input queue of each hash server. Any worker
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Figure 17. Parallel Orbit worker pseudocode.

Figure 18. Parallel Orbit hash server pseudocode.

can write to any of these channels. We also maintain a single shared channel for the work queue.
Because of the chunking mechanism, this is not a bottleneck.

6.1.2. Performance results. This section presents a preliminary evaluation of our Parallel Orbit
skeleton on a shared-memory machine consisting of four AMD Opteron 6376 processors, each
comprising 16 cores (giving us a 64-core system). Each core runs at 1.4 GHz and has 16 Kb of pri-
vate L1 data cache. In addition, each processor has 8�64 Kb of L1 instruction caches and 8�2 Mb
of L2 caches (shared between two cores) and 2�8 Mb of L3 caches (shared between eight cores).
As an instance of an Orbit enumeration, we consider the sporadic finite simple Harada-Norton
group in its 760-dimensional representation over the field with two elements, acting on vectors.
The set X of all possible points consists of about 10228 elements. The size of the orbit is 1.4 mil-
lion points, and we are using ten random generators. On each figure, we consider mean speedups
over five runs of the same instance. We have also added error bars in the cases where error margin
was notable.

The sequential runtime of this orbit calculation on our test machine was 250 s. Additional exper-
iments with larger instances and a sequential runtime of 1514 s produced similar runtimes and
speedups. Figure 19 shows the absolute speedups over the sequential Orbit algorithm that we have
obtained with 1 to 4 hash server threads, and 1 to 32 worker threads. We can observe good speedups,
up to 23 with four hash servers and 28 worker threads (so, using 32 cores in total). We can also
observe that about seven workers produce enough points to fully load one hash server. Also, for a
fixed number of hash servers h, the speedups grow almost linearly with the increase in the number
of workers. Once the number of workers reaches 7h, we do not observe further increase in speedups.
Note further that, on our testbed, it is not possible to obtain linear speedups, because of frequency
scaling of cores when multiple cores are used at the same time. Therefore, the figure also shows the
ideal speedups that could be obtained. The ideal speedup on n cores was estimated by taking the
runtime of the sequential Orbit algorithm in one thread‡ and then dividing it by n. We obtain similar
results on other shared-memory architectures [5].

‡With n� 1 parallel threads executing a dummy spin locking function that does not use any memory, to scale down the
frequency.
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Figure 19. GAP5 Harada-Norton Orbit speedups (NUMA).

Figure 20. GAP5 Harada-Norton Orbit speedups with seven or eight hash servers (NUMA).

To test the scalability further, Figure 20 shows the speedups obtained on the same machine with
seven and eight hash servers, and up to 57 workers, therefore using all 64 cores in the system. The
speedups steadily increase in both cases from 18 to 35 (with seven hash servers) and 36 (with eight
hash servers). The fact that the speedup obtained is suboptimal can be attributed both to the problem
itself, because in these cases, the bootstrapping and finishing phases (where not enough points are
available to utilise all workers) become dominant, and to the hardware, because there are only 16
memory channels, which limits the memory access when more hash servers and workers are used.

6.2. Hecke algebras in SGP2

SGP2 has been used to compute matrices of invariant bilinear forms in the representation theory
of Hecke algebras. In the following, we will only sketch this case study and present the main per-
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formance results; the reader is referred to [6] for a detailed report and to [62] for background on
the problem.

6.2.1. Problem: finding invariant bilinear forms. We consider Hecke algebras H of exceptional
type Em (m D 6; 7; 8), generated by m generators T1; : : : ; Tm.

An n-dimensional representation � of H is an R-algebra homomorphism from H to Mn.R/, the
R-algebra of n�nmatrices overR D ZŒx; x�1�, the ring of Laurent polynomials in indeterminate x.
Being a homomorphism, � is uniquely determined by the images of the generators T1; : : : ; Tm. Thus,
each n-dimensional representation � can be succinctly expressed by n�nmatrices �.T1/; : : : ; �.Tm/
of polynomials; in a slight abuse of terminology, we call the �.Ti / generators.

For any given �, there exists a non-trivial symmetric matrix Q 2Mn.R/ such that

Q � �.Ti / D �.Ti /
T �Q (1)

for all generators �.Ti /. We callQ the matrix of an invariant bilinear form. It suffices to computeQ
for so-called cell representations �, of which there are only finitely many. Depending on �, finding
the invariant bilinear formQ may require substantial computation. The table below lists the number
of cell representations �, the range of dimensions of � and the range of degree bounds of Laurent
polynomials in Q. These numbers, and hence, the difficulty of the problem, vary by several orders
of magnitude reflecting the extreme irregularity of symbolic computations.

Hecke algebra type E6 E7 E8
Cell representations 25 60 112
Dimension of reps 6–90 7–512 8–7168
Degree of Laurent polys 29–54 45–95 65–185

6.2.2. Sequential algorithm. In principle, Q can be computed by viewing Equation (1) as a system
of linear equations and solving for the entries ofQ. However, solving linear systems over ZŒx; x�1�
is too expensive to obtain solutions for high dimensional representations. Instead, we solve the
problem by interpolation. We view each entry ofQ as a Laurent polynomial with u� lC1 unknown
coefficients, where l and u are the lower and upper degree bounds of polynomials in Q. Solving
Equation (1) at u � l C 1 data points will provide enough information to compute the unknown
coefficients by solving linear systems over the rationals instead of ZŒx; x�1�. To avoid computing
with very large rational numbers (because of polynomials of high degree), we solve homomorphic
images of Equation (1) modulo small primes and use the Chinese Remainder Theorem to recover the
rational values. The algorithm takes as input m generators �.Ti / of dimension n, lower and upper
degree bounds l and u and a finite set of small primes P . From the degree bounds, we construct a
set Vlu of u � l C 1 small integers to be used as data points for interpolation.

The algorithm runs in three phases:

1. For all p 2 P and v 2 Vlu, GENERATE a modular interpolated solution Qvp of (1) by
instantiating the unknown x with v and solving the resulting system modulo p.

2. REDUCE the modular matrices Qvp to a matrix of Laurent polynomials Q as follows. First,
for all v 2 Vlu, construct a rational interpolated solution Qv of (1) by Chinese remaindering.
Second, construct each Laurent polynomial qij in Q by gathering the .i; j /-entries of all Qv
and solving a rational linear system for the coefficients qij . BecauseQ is symmetric, there are
.nC 1/n=2 such systems, each of dimension u � l C 1.

3. For all generators �.Ti /, CHECK that the resulting Q satisfies (1) over ZŒx; x�1�.

The theory of Hecke algebras admits a particularly efficient way to GENERATE Qvp . Instead of
solving a linear system, the rows of Qvp can be computed by spinning a basis (i.e. multiplying a
basis vector with certain matrix products).

6.2.3. Parallel algorithm. Each of the three phases of the sequential algorithm to compute Q con-
tains significant amounts of parallelism. Figure 21 shows the parallel structure, where n is the
dimension of Q and the m generators �.Ti /, l and u are lower and upper degree bounds of the
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Laurent polynomials and P is the set of primes used in the GENERATE phase. Note that there is a
sequential duplicate filtering phase at the beginning of the REDUCE phase.

6.2.4. Evaluation. A systematic evaluation of the SymGridPar2 implementation on all cell repre-
sentations of E6, E7 and the smallest 16 representations of E8 is reported in [6]. Here, we present
performance results for E8 on two different architectures: a 48 core NUMA server (Cantor), and
1024 cores (distributed over 32 nodes) of the HECToR supercomputer [61].

Runtime. Figure 22 plots the runtime of SGP2 with 40 GAP workers on Cantor. It also plots the
total work, that is, the cumulative runtime of all tasks, and the time spent in the sequential part of the
REDUCE phase. The reported times reflect single experiments as a statistically significant number of
repetitions would be prohibitively expensive. We observe that the amount of (total and sequential)
work and the parallel runtime appear to be correlated, yet oscillate noisily between representations.
This is due to the high degree of irregularity in the number of REDUCE tasks.

Speedup. Figure 23 plots the estimated speedup, computed as total work divided by parallel run-
time, on Cantor and on two configurations of HECToR (for representations 11 to 15). On Cantor,
speedups stabilise just below 40, which is the maximum expected with 40 GAP workers. With

Figure 21. Structure of parallel algorithm for computing Q.

Figure 22. SymGridPar2 computing Hecke algebra Q runtimes (NUMA and HPC).

Figure 23. SymGridPar2 computing Hecke algebra Q speedups (NUMA and HPC).
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HECToR’s 4 node configuration (128 cores, running 115 GAP workers), SGP2 achieves speedups
of around 80; yet with the 32 node configuration (1024 cores, 992 GAP workers), speedup hovers
around 160; representation 11 is the exception achieving a speedup of 548.

7. CONCLUSION

We have provided a systematic description of HPC-GAP, a thorough re-engineering of the GAP
computational algebra system for the 21st Century, which incorporates mechanisms to deal with
parallelism at the multicore, distributed cluster and HPC levels. At the GAP5 base level, this has
involved major work to remove single-threaded assumptions in the runtime system and libraries.
We have developed MPIGAP to exploit ubiquitous small clusters and designed and implemented
a highly sophisticated coordination system for HPC systems, SymGridPar2, which uses parallel
Haskell to coordinate large-scale GAP computations. The result is the most advanced, free and open
source, computational algebra system currently in existence.

We evaluate the scalability and performance of the HPC-GAP components using a common
SumEuler benchmark on a range of systems from small-scale multicores to HPC platforms. Key
results include showing that while the GAP5 concurrency overheads are typically between 10%
and 40% (Section 5.1); these overheads are almost completely ameliorated on medium-scale archi-
tectures (Section 5.4); we demonstrate good weak scaling to 32K cores on the HECToR HPC
(Section 5.3). The Orbit and Hecke Algebra case studies convincingly demonstrate the capability of
HPC-GAP to manage large and highly irregular algebraic computations, for example, achieving a
maximum speedup of 548 using 992 GAP instances on 1024 cores of the HECToR HPC (Section 6).
The datasets for these experiments are available in [2].

There is enormous potential for further exploitation of this work. GAP5 is gaining widespread
adoption in the algebraic computation community. We are exploring alternate parallelism options
for GAP, like a PGAS model with UPC-GAP. Moreover, reliability is increasingly an issue at HPC
scale, and here, the statelessness of many algebraic computations means failed computations can be
safely recomputed. The HdpH-RS extension tracks the location of computations and reinstates any
that may have failed [60, 63].
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