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Abstract

Symbolic computation is an important area of both Mathematics and Computer Science,
with many large computations that would benefit from parallel execution. Symbolic
computations are, however, challenging to parallelise as they have complex data and
control structures, and both dynamic and highly irregular parallelism. The SymGridPar
framework (SGP) has been developed to address these challenges on small-scale parallel
architectures. However the multicore revolution means that the number of cores and
the number of failures are growing exponentially, and that the communication topology
is becoming increasingly complex. Hence an improved parallel symbolic computation
framework is required.

This paper presents the design and initial evaluation of SymGridPar2 (SGP2), a
successor to SymGridPar that is designed to provide scalability onto 105 cores, and
hence also provide fault tolerance. We present the SGP2 design goals, principles and
architecture. We describe how scalability is achieved using layering and by allowing the
programmer to control task placement. We outline how fault tolerance is provided by
supervising remote computations, and outline higher-level fault tolerance abstractions.

We describe the SGP2 implementation status and development plans. We report the
scalability and efficiency, including weak scaling to about 32,000 cores, and investigate
the overheads of tolerating faults for simple symbolic computations.

Keywords: parallel functional programming, locality control, fault tolerance

1. Introduction

Symbolic computation has underpinned key advances in Mathematics and Computer Sci-
ence, for example in number theory, cryptography, and coding theory. Many symbolic
problems are large, and the algorithms often exhibit a high degree of parallelism. How-
ever, parallelising symbolic computations poses challenges, as symbolic algorithms tend
to employ complex data and control structures. Moreover, the parallelism is often both
dynamically generated and highly irregular, e. g. the number and sizes of subtasks may
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vary by several orders of magnitude. The SCIEnce project developed SymGridPar [23]
as a standard framework for executing symbolic computations on small-scale parallel
architectures (Section 2). SymGridPar uses OpenMath [32] as a lingua franca for com-
municating mathematical data structures, and dynamic load management for handling
dynamic and irregular parallelism.

SymGridPar (SGP) is not, however, designed for parallel architectures with large
numbers of cores. The multicore revolution is driving the number of cores along an
exponential curve, but interconnection technology does not scale that fast. Hence many
anticipate that processor architectures will have ever deeper memory hierarchies, with
memory access latencies varying by several orders of magnitude. The expectation is
similar for large scale computing systems, where an increasing number of cores will lead
to deeper interconnection networks, with relatively high communication latency between
distant cores. Related to the exponential growth in the number of cores is a predicted
exponential growth in core failures, as core reliability will remain constant, at best.
These trends exacerbate the challenges of exploiting large scale architectures because
they require the programmer to pay attention to locality and to guard against failures.

This paper presents the design and initial evaluation of SymGridPar2 (SGP2), a
successor to SymGridPar that is designed to scale onto 105 cores by providing the pro-
grammer with high-level abstractions for locality control and fault tolerance. SGP2 is
being developed as part of the UK EPSRC HPC-GAP project, which aims to scale the
GAP computer algebra system to large scale clusters and HPC architectures.

The remainder of the paper is organised as follows. Section 2 surveys related work
on parallel symbolic computation. Section 3 presents the SGP2 design goals, principles
and architecture. A key implementation design decision is to coordinate the parallel
computations in HdpH, a scalable fault tolerant domain specific language (Section 3.2).

We describe how scalability is achieved using layering and by allowing the program-
mer to control task placement on a distance-based abstraction of the communication
topology of large architectures (Section 4). We outline how fault tolerance is provided
by supervising remote computations. A fault tolerance API is presented, and we sketch
higher-level fault tolerance abstractions, namely supervised skeletons (Section 5).

SGP2 is still under development, and we outline the current implementation and give
preliminary scalability and fault tolerance results. Specifically, we investigate the scala-
bility and efficiency of a layered task placement strategy on approximately 32,000 cores
of an HPC architecture (Section 6.2), and we evaluate the overheads of a fault tolerant
skeleton on a Beowulf cluster, both in the presence and absence of faults (Section 6.3).

This paper is an extension of a paper [27] presented at the 2013 ACM Symposium
on Applied Computing (SAC’13). It goes beyond the conference version in the following
ways. It provides more detail on topology-aware work stealing in Section 4 and a more
extensive discussion of SGP2 fault tolerance in Section 5, including a new fault tolerance
work stealing protocol. Section 6 also presents new experimental results, including a
demonstration of weak scaling of an SGP2 prototype up to 32K cores.

2. Related Work

2.1. Symbolic Computation and GAP

Symbolic Computation has played an important role in a number of notable mathemat-
ical developments, for example in the classification of finite simple groups. It is essential
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in several areas of mathematics which apply to computer science, such as formal lan-
guages, coding theory, or cryptography. Computational Algebra (CA) is an important
class of Symbolic Computation (SC) where applications are typically characterised by
complex and expensive computations that would benefit from parallel computation. Ap-
plication developers are typically mathematicians or other domain experts, who may
not possess parallel expertise or have the time/inclination to learn complicated parallel
systems interfaces.

There are several Computational Algebra Systems (CAS) that often specialise in some
mathematical area, for example Maple [7], Kant [11], or GAP [14]. GAP is a free-to-use,
open source system for computational discrete algebra, which focuses on computational
group theory. It provides a high-level domain-specific programming language, a library of
algebraic functions, and libraries of common algebraic objects. GAP is used in research
and teaching for studying groups and their representations, rings, vector spaces, algebras,
and combinatorial structures.

2.2. Orchestrating CAS with SCSCP

The Symbolic Computation Software Composability Protocol (SCSCP) is a lightweight
protocol for orchestrating CAS developed in the SCIEnce project [23]. In essence the
protocol allows a CAS to make a remote procedure call to another CAS. Hence SCSCP
compliant CAS may be combined to solve scientific problems that cannot be solved within
a single CAS, or may be orchestrated for parallelism.

In SCSCP both data and instructions are represented as OpenMath objects. Open-
Math is a standard markup language for specifying the meaning of mathematical formu-
lae [32]. SCSCP has become a de facto standard, with implementations for 9 CAS and
libraries for several languages including Java, C++, and Haskell [23].

2.3. Parallel Symbolic Computation

Some discrete mathematical problems, especially in number theory, exhibit trivial par-
allelism, where they can be partitioned into relatively large, totally independent pieces
of predictable size. Mathematicians have for many years parallelised these computa-
tions by running different pieces on different computers. In extreme cases, the primitive
steps are so simple and independent that they are amenable to internet-wide distributed
computation as in the “Great Internet Mersenne Prime Search”, which recently found a
record-breaking prime number, with 12,978,189 digits.

Numerous authors have developed parallel algorithms and implementations of a va-
riety of mathematical computations, and even developed general frameworks intended
to simplify parallel programming for mathematical users e. g. [30, 20, 39]. Of particular
relevance is the ParGAP system [9], which provided bindings to the MPI library in the
GAP language. Most of these systems were specific to now obsolete hardware, and none
has achieved wide usage.

In the recent SCIEnce project, a European consortium have investigated parallelising
a range of algebraic computations in a Grid context. The consortium designed and
exploited the general-purpose skeleton-based SymGridPar framework outlined in the
next section.

These, and other experiences, show that parallel algebraic computations pose addi-
tional and specific problems, as follows. Parallel algebraic computations exhibit high
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Figure 1: SymGridPar and SymGridPar2 Architecture.

degrees of irregularity, with varying numbers and sizes of tasks. Some computations
have both multiple levels of irregularity, and enormous (5 orders of magnitude) variation
in task sizes [3]. They use complex user-defined data structures. They have complex
control flows, often exploiting recursion. They make little, if any, use of floating-point
operations.

This combination of irregularity, recursive structure and limited use of floating-point
operations imply that computational algebra problems are unsuitable for relatively in-
flexible HPC acceleration techniques like vectorisation or FPGAs, rather they must use
architectures based on general-purpose cores.

Moreover, explicit parallel paradigms are unlikely to deal effectively with the highly
irregular computation structure, and this motivates our decision to develop a scheduling
and management framework.

2.4. The SymGridPar Framework

The SymGridPar middleware [23] orchestrates sequential SCSCP-compliant CAS into a
parallel application. SymGridPar has been designed to achieve a high degree of flexibil-
ity in constructing a platform for high-performance, distributed symbolic computation,
including multiple CAS. Although designed for distributed memory architectures, it also
delivers good performance on shared memory architectures [2].

The SymGridPar architecture is shown in Figure 1, and has three main components.

The Client. The end user works in his/her own familiar programming environment, so
avoiding the need to learn a new CAS, or a new language to exploit parallelism. The
coordination layer is almost completely hidden from the CAS end user: they work exactly
as they would with the CAS apart from calling some algorithmic skeletons to introduce
parallelism [8]. This set of skeletons are the CAG interface to the coordination server.
Some CAG skeletons are generic, e. g. a parMap applies a function to every element
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of a list in parallel. Other skeletons are specific to the CA domain, e. g. a multiple
homomorphic image skeleton solves each image in parallel.

The Coordination Server. This middleware provides parallelised services and parallel
skeleton implementations. The skeleton implementations delegate work (usually calls to
expensive computational algebra routines) to the Computation Server, via the GCA in-
terface. The core of GCA are SCSCP remote procedure calls to SCSCP-compliant CAS
instances. Currently the Coordination Server is implemented in Eden [24], a parallel
Haskell dialect, allowing the user to exploit dynamic load management, polymorphism,
and higher order functions for the effective implementation of high-performance paral-
lelism.

The Computation Server. This component is a parallel machine with one or more CAS
instances. For example a Beowulf cluster of 16 core nodes, and 16 instances of GAP on
each node. Each server handles the requests that are sent to it, and returns the results
to the coordination server. Finally, the coordination server may combine the results for
returning to the client.

2.5. A Critique of SymGridPar for Impending Architectures

The multicore revolution is leading to the number of cores in commodity architectures
growing exponentially. Many expect 100,000 core platforms to become commonplace.
The data centre and High Performance Computing (HPC) communities already operate
at this scale, and beyond. Indeed some mathematicians have access to architectures at
this scale. Many more mathematicians have access to ubiquitous commodity clusters,
e. g. university compute servers. While currently a typical cluster might have a few
thousand cores, the exponential growth in cores will soon see this class of architecture
reach a 100 000 core scale. Hence parallel systems must be designed for far greater scale
than previously.

Moreover, hardware failures on architectures with 100 000 cores are relatively com-
mon, even hourly [5]. For example data centres operating at this scale require software
frameworks like Hadoop or Google MapReduce that provide mechanisms for automat-
ically recovering from faults [13]. So software designed for parallel systems need to be
both scalable and fault tolerant.

SymGridPar has been evaluated on a range of architectures including a 32-node Be-
owulf cluster [3] using benchmarks similar to the ones reported in Section 6. Although
SymGridPar achieved speedups up to 30 on the 32-core cluster it was never designed
to scale to thousands of cores, let alone hundreds of thousands. Specifically its load
management is unlikely to scale beyond a few hundred cores, nor does it provide any
abstractions for controlling locality or tolerating failures. In part, these deficiencies are
down to the SGP Coordination Server being implemented in Eden, which provides nei-
ther fault tolerance nor the locality control required by large architectures. The design
presented in the following sections addresses these shortcomings.

3. SGP2 Architecture

3.1. SGP2 Design Goals and Principles

SymGridPar2 (SGP2) is designed as a successor to SymGridPar that shall meet the
following four design goals.
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1. Scale symbolic computation to architectures with 105 cores.

2. Topology awareness to cope with increasingly non-uniform communication topolo-
gies implied by scaling to 105 cores.

3. Fault tolerance to cope with increasingly frequent component failures implied by
scaling to 105 cores.

4. Preserve the user experience of SGP, specifically the high-level skeleton API. That
is, to the CAS user SGP2 will look like SGP, apart from a few new skeleton pa-
rameters for tuning locality control and/or fault tolerance.

Orthogonal to the above four design goals, SGP2 aims to embody the following design
principles. First, the design of SGP2 is layered. That is, the most high-level abstrac-
tions, e. g. topology aware fault tolerant skeletons, are implemented in terms of simpler
abstractions, e. g. plain skeletons, and simpler primitives.

Second, to support dynamic and irregular parallelism, task placement in SGP2 should
avoid explicit choice wherever possible. Instead, choice should be semi-explicit, i. e. the
programmer decides which tasks are suitable for parallel execution and possibly at what
distance from the current processing element (PE) they should be executed. However,
the actual decisions where to schedule work should be taken at runtime by the system
rather than by the programmer.

3.2. SGP2 Architecture and HdpH

SGP2 retains the component architecture of SGP, as depicted in Figure 1, but pro-
vides a scalable fault tolerant Coordination Server component. The key implementation
design decision is to realise the Coordination Server using the HdpH domain specific
language (DSL) [28], designed to deliver scalable fault tolerant symbolic computation.
HdpH (Haskell distributed-parallel Haskell) is a shallowly embedded parallel extension
of Haskell that supports high-level semi-explicit parallelism on distributed-memory ar-
chitectures. As suggested by the first “Haskell” in its name, HdpH is implemented in
Haskell (with GHC extensions). Relying solely on the widely available GHC rather than
requiring a bespoke low-level parallel runtime system makes HdpH portable and aids
maintainability.

HdpH extends the Par monad DSL [29] for shared-memory parallelism to distributed
memory. Figure 2 lists the HdpH primitives in so far as they are relevant for this paper.

HdpH focuses on task parallelism. A task computing a value of type a is an expression
of type Closure (Par (Closure a)), i. e. a serialisable monadic computation that will
deliver a serialisable value of type a. HdpH offers two modes of task distribution. The
spawnAt primitive eagerly places a task on a named PE, where it is immediately executed.
The spawn primitive, in contrast, places the task into a local task pool, from where it may
be selected for execution by the current PE or stolen by other PEs looking for work; thus
spawn provides on-demand (lazy) implicit task placement via distributed work stealing.
Note that work stealing migrates tasks only prior to execution; tasks that have been
selected for execution remain committed to the executing PE.

Both spawn and spawnAt immediately return a future [17] of type IVar (Closure a)

to the caller. Such a future is a write-once buffer (also known as an IVar) expecting the
result of the task, an explicit closure of type a. A future can only be read by get, which
will block until the closure is available, and tested by probe, which will indicate whether
get would block. Futures are tied to the task that created them (by spawn or spawnAt);
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-- Par monad

type Par a -- monadic computation returning type ’a’

eval :: a → Par a -- strict evaluation in the Par monad

-- distribution of tasks via explicit closures

type Task a = Closure (Par (Closure a))

type Closure a -- explicit closure of type ’a’, serialisable

spawn :: Task a → Par (Future a) -- lazy & implicit placement

spawnAt :: PE → Task a → Par (Future a) -- eager & explicit placement

-- communication of results via futures

type Future a = IVar (Closure a)

type IVar a -- write-once buffer of type ’a’

probe :: Future a → Par Bool -- local test, non-blocking

get :: Future a → Par (Closure a) -- local read, blocking

Figure 2: HdpH primitives.

like tasks under execution, they are not serialisable and cannot migrate, hence they must
be tested and read on the node where they were created. In this respect, futures are
similar to channels in Eden [24], supporting remote write but only local read.

As an aside, we note that HdpH supports a slightly richer set of primitives, separating
the creation of futures from task distribution [28]. However, separating tasks and futures
complicates the semantics of the language considerably, in particular when modeling
fault-tolerance. Yet, the additional expressiveness of separate futures is rarely necessary
to write task parallel skeletons — none of the skeletons in [28] used it.

The polymorphic Closure data type is central to communication in HdpH as only
closures can be sent over the network. HdpH provides the following primitive operations:
unClosure unwraps a Closure a and returns its value of type a; toClosure wraps a
value of any serialisable type a into a Closure a. Additionally, the Template Haskell
construct $(mkClosure [| e |]) constructs a Closure a wrapping the unevaluated
thunk e of type a; thus closures can wrap both values and computations. Efficient higher-
level operations, like function closure application, are built on top of these primitives.
Moreover HdpH provides a library of algorithmic skeletons [8], high-level abstractions for
parallelism, built on top of the primitives.

A core feature of the HdpH system is its two-level work stealing scheduler, that
combines local work stealing (from cores on the same node) with distributed work stealing
(over the network) in a sophisticated way. This enables the HdpH coordination server to
adapt to the irregular and dynamic parallelism exhibited by symbolic computations.

Sections 4 and 5 will extend HdpH with support for locality control and fault toler-
ance. The glossary in Table 1 summarises how the central concepts, tasks and futures,
need to be adapted to achieve this goal.

4. SGP2 Locality Control

Historically many parallel architectures have had a flat communication topology: the
communication latency between any pair of processors is approximately the same. Par-
allel programming models like MPI [31] exploit this simplified model.
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Term Description

Future A variable that initially holds no value. It will eventually
be filled with the result (in the form of a closure) of its
associated task.

Task A (serialisable) suspended computation. It will eventually be
evaluated and its result written to its corresponding future.

Bounded task A task which can be scheduled only within a bounded radius
around its creator.

Supervised future Same as a future, with the additional guarantee of eventually
being filled even in the presence of node failures.

Supervised task A task whose current location is transparently tracked by
its creator (the supervisor). Supervised tasks are transpar-
ently replicated and re-scheduled as needed to compensate
for node failures.

Table 1: HdpH Glossary: Tasks and Futures.
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Figure 3: Hierarchy, Distance Metric and Equidistant Partition.

However, as the number of cores grows, we find that large scale architectures neces-
sarily have a hierarchical communication topology. In a typical multicore cluster, cores
can communicate more quickly with other cores on the same node than with cores on
other nodes. To the programmer this manifests itself in significant differences in message
passing latency. For example, latency to shared memory on modern commodity multi-
cores is about 100 ns [21], whereas network latency between neighbouring nodes is about
1 µs even in modern supercomputers [33]. Network latency increases further with every
switch or router messages have to pass; at the same time, effective bandwidth decreases
due to the risk of congestion along the way.

Large-scale parallel programming needs to be aware of the network topology, as both
locality information (in the problem domain) and network topology information are nec-
essary to efficiently schedule parallelism on large systems. The SGP2 design exposes
the network topology as an abstract distance metric, and lets the programmer express
locality in terms of these abstract distances. Thus, the distance metric enables locality
control but avoids the temptation to code for a specific topology.

4.1. Distance Metric and Equidistant Bases

We take an abstract view of the network topology, modelling it as a hierarchy, as for ex-
ample in Figure 3, i. e. an unordered tree whose leaves correspond to processing elements
(PEs). Every subtree of the hierarchy forms a virtual cluster. The interpretation of these
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virtual clusters is not fixed. Figure 3 suggests the interpretation that a subtree of depth
1 represents a shared memory multicore (SMP) node, a subtree of depth 2 represents a
rack consisting of several multicores, a subtree of depth 3 represents a server room with
several racks, and a subtree of depth 4 (i. e. the whole hierarchy in Figure 3) represents
several clusters connected over the internet. Similar four-level hierarchies exist in data
center networks, which typically connect thousands of multicore nodes via multi-rooted
tree or fat tree topologies [1] with three layers of switches (edge, aggregate, and core).

The hierarchy is characterised by a distance function d on PEs, see Figure 3, which
is defined by

d(p, q) =

{
0 if p = q
2−n if p 6= q and n = length of longest common path from root to p and q.

Mathematically speaking, the distance function defines an ultrametric space on the set
of PEs. That is, d is non-negative, symmetric, 0 on the diagonal, and satisfies the
strong triangle inequality : d(p1, p3) ≤ max{d(p1, p2), d(p2, p3)} for all PEs p1, p2, p3. We
observe that all non-zero distances are isolated points in the real interval [0, 1], and we
denote the set of distances by range d = {2−n | n = 0, 1, . . . } ∪ {0}.

The reason for defining d as above is precisely the fact that d is not just a metric
but an ultrametric, which is essential for the existence of equidistant bases, an important
concept to be defined below. Given a PE p and r ≥ 0, define D(p; r) = {q | d(p, q) ≤ r}
to be the ball1 with center p and radius r. Balls correspond to virtual clusters in the
hierarchy, see Figure 3 for a few examples. Balls have the following properties, which are
straightforward consequences of d being an ultrametric.

(B1) Every PE inside a ball is its center. That is, for all p, q and r, d(p, q) ≤ r implies
D(p; r) = D(q; r).

(B2) Every ball of radius r ∈ range d is uniquely partitioned by a set of balls of radius
1
2r, the centers of which are pairwise spaced distance r apart. That is, D(p; r) is
partitioned by the set {D(q; 1

2r) | q ∈ D(p; r)}, and d(q, q′) = r for any two distinct
balls D(q; 1

2r) and D(q′; 1
2r) in the partition.

We call the set {D(q; 1
2r) | q ∈ D(p; r)} the equidistant partition of D(p; r). A set Q of

PEs is an equidistant basis for D(p; r) if Q contains exactly one center of each ball in the
equidistant partition of D(p; r). That is, {D(q; 1

2r) | q ∈ Q} = {D(q; 1
2r) | q ∈ D(p; r)}

and for all q, q′ ∈ Q, D(q; r) = D(q′; r) implies q = q′. To illustrate, Figure 3 shows
the equidistant partition of D(z; 1

2 ), from which we can read off that {u, v, x} is one
equidistant basis.

Our abstract view means that the hierarchy need not exactly reflect the physical net-
work topology. Rather, it presents a logical arrangement of the network into a hierarchy
of clusters of manageable size. For example two small Ethernet clusters networked by
a fast, high bandwidth WAN may be treated as a single cluster. However, since one
motivation for topology awareness is to enable SGP2 to take communication costs into
account, actual latencies should be reasonably compatible with the distance metric, i. e.
with increasing distance actual latency should increase rather than decrease.

1More accurately, D(p; r) is known as a closed ball or disk.
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The remainder of this section describes how SGP2 will realise topology awareness by
integrating the distance metric into both explicit work placement and work stealing prim-
itives in HdpH. For ease of use SGP2 will provide topology aware skeletons implemented
as HdpH skeletons.

4.2. Lazy Work Stealing

HdpH requires only a small change to allow the programmer to control the locality of
tasks distributed via random stealing. HdpH will expose the set of distances, range d,
as an abstract type, Dist, and add a radius parameter (of type Dist) to the spawn

primitive:

boundedSpawn :: Dist → Task a → Par (Future a)

The radius r constrains how far a task can travel from the spawning PE p0: it can be
stolen precisely by the PEs in the closed ball D(p0; r). The corner cases deserve special
attention.

• Radius r = 1 imposes no locality constraint at all, i. e. the task may be stolen by
any PE.

• Radius r = 0 pins the task to p0, i. e. it cannot be stolen at all. Thus r = 0 can
express co-location of tasks.

The remainder of this subsection details aspects of HdpH’s topology aware work
stealing algorithm, including its task selection policy. Let p0 be the current PE.

When p0 executes the primitive boundedSpawn r task, it adds the pair (task,r) to
its task pool data structure. We call the pair (task,r) a bounded task (with radius r).

When p0 runs out of work, and its own task pool is non-empty, it uses the following
local task selection policy : Pick a task with minimal radius; if there are several such
tasks, other criteria can be considered, e. g. picking the youngest such task. Thus, HdpH
prioritises tasks with small radius for local scheduling.

If, on the other hand, p0 runs out of work with its own task pool empty then it will
attempt to steal work by sending a FISH message to a random PE. In fact p0 does not
wait for its task pool to drain completely; to hide latency p0 will attempt to steal work
when the pool hits a minimum number, the so-called low water mark.

When p0 receives a FISH message from another PE p, it tries to find a suitable task
using the following remote task selection policy : Pick a task with minimal radius from the
set of tasks whose radius is greater or equal to d(p0, p); if there are several such tasks, pick
the oldest one. Thus for remote scheduling, HdpH prioritises tasks whose radii match
the distance to the PE requesting work. The following equation formalises remote task
selection; it uses the radius-indexed notation poolr to denote the set of bounded tasks of
radius r in the task pool.

select(pool, r) =

 (task, r′) if (task, r′) is the oldest task in poolr′ and
r′ ≥ r is the least radius such that poolr′ 6= ∅

∅ if poolr′ = ∅ for all r′ ≥ r

If this policy does not yield a suitable task then p0 forwards p’s FISH message to a
random PE. If, however, the remote task selection policy does yield a (task,r) then p0
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handle_FISH (thief :: PE) = do

let pool = my task pool

let r = d(me,thief)

if select(pool,r) = (task,r’)

then send SCHEDULE(task,r’) to thief

else do

let victim = random PE such that d(victim,thief) ≥ r

send FISH(thief) to victim

Figure 4: Work stealing algorithm (pseudo code).

sends it in a SCHEDULE message to the requesting PE p, which will place the task in
its task pool, from where it will either be scheduled for local execution, or sent to yet
another PE looking for work. Note that due to property (B1), D(p0; r) = D(p; r), i. e.
both p0 and p are centers of the same ball of PEs eligible to execute (task,r).

To prioritise local stealing, the work search algorithm is not always random. When
p0 first sends a FISH it targets a random PE nearby. And when p0 forwards a request
for work from another PE p, it will forward to a random PE at a distance greater or
equal to d(p0, p), see Figure 4. Note that the distribution used for random selection
is not uniform but skewed to favour PEs that minimise the distance constraint. Thus,
a request for work targets nearby PEs first, looking for local work, and then travels
further and further afield in search for work. To prevent the network being swamped
with requests for work at times when there is little, FISH messages expire after being
forwarded a number of times. Upon expiry, the last PE targeted by the FISH message
sends a NOWORK message to the requesting PE p0, which, upon receiving NOWORK,
backs off for some time before repeating the request.

The task selection policies can be summed up as: Tasks with small radii are preferred
for local execution, and the bigger the radius, the further a task should travel. This
design is consistent with the findings of [19], which investigated scheduling strategies
based on granularity information (asserted by the program annotations) and found that
the optimal strategy schedules small tasks locally and large tasks remotely. With this
scheduling strategy in mind, task radii can be given a less operational meaning. Instead
of as distance bounds constraining locality, radii may be viewed as rough estimates of
granularity — the larger a task’s radius, the larger the task.

Note that the boundedSpawn primitive still falls into the class of semi-explicit parallel
programming interfaces. It is not an explicit interface because it does not expose loca-
tions, and because it leaves the actual scheduling decisions to the runtime system’s work
stealing algorithm. The task radii only allow the programmer to constrain the runtime
system’s choices to better take locality into account.

4.3. Eager Work Placement

Random work stealing performs well with irregular parallelism. However, it tends to
under-utilise large scale architectures at the beginning of the computation. To combat
this drawback, SGP2 complements random stealing with explicit placement. Explicit
placement differs from random stealing in several dimensions:

• Placement is mandatory and explicitly controlled by the programmer, i. e. concrete
locations are exposed.
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• Placement is eager, i. e. an explicitly placed task will be scheduled for execution
immediately, taking priority over any stolen tasks.

HdpH already supports eager work placement via spawnAt. In order to support topology
aware placement, HdpH has to be made fully location aware by exposing the following
additional primitives:

dist :: PE → PE → Dist

equiDist :: Dist → Par [(PE, Int)]

The function dist is the reification of the distance metric d. The primitive equiDist

takes a radius r and returns a size-enriched equidistant basis for D(p0; r), where p0 is the
current PE. More precisely, it returns a non-empty list [(q0,n0),(q1,n1),...] such
that

• ni is the size of D(qi;
1
2r), i. e. ni equals the number of PEs clustered up to distance

1
2r around qi, and

• the qi form an equidistant basis for D(p0; r).

By convention, the first PE q0 is always the current PE p0, which can be used to discover
the identity of the current PE programmatically.

Note that the primitive equiDist is well-defined thanks to the properties (B1) and
(B2) of ultrametric spaces mentioned in Section (4.1). (B2) guarantees the existence of
equidistant bases. However, due to (B1), these bases are not unique, so the runtime
system may pick one of many alternatives at random. For example, given the network
topology in Figure 3, calling equiDist 1

2 on PE u might return [(u,4),(v,4),(x,8)]

or [(u,4),(v,4),(y,8)] or [(u,4),(v,4),(z,8)].
The sizes ni in an equidistant basis are intended to measure the compute power clus-

tered around the PEs qi, respectively, and hence assume that all PEs are homogeneous.
The homogeneity requirement can be relaxed by reporting “sizes” ni relating to the ac-
tual compute power (e. g. measured by benchmarking) of the PEs clustered around the
qi rather than just the number of such PEs.

HdpH does not expose a primitive returning the set of all PEs as it would be pro-
hibitively expensive on any large architecture. Instead, HdpH only maintains a distance-
indexed table of the bases returned by equiDist, and the space required to store this
table typically scales logarithmically with the number of cores. The set of all PEs can
be computed from the equidistant bases by a (costly) distributed gather operation.

4.4. Topology Aware Skeletons

HdpH provides a library of topology aware algorithmic skeletons that abstract over the
topology aware primitives. For example Figure 5 shows four versions of a parallel map
over a list. All skeletons take one or two extra radius parameters for locality control.
Note that for distribution over the network HdpH requires the function argument and the
list elements to be Closures. Skeletons similar to these are benchmarked in Section 6.2.

parMapLocal creates tasks bounded by radius r, resulting in a lazy distribution of the
parallel work across the network to PEs no further than distance r from the PE calling
parMapLocal. PEs beyond this distance will receive no tasks from this skeleton as their
communication latency is expected to outweigh the benefit of the additional parallelism.

12



-- bounded work stealing parallel map skeleton

parMapLocal

:: Dist -- bounding radius

→ Closure (a → b) -- function closure

→ [Closure a] -- input list

→ Par [Closure b] -- output list

parMapLocal r c_f cs = mapM apply_c_f cs >>= mapM get

where

apply_c_f c =
boundedSpawn r $(mkClosure [ |eval $ toClosure (unClosure c_f $ unClosure c) |])

-- generic two-level bounded parallel map skeleton

parMap2LevelScheme

:: Dist -- radius for spawning big tasks

→ Dist -- radius bounding small tasks

→ Closure (a → b) -- function closure

→ [Closure a] -- input list

→ Par [Closure b] -- output list

parMap2LevelScheme r1 r2 c_f cs = do

qs ← equiDist r1

let qcs = chunk qs cs

futs ← mapM spawnParMap qcs

concat <$> mapM (λ fut → unClosure <$> get fut) futs

where

spawnParMap (q,cs_q) =
spawnAt q $(mkClosure [ |toClosure <$> parMapLocal r2 c_f cs_q |])

-- specialised two-level bounded parallel map skeletons

parMap2Level, parMap2LevelRelaxed

:: Dist -- bounding radius

→ Closure (a → b) -- function closure

→ [Closure a] -- input list

→ Par [Closure b] -- output list

parMap2Level r1 = parMap2LevelScheme r1 (r1/2)
parMap2LevelRelaxed r1 = parMap2LevelScheme r1 r1

Figure 5: Topology Aware Algorithmic Skeletons.
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parMap2LevelScheme uses a combination of eager and lazy work distribution. It
obtains an equidistant basis qs with radius r1 and splits the input list into chunks, one
per basis PE, taking into account the size information present in the basis qs. Then the
skeleton eagerly pushes big tasks to the basis PEs, one per PE. Each big task in turn calls
parMapLocal on its chunk of the input list, restricting the radius to r2. This results is a
quick distribution of big tasks to PEs far from the caller, and these PEs then act as local
coordinators by spawning small tasks to be evaluated in their vicinity, provided r2 < r1.
Thanks to bounded task creation and equidistance of the coordinators, the separation
condition r2 < r1 guarantees that the small tasks spawned by one local coordinator stay
in its vicinity; in particular, they cannot travel to a PE in the vicinity of another local
coordinator.

The skeletons parMap2Level and parMap2LevelRelaxed are special cases of the
generic parMap2LevelScheme, specialising the radius r2 in different ways. parMap2Level
picks r2 = r1/2, maximising r2 subject to the separation condition. Thus parMap2Level
combines the bounding properties of parMapLocal, i. e. restriction of work distribution
to exactly those PEs within radius r1 around the calling PE, with the distribution prop-
erties of parMap2LevelScheme, i. e. quick distribution of big tasks to local coordinators
and separation of the small tasks spawned by different local coordinators.

The skeleton parMap2LevelRelaxed picks r2 = r1, relaxing the separation condi-
tion. Thus, it combines the bounding properties of parMapLocal with some distribution
properties of parMap2LevelScheme, namely quick distribution of big tasks to local co-
ordinators. However, relaxing the separation condition allows small tasks to migrate
between previously isolated local coordinators, which can help mitigate imbalances in
task distribution arising from irregular parallelism. Due to the work stealing algorithm’s
preference for local work, the long distance migration enabled by relaxing radius r2 tends
to be a last resort, occurring mostly in the final stages of a computation when work is
drying up. Our results in Section 6.2 demonstrate the benefits of this skeleton.

We stress that all four of the above skeletons implement a semi-explicit interface
in that they allow for tuning of locality via radius parameters, without ever exposing
locations to the programmer. This abstract locality control is intended to facilitate
performance portability between parallel architectures.

4.5. Topology Aware Related Work

We have investigated adding semi-explicit topology awareness in a Glasgow parallel
Haskell (GpH) [37] implementation [4], effectively prototyping SGP2 topology aware-
ness. In architecture-aware GpH the levels of the architecture are exposed, rather than
distances. Spawning primitives, variants of the par combinator, specify a minimum, a
maximum, or both minimum and maximum levels that the task (spark) may travel to.
Like SGP2 GpH uses lazy work stealing informed by the level information associated
with tasks. Architecture-aware GpH provides skeletons that are parametrised by com-
munication level, analogous to SGP2 topology aware skeletons. We briefly outline the
performance of topology awareness in GpH when describing initial SGP2 performance in
Section 6.2.
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5. SGP2 Fault Tolerance

Fault tolerance is a means to unlock SymGridPar2 scalability ambitions for reliable long-
running computations on massively parallel systems. Many fault tolerant approaches
in distributed architectures follow a rollback-recovery approach, often involving check-
pointing and synchronisation phases. As the bandwidth per core falls, it is becoming
increasingly hard to checkpoint large HPC systems, and alternatives are being sought.
At the highest level, fault oblivious and self stabilising algorithms [34] have been de-
veloped for imprecise applications such as stochastic simulations, which often involve a
balance between precision and reliability. Such a trade-off is impossible in the SGP2
design, where the symbolic computing domain requires solutions to be exact.

A lower level and popular approach for achieving fault tolerance in HPC systems is
to adopt a resilient MPI communication layer. Thorough comparisons of fault tolerant
MPI approaches and implementations have been made [16]. These include checkpointing
the state of computation, or extending the semantics of the MPI standard. In either
case, the onus is often on the user to handle faults programmatically.

The fault tolerance model in SGP2 exploits the loosely coupled design of HdpH, which
separates remote tasks and futures, and is described in Section 5.1. Two new primitives
for fault tolerance are added to the HdpH API (Section 5.2). They use a reliability
extension of the scheduler that guarantees the execution of supervised tasks. Section 5.3
describes the reliable scheduling extension, introducing a fault tolerant fishing protocol.
Section 5.4 returns to the parallel skeletons introduced in Section 4.4, and outlines fault
tolerant parallelism abstractions.

5.1. Fault Tolerance Model

The key to SGP2 fault tolerance is the supervision and replication of remote tasks in
HdpH. The API of the fault tolerant work distribution primitives Section 5.2 is similar
to the non-fault tolerant APIs in sections 3.2 and 4.2. Spawning a computation creates a
local empty future, and a task that may be lazily scheduled as before (Section 4.2). This
allows users to easily opt-in to reliable scheduling. Failure recovery is provided by the
HdpH scheduler (Section 5.1.3). The user does not need to handle failure in the program,
in contrast to most fault tolerant MPI approaches.

The reliable scheduler in HdpH guarantees that supervised futures will be filled even-
tually, even in the presence of node failures, provided the node hosting the supervised
future (i. e. the supervisor) does not die. Supervision may be nested; for instance, a
supervised task may spawn further supervised tasks. This results in a tree of supervised
tasks and futures, with the root node functioning as the top level supervisor.

5.1.1. Task Tracking

The work stealing architecture (Section 4.2) of HdpH migrates tasks from busy nodes
to idle nodes. When the supervisor detects faults (Section 5.1.2), the location of super-
vised tasks needs to be known in order to recover potentially lost supervised tasks.

The reliable scheduler in HdpH uses a more elaborate fishing protocol (Section 5.3)
to the default fault oblivious protocol in Section 4.2. Additional messages (NOTIFY and
ACK) let supervisors track the locations of their supervised tasks.
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5.1.2. Failure Detection

Failures are identified by detecting lost connections. There are numerous possible
causes for a connection loss, including loss of power, corrupt hard drive, operating system
crash, or a networking failure. Yet the cause does not matter, the consequence of failure
is the same. That is, the node affected by the failure can no longer participate in the
execution of a distributed program.

Connection loss detection in HdpH uses a network abstraction layer [10] that propa-
gates failure events. The fault recovery (Section 5.1.3) procedure is initiated by recipients
of these node failure messages.

5.1.3. Failure Recovery

The reliable scheduler replicates any supervised tasks that may have been lost (i. e.
that have not yet filled their associated future) as a result of the detected failure. Candi-
dates for replication are either supervised tasks that were explicitly placed on the failed
node, or supervised tasks that had migrated to the failed node via work stealing.

Pessimistic Replication. A supervisor recovers from failure by ensuring the liveness of
supervised tasks that may have been lost as a consequence of failure. For this purpose,
the supervisor remembers for each supervised task: the task itself, the associated future,
and a task location record. The latter is a set of locations where the supervisor believes
the supervised task to be, based on task tracking messages it has received. Note that
the supervisor cannot always have perfect knowledge of the location of a task; if a task
is in flight, migrating from one node to another, the supervisor’s task location record
will indicate that the task is on both nodes, even though at any given point in time, the
task is actually only on one of the two nodes. While the supervisor cannot have perfect
knowledge of task locations, the task tracking protocol guarantees that it is sufficient to
record at most two locations.

Supervised task recovery is pessimistic. If the supervisor learns of a node failure,
it will replicate all tasks it believes to be on the failed node. As a consequence the
supervisor may replicate tasks that have not failed.

Duplicating Tasks. The pessimistic replication strategy may lead to multiple copies of a
task. An in-flight supervised task may “survive” a node failure, provided it was stolen
from the failed node in time. This has implications for side effects: Supervised tasks
may only perform idempotent side effects i. e. side effects whose repetition cannot be
observed.

Having multiple copies of the same task complicates tracking task locations. To
simplify matters, the scheduler will track only the locations of the most recent copy of
a task. To this end, each task is tagged with a replication counter, and task migration
messages include a field with the replication counter value. The supervisor ignores all
migration messages whose replication counter field is less than the current counter value
stored by the supervisor. The supervisor increments the replication counter only when
replicating a task.

Note that the fault tolerant scheduler does not kill obsolete copies of tasks. In fact,
an obsolete copy may complete and write its result to its associated future ahead of the
most recent copy. Thanks to idempotence, this scenario is indistinguishable from the one
where the obsolete copy has died.

16



Simultaneous Failure. There are failure scenarios that result in simultaneous loss of phys-
ical connectivity between the root node and multiple other nodes. For example, network
failures may lead to partitioning [12] where nodes in a partition may continue to com-
municate with each other, but no communication can occur between sites in different
partitions. If a network is split in to two or more partitions, the valid partition is deter-
mined by which contains the root node.

However, when a network failure results in simultaneous connection losses, the under-
lying network abstraction layer nevertheless delivers failure event messages sequentially.
Thus, the fault tolerant scheduler will have to react to a rapid sequence of individual
node failures rather than to a simultaneous failure event.

5.2. Fault Tolerant Primitives

The fault tolerant primitives match the non-fault tolerant HdpH variants in Section 3.2,
meaning that opting in to reliable scheduling is straightforward. The fault tolerant
primitives explicitly create supervised futures, and implicitly create supervised tasks for
the reliable scheduler to execute. The operations on a SupervisedFuture are the same
as they are for a Future i. e. get and probe.

supervisedSpawn :: Dist → Task a → Par (SupervisedFuture a)

supervisedSpawnAt :: PE → Task a → Par (SupervisedFuture a)

The call supervisedSpawn r task behaves like the call boundedSpawn r task (Sec-
tion 4.2), i. e. the bounded task (task,r) is stored in the caller’s task pool, from where
it may be stolen or selected for local execution. The reliable scheduler ensures that at
least one copy of task is eventually evaluated.

The call supervisedSpawnAt p task behaves like the call spawnAt p task, i. e. task
is placed on node p and eagerly executed. On detecting failure of p, the supervisor will
replicate task, provided its associated future has not yet been filled, and eagerly execute
task itself.

5.3. Fault Tolerant Work Stealing

5.3.1. Fault Tolerant Fishing Protocol

The fault tolerant scheduler provides task tracking (Section 5.1.1), and failure recov-
ery (Section 5.1.3). These requirements necessitate additional runtime system messages
for supervised work stealing. Before SCHEDULEing a task to the thief, the victim must
inform the task’s supervisor of the impending task migration, which it does with NO-
TIFY. This message informs the supervisor that the task is in transit, travelling between
the victim and the thief. Should the failure of either the victim or thief be detected,
the task is replicated. Once the thief receives the task, it informs the supervisor of the
completed migration with an ACK message. Only if the thief is then detected to have
failed is the task replicated, i. e. failure of previous victims no longer pose a threat to
the task’s existence.

The UML message sequence chart for the fault tolerant work stealing protocol is
shown in Figure 6. The protocol involves the supervisor (the task creator), in an ob-
servational role, allowing it to track supervised task movements. Intuitively, there is a
performance trade-off when using supervisedSpawn and supervisedSpawnAt. The gain
is the reliability guarantee that the task will be completed in the presence of failure, pro-
vided that the node hosting the supervised future does not fail or become disconnected
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Figure 6: Supervised work-stealing in the absence of faults.
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Figure 7: Supervisor Ignores Migration Message Overtaking.

from the root node. The expense is a runtime performance overhead in the absence of
faults, due to two additional messages (NOTIFY and ACK) transmitted for each task
migration.

5.3.2. Guarding Against Migration Trace Race Conditions

Due to the asynchronous nature of communication channels in distributed systems
task tracking messages may arrive out of order at the supervisor. Causal ordering [22]
is only preserved on FIFO channels (i. e. TCP connections) between any two nodes.
However, the network transport layer does not guarantee any causal ordering between
three or more nodes. Hence, the fault tolerant fishing protocol must handle the possibility
of task tracking messages “over taking” each other.

In order to cope with ACK messages “over taking” NOTIFY messages or vice versa,
supervised tasks are equipped with an additional age counter. This counter is incre-
mented each time a node sends a NOTIFY or an ACK message about the supervised
task. The supervisor records only the location indicated by the most recent NOTIFY or
ACK; it simply ignores task tracking messages whose age counter value is less than the
value stored in the supervisor’s task location record.

An example of message overtaking is shown in Figure 7. The task is supervised by
node A, and has been stolen by node B. Node C fishes from B. Node B sends a NOTIFY
to A, increments the age counter of the task, and sends the task in a SCHEDULE message
to C. Node C sends an ACK to A and increments the age again, though due to network
congestion, A does not receive this message until much later. In the meantime, D fishes
from C. C sends a NOTIFY to A (also delayed in transmission), increments the age
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parMapLocal

:: Dist -- bounding radius

→ Closure (a → b) -- function closure

→ [Closure a] -- input list

→ Par [Closure b] -- output list

parMapLocal r c_f cs = mapM apply_c_f cs >>= mapM get

where

apply_c_f c =
supervisedSpawn r $(mkClosure [ |eval $ toClosure (unClosure c_f $ unClosure c) |])

Figure 8: Fault Tolerant Topology Aware parMap Implementation.

parDivideAndConquer

:: Closure (Closure a → Dist) -- problem radius

→ Closure (Closure a → Par (Closure b)) -- seq solver

→ Closure (Closure a → [Closure a]) -- decompose

→ Closure (Closure a → [Closure b] → Closure b) -- combine

→ Closure a -- problem

→ Par (Closure b) -- output

Figure 9: Fault Tolerant Topology Aware parDivideAndConquer API.

counter and SCHEDULEs the task to D. Node D sends an ACK message, along with the
age tag, which is now 4. When node A receives task tracking messages of ages 2 and 3
from node C, they are simply ignored.

5.4. Fault Tolerant Skeletons

The supervisedSpawn and supervisedSpawnAt primitives guarantee the evaluation
of a single supervised task. Higher-level abstractions built on top of these primitives
guarantee the completion of a set of tasks. These abstractions hide lower level details by
creating supervised tasks and futures dynamically behind the scenes.

There is a fault tolerant counterpart for each parallel skeleton in Section 4.4. Lazy
work stealing skeletons are replaced with supervised lazy work stealing versions imple-
mented using supervisedSpawn. Fault tolerant skeletons that use eager task placement
are implemented with supervisedSpawnAt. As an example Figure 8 shows the imple-
mentation of the fault tolerant parMapLocal, in contrast to the non-fault tolerant version
in Figure 5.

Divide and Conquer is a more elaborate, recursive parallel pattern, repeatedly decom-
posing problems into sub-problems until they are sufficiently small to be solved sequen-
tially, then reassembling results with a combining function. A parDivideAndConquer

skeleton is included in the fault tolerant and non-fault tolerant HdpH APIs.
In the fault tolerant parDivideAndConquer skeleton shown in Figure 9 supervisors

are hierarchically nested. Decomposing a large problem into many smaller problems in
HdpH will saturate the distributed environment with a tree of supervised tasks. That
is, a node may evaluate a supervised task that spawns several subtasks, to be supervised
by their parent task.

The advantage of divide and conquer style parallelism is twofold. First, the skeleton
recursively decomposes large tasks into smaller ones so that granularity is sufficiently
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small to fully utilise all compute nodes. Second, it removes a bottleneck in the supervised
work stealing protocol (Section 5.3). Multiple supervisors means that there is no one node
receiving all NOTIFY and ACK messages for all supervised tasks. One drawback of this
approach is substantial recovery costs when a supervisor with many children is lost. One
approach to minimise the recovery costs is to apply memoization techniques to computed
functions to avoid re-evaluating all child tasks once again, as demonstrated in [38].

Note how the signature of parMapLocal in figure 8 matches exactly that of the
corresponding non-fault tolerant skeleton in Figure 5; the same could be observed for
parDivideAndConquer if we did show its non-fault tolerant counterpart. Thus the pro-
grammer can enable or disable fault tolerance with minimal effort, by simply switching
skeletons.

So far, the fault tolerance approach of SGP2 focuses on the replication of computa-
tions lost due to failure, rather than on the replication of distributed state. However,
some symbolic applications, such as the orbit calculation [25], require large distributed
data structures. SGP2 plans to support this class of applications by offering distributed
data structures, like for instance distributed hash tables, with a restricted interface, e. g.
no deletions. In this case, fault tolerance will be achieved by replicating distributed state
and keeping the replicas in sync.

6. Initial Evaluation

This section outlines the SGP2 implementation status before demonstrating the capa-
bilities of the current implementation snapshot by presenting some scalability and fault
tolerance measurements.

6.1. Implementation Status

SGP2 is designed on top of HdpH and will largely inherit the latter’s capabilities, in
particular topology awareness and fault tolerance. Conversely, current limitations of
SGP2 largely stem from the fact that some HdpH features are not yet fully supported.

The HdpH DSL outlined in Section 3.2 is implemented both for Beowulf clusters
and HPC platforms, and is available online [18]. The cluster implementation uses TCP
communication and a full set of Unix utilities, and is demonstrated in Section 6.3. The
HPC implementation is more challenging as it must use MPI [31] for communication
and a restricted set of Unix utilities, e. g. no sockets. Section 6.2 demonstrates HdpH
scalability on HECToR, at present the UK’s largest HPC with approximately 90,000
cores.

Most of the generic SGP2 CAG skeletons, including those in Figures 5, 8 and 9, are
already implemented in HdpH. However, not all of the locality control and fault tolerance
features described in sections 4 and 5 are fully realised. So far, HdpH has limited locality
control: it can distinguish between PEs on the same multicore node and on other nodes.
With respect to fault tolerance, only explicit placement variants of the skeletons outlined
in Section 5 have been implemented so far.

We are currently completing the HdpH implementation, integrating locality control
and fault tolerance with work stealing. We are also developing the key components
required to complete the SGP2 implementation, namely (1) a high-performance link
(with overheads much lower than SCSCP) between the HdpH coordination server and
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GAP CAS servers, (2) HdpH skeletons specific to the symbolic computation domain, and
(3) GAP bindings to the HdpH skeletons to implement the CAG interface.

6.2. Scalability

The scalability of HdpH has been investigated on HECToR with the SumEuler symbolic
benchmark that sums Euler’s totient function ϕ over long lists of integers. SumEuler is a
moderately irregular data parallel problem where the irregularity stems from computing
ϕ on smaller or larger numbers.

Strong scaling experiments. We investigate how SumEuler performs over a fixed list of
96,000 integers on two different platforms, a commodity Beowulf cluster (up to 30 nodes,
240 cores) and HECToR (up to 8 nodes, 256 cores). In this micro-benchmark, the actual
computation of Euler’s ϕ is performed by a naive algorithm coded in Haskell. The
sequential runtimes of this problem are 941.7 seconds on the Beowulf and 780.2 seconds
on HECToR.2

Figure 10 plots, separately for each architecture and on a logarithmic scale, the run-
times of two topology-aware skeletons, parMap2Level and parMap2LevelRelaxed, and
of two unaware skeletons, one doing plain work stealing, the other plain round-robin
placement. On both architectures, plain work stealing has the highest runtime and the
highest variance. On the Beowulf, plain work stealing performs dramatically worse than
the other skeletons, yet plain round-robin scheduling initially appears to perform al-
most as well as the topology-aware skeletons. On HECToR, the performance of plain
work stealing isn’t as far off as on the Beowulf, probably due to its low-latency inter-
connect. Moreover, on HECToR the topology-aware skeletons clearly outperform plain
round-robin placement.

Figure 11 compares the speedups (on a logarithmic scale) of all skeletons on both
platforms. Unsurprisingly, random work stealing performs worst on both platforms,3

followed by round-robin placement. The parMap2LevelRelaxed skeleton wins the contest
on both platforms, eventually reaching absolute speedups of 169 on the Beowulf and 167
on HECToR, This corresponds to an efficiency of 70% on the Beowulf and 65% on
HECToR.

Weak scaling experiment. Figure 12 reports weak scaling of two variants of the SumEuler
benchmark from 1 to 1024 nodes (i. e. 32 to 32K cores) on HECToR. The two variants
differ only in their use of the underlying skeleton: One uses parMap2Level, the other
parMap2LevelRelaxed. Both benchmarks rely on GAP to compute Euler’s ϕ, SGP2
performs only coordination (and the final summation).

The benchmarks start out with an input interval of 6.25 million integers on 32 cores,
doubling the size of the interval when doubling the number of cores; on 32K cores the
interval is 6.4 billion integers long. Doubling the size of the input interval increases
the amount of work by more than a factor of 2; by sampling the sequential runtime of
small subintervals, we estimate a runtime curve for ideal scaling. The runtime graphs in
Figure 12 show that the two benchmarks do not scale perfectly. However, even on 32K
cores their runtimes are still within a factor of 1.5 times of the ideal.

2Reported runtimes are averages of at least 5 runs.
3The speedup curve for random work stealing on the Beowulf is not shown as it remains below 20.
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The efficiency graphs (computed with respect to estimated ideal scaling) show that ef-
ficiency is steadily declining, yet remains above 70% even on 32K cores. These graphs also
show that the skeleton parMap2LevelRelaxed offers a small efficiency advantage (of 3 to
4 percentage points) over parMap2Level. This is likely because parMap2LevelRelaxed

is coping better with the irregularity of the benchmark in the final stages of the compu-
tation, as it can utilise nodes that have run out of work early.

An earlier investigation of the impact of topology awareness on the performance of
work stealing [4] is outlined in Section 4.5. Some key performance results are as follows.
Topology awareness reduces variability dramatically: the topology information helps to
avoid making bad scheduling decisions. For a small set of kernel benchmarks topology
awareness increases speedup, in some cases by an order of magnitude, even on small
architectures, e. g. a Beowulf cluster of multicore nodes [4].

6.3. Fault Tolerance

We have previously reported the performance, and failure-recovery overheads, of an early
fault tolerant version of HdpH [36]. We investigated both divide-and-conquer and data-
parallel fault tolerant skeletons that use eager random and eager round robin scheduling
respectively. The results show runtime overheads of between 2.5% and 7% using a ea-
ger map skeleton in the absence of faults. A thorough evaluation of the fault tolerant
scheduler in SymGridPar2 appears in [35].

We illustrate the fault tolerance mechanisms here by considering the Summatory Li-
ouville task-parallel Computational Algebra problem [6]. It is parallelised with a variant
of the parMap skeleton that uses eager round robin task placement. The Liouville func-
tion λ(n) is the completely multiplicative function defined by λ(p) = −1 for each prime
p. L(n) denotes the sum of the values of the Liouville function λ(n) up to n, where
L(n) :=

∑n
k=1 λ(k) .

The computation measured is L(3 · 108) with a chunk size of 106, which is initially
deployed on 10 nodes, generating 300 closures in total and distributing 30 closure to each
node.

The results in Figure 13 show the runtime of computing L(3 · 108) when a single
node failure occurs at approximately 10%,20%..90% of expected failure-free execution
time. Each failure experiment was repeated 5 times, shown as 5 dots in the graph. The
figure also shows two horizontal lines indicating the failure-free runtimes (averaged over
5 runs) on 9 and 10 nodes, respectively. Lastly, the figure also shows the mean number
of closures that were reallocated to compensate the node failure.

Up to 30% of expected total runtime, all 30 closures need to be reallocated. However,
at 40%, 14 closure have already been evaluated, and only the 16 remaining closures need
to be reallocated. The number of reallocated closures continues to fall and reaches zero
at 90% of expected total runtime.

We see that when a node fails early on, i. e. in the first 30% of estimated total runtime,
the performance of the remaining 9 nodes is comparable to that of a failure-free run on 9
nodes. Moreover, node failure occurring near the end of a run, e. g. at 90% of estimated
runtime, does not impact runtime performance, i. e. matches that of a 10 node cluster
that experiences no failures at all.

Based on our earlier work, and the example above we are hopeful that the overheads
of HdpH fault tolerance in the absence of failures are low, i. e. under 7% in the 2 programs
measured [36], and the cost of recovery is negligible.
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Figure 13: Summatory Liouville — Recovery Times after a Node Failure.

7. Conclusion

We have presented the design and initial evaluation of SymGridPar2 (SGP2), a frame-
work designed to execute symbolic computations on large (105 core) architectures. We
have outlined the SGP2 design goals, principles and architecture, including the key de-
cision to coordinate the parallel computations in the HdpH domain specific language
(Section 3). We have described how scalability is achieved using layering and by allow-
ing the programmer to control task placement (Section 4). We have outlined how fault
tolerance is provided by supervising remote computations, and shown how higher-level
fault tolerance abstractions can be constructed (Section 5). We have outlined the cur-
rent implementation and report encouraging preliminary scalability and fault tolerance
results on architectures with up to 32,000 cores (Section 6).

The implementation of SGP2 is ongoing, and Section 6.1 discusses our plans to com-
plete the CAG interface to GAP, to better integrate the fault tolerance and work distribu-
tion, and to improve locality control. Larger scale evaluations that approach our design
aim of 105 cores will be possible as HPC platforms grow and become more affordable.
We are simultaneously developing an HdpH profiler to aid programmers. Alongside the
implementation effort we also plan to investigate SGP2’s effectiveness on challenging sym-
bolic computations. One such application, currently being developed within HPC-GAP,
involves solving large “standard base” problems that arise in representation theory [15];
early results are available in a technical report [26].
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Funct. Program., 15(3):431–475, 2005.
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