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Abstract Today’s compilers have a plethora of optimizations-transformations
to choose from, and the correct choice, order as well parameters of transfor-
mations have a significant/large impact on performance; choosing the correct
order and parameters of optimizations has been a long standing problem in
compilation research, which until now remains unsolved; the separate sub-
problems optimization gives a different schedule/binary for each sub-problem
and these schedules cannot coexist, as by refining one degrades the other. Re-
searchers try to solve this problem by using iterative compilation techniques
but the search space is so big that it cannot be searched even by using modern
supercomputers. Moreover, compiler transformations do not take into account
the hardware architecture details and data reuse in an efficient way.

In this paper, a new iterative compilation methodology is presented which
reduces the search space of six compiler transformations by addressing the
above problems; the search space is reduced by many orders of magnitude
and thus an efficient solution is now capable to be found. The transformations
are the following: loop tiling (including the number of the levels of tiling),
loop unroll, register allocation, scalar replacement, loop interchange and data
array layouts. The search space is reduced a) by addressing the aforementioned
transformations together as one problem and not separately, b) by taking
into account the custom hardware architecture details (e.g., cache size and
associativity) and algorithm characteristics (e.g., data reuse).

The proposed methodology has been evaluated over iterative compilation
and gcc/icc compilers, on both embedded and general purpose processors;
it achieves significant performance gains at many orders of magnitude lower
compilation time.

Keywords loop unroll, loop tiling, scalar replacement, register allocation,
data reuse, cache, loop transformations, iterative compilation
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1 Introduction

Choosing the correct order and parameters of optimizations has long been
known to be an open problem in compilation research for decades. Compiler
writers typically use a combination of experience and insight to construct the
sequence of optimizations found in compilers. The optimum sequence of opti-
mization phases for a specific code, normally is not efficient for another. This
is because the back end compiler phases (e.g., loop tiling, register allocation)
and the scheduling sub-problems depend on each other; these dependencies
require that all phases should be optimized together as one problem and not
separately.

Towards the above problem, many iterative compilation techniques have
been proposed; iterative compilation outperforms the most aggressive compi-
lation settings of commercial compilers. In iterative compilation, a number of
different versions of the program is generated-executed by applying a set of
compiler transformations, at all different combinations/sequences. Researchers
and current compilers apply i) iterative compilation techniques [1] [2] [3] [4],
ii) both iterative compilation and machine learning compilation techniques
(to decrease search space and thus compilation time) [5] [6] [7] [8] [9] [10], iii)
both iterative compilation and genetic algorithms (decrease the search space)
[11], [12], [13], [14], [15], [16], [4], iv) compiler transformations by using heuris-
tics and empirical methods [17], v) both iterative compilation and statistical
techniques [18], vi) exhaustive search [15]. These approaches require very
large compilation times which limit their practical use. This has led compiler
researchers use exploration prediction models focusing on beneficial areas of
optimization search space [19], [20], [21], [22].

The problem is that iterative compilation requires extremely long compila-
tion times, even by using machine learning compilation techniques or genetic
algorithms to decrease the search space; thus, iterative compilation cannot
include all existing transformations and their parameters, e.g., unroll factor
values and tile sizes, because in this case compilation will last for many many
years. As a consequence, a very large number of solutions is not tested.

In contrast to all the above, the proposed methodology uses a different
iterative compilation approach. Instead of applying exploration and predic-
tion methods, it fully exploits the hardware (HW) architecture details, e.g.,
cache size and associativity, and the custom software (SW) characteristics,
e.g., subscript equations (constraint propagation to the HW and SW param-
eters); in this way, the search space is decreased theoretically by many orders
of magnitude and thus an efficient schedule is now capable to be found, e.g.,
given the cache architecture details, the number of different tile sizes tested is
decreased. In Subsect.4, I show that if the transformations addressed in this
paper (including almost all different transformation parameters) are included
to iterative compilation, the compilation time lasts from 109 up to 1021 years
(for the given input sizes). On the other hand, the compilation time of the
proposed methodology lasts from some seconds up to some hours. Thus, an
efficient schedule can be found fast.
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The major contributions of this paper are the following. First, loop un-
roll, register allocation and scalar replacement are addressed together as one
problem and not separately, by taking into account data reuse and RF size
(Subsection 3.1). Second, loop tiling and data array layouts are addressed to-
gether as one problem, by taking into account cache size and associativity and
data reuse (Subsection 3.2). Third, according to the two major contributions
given above, the search space is reduced by many orders of magnitude and
thus an efficient solution is now capable to be found.

The experimental results have taken by using PowerPC-440 and Intel Xeon
Quad Core E3-1240 v3 embedded and general purpose processors, respectively.
The proposed methodology has been evaluated for seven well-known data in-
tensive algorithms over iterative compilation and gcc / Intel icc compilers
(speedup values from 1.4 up to 3.3); the evaluation refers to both compilation
time and performance.

The remainder of this paper is organized as follows. In Section 2, the re-
lated work is given. The proposed methodology is given in Section 3 while
experimental results are given in Section 4. Finally, Section 5 is dedicated to
conclusions.

2 Related Work

Normally, iterative compilation methods include transformations with low
compilation time such as common subexpression elimination, unreachable code
elimination, branch chaining and not compile time expensive transformations
such as loop tiling and loop unroll. Iterative compilation techniques either do
not use loop tiling and loop unroll transformations at all, or they use them
only for specific tile sizes, levels of tiling and unroll factor values [23] [24]
[25]. In [23], one level of tiling is used with tile sizes from 1 up to 100 and
unroll factor values from 1 up to 20 (innermost iterator only). In [24], multiple
levels of tiling are applied but with fixed tile sizes. In [26], all tile sizes are
considered but each loop is optimized in isolation; loop unroll is applied in
isolation also. In [25], loop tiling is applied with fixed tile sizes. In [27] and
[28], only loop unroll transformation is applied.

Regarding genetic algorithms, [11], [12], [13], [14], [15], [16], [4] show that
selecting a better sequence of optimizations significantly improves execution
time. In [12] a genetic algorithm is used to find optimization sequences re-
ducing code size. In [11], a large experimental study of the search space of
the compilation sequences is made. They examine the structure of the search
space, in particular the distribution of local minima relative to the global min-
ima and devise new search based algorithms that outperform generic search
techniques. In [29] they use machine learning on a training phase to predict
good polyhedral optimizations.

It is important to say that genetic algorithms are not able to solve the phase
ordering problem but only to predict an efficient sequence of optimizations.



4 Vasilios Kelefouras

Moreover, they require a very large compilation time and they are difficult to
implement.

[15] first reduces the search space by avoiding unnecessary executions and
then modifies the search space so fewer generations are required. In [30] they
suppose that some compiler phases may not interact with each other and
thus, they are removed from the phase order search space (they apply them
implicitly after every relevant phase).

[31] uses an artificial neural network to predict the best transformation
(from a given set) that should be applied based on the characteristics of the
code. Once the best transformation has been found, the procedure is repeated
to find the second best transformation etc. In [32] prediction models are given
to predict the set of optimizations that should be turned on. [20] address
the problem of predicting good compiler optimizations by using performance
counters to automatically generate compiler heuristics.

An innovative approach to iterative compilation was proposed by [33]
where they used performance counters to propose new optimization sequences.
The proposed sequences were evaluated and the performance counters are
measured to choose the new optimizations to try. In [29], they formulate the
selection of the best transformation sequence as a learning problem, and they
use off-line training to build predictors that compute the best sequence of
polyhedral optimizations to apply.

In contrast to all the above works, the proposed methodology methodol-
ogy uses a different approach. Instead of applying exploration and prediction
methods, the search space is decreased by fully utilizing the HW architecture
details and the SW characteristics.

As far as register the allocation problem is concerned, many methodologies
exist such as [34] [35] [36] [37] [38] [39] [40]. In [34] - [38], data reuse is not
taken into account. In [39] and [40], data reuse is taken into account either
by greedily assigning the available registers to the data array references or by
applying loop unroll transformation to expose reuse and opportunities for max-
imizing parallelism. In [41], a survey on combinatorial register allocation and
instruction scheduling is given. Finally, regarding data cache miss elimination
methods, much research has been done in [42] [43] [44] [45] [46] [47] [48].

3 Proposed Methodology

The proposed methodology takes the target C-code and HW architecture de-
tails as input and automatically generates only the efficient schedules, while
the inefficient ones are being discarded, decreasing the search space by many
orders of magnitude, e.g., all the schedules using a larger number of registers
than the available are discarded. Then, searching only among a specific set of
efficient schedules is applied and an efficient schedule can be found fast.

The initial search space is shown in Fig. 1; for a two level cache architecture
it includes one level of tiling (tiling for the L1 or L2 cache), 2 levels of tiling
(tiling for both L1 and L2 cache) and no tiling, schedules/binaries; loop tiling
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1. Loop tiling  to all the iterators (tiling for L1 
cache )
 all different tile sizes are included

2. Loop tiling  to all the iterators (tiling for L2 
cache )
 all different tile sizes are included

Search Space

The search space 
includes all these 
transformations
at all different 
orderings 
(The number of 
combinations is 
up to 7 ! = 5040)

3.    Scalar replacement
4. Register allocation
5. Loop unroll to all the iterators

 all different unroll factor 
values are included

6. Different data array Layouts
7. Loop interchange

Fig. 1 Search space being addressed.

is applied to all the iterators. Also it includes register allocation, scalar re-
placement, loop unroll to all the iterators, loop interchange, and different data
array layouts. In Fig. 1, there are seven different problems/transformations and
thus the search space consists up to 7! = 5040 transformation combinations.
In Subsect.4, I show that if the transformations presented in Fig.1 (including
almost all different transformation parameters) are included to iterative com-
pilation, the search space is from 1017 up to 1029 schedules(for the given input
sizes); given that 1sec = 3.17 × 10−8 years and supposing that compilation
time takes 1 sec, the compilation time is from 109 up to 1021 years. On the
other hand, the proposed methodology decreases the search space from 101 up
to 105 schedules. In this way, the search space is now capable to be searched
in a short amount of time.

Regarding target applications, this methodology optimizes loop kernels; as
it is well known, 90% of the execution time of a computer program is spent ex-
ecuting 10% of the code (also known as the 90/10 law) [49]. The methodology
is applied to both perfectly and imperfectly nested loops, where all the array
subscripts are linear equations of the iterators (which in most cases do); an
array subscript is another way to describe an array index (multidimensional
arrays use one subscript for each dimension). This methodology can also be
applied to C code containing SSE/AVX instructions (SIMD). For the reminder
of this paper, I refer to architectures having separate L1 data and instruction
cache (vast majority of architectures). In this case, the program code always
fits in L1 instruction cache since I refer to loop kernels only, whose code size
is small; thus, upper level unified/shared caches, if exist, contain only data.
On the other hand, if a unified L1 cache exists, memory management becomes
very complicated.

The proposed methodology is shown in Fig. 2. First, parsing is applied in
order to extract the custom software characteristics (loop kernel parameters),
i.e., data dependences, array references, subscript equations, loop iterators
and bounds and iterator nesting level values. These characteristics are used
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Fig. 2 Flow graph of the proposed methodology

to apply the aforementioned transformations in an efficient way. One math-
ematical equation is created for each array’s subscript in order to find the
corresponding memory access pattern, e.g., (A[2 ∗ i + j]) and (B[i, j]) give
(2∗ i+ j = c1) and (i = c21 and j = c22), respectively, where (c1, c21, c22) are
constant numbers and their range is computed according to the iterator bound
values. Each equation defines the memory access pattern of the specific array
reference; data reuse is found by these equations (data reuse occurs when a
specific memory location is accessed more than once).

Regarding 2-d arrays, two equations are created and not one because the
data array layout is not fixed, e.g., regarding B[i, j] reference, if (N ∗ i+j = c)
(where N is the number of the array columns) is taken instead of (i = c1) and
(j = c2), then row-wise layout is taken which may not be efficient.

Definition 1 Subscript equations which have more than one solution for at
least one constant value, are named type2 equations. All others, are named
type1 equations, e.g., (2 ∗ i + j = c1) is a type2 equation, while (i = c21 and
j = c22) is a type1 equation.

Arrays with type2 subscript equations are accessed more than once from
memory (data reuse), e.g., (2i + j = 7) holds for several iteration vectors; on
the other hand, equations of type1 fetch their elements only once; in [50],
I give a new compiler transformation that fully exploits data reuse of type2
equations. However, both type1 and type2 arrays may be accessed more than
once in the case that the loop kernel contains at least one iterator that does
not exist in the subscript equation, e.g., consider a loop kernel containing k, i, j
iterators and B[i, j] reference; B[i, j] is accessed as many times as k iterator
indicates.
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Definition 2 The subscript equations which are not given by a compile time
known expression (e.g., they depend on the input data), are further classified
into type3 equations. Data reuse of type3 arrays cannot be exploited, as the
arrays elements are not accessed according to a mathematical formula.

After the SW characteristics have been extracted, I apply loop unroll, reg-
ister allocation and scalar replacement, in a novel way, by taking into account
the subscript equations, data reuse and RF size (Subsection 3.1). I generate
extra mathematical inequalities that give all the efficient RF tile sizes and
shapes, according to the number of the available registers. All the schedules
using a different number of registers than those the proposed inequalities give
are not considered, decreasing the search space. Moreover, one level of tiling is
applied for each cache memory (if needed), in a novel way, by taking into ac-
count the cache size and associativity, the data array layouts and the subscript
equations (Subsection 3.2). One inequality is created for each cache memory;
these inequalities contain all the efficient tile sizes and shapes, according to the
cache architecture details. All tile sizes and shapes and array layouts different
than those the proposed inequalities give are not considered decreasing the
search space.

It is important to say that partitioning the arrays into tiles according to
the cache size only is not enough because tiles may conflict with each other due
to the cache modulo effect. Given that all the tiles must remain in cache, a) all
the tile elements have to be written in consecutive main memory locations and
therefore in consecutive cache locations (otherwise, the data array layout is
changed), and b) different array tiles have to be loaded in different cache ways
in order not to conflict with each other. All the schedules with different tile
sizes than those the proposed inequalities give are not considered, decreasing
the exploration space even more.

In contrast to iterative compilation methods, the number of levels of tiling
is not one, but it depends on the number of the memories. For a two level cache
architecture, loop tiling is applied for a) L1, b) L2, c) L1 and L2, and d) none.
The number of levels of tiling is found by testing as the data reuse advantage
can be overlapped by the extra inserted instructions; although the number of
data accesses is decreased (by applying loop tiling), the number of addressing
instructions (and in several cases the number of load/store instructions) is
increased.

When the above procedure has ended, all the efficient transformation pa-
rameters have been found (according to the Subsections 3.1 and 3.2) and all
the inefficient parameters have been discarded reducing the search space by
many orders of magnitude. Then, all the remaining schedules are automat-
ically transformed into C-code; the C-codes are generated by applying the
aforementioned transformations with the parameters found in Subsections 3.1
and 3.2. Afterwards, all the C-codes are compiled by the target architecture
compiler and all the binaries run to the target platform to find the fastest.

The remainder of the proposed methodology has been divided into two
sub-sections describing in more detail the most complex steps of Fig. 2.
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(b)
for (row = 2; row < N-2; row+=2) {
for (col = 2; col < M-2; col+=2) { 
tmp1=0; tmp2=0; tmp3=0; tmp4=0;

for (mr=0; mr<5; mr++) {
for (mc=0; mc<5; mc++) { 

tmp1 += in[row+mr-2][col+mc-2] * mask[mr][mc];
tmp2+= in[row+mr-2][col+mc-1] * mask[mr][mc];
tmp3 += in[row+mr-1][col+mc-2] * mask[mr][mc];
tmp4 += in[row+mr-1][col+mc-1] * mask[mr][mc];

} }    
out[row][col]=tmp1/159;
out[row][col+1]=tmp2/159;
out[row+1][col]=tmp3/159;
out[row+1][col+1]=tmp4/159;
}}

(a)
for (row = 2; row < N-2; row++) {
for (col = 2; col < M-2; col++) { 
tmp=0;
for (mr=0; mr<5; mr++) {

for (mc=0; mc<5; mc++) { 
tmp+=in[row+mr-2][col+mc-2]*mask[mr][mc] ;

} }
out[row][col]=tmp/159;

}}

(c)
for (row = 2; row < N-2; row+=2) {
for (col = 2; col < M-2; col+=2) { 
out0=0;out1=0;out2=0;out3=0;

for (mr=0; mr<5; mr++) {
addr1=row+mr-2; 

for (mc=0; mc<5; mc++) { 
addr2=col+mc-2;
reg=mask[mr][mc];

in1=in[addr1][addr2];
out0+=(in1*reg);
in1=in[addr1][addr2+1];
out1+=(in1*reg);
in1=in[addr1+1][addr2];
out2+=(in1*reg);
in1=in[addr1+1][addr2+1];
out3+=(in1*reg);
} }
out[row][col]=out0/159;
out[row][col+1]=out1/159;
out[row+1][col]=out2/159;
out[row+1][col+1]=out3/159; 
}}

(d)
for (row = 2; row < N-2; row++) {
for (col = 2; col < M-2; col+=6) {
out0=0;out1=0;out2=0;out3=0;
out4=0;out5=0;

for (mr=0; mr<5; mr++) {
addr1=row+mr-2; 
in0=in[addr1][col-2];
in1=in[addr1][col-1];
in2=in[addr1][col];
in3=in[addr1][col+1];
in4=in[addr1][col+2];

for (mc=0; mc<5; mc++) {
reg_mask=mask[mr][mc]; 
in5=in[addr1][col+3+mc];

out0 += (in0*reg_mask);
out1 += (in1*reg_mask);
out2 += (in2*reg_mask);
out3 += (in3*reg_mask);
out4 += (in4*reg_mask);
out5 += (in5*reg_mask);
in0=in1; in1=in2; in2=in3; 
in3=in4; in4=in5;  
}  } 
out[row][col]=out0/159;
out[row][col+1]=out1/159;
out[row][col+2]=out2/159;
out[row][col+3]=out3/159;
out[row][col+4]=out4/159;
out[row][col+5]=out5/159;  }  }

Fig. 3 An example, Gaussian Blur algorithm

3.1 Loop unroll, scalar replacement, register allocation

Loop unroll, register allocation, scalar replacement, data reuse and register file
(RF) size, strongly depend on each other and thus they are addressed together,
as one problem and not separately. The reason follows. Loop unroll is applied
in order to expose common array references in the loop body which they are
then replaced by variables/registers in order to decrease the number of L/S
and addressing instructions; exposing common array references in the loop
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body exposes data reuse (In Fig. 3-(b), loop unroll is applied to the first two
iterators with unroll factor values equal to 2, while in Fig. 3-(c) the common
array references are replaced by variables). However, the number of common
array references exposed depends on the iterators that loop unroll is being
applied to and on the loop unroll factor values. Unrolling the correct iterator
exposes data reuse; on the other hand, in Rule2, I show that data reuse cannot
be exposed by applying loop unroll to the innermost iterator. Regarding the
loop unroll factor values, they depend on the RF size; the larger the loop unroll
factor value, the larger the number of the registers needed. Moreover, the unroll
factor values and the number of the variables/registers used, depend on data
reuse, as it is efficient to use more variables/registers for the array references
that achieve data reuse and less for the references that do not. Thus, the above
problems are strongly interdependent and it is not efficient to be addressed
separately.

The number of assigned variables/registers is given by the following in-
equality. I generate mathematical inequalities that give all the efficient RF tile
sizes and shapes, according to the number of the available registers. All the
schedules with different number of registers than those the proposed inequali-
ties give are not considered, decreasing the search space. In contrast to all the
related works, the search space is decreased not by applying exploration and
prediction methods but by fully utilizing the RF size.

The register file inequality is given by:

0.7×RF ≤ Iterators+Scalar+Extra+Array1+Array2+...+Arrayn ≤ RF
(1)

where RF is the number of available registers, Scalar is the number of
scalar variables, Extra is the number of extra registers needed, i.e., registers
for intermediate results and Iterators is the number of the different iterator
references exist in the innermost loop body, e.g., in Fig. 3-(b), (Iterators = 4),
these are (row,mr, col,mc). Arrayi is the number of the variables/registers
allocated for the i-th array.

Rule 1 The Arrayi values are found by ineq. 2 and Rules 2- 5. I give Rules 2-
5 to allocate registers according to the data reuse.

Arrayi = it′1 × it′2 × ...× it′n (2)

where the integer it′i are the unroll factor values of the iterators exist in
the array’s subscript; e.g. for B(i, j) and C(i, i), ArrayB = i′× j′ (rectangular
tile) and ArrayC = i′ (diagonal line tile) respectively, where i′ and j′ are the
unroll factors of i, j iterators.

Each subscript equation contributes to the creation of ineq.( 1), i.e., equa-
tion i gives Arrayi and specifies its expression. To my knowledge, no other
work uses a similar approach.

The bound values of the RF inequality (eq.( 1)) are not tight because
the output code is C-code and during its compilation (translate the C-code
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into binary code), the target compiler may not allocate the exact number
of desirable variables into registers. Moreover, the 0.7 value has been found
experimentally. The number of Scalar and Extra registers are found after the
allocation of the array elements into variables/registers, because they depend
on the unroll factor values and on the number of iterators being unrolled. The
Extra value depends on the target compiler and thus it is found approximately;
the bounds of the RF inequality are not tight for this reason too. The goal
is to store all the inner loop reused array elements and scalar variables into
registers minimizing the number of register spills.

Rules 2- 5 modify eq. 2 according to the data reuse. The array references
that do not achieve data reuse do not use more than one register; on the other
hand, the array references that achieve data reuse, use as many registers as
possible according to the number of the available registers, e.g., in Fig. 3-(c)
only one register is used for (in) and four for (out) array. To my knowledge,
no other work takes into account data reuse in this way.

Rule 2 The innermost iterator is never unrolled because data reuse cannot be
exposed; if iti is the innermost iterator, then it′i = 1.

Proof By unrolling the innermost iterator, the array references-equations which
contain it, will change their values in each iteration; this means that i) a differ-
ent element is accessed in each iteration and thus a huge number of different
registers is needed for these arrays, ii) all these registers are not reused (a dif-
ferent element is accessed in each iteration). Thus, by unrolling the innermost
iterator, more registers are needed which do not achieve data reuse; this leads
to low RF utilization.

Rule 3 The type1 array references which contain all the loop kernel itera-
tors, do not achieve data reuse (each element is accessed once); thus only one
register is needed for these arrays, i.e., Arrayi = 1.

Proof The subscript equations of these arrays change their values in each it-
eration vector and thus a different element is fetched in each iteration.

Let me give an example Gaussian Blur (Fig. 3). Suppose that loop unroll
is applied to row, col iterators with unroll factor value equal to 2 (Fig. 3-(b)).
Then, all array references are replaced by variables/registers according to the
register file size and data reuse (Fig. 3-(c)). Array out needs row′ × col′ =
4 registers (Fig. 3) while array mask needs mr′ × mc′ = 1 register, where
row′, col′,mr′,mc′ are the row, col,mr,mc unroll factor values, respectively.
Although in array needs 4 registers according to ineq. 2, it achieves no data
reuse and thus only one register is used (Rule 3). The number of registers
needed for each array is given by its subscript equation; these equations give
the data access patterns and data reuse. Regarding mask array, it is reused
four times. Regarding out array, all its four references exist in the loop body
remain unchanged as the mr,mc change, achieving data reuse. in array does
not achieve data reuse and thus only one register is used for all the four
references. However, if someone study in array more carefully, it contains data
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i0=2; j0=2;
for (jj=0; jj<M; jj+=T1)

for (i=0; i<N; i+=i0) {
for (j=jj; j<jj+T1; j+=j0) {
r1=0;r2=0;r3=0;r4=0;
for (k=0; k<P; k++) {

r5=A[i][k]; r6=A[i+1][k];
r7=B[j][k]; r8=B[j+1][k];
r1+=r5*r7;
r2+=r5*r8;
r3+=r6*r7;
r4+=r6*r8;

}
C[i][j]=r1;
C[i][j+1]=r2;
C[i+1][j]=r3;
C[i+1][j+1]=r4;
} }

for (ii=0; ii<60; ii+=10)
for (jj=0; jj<60; jj+=15)
for (kk=0; kk<60; kk+=4)
for (i=ii; i<ii+10; i+=2)
for (k=kk; k<kk+4; k+=4) { 

regA1=A[i][k]; regA2=A[i][k+1];
regA3=A[i][k+2]; regA4=A[i][k+3];
regA5=A[i+1][k]; regA6=A[i+1][k+1]; 
regA7=A[i+1][k+2]; regA8=A[i+1][k+3];

for (j=jj; j<jj+15; j++) {
regC1=0; regC2=0; regB1=B[k][j];
regB2=B[k+1][j]; 
regB3=B[k+2][j]; regB4=B[k+3][j];
regC1+=regA1 * regB1;
regC1+=regA2 * regB2;
regC1+=regA3 * regB3;
regC1+=regA4 * regB4;
regC2+=regA5 * regB1;
regC2+=regA6 * regB2;
regC2+=regA7 * regB3;
regC2+=regA8 * regB4;

C[i][j]+=regC1;
C[i+1][j]+=regC2; }}

(b)(a)

Fig. 4 An example, Matrix-Matrix Multiplication

reuse between consecutive iterations of mc; in Fig. 3-(d) this type of data reuse
(Rule 5) is fully exploited by inserting in1− in5 registers. It is important to
say that both Fig. 3-(c) and Fig. 3-(d), achieve a much smaller number of
L/S and addressing instructions.

Rule 4 If there is an array reference i) containing more than one iterator and
one of them is the innermost one and ii) all ineq.( 1) iterators which do not
exist in this array reference have unroll factor values equal to 1, then only one
register is needed for this array, i.e. Arrayi = 1. This gives more than one
register file inequalities (it is further explained in the following example).

Proof When Rule 4 holds, a different array’s element is fetched in each itera-
tion vector, as the subscript equation changes its value in each iteration. Thus,
no data reuse is achieved and only one register is used. On the contrary, if at
least one iterator which do not exist in this array reference is unrolled, com-
mon array references occur inside the loop body (e.g., regC1 is reused 3 times
in Fig. 4); data reuse is achieved in this case and thus an extra RF inequality
is created.

Let me give another example (Fig. 4-(a)). The C array subscript contains i
and j iterators. j iterator is the innermost one and thus (i′×1 = 2) registers are
needed for this array; however, according to Rule 4, C array needs (i′× 1 = 2)
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registers if k′ 6= 1 and 1 register otherwise (if k′ = 1 then the C array fetches a
different element in each iteration vector and thus only one register is needed).
Regarding array A, it needs i′×k′ registers while B array needs k′ registers, if
i′ 6= 1 and 1 register otherwise. Note that if the i-loop is not unrolled (i′ = 0),
the B and C array elements are not reused and thus there is 1 register for C
and 1 for B (Rule 4). The innermost iterator (j) is not unrolled according to
Rule 2 (data reuse is decreased in this case).

Moreover, there are cases that data reuse utilization is more complicated
as common array elements may be accessed not in each iteration, but in each
k iterations, where k ≥ 1, e.g., Fig. 3-(d). This holds only for type2 equations
(e.g. ai + bj + c) where k = b/a is an integer (data reuse is achieved in each
k iterations). Data reuse is exploited only when k = 1 here (Rule 5) as for
larger k values, data reuse is low. For example, in Fig. 3, each time the mask
is shifted by one position to the right (mc iterator), 20 elements of in array
are reused (reuse between consecutive iterations, i.e., k = 1).

Rule 5 Arrays with type2 subscript equations which have equal coefficient ab-
solute values (e.g. ai + bj + c, where a == ±b) fetch identical elements in
consecutive iterations; data reuse is exploited by interchanging the registers
values in each iteration. An extra RF inequality is produced in this case.

Proof The arrays of Rule 5 access their elements in patterns. As the innermost
iterator changes its value, the elements are accessed in a pattern, i.e. A[p],
A[p + b], A[p + 2× b] etc. When the outermost iterator changes its value, this
pattern is repeated, shifted by one position to the right (A[p+ b], A[p+ 2× b],
A[p+3×b] etc), reusing its elements. This holds for equations with more than
two iterators too.

To exploit data reuse of Rule 5, all the array’s registers interchange their
values in each iteration, e.g., in Fig. 3 - (d), the (in0, in1, in2, in3, in4, in5)
variables interchange their values in each iteration.

To sum up, by applying the aforementioned transformations as above, the
number of i) load/store instructions (or equivalent the number of L1 data
cache accesses) and ii) addressing instructions, are decreased. The number of
load/store instructions is decreased because the reused references are assigned
into registers and they reused as many times as the number of available regis-
ters indicate. The number of addressing instructions is decreased because the
address computations are simplified.

Last but not least, the search space is decreased by orders of magnitude
without pruning efficient schedules. Although it is impractical to run all the dif-
ferent schedules (their number is huge) to prove that they are less performance
efficient, they all give a much larger number of load/store and addressing in-
structions. All the schedules that do not belong to ineq. 1, either use only a
few number of registers or a larger number than the available; in the first case,
array elements are accessed more times (and also their addresses are computed
more times) while in the second case, the register file pressure is high, leading
to a large number of register spills and therefore to a large number of L1 data
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accesses. Moreover, all the schedules that do not satisfy the proposed Rules, do
not take into account data reuse and thus several/many registers are wasted
leading to a larger number of data accesses.

3.2 Loop tiling and data array layouts

Loop tiling is one of the key loop transformations to speedup data dominant
applications. When the accumulated size of the arrays is larger than the cache
size, the arrays do not remain in cache and in most cases they are loaded and
reloaded many times from the slow main memory, decreasing performance
and increasing energy consumption. In order to decrease the number of data
accesses, loop tiling is applied, i.e., arrays are partitioned into smaller ones
(tiles) in order to remain in cache achieving data locality.

Loop tiling for cache, cache size and associativity, data reuse and data
array layouts, strongly depend on each other and thus they are addressed to-
gether, as one problem and not separately. The reason follows. Let me give
an example, Matrix-Matrix Multiplication algorithm. Many research works as
well ATLAS [51] (one of the state of the art high performance libraries) apply
loop tiling by taking into account only the cache size, i.e., the accumulated
size of three rectangular tiles (one of each matrix) must be smaller or equal to
the cache size; however, the elements of these tiles are not written in consecu-
tive main memory locations (the elements of each tile sub-row are written in
different main memory locations) and thus they do not use consecutive data
cache locations; this means that having a set-associative cache, they cannot
simultaneously fit in data cache due to the cache modulo effect. Moreover,
even if the tile elements are written in consecutive main memory locations
(different data array layout), the three tiles cannot simultaneously fit in data
cache if the cache is two-way associative or direct mapped [52], [53]. Thus,
loop tiling is efficient only when cache size, cache associativity and data array
layouts, are addressed together as one problem and not separately.

For a 2 levels of cache architecture, 1 level of tiling (either for L1 or L2
cache), 2 levels of tiling and no tiling solutions, are applied to all the solutions-
schedules that have been produced so far. The optimum number of levels of
tiling cannot easily be found since the data locality advantage may be lost by
the required insertion of extra L/S and addressing instructions, which degrade
performance. The separate memories optimization gives a different schedule for
each memory and these schedules cannot coexist, as by refining one, degrading
another, e.g., the schedule minimizing the number of L2 data cache accesses
and the schedule minimizing the number of main memory accesses cannot
coexist; thus, either a sub-optimum schedule for all memories or a (near)-
optimum schedule only for one memory can be produced.

As far as the tile sizes are concerned, a cache inequality is produced for each
cache memory (eq.3), giving all the efficient tile sizes; each inequality contains
i) the tile size of each array and ii) the shape of each array tile. However,
partitioning the arrays into smaller ones (tiles) according to the cache size is
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not enough because tiles may conflict with each other due to the cache modulo
effect; to satisfy that tiles remain in cache, first all the tile elements are written
in consecutive main memory locations (in order to be loaded in consecutive
cache locations), second different array tiles are loaded in different cache ways
in order not to conflict with each other and third LRU cache replacement
policy is used. All tile sizes and shapes and array layouts different than these
the proposed inequalities give are not considered decreasing the search space.

The L1 data cache inequality is given by:

assoc− v − (bassoc/4c) ≤ d Tile1
L1/assoc

e+ ... + d Tilen
L1/assoc

e ≤ assoc− v (3)

where L1 is the L1 data cache size and assoc is the data cache associativity
(for an 8-way associative data cache, assoc = 8). v value is zero when no type3
array exist and one if at least one type3 array exists (it is explained next,
Rule 6). (bassoc/4c) gives the number of cache ways that remain unused and
defines the lower bound of tile sizes. Tilei is the tile size of the ith array and
it is given by

Tilei = T ′1 × T ′2 × T ′n × ElementSize (4)

where integer T ′i are the tile sizes of the iterators that exist in the array’s
subscript. ElementSize is the size of each array’s element in bytes, e.g., in
Fig. 4-(a), TileA = ii′×kk′×4 = 10×4×4, TileB = kk′× jj′×4 = 15×4×4
and TileC = ii′ × jj′ × 4 = 10 × 15 × 4, if A,B and C contain floating point
values (4 bytes each).

Ineq. 3 satisfies that no cache way contains more than one array’s elements,
minimizing the number of cache conflicts. a1 = d Tile1

L1/assoc
e value is an integer

and gives the number of L1 data cache lines with identical L1 addresses used for
Tile1. An empty cache line is always granted for each different modulo (with
respect to the size of the cache) of Tiles memory addresses. For the reminder
of this paper I will more freely say that I use a1 cache ways for Tile1, a2
cache ways for Tile2 etc (in other words Tiles are written in separate data
cache ways). In the case that Tilei

L1/assoc
would be used instead of d Tilei

L1/assoc
e,

the number of L1 misses will be much larger because Tiles’ cache lines would
conflict with each other.

Moreover, in order to the Tiles remain in cache, their elements have to be
written in consecutive cache locations and thus to consecutive main memory
locations; thus, the data array layouts are changed to tile-wise (if needed), i.e.,
all array elements are written to main memory in order. To my knowledge,
no other work addresses loop tiling by taking into account cache size, cache
associativity and the data array layouts for a wide range of algorithms and
computer architectures.

In the case that the tile size is very small (Tilei ≺ (L1/assoc)/10), neither
its layout is changed nor it is inserted in ineq. 3 (this value has been found
experimentally). Moreover, if the tile elements are not written in consecutive
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main memory locations but the associativity value is large enough to prevent
cache conflicts, the data array layout remains unchanged, e.g., consider a 2-d
array of size N ×N and a tile of size 4× T , where T ≺ N ; if (assoc ≥ 4) and
((T × ElementSize) ≺ CacheWaySize), no cache conflict occurs.

Regarding type3 arrays, loop tiling cannot be applied. These arrays contain
subscript equations which are not given by a compile time known expression
(they depend on the input data). These arrays cannot be partitioned into tiles
as their elements are accessed in a ’random’ way; this leads to a large number
of cache conflicts due to the cache modulo effect (especially for large arrays).
To eliminate these conflicts, Rule 6 is introduced.

Rule 6 For all the type3 arrays, data cache size which equals to the size of one
cache way is granted (v = 1). In other words, an empty cache line is granted
for each different modulo (with respect to the size of the cache) of these arrays
memory addresses.

The search space is decreased even more by computing the best nesting
level values of the new tiling iterators.

Statement 1 The nesting level values of the tiling iterators (produced by ap-
plying loop tiling) are found theoretically (no searching is applied). This means
that loop interchange is not applied to the new tiling iterators.

The nesting level values of the new (tiling) iterators are computed. For
each different schedule produced by ineq.( 3), I compute the total number of
data accesses for all the different nesting level values and the best are selected.

The number of each array’s accesses is found by:
DataAccesses = n × Tile size in elements × Num of tiles, where n is

the number of times each tile is fetched and equals to (q × r), where q is the
number of iterations exist above the upper iterator of the array’s equation and
r is the number of iterations exist between the upper and the lower iterators
of the array’s equation.

Last but not least, the search space is decreased by orders of magnitude
without pruning efficient schedules. Although it is impractical to run all dif-
ferent schedules (their number is huge) to prove that they are less efficient,
they all give a much larger number of memory accesses in the whole memory
hierarchy. All schedules that do not belong to ineq. 3, either use only a small
portion of cache or a larger than the available or tile sizes do not use consecu-
tive main memory / cache locations and thus they cannot remain in cache; in
the first case, tile sizes are small giving a large number of data accesses and
addressing instructions while in the second case, tile sizes are large and tiles
cannot remain in cache leading to a much larger number of memory accesses.

4 Experimental Results

The experimental results for the proposed methodology, presented in this sec-
tion, were carried out with Intel Xeon Quad Core E3-1240 v3 general pur-
pose processor and PowerPC 440 embedded processor (Virtex-5 FPGA ML507
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Evaluation Platform). Regarding Intel processor, a performance comparison is
made over gcc 4.8.4 and Intel icc 2015 compilers; optimization level -O3 was
used at all cases. The operating system used is Ubuntu 14.04.

The comparison is done for 7 well-known data dominant linear algebra,
image processing and signal processing kernels (PolyBench/C benchmark suite
version 3.2 [54]). These are: Matrix-Matrix Multiplication (MMM), Matrix-
Vector Multiplication (MVM), Gaussian Blur (5 × 5 filter), Finite Impulse
Response filter (FIR), Sobel operator (Manhattan distance is used instead of
Euclidean distance), Jacobi 9-point Stencil and Gaussian Elimination. All the
C-codes are single threaded and thus they run on one core only.

First, an evaluation of compilation time / search space is made over iter-
ative compilation (iterative compilation here includes all the transformations
shown in Fig.1.). To the best of my knowledge there is no iterative
compilation method including the optimizations presented in this
paper with all their parameters; iterative compilation techniques either
do not use the transformations presented in this paper at all, or they use some
them to some extent [23] [24] [25], e.g., loop tiling is applied only for spe-
cific tile sizes and levels of tiling and loop unroll is applied only for specific
unroll factor values. Normally, iterative compilation methods include transfor-
mations with low compilation time such as common subexpression elimination,
unreachable code elimination, branch chaining and not compile time expen-
sive transformations such as loop tiling; I show that if the transformations
presented in Fig.1 (including almost all different transformation parameters)
are included in iterative compilation, the search space is from 1017 up to 1029

schedules(for the given input sizes) (Table 1); given that 1sec = 3.17 × 10−8

years and supposing that compilation time takes 1 sec, the compilation time
is from 109 up to 1021 years. On the other hand, the proposed methodology
decreases the search space from 101 up to 105 schedules.

The first column of Table 1 gives the overall size of the search space (Fig. 1);
the values have been computed by the following equation:

Schedules = 7!× (UnrollFactorloops × loops! +

+UnrollFactorloops × Tile1loops × (2× loops)!× (2×matrices) +

+UnrollFactorloops × Tile2loops × (2× loops)!× (2×matrices) +

+UnrollFactorloops × Tile1loops × Tile2loops × (3× loops)!× (2×matrices))(5)

where Tile1 and Tile2 are the numbers of different tile sizes for each it-
erator for the L1 and L2, respectively and loops is the number of the loops.
UnrollFactor value is the number of different unroll factor values for each
iterator. Finally, matrices is the number of multidimensional arrays and in-
dicates that each multidimensional array uses two different data layouts (the
default and the tile-wise). The first, second, third and fourth row of eq. 5, give
the number of the schedules when tiling for (no memory), (L1), (L2) and (L1
and L2) is applied, respectively.
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The second and the fourth columns of Table1 give the search space size of
the transformations used in Subsection 3.1 and Subsection 3.2, respectively.
The second column values of Table 1 are given by (4! × UnrollFactorloops ×
loops!). The fourth column values are obtained by (4!×Tile1loops×Tile2loops×
(2 × loops)! × (2 ×matrices)). The other column values have been obtained
experimentally. The search space of MMM is the biggest as it contains 3 large
loops to which loop tiling has applied. On the other hand, the smallest search
space is that of MVM as it contains only two loops and a small input size.

For a fair comparison to be made, (UnrollFactor = 32), since the number
of the registers is limited. Moreover, the different tile sizes used here are the
following: for MMM Tile1 = 500 and Tile2 = 250, for Gaussian Blur, Sobel
and Jacobi stencil Tile1 = 600 and Tile2 = 300, for MVM Tile1 = 2100
and Tile2 = 1000, for FIR Tile1 = 16000 (1st iterator), Tile1 = 1000 (filter
iterator) and Tile2 = 0, for Gaussian Elimination, Tile1 = 600 and Tile2 = 0.
Regarding FIR and Gaussian Elimination, Tile2 = 0 as their arrays fit in L2
cache and therefore tiling for L2 is useless.

MMM achieves the largest number of schedules and thus the largest com-
pilation time, because it contains three large loops which are eligible to loop
tiling. On the other hand, Gaussian Elimination and FIR achieve the smallest
number of schedules since their arrays are of small size and they fit in L2
cache (for the given input sizes); this means that no tiling for L2 is applied,
decreasing the number of the schedules. As it was expected, the search space
is decreased by many orders of magnitude at all the steps of the proposed
methodology. As far as Subsect. 3.1 is concerned, the second column shows
the estimated number of the schedules and the third shows the number of
the schedules generated by the proposed methodology; the search is space is
decreased from 3 up to 6 orders of magnitude. As far as Subsect. 3.2 is con-
cerned, the fourth column shows the estimated number of schedules and the
fifth shows the number of the schedules generated by the proposed method-
ology; the search is space is decreased from 9 up to 17 orders of magnitude.
Regarding the overall estimated search space, it is shown at the first column
of Table 1; given that 1sec = 3.17× 10−8years, the compilation time is from
109 up to 1021 years. At last, instead of testing all these schedules (which is
impractical), the proposed methodology tests only the schedules shown at the
last column of Table 1.

Second, an evaluation of performance is made over iterative compilation.
Given that a) there is no iterative compilation method including all
the transformations presented in this paper, including all different
transformation parameters, b) the number of different schedules is
huge (1st column of Table 1), I evaluated the proposed methodol-
ogy only with the most performance efficient transformations, i.e.,
loop tiling, loop unroll and loop interchange. The proposed methodology is
compared with a) one level of tiling to one loop (best loop and best tile size),
b) one level of tiling to all the loops (best number of levels of tiling and best
tile sizes), c) loop interchange and one level of tiling to all the loops (best
iterator nesting level values, best number of levels of tiling and best tile sizes)



18 Vasilios Kelefouras

Table 1 Evaluation of the search space (compilation time). The values shown are numbers
of schedules/binaries (fixed input sizes)

Estimated Estimated Number of Estimated Number of Total number
total search schedules search schedules of schedules

search space of generated by space of generated by generated by
space Subsect. 3.1 Subsect. 3.1 Subsect. 3.2 Subsect. 3.2 Prop. Method.

MMM 1029 4.4 × 106 4.2 × 101 1020 8.0 × 103 3.3 × 105

(N=1000)
MVM 1022 2.4 × 104 1 × 101 1015 4.5 × 102 4.6 × 103

(N=4200)
Gaussian

Blur (N=1200) 1027 1.4 × 107 1.2 × 102 1013 2.9 × 102 3.6 × 104

FIR 1017 2.4 × 104 1.6 × 101 1010 3.4 × 101 5.6 × 102

(N=32000, M=4000)
Sobel (N=1200) 1027 5.2 × 106 1.1 × 102 1013 2.9 × 102 3.1 × 104

Jacobi 9-point
Stencil (N=1200) 1027 5.2 × 106 8.1 × 101 1013 2.9 × 102 2.5 × 104

Gaussian
Elimination 1017 1.5 × 106 6.0 × 100 1010 2.3 × 101 1.4 × 102

(N=1200)

Table 2 Performance evaluation for fixed input sizes (those of Table 1). The speedup values
refer to the ratio of the benchmark code execution time to the transformed code execution
time (gcc compiler is used).

loop unroll Proposed
one level of tiling to one level of tiling loop interchange to one loop Method. Proposed
one loop (best loop to all loops and one level of and scalar Subsect. 3.1 Method.
and best tile size) (best tile sizes) tiling to all loops replacement only overall

MMM Intel 1.14 1.15 1.15 1.93 2.42 3.83
MMM PowerPC 1.30 1.51 1.56 1.59 2.02 3.12

MVM Intel 1.08 1.08 1.08 2.07 2.46 2.46
MVM PowerPC 1.10 1.10 1.10 1.63 1.87 2.09

Gaussian
Blur Intel 1.00 1.00 1.00 1.92 2.40 2.40
Gaussian

Blur PowerPC 1.00 1.00 1.00 2.32 2.83 2.83
FIR Intel 1.09 1.09 1.09 1.70 2.05 2.21

FIR PowerPC 1.15 1.15 1.15 1.61 1.98 2.32
Sobel Intel 1.00 1.00 1.00 1.68 2.01 2.01

Sobel PowerPC 1.00 1.00 1.00 1.82 2.25 2.25
Jacobi 9-point
Stencil Intel 1.00 1.00 1.00 1.46 1.82 1.82

Jacobi 9-point
Stencil PowerPC 1.00 1.00 1.00 1.76 2.13 2.13

Gaussian
Elimination Intel 1.00 1.00 1.00 1.33 1.62 1.62

Gaussian
Elimination PowerPC 1.00 1.00 1.00 1.52 1.84 1.84

and d) loop unroll to one loop and scalar replacement (best loop and best
unroll factor value) (Table 2). Given that even the search space of the (a)-(d)
above is huge, only one different set of input sizes is used (the input sizes are
those shown in Table 1). Moreover, the number of different tile sizes tested
here are limited (from 1 up to 2 orders of magnitude smaller than those used
to estimate Table 1). Even for a limited input and tile sizes the number of
different binaries is large and thus the experimental results of Table 2 took
several days.

It is important to say that the (d) set of transformations above, evaluates
Subsect. 3.1; in (d), one loop is unrolled (best loop and best unroll factor value)
and then all the array references that exist in the loop body are replaced
by scalar variables. The (d) set of transformations achieves a much higher
speedup than the (a)-(c) ones as it decreases the number of both load/store
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(L/S) and addressing instructions. However, it does not take into account data
reuse and the number of registers and this is why the methodology given in
Subsect. 3.1 performs about 1.25 times faster. As it was expected, by unrolling
the innermost loops, performance is not highly increased since the data reuse
being achieved is low.

As it was expected, one level of loop tiling is not performance efficient for
Gaussian Blur, Sobel and Jacobi Stencil since the locality advantage is lost by
the additional addressing (tiling adds more loops) and load/store instructions
(there are overlapping array elements which are loaded twice [55]). Regarding
Gaussian Elimination, loop tiling is not performance efficient because the loops
allowed to be tiled (data dependencies) a) do not have fixed bound values (data
reuse is decreased in each iteration), b) the upper row of the matrix (which is
reused many times) always fits in L1. This is why the methodology given in
Subsect. 3.1 achieves the best observed speedup for the Gaussian Blur, Sobel,
Jacobi Stencil and Gaussian Elimination.

Regarding MMM, MVM and FIR, loop tiling is performance efficient, es-
pecially, when it is applied according to Subsect. 3.2; Subsect. 3.2 applies
loop tiling in a more efficient way (it takes into account data reuse, memory
architecture details and data array layouts) giving higher speedup values. Re-
garding MMM, loop tiling is performance efficient for matrix sizes larger than
90× 90 for both processors (both processors contain 32kbyte L1 data cache).
At the MVM case, loop tiling is performance efficient for matrix sizes larger
than 4096× 4096. As far as FIR is concerned, loop tiling is effective for filter
sizes larger than 4000.

Loop tiling is more efficient on PowerPC processor because PowerPC con-
tains only one level of cache, making the memory management problem more
critical. In contrast to MMM, the MVM and the FIR do not increase their
performance by applying loop tiling to more than one loop iterator; this is
because MMM contains three very large arrays and one extra iterator, making
loop tiling transformation more critical. As far as loop interchange transfor-
mation is concerned, it does not increase performance except from MMM in
PowerPC (I believe that gcc already applies loop interchange, at least on Intel
processor).

Moreover, an evaluation over gcc/icc compilers is made. Icc performs better
than gcc, for all algorithms. A large number of different input sizes is tested for
each algorithm and the average speedup value is computed. As the input size
increases, the speedup slightly increases; this is because loop tiling becomes
more critical in this case. It is important to say that by slightly changing the
input size, the output schedule changes. The input sizes are the following. For
MMM square matrices of sizes (64×64−4000×4000) are used while for MVM
a square matrix of size (256 × 256 − 160000 × 16000) is used. For Gaussian
Blur, Sobel, Jacobi Stencil and Gaussian Elimination square matrices of sizes
(256× 256− 3000× 3000) are used. Regarding FIR, (array size, filter size) =
((1000, 80)−(128000, 12000)). It is important to say that PowerPC is connected
to a DDR2 of 256 Mbytes and therefore the input sizes that exceed this value
are not tested.
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Table 3 Performance comparison over gcc 4.8.4, icc 2015 and PowerPC compilers

IntelXeonE3 − 1240v3
Average MMM MVM Gaussian FIR Sobel Jacobi 9-point Gaussian
Speedup Blur Stencil Elimination
gcc 3.3 2.5 2.3 2.0 1.9 1.8 1.6
icc 2.5 1.9 2.1 1.6 1.5 1.4 1.3

PowerPC440
Average MMM MVM Gaussian FIR Sobel Jacobi 9-point Gaussian
Speedup Blur Stencil Elimination
PowerPC 2.6 1.9 2.7 2.0 2.2 1.9 1.8
compiler

The proposed methodology achieves significant speedup values on both
processors (Table 3), as the number of load/store instructions and cache ac-
cesses is highly decreased. icc applies more efficient transformations than gcc
to the benchmark codes, resulting in faster binary code. It is important to
say that although icc generates much faster binaries than gcc regarding the
benchmark codes, both compilers give close execution time binaries regarding
the proposed methodology output codes; this is because both compilers are
not able to apply high level transformations at the latter case.

Regarding Intel processor, gcc and icc compilers generate binary code con-
taining SSE/AVX instructions (auto-vectorization) and thus they use 256-bit /
128-bit YMM / XMM registers. However, the proposed methodology does not
support auto-vectorization (it is out of the scope of this paper); thus, all the
benchmark C-codes that used on Intel, use SSE instrinsics. In this way, both
input and output codes contain the SSE instrinsics. As far as the PowerPC
processor is concerned, benchmark C-codes do not contain vector instructions.

The best observed speedup for Intel processor is achieved for MMM while
the best speedup for PowerPC is achieved for Gaussian Blur and MMM (Ta-
ble 3). MMM achieves the largest speedup values because it contains three very
large 2-d arrays providing data reuse (loop tiling has a larger effect in such
cases). The MMM schedules that achieve best performance on Intel include
loop tiling for L1 and L3 and tile-wise data array layouts for A and B, when
C = C + A × B (when the input size is large enough). The MMM schedules
that achieve best performance on PowerPC include tiling for L1 data cache and
tile-wise layouts for the arrays A and B. Moreover, the methodology given in
Subsect. 3.1, has a very large effect on performance for both processors (Table
1).

Regarding MVM (Table 3), speedup of 2.5 and 1.9 is achieved for Intel
and PowerPC, respectively. Loop tiling for cache is not performance efficient
for Intel processor (speedup lower than 1%) since the total size of the arrays
that achieve data reuse is small (Y and X arrays, when Y = Y + A × X)
and they fit in fast L2 cache in most cases. However, PowerPC has one level
of data cache only and thus loop tiling is performance efficient for large array
sizes only. Moreover, the data array layout of A (when Y = Y + A × X) is
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not performance efficient to be changed for two reasons (at both processors).
First, array A size is very large compared to the X and Y ones and second, A
is not reused (each element of A is accessed only once).

Regarding Gaussian Blur, a large speedup value is achieved in both cases.
Gaussian Blur contains two 2-d arrays (images) and a 5×5 mask array which is
always shifted by one position to the right to the input image. The input image
and the mask array achieve data reuse and thus both array elements are as-
signed into registers. Regarding Intel processor, the speedup values are 2.3 and
2.1 for gcc and icc, respectively, while for PowerPC the highest speedup value is
achieved, i.e., 2.7. Loop tiling is performance efficient only for very large input
sizes. As far as PowerPC is concerned, it achieves a larger speedup value than
Intel because by creating a large loop body, compilers apply scalar replacement
to the Gaussian mask elements, decreasing the number of load/store and arith-
metical instructions; the decreased number of instructions has a larger effect
on the smaller PowerPC processor which contains only one ALU unit.

FIR achieves a significant but not large performance gain (Table 3) because
FIR arrays are of small size. In the case that L1 data cache size is smaller than
twice the size of the filter array, loop tiling is necessary. This is because the
filter array and a part of the input array (they are of the same size) are loaded
in each iteration; if L1 is smaller than this value, the filter array cannot remain
in L1 and thus it is fetched many times from the upper memory. In this case
loop tiling for L1 is performance efficient; loop tiling is not applied for Intel
L2/L3 cache memories since the total size of the arrays is smaller here.

In Sobel Operator two 3 × 3 mask arrays are applied to the input im-
age, shifted by one position to the right. I use the Manhattan instead of Eu-
clidean distance because in the latter case performance highly depends on the
Euclidean distance computation (especially on PowerPC); I use if-condition
statements instead of atan() functions for the same reason. PowerPC achieves
a larger speedup value than Intel because by increasing the loop body size,
compiler apply scalar replacement to the Sobel mask elements (Sobel mask el-
ements contain only ones and zeros), decreasing the number of load/store and
arithmetical instructions; the decreased number of instructions has a larger
effect on the smaller PowerPC processor which contains only one ALU unit.

Regarding Jacobi 9-point Stencil, speedup values are 1.7 and 1.4 over gcc
and icc, respectively (Intel processor). As far as PowerPC is concerned, a larger
speedup value is achieved (1.9). Data reuse is achieved in each iteration for
the six of the nine array elements which are assigned into registers. Three
loads occur in each iteration and not nine, since six registers interchange their
values as in (Fig. 3-(d)). Regarding Intel processor, data reuse is achieved by
computing more than one result (from vertical dimension) in each iteration.

Finally, Gaussian Elimination achieves the lowest speedup gain on both
processors because of the data dependencies (the proposed methodology can be
applied partially). Loop tiling is not performance efficient on both processors
since the upper row of the matrix which achieves data reuse, fits in the L1
data cache at all cases.
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5 Conclusions

In this paper, six compiler optimizations are addressed together as one problem
and not separately, for a wide range of algorithms and computer architectures.
New methods for loop unroll and loop tiling are given which take into account
the custom SW characteristics and the HW architecture details. In this way,
the search space is decreased by many orders of magnitude and thus it is
capable to be searched.
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