
A template-based methodology for efficient
microprocessor and FPGA accelerator co-design

KRITIKAKOU, Angeliki, CATTHOOR, Francky, ATHANASIOU, George,
KELEFOURAS, Vasileios <http://orcid.org/0000-0001-9591-913X> and
GOUTIS, Costas E.

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/18350/

This document is the Accepted Version [AM]

Citation:

KRITIKAKOU, Angeliki, CATTHOOR, Francky, ATHANASIOU, George,
KELEFOURAS, Vasileios and GOUTIS, Costas E. (2013). A template-based
methodology for efficient microprocessor and FPGA accelerator co-design. In: 2012
International Conference on Embedded Computer Systems (SAMOS). IEEE, 15-22.
[Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A Template-based Methodology for Efficient
Microprocessor and FPGA Accelerator Co-Design

Angeliki Kritikakou∗, Francky Catthoor†, George S. Athanasiou∗, Vasilios Kelefouras∗ and Costas Goutis∗
∗Dep. Electrical & Computer Engineering, Univ. of Patras, Patras, Greece, 26500. Email: akritikakou@ece.upatras.gr
† Inter-university Micro-Electronics (IMEC) & Dep. Electrical Engineering (ESAT), KULeuven, Leuven, Belgium

Abstract—Embedded applications usually require Soft-
ware/Hardware (SW/HW) designs to meet the hard timing con-
straints and the required design flexibility. Exhaustive exploration
for SW/HW designs is a very time consuming task, while the ad-
hoc approaches and the use of partially automatic tools usually
lead to less efficient designs. To support a more efficient co-
design process for FPGA platforms we propose a systematic
methodology to map an application to SW/HW platform with
a custom HW accelerator and a microprocessor core. The
methodology mapping steps are expressed through parametric
templates for the SW/HW Communication Organization, the
Foreground (FG) Memory Management and the Data Path (DP)
Mapping. Several performance-area tradeoff design Pareto points
are produced by instantiating the templates. A real-time bio-
imaging application is mapped on a FPGA to evaluate the gains
of our approach, i.e. 44,8% on performance compared with pure
SW designs and 58% on area compared with pure HW designs.

I. INTRODUCTION

Embedded real-time applications usually have hard real-
time constraints. When these are not met, alternative designs
should be composed. The performance can be further im-
proved, when the critical application tasks are executed in
custom and application specific HW designs. However, HW
designs have a high design cost and their flexibility remains
very limited, even when they are made partly configurable.
The SW approaches provide the required flexibility for a wide
range of applications, but at the cost of reduced performance.
A hybrid approach is a promising solution, as it combines the
advantages of both designs by balancing the flexibility of the
SW implementation with the performance of custom HW [2].

Such hybrid approaches require an efficient exploration
of the application domain. This is achieved by identifying
the application parts which are meaningful to be potentially
designed in a HW component, by analyzing the tradeoff
between the custom HW complexity and the obtained gain
and by providing an effective and easy to be programmed
system [2]. Existing design tools offer a partially automatic
customization of soft microprocessors. These tools usually
require a high exploration time as they may explore a wide
range of design instances, which are, however, restricted and
focused on a relatively limited exploration area (Section II).

The results were co-financed by: Public Welfare Foundation “Propondis”
research funds, Hellenic and European Regional Development Fund (ERDF)
under ESPA 2007-2013 (MICRO2-SE-G) and European Social Fund (ESF)
and Greek national funds (Heracleitus II-NSRF). The machine vision algo-
rithm and SW model were patented by Micro2gen [1].

When the application does not match very well with the
explored area, this approach leads to suboptimal designs. A
very broad Design Space Exploration (DSE) corresponds to a
very difficult and time consuming task due to the high number
of SW and HW design parameters. Hence, the designers
usually create hybrid designs by following ad-hoc or trial
and error ways based on their expertise, which require costly
design iterations (Section II). Hence, a systematic way is
highly desired to support the complete DSE for efficient
SW/HW design within an acceptable search time [3].

The first main contribution to achieve this goal is a stepwise
template-based methodology to produce a Pareto curve with
performance-area tradeoff points for mapping an application
to a SW/HW design. The DSE is performed within acceptable
search time since only the valid and promising part is ex-
plored based on an efficient and scalable what-if analysis. The
mapping process is split into sequential steps connected with
uni-directional propagation of design constraints used to prune
incompatible options in the next mapping steps. The steps are
the SW/HW Communication Organization, the FG Memory
Management (the memory attached to the data path) and the
DP mapping and are described by parameterized templates.
The application and the platform instance constraints are
propagated to the steps to further prune suboptimal options.
The main design objectives are to minimize area and, thus,
reduce energy consumption in FPGAs, while meeting all real-
time application constraints. The Pareto Points are derived by
instantiating the parameters of the proposed templates with
specific values. In this way, efficient exploration is achieved
from the early mapping steps of the co-design process. Our
second main contribution is to demonstrate how the proposed
methodology is applied in a real-time bio-imaging application
of a microfluidic-based FPGA device and produces interesting
Pareto points between the pure SW and HW approaches.

The paper is organized as follows: Section II presents
existing design approaches and tools, including the few really
systematic ones. Section III describes the proposed method-
ology. Section IV presents a demonstration of applying our
methodology to a real-time bio-imaging application and the
evaluation results. Section V concludes the current study.

II. RELATED WORK

Both academic and commercial customizable microproces-
sors, e.g. Microblaze or NiosII, allow the designer to insert

HW components supporting hybrid SW/HW implementations.
However, the tools and the development methodologies are
mainly inadequate to support the efficient mapping of appli-
cations to (re-)configurable embedded systems [4].

Several design tools exist to partially customize soft micro-
processors. For instance, Synopsys Synphony C compiler [5]
creates accelerators from sequential code. CriticalBlue cas-
cade [6] is an automated co-processors synthesis solution.
Tosca, Cosmos, Handel-C and ImpulseC (a survey is available
in [7]), provide RTL extensions to C for FPGA design, but
they provide less efficient results than custom HW designs.
The tools identify automated design flows and implement the
custom instructions, but they also require specification of new
HW resources and rewriting part of the application [2]. In [8],
the compiler generates custom instructions by finding and
adding the instruction data paths that can be reused across
similar code pieces to the customizable processor. However,
the exploration and verification time induces a significant
overhead [2] and the design may remain quite suboptimal [8].

These approaches usually require a high exploration time
as they apply a very extensive (or nearly exhaustive) DSE
on a relatively limited part of the design space with costly
design iterations. They typically restrict the supported options
for the communication/connection of components and the FG
memory organization, excluding potentially promising options
of the unexplored design space. When the application does
not match very well with the part of the overall design space
selected for further exploration, the tools can easily produce
sub-optimal solutions. To improve the hybrid design process,
effort from the designers is required. The alternative is a very
broad DSE which involves a very difficult and time consuming
task due to the high number of SW and HW parameters [9].

The designers propose designs for the specific application
instances by following ad-hoc or trial and error ways which
increase the costly design iterations. They propose several de-
signs instantiations for their specific applications using FPGA
manufactures tools, such as Xilinx EDK and Altera SOPC
Builder. For instance, a specific design implementation of an
object tracking co-processor has been proposed in [10] and
one design implementation for an object detection application
in [11]. Since substantial time and effort are required to eval-
uate a design, they usually evaluate few final design choices,
usually the ones that can be evaluated quickly based on
previous experience [12]. Hence, potentially promising options
are easily overlooked. For instance, in [13] a reconfigurable
HW is used as a general-purpose accelerator, where applica-
tion blocks are mapped using a library of modules, partially
exploring the design options as relevant details of custom
units are overlooked. Ref. [14] proposes a reconfigurable unit
to execute specific instructions. Its performance is up-front
decided (16 operations can be simultaneously executed), which
potentially removes promising designs.

Existing design methodologies mainly focus on guiding a
particular step of the design process. Several methodologies
address the implementation of the DP of the custom HW to
improve the design objectives. For instance, a methodology

based on evolutionary Multi-Objective Optimization (MOO)
is proposed to create the DP of a HW accelerator for a
JPEG algorithm [15]. A generic architecture is proposed
which implements the control and the DP of the custom HW
either inside the microprocessor or outside, as a standalone
processing element [16]. A systematic approach to extend an
embedded processor with generic custom units is presented
in [17]. Other methodologies focus on the application of
code transformations related to the memory part. For instance,
the compiler in [18] extracts loop parameters to decide un-
rolling and SW pipelining. In [19] they focus on balancing
memory accesses with floating point operations. Several of
the DSE methodologies are mainly recursive approaches. A
methodology with stochastic algorithms to search the design
space is proposed in [9]. A simulated annealing approach
for DSE of object detection accelerators is proposed in [20].
The Single Factor Analysis (SFA) [21] starts from a base
configuration selected by the designer and changes the value
of one parameter each time. The results are used to predict the
optimal design. It may lead to suboptimal results when a high
number of parameters and interdependencies exists. Another
approach sorts the parameters based on the impact determined
by the maximum parameter value change. All combinations of
the first two high impact parameters are considered and the
non-Pareto combinations are pruned. The process is repeated
for the Pareto points and the next highest impact parameter
etc. [3]. The parameters independence is used to prune the
space and to derive the Pareto curve in Platune [9].

III. SYSTEMATIC TEMPLATE-BASED METHODOLOGY

The proposed stepwise template-based methodology applies
an efficient and scalable DSE for efficient mapping of an ap-
plication to a HW platform from the early stages of the design
process and within acceptable search time. This is achieved by
incorporating both the constraints of the application and the
target HW platform from the beginning of the DSE. Hence,
we systematically and immediately prune suboptimal solutions
from the large space based on an efficient what-if analysis.

The proposed methodology uses a parameterized HW ar-
chitecture and it is dedicated to the mapping of an application
to the parameterized HW platform. It is split into sequential
mapping steps each one expressed with a parameterized tem-
plate. The templates are developed by finding the relevant
SW and HW parameters and their correlation for the target
application domain and the target platform domain (depicted
in Fig. 6). The way the steps affect each other is defined
by uni-directional design constraint propagation, which further
prunes suboptimal options from the next design steps, without
removing potentially optimal options and avoiding the costly
design iterations. The methodology creates a Pareto Curve
with several performance-area tradeoff points in the complete
design space by giving specific values to the parameters of
each step (template instantiation). The Pareto points are placed
quite close to each other and thus they can approximate the
overall Pareto Curve. A high quality result is achieved since
the final selection is made from the proposed Pareto points.

SW/HW Communication
Organization

Application
Analysis

FG Memory
Management

DP Mapping

Application Instance HW parameters

SW parameters

Decision Decision

Final Designs Valid Design Space Valid Design Space Initial Design Space

x

x

x

x
x

Fig. 1. Proposed methodology steps and constraint propagation.

In the next subsections, we describe the parameterized
templates of the proposed methodology following the order
that the design constraints are propagated and pruning the
space (Fig. 1). Initially, a preprocessing step (Application
Analysis) identifies the real-time constraints, the critical ker-
nels for mapping on the FPGA and their characteristics. The
analysis output and the HW constraints are propagated to
the SW/HW Communication Organization step to decide the
microprocessor and the custom HW connection. The result is
propagated to the next step for the FG Memory Management.
Finally, the result is propagated to the DP Mapping, where the
final design is composed.

The design objectives is reducing the area and, thus, the
energy consumption in FPGA designs (due to the number of
required gates), while the real-time constraints are met. A less
strict latency constraint is allowed for the application kernels
to optimize the throughput. In the scope of this paper, the
communication of the Background (BG) Memory, i.e. distant
memories from the processing elements, is organized by the
SW executed on the microprocessor, using the HW of the
memory and the cache controllers of the target platform. The
array accesses in SW are compiled into load/store operations
and the cache controller handles the data [22].

A. Application Analysis Step

The application real-time constraints determine the deadline
D, which defines the maximum bound on the application
execution time tTot, tTot ≤ D. When the execution time in
pure SW design tTotSW is larger than the deadline D, hybrid
approaches are required to meet the real-time constraints.
Profiling is applied to identify the application critical parts.

1) Loops and Kernels: The execution time ti of the critical
kernels is a high percentage of the total execution time. The
kernel type is given by the parameter Regular. If Regular=1,
the kernel is executed in every iteration. If Regular=0, the
kernel execution depends on control statements and specific
values of their data. The number of cycles describe the
available slack for executing the kernels and achieving real-
time behavior. The cycles available for the total HW execution
are given by Eq. 1, for a specific kernel HW execution by Eq. 2
and for one iteration of a specific kernel by Eq. 3:

CyclesTotHW = (tTot − tTotSW) ∗ fHW (1)

Cyclesi,TotHW =
ti

tTotHW
∗ CyclesTotHW (2)

Cyclesi,HW =
Cyclesi,TotHW

Iterations(i)
(3)

The available number of cycles to transfer the data of an
executed in HW Kernel in the FG memory, while real-time
behavior is achieved, are given by similar equations:

CyclesTotTR = (tTot − tTotSW) ∗min(fMem, fCom/tion) (4)

Cyclesi,TotTR =
ti

tTotHW
∗ CyclesTotTR (5)

Cyclesi,TR =
Cyclesi,TotTR

Iterations
(6)

To select the kernel to be mapped in the custom HW, the
design objectives are propagated to the application analysis.
Hence, the smallest number of kernels should be selected
to be mapped in one HW accelerator. The kernel with the
highest rate is initially selected. When two kernels have similar
rate, the kernel with the parameter Regular = 1 is favored,
due to the high use of the HW component, the regularity of
the execution and the simpler synchronization between SW
and HW components. If the total execution time still has to
be reduced, the process is repeated for the similar rate data
dependent kernel, the second weighted regular kernel etc.

2) Control Flow Operations: Except of the main applica-
tion kernels (in the loop code), also the control flow operations
(especially outer loop code, global conditions and initializa-
tion) exist in the application. They can be executed either in
the SW, i.e. parameter ExecControl = SW or implemented
in the HW component, ExecControl = HW . In the first case,
the complexity is moved to the microprocessor. In the second
case, dedicated control and diverse FUs are inserted to the
HW component. By propagating the design objectives to these
two options, the control statements are selected to be executed
in the microprocessor. The HW design complexity and the
synchronization between components is reduced, which allows
a very efficient and high-performance design of the HW DP
dedicated to the execution of the highest weighted kernel
operations using reduced resources. In this way, the remaining
options for the control execution are pruned effectively in a
Pareto optimal way, reducing the search in the exploration
space. This constraint-based propagation and pruning principle
is applied for the rest of the methodology, but due to paper size
limitations we focus on the results of the reasoning, instead
of the detailed motivation in each of the subsequent steps.

B. SW/HW Communication Organization Step

The options to include a custom Intellectual Property (IP) in
a hybrid design are described by the parametric template and
the design options (Fig. 2) and the truth table (Table I). Several
design implementations of these designs options are presented
in [7]. A custom IP can be fully independent or partially
dependent by the processor. These options are described by
the parameter Dependent. When parameter Dependent = 0,
the IP is connected independently from other HW resources to
the communication channel (Standalone Custom IP). Except
for the design of the FG memory and the DP, the IP should
also have a BG memory interface, similar to “Fire and Forget”
model. The latter is implemented based on a common bus
protocol, e.g. Processor Local Bus (PLB), or on a custom
design, e.g. an Native Port Interface (NPI) [23], designed

TABLE I
TRUTH TABLE OF SW/HW COMMUNICATION ORGANIZATION

Parameters Custom IP
Dependent Co-processor Control Connection

0 Not-care Not-care Standalone Custom IP
1 0 Not-care Internal FU
1 1 0 Base Co-processor
1 1 1 Control Co-processor

Data
Cache

Processor Local Bus

Custom IP

Co-processor bus

SDRAM
Memory

Dependent
1 0

Custom IP

CoProcessor
0 1

FG Memory
& DataPath

Control
HW

Control
Unit

Custom IP

Processor

Initial Processor

Instruction
Cache

(a) Parametric template.

SW/HW Organization

Fully Independent
(Standalone
Custom IP)

Partially
Dependent

Internal
FU

External
Co-processor

With Control FU
(Control

Co-processor)

Without Control FU
(Base

Co-processor)

(b) Design options.

Fig. 2. SW/HW Communication Organization Step.

to control the memory in the most efficient way. The first
case is less efficient due to the bus protocol bottleneck. The
second case is optimal, but with higher area and design
effort. When the parameter Dependent = 1, the IP partially
depends on the processor. It reuses the processor resources,
e.g. memory interface, reducing custom design complexity,
area and energy consumption. When the custom IP is partially
dependent, it can be implemented as an extension of the
internal FUs of the microprocessor or as external co-processor.
These options are expressed by parameter CoProcessor.
When CoProcessor = 0, the custom IP is implemented as an
internal FU. This implementation affects the critical path of the
processor potentially reducing the processor and the custom IP
performance. The implementation of the custom IP as a co-
processor (CoProcessor = 1) removes these limitations. The
processor and the co-processor can execute different parts of
the application at the same time. E.g. the processor can be used
for the memory address generation and the accessing of data
from the memory, while the co-processor executes the kernel.
The communication of the processor and the co-processor is
more efficient than in the Standalone Custom IP, as it is based
on a quite fast interconnection, which makes this option Pareto
(near-)optimal for our domain. The other options should be
selected when the complexity of the design is large. A small
latency (one or two cycles) is required to write(read) the data
from the co-processor. The co-processor connection width is
described by the parameter WidthCoConnection, which should
be set to support the maximum width of transfered data.

In the co-processor implementation two further options
exist for the control (loop organization, control operations and
structure): it is common or different between the processor and
the co-processor. When parameter Control = 0, the control of

the part executed on the processor is the same with the control
of the part executed on the DP of the co-processor. In this case,
the responsibility for the synchronization of the data between
the two components and the correct functionality resides on
the processor. This allows a more efficient, smaller area and
lower energy consumption design of the co-processor (Base
co-processor). This option fully meets the design objectives,
so it is a Pareto (near-)optimal for simple synchronization
schemes. The processor is responsible for invoking the co-
processor, which executes the operations and writes back the
output to the processor. If Control = 1, different control
structures can exist in the processor and in the co-processor.
The co-processor requires a HW Control Unit, e.g. Finite State
Machine (FSM), to support the correct functionality of the DP
and the communication from/to the processor. By propagating
the design objectives, this option is potentially suboptimal due
the increased co-processor area. However, this option is more
attractive when the design synchronization is more complex,
and then it should be part of the valid design space.

C. Foreground Memory Management Step

The size of the FG Memory is determined by the required
data for the kernel execution: the data accessed from the BG
memory (parameter Data) and the variables of the control
flow, the intermediate and final results (parameter V ariables):

SizeFGMem = Data+ V ariables =

= Data+ Control + Intermediate+Results (7)
A BG memory access reduction can reduce the bandwidth

and the energy requirements by replacing several BG accesses
with FG ones. In the Pareto optimal case, the V ariables are
placed in the FG memory and Data are transfered from the
BG memory. Otherwise the most used variables are maintained
in the FG memory and the remaining ones are stored back to
the BG memory, increasing the latency of future accesses.

The minimal data size of the FG memory should be
kept reasonably low, since any size increase of the multi-
port register-file leads to a non-linear increase in energy
consumption per access [24] and also an increase in the overall
design complexity. The SizeFGMem should be within the
minimum number of the registers required to execute one
kernel iteration and the maximum number of the allowed
registers:MinRegs ≤ SizeFGMem ≤ MaxRegs. The latter
is determined by the obtained gain vs. the energy consump-
tion and the complexity cost of an extra register. When the
parameter Dependent = 0, the SizeFGMem of the custom
IP should be quite large to support all the control and flow
operations, increasing energy consumption and reducing the
opportunities for DP parallelism. When Dependent = 1 and
Coprocessor = 0, the custom IP reuses the register file
of the processor, i.e. MaxRegs = SizeRegFile. When the
Coprocessor = 1, the SizeFGMem depends on the Control
parameter. If the control is executed on the co-processor, the
control variables have to be also stored in the FG memory.

In the optimal case where only the Data are transfered from
the BG memory, the cycles required to transfer the data are:

CyclesReqTotTR = Data ∗ CyclesOneTR (8)

If CyclesReqTotTR > CyclesTotTR (Eq. 4), parallelism in
the transfer should be applied to meet the real-time constraints.
If CyclesReqTotTR < CyclesTotTR opportunities exist for
improvement. Based on the frequency ratio of the memory
and the custom IP, we explore the options of creating a quite
balanced design between the BG memory access and the DP
computation. This is achieved by minimizing the possibility
of stalls during the execution by unrolling the part of the
design that is executed slower. The Unrolling Factor (UF)
is given by the ratio of the frequency of the memory, when
it is used in the most efficient way, and the frequency of the
DP: UF = fHW/fMem. If UF < 1, the memory is slower
by a factor of UF from the DP, and thus parallelism should
be applied to increase the memory bandwidth. If UF > 1,
the DP should be unrolled by a factor of UF to execute all
operations enabled by the available memory data. Applying
a factor of UF increases the parameter Data and, thus,
more data are accessed and stored in the FG memory, i.e.
DataUF = UF ∗Data. It also enables the reuse of the data
(RData and Reuse Factor (RF)) between iterations reducing
the transitions to/from BG memory and the FG size. When the
UF ≥ RF , data can be reused. The parameter Data is given
by DataUF&RF = (UF ∗ Data) − (UF − RF) ∗ RData.
The V ariables are affected in a similar way. Hence, the
unrolling increases the CyclesReqTotTR, which should be
smaller than the available CyclesTotTR, and the maximum
bound on SizeFGMem. Based on the parameters and the
propagated values from the SW/HW organization step, the UF
is determined and the loop kernel is transformed accordingly.

The scheduling of the FG memory depends also on the
propagated parameters. If the parameter Dependent = 0,
the scheduling is determined by the transformed loop kernel
in the custom IP. When Dependent = 1 and Control =
0, the scheduling is provided by the processor. When
Coprocessor = 0 the complete scheduling is performed by
the compiler of the processor. When Coprocessor = 1, the
processor sends the information about which kernel iteration
is executed to the co-processor. Based on this information the
processor determines from which registers it will read (store)
the data (results) in each iteration. The FG memory scheduling
of the remaining parts of this kernel, i.e. the loop structure and
the control, is performed by the compiler of the processor,
since they are executed on the processor. If the control is
executed on the co-processor, the HW control unit of the co-
processor determines the FG memory scheduling.

D. DP Mapping Step

The design decisions on the SW/HW Organization and the
FG Memory Management affect the DP Mapping. Based on
the available data read in the FG memory, the total operations
which can be executed are given by Eq. 9:

TotOPs = UF ∗OPs (9)

The OPs are the operations executed in one iteration of the
initial kernel and are described by the type of the operation i

and the number of that type of operations:

OPs =

TypeOPs∑
i=0

Numi. (10)

When the parameter Dependent = 0, the DP of the custom
IP executes both control and arithmetic operations. When
Dependent = 1 and Coprocessor = 0, the DP executes
only the arithmetic operations and the control derives by the
processor. When the Coprocessor = 1, the size of the DP and
the executed operations are based on the Control parameter. If
Control = 1, the control is also executed on the co-processor.
If Control = 0, the operations relevant to the application and
the custom IP control are executed on the processor DP and
the arithmetic operations are executed on the custom IP DP.

Each operation type executed on the custom IP is evaluated
based on the design objectives. In order to reduce energy
consumption in FPGAs, the area should be reduced. Hence,
if an operation type is characterized as costly, exploration is
applied to replace it by smaller and simpler operations, which
require less gates to be executed. Then, the kernel loop is
transformed accordingly. In this way the area is reduced and
the use of the simple resources is highly increased. The latency
is increased somewhat, but this is assumed as acceptable in
our target domain. The size of the DP of both the processor
and the custom IP should support the maximum length of the
Data and the V ariables. Pipelining is used to break a long
critical path into smaller paths increasing frequency, which,
however, should be compatible with the Microblaze clock for
efficient synchronization. Propagating the design objectives,
pipelining of the HW accelerator should be avoided when
real-time constraints are met, as it increases area and energy
consumption due to the additional registers. The final DP of
the custom IP is designed to execute all the operations of
one new kernel iteration with the Parallel Factor PF required
to meet the real-time constraints. Hence, the execution time
required for the operations in the DP of the processor and the
custom IP are CyclesTotOPs = TotOps∗fHW, which should
be smaller or equal to the available cycles given by Eq. 2
and Eq. 3 (Section III-A) with parameter Iterations equal to
Iterations/UF due to the propagated UF .

IV. DEMONSTRATOR DESIGN

This section illustrates most of the relevant options of the
proposed methodology through a demonstrator design showing
how a Pareto Curve with performance-area trade-off points
and a final design proposal are produced for a bioimaging
application on a FPGA.

The demonstrator is based on a blood analysis application
executed on a Lab-on-Chip (LoC) micro-fluid device (Pseu-
docode of Fig. 4). During the set-up, the frame (the continuous
box of Fig. 3) and the coordinates of the micro-fluid pipes are
detected. Based on the application specifications, the frame can
be rotated only ±3◦. During the LoC device normal function,
an angle detection algorithm and an detection of the fluid’s
fronts coordinates algorithm is executed in each frame. The
fluid velocity is computed based on the coordinates of the
fronts determining the blood test results. The angle detection

Fig. 3. The micro-fluid frame. The box is the outline of the frame and the
dotted box is used by the angle detection algorithm.

uint8 f[N][M];
int Coordinates, Mask[3][3], Gx[M]; Angle[M];
if (Set-up) {Detect Frame position(f); Identify coordinate of pipes(f);}
/*AngleDetection*/
for (row=1; row<N-1; row++){

for (col=1; col<M-1; col++){
for (rowOff=-1; rowOff≤1; rowOff++){

for (colOff=-1; colOff≤1; colOff++){
Gx[col] += f[row+rowOff][col+colOff]*Mask[rowOff+1][colOff+1];}}

Gx[col] = abs(Gx[col]);
if (Gx[col]! =0) {Angle[col]=90;}
else {Angle[col]=0;}
if ((Angle[col-1]==90)&&((Gx[col-2]<Gx[col])||(Gx[col-1]<Gx[col-2]))){

if (Gx[col-1]>Threshold){
HoughAccumulator(row,col);}}}}

LineSuppression;
FluidDetection(f);

Fig. 4. Pseudocode of the demonstrator application

algorithm requires only a vertical line (dotted box of Fig. 3)
to find the angle and thus the potential frame rotation. This
is achieved by applying the Canny algorithm (Fig. 4) for
finding the intensity gradient of the image using a horizontal
contrast 3x3 Sobel (middle column multiplicands are 0) and a
Hough transform version, since the vertical line requires only
computations with [−3◦,+3◦]. If the Sobel kernel’s result is
an edge point, the Hough transform maps it to the Hough
space and stores the results to the accumulator. The final line
is detected by suppressing the neighborhood lines. The fluid
coordinates derive by subtracting the micro-fluid pipes of two
successive frames and by computing the centroid of the result.

Our target HW platform is the Virtex-5 FPGA ML-507
Evaluation Platform with one Microblaze Soft processor at
83,33 MHz with an integer multiplier and a Floating Point FU.
A SDRAM DDR2 main memory, a data and an instruction
cache of 16 KB and a local memory of 32 KB are used.
The data and the instructions are fetched by the HW cache
controller, which does not allow SW influence so we do not
incorporate this aspect in our DSE.

A. Application Analysis

The video frame ratio is 100 frames/sec, thus 10 msec are
available for the total execution time of the application, i.e. the
angle detection algorithm and the algorithm for the detection
of the fluid fronts, tTot = tAngle + tFluid. The reference SW
implementation of the angle detection is executed in 4.31 msec
by the Microblaze Soft microprocessor (Subsection IV-C).
The detection of the fluid fronts’ coordinates depends on the
number of fluids fronts and the frame resolution. For small

frame resolution (640x480) and 2 fluids fronts, it executes
in 1.23 msec in SW. For the minimum quality application
specifications (small frame and 3 edges) the average execution
time is estimated at 3.9 msec and for the maximum quality
(1024x1024 and 7 edges) is 7.3 msec. The total execution time
of the application is tTot = 4.31+(3.9 to 7.3) msec=8.21 to
11.61 msec. Hence, real-time behavior is not always achieved
since: tTotMinQ < D < tTotMaxQ. Based on application
profiling the most time consuming regular task is the angle
detection algorithm and thus its critical kernels should be
explored for mapping on custom HW. To safely meet the real-
time constraints, the available time for executing the angle
detection is tAngle = D − tFluid=10.0-(3.9 to 7.3) msec=6.1
to 2.7 msec, and the worst-case is considered. Based on the
profiling of the angle detection algorithm, the main loop takes
68% of the total time to execute the kernel which finds the
intensity gradient of the image and the kernel which creates the
Hough accumulator array. The execution time of the two ker-
nels is similar (31% and 33% respectively) with the intensity
gradient kernel to be a regular kernel applied in every iteration
of the algorithm. The application of the horizontal 3x3 Sobel
mask is the 90% of the intensity kernel, so it is the first can-
didate for implementation in HW (RegularSobel = 1). If the
tNewTot > D, the Hough accumulator (RegularAccHough = 0)
should be also mapped in a custom HW component. The
custom IP frequency can safely be assumed to be similar to
the Microblaze (when appropriate pipelining is applied), and
thus the available cycles for execution of the angle detection
are: CyclesTotIP = tAngle ∗ fHW=508,313-224,991 Cycles.

B. Final Design: An Instance of the Proposed Methodology

1) SW/HW Communication Organization: The output of
the analysis step is the execution of the application on the
Microblaze and the execution of the highest kernel with
Regular = 1, i.e. the 3x3 Sobel mask, on a custom IP.

Since the design objectives are minimizing the area and
thus reducing the energy consumption while the real-time con-
straints are met, the custom IP is efficiently connected through
two types of Fast Simplex Link (FSL) connections to the Mi-
croblaze Soft Processor as a co-processor (CoProcessor = 1
and Dependent = 1). The Microblaze is responsible for
the synchronization and the loop organization between the
components (Control = 0). Hence, the application loops are
modified accordingly to support the common control of both
components. In the first FSL connection type the co-processor
is slave reading data from the FSL connection, and the
Microblaze is master writing data to the FSL. The Microblaze
provides the appropriate information for one execution of the
co-processor in the corresponding FSL, i.e. the required pixels
accessed from the memory. Then the co-processor reads the
data, executes the operations and writes two results, i.e. the
gradient and the angle, to the second FSL type. The width
of both FSL connections is WidthCoConnection = 32bits to
support the maximum width of transfered data. The activation
of the Hough accumulator is based on control statements
executed on the Microblaze. When activated, it is executed

1st Mask 2nd Mask

1st Mask 2nd Mask

Reuse = 2

1st Iteration

2nd Iteration

Fig. 5. The use of RowPixels in each column (circled pixels) for the
execution of the two masks in each iteration. The 6 pixels are reused between
two unrolled (by a factor of UF=2) iterations.

on the Microblaze, else the next Sobel masks set is executed.
2) FG Memory Management: Propagating the design op-

tions from the previous steps, the data required for one
execution of the horizontal contrast 3x3 Sobel mask are:
Data = 6 pixels, V ariables = 2 for storing the final results
(Intermediate = 0, when we fully explore production con-
sumption) and thus SizeFGMem = 8. The ratio of the memory
and the co-processor frequency is UF=333MHz/83,33MHz=4
in the optimal case. The memory is 4 times faster than
the datapath, which should be unrolled by a UF=4. In
that case, one new kernel iteration requires DataUF=24
to be accessed and stored in the FG memory. With the
datapath unrolling, the horizontal data reuse is explored.
The pixels residing in the same column (RowPixels=3)
are reused in the mask applied, after the next column
(RF=2), as depicted in Fig. 5. Hence, the final required
data to be stored in the FG memory based on the equations
of Section III-C are DataUF&RF=18, V ariablesUF&RF=8
and SizeFGMemUF&RF=26. Since the FG memory size
should be kept within an acceptable range (MinReqRegs=8
and MaxRegs ≈ 18), the UF should be kept low. An
UF=3 requires DataUF&RF=15, V ariablesUF&RF =6 and
SizeFGMemUF&RF=21. An UF=2 requires DataUF&RF=12,
V ariablesUF&RF=4 and SizeFGMemUF&RF=16.

Hence, the UF should be preferably 2: 12 registers are
required to store the pixels of the two masks and 4 registers for
storing the final results. Because UF==RF , the data reuse is
explored. In each execution of the two masks only 6 new data
are required to be transfered from the Microblaze to the co-
processor. Since the loop control belongs to the Microblaze, it
correctly sends the required pixel information. The first data
of the mask, i.e. the RowPixels of the left column (Fig. 5),
are coming from previously used registers and the second data,
i.e. the RowPixels of the right column of the mask derived
from the registers attached to the FSL connection. The first
mask set per row requires all 12 pixels. Due to the UF and
the uniformity of the accelerator execution, the first mask set
is executed on the Microblaze and the first six pixels for the
second set of masks are transfered to the co-processor.

3) DP Mapping: The control of the loops, the FG memory
scheduling and the initialization code are executed on the
Microblaze DP. The total operations executed on the co-

Fast Simplex

Links (FSLs)

SDRAM

Processor Local Bus (PLB)

…
Controlers, IPs, etc...

I-Cache BRAM

D-Cache BRAM

Sobel Co-

Processor

+<<

REG

-
<< +

+
-

+<<

-
<< +

+ -

comp

comp

…

Custom

HW

BRAM

…

Fig. 6. The HW platform architecture and the final design for the Microblaze
and the HW accelerator of the demonstrator application.

processor are determined by the available data on the FG
memory. The number of operations in one iteration of the
initial loop are OPs = NumMUL + NumADD/SUB=9+11.
The most costly operations are the multiplications and thus
the design explores the possibilities of simplifying them. Since
the mask multiplicands are constant, by analyzing the constant
values the number of multiplications is reduced. Multiplicands
with the value of 1 are removed and the remaining ones
are replaced by Shift and Add operations. Hence, OPs =
NumSHIFT + NumADD/SUB/COMP=2+6. Hence, executing
all the operations will require 4 Shift FUs (S-FUs) and 12
Add/Sub/Comp FUs (A-FUs) (Fig 6). To reduce the area,
a S-FU can be combined with an A-FU in one Shift-Add
(SA) FU and thus 4 SA-FUs and 8 A-FUs are required. In
contrast to the multiplication design, additional registers are
not required since the shift factor is incorporated with the
instruction opcode. The DP bus width should support the result
and the operands of all the operations. The data are 8 bits and
since the operations increase the required bits for the results,
we implement the DP with 32 bits.

C. Evaluation of the Results

The evaluation results of the different designs for 640x480
resolution are depicted in Table II. The SW execution of the
reference angle detection routine with multiplications (SW
Sobel MUL) on the Microblaze Soft processor of ML-507
platform requires 358,996 cycles. The optimized SW applica-
tion with SA operations requires 223,169 cycles. The SW/HW
design, where the critical kernel is executed by multipliers in a
co-processor, is representative for the existing systematic state-
of-the-art HW/SW FPGA mapping techniques (see overview
of Section II). The estimated results based on the microcode
provided from the Xilinx compiler lead to at least 225,900
cycles, while the extra area is quite large, i.e. 32 slices and 12
DSP48e Slices. The DSP48e Slices are more complex than a
normal slice and the total area will be significantly larger than
the area resulting from the template-based designs. An lower
bound is computed based on DSPSlices = 4 ∗ CLBTot =

TABLE II
PERFORMANCE AND AREA FOR DIFFERENT DESIGNS.

Design Performance Extra Area
Cycles Time(ms) Slices

SW Sobel MUL Ops 358,996 4.31 0
SW Sobel SA Ops 223,169 2.67 0
SW/HW Sobel MUL FU 225,900 (*) 2.71 (*) ≈ 128 (*)
SW/HW Sobel (UF&SA FU) - P 198,180 2.37 231
SW/HW Sobel (UF&SA FU) - A 200,952 2.41 116 (*)
SW/HW Sobel & Hough Acc. 131,969 (*) 1.58 (*) 314 (*)
HW with Microblaze Mem. Manag. > 70,000 (*) > 0.84 (*) > 375 (*)
HW with Custom Mem. Manag. > 46,000 (*) > 0.56 (*) > 550 (*)

*estimated, P=Performance, A=Area
System area without HW accelerator = 4283 Slices

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600

P
e

rf
o

rm
an

ce
 (

M
C

yc
le

s)

Area (Slices)

SW Sobel MUL Ops

SW Sobel SA Ops

SW/HW Sobel MUL FU

SW/HW Sobel (UF&SA FU) - P

SW/HW Sobel (UF&SA FU) - A

SW/HW Sobel & Hough Acc.

HW & Microblaze Mem. Manag.

HW & Custom Mem. Manag.

Fig. 7. Design options and Pareto Points.

4 ∗ 2 ∗ Slices, i.e. ≈ 128 slices. The final SW/HW design
derived from our methodology requires 198,180 cycles and the
extra area is 231 slices implemented on ML-507. We insert
design points by using less area and allowing more cycles
to the co-processor for computation in the proposed SW/HW
design. Then, the area is decreased by 50%, while the latency
is slightly increased to 200,969 cycles. A third promising
Pareto point produced with our methodology puts both Sobel
and Hough accumulator loops on the co-processor, leading to
131,969 cycles. The lower bound estimation of the HW design
with the memory management performed by the Microblaze is
69,484 cycles and >375 extra slices. The most performance-
efficient design is the HW with custom memory management
and DP dedicated to the specific application, which requires a
very large design effort and time.

The proposed methodology achieves gain of 44,8% in per-
formance compared to the conventional SW design and 58% in
area (pessimistic lower bound) compared to the conventional
HW design in published methodologies, with 3 new system-
atically produced Pareto points. Each point corresponds to a
close to theoretically optimal mapping for the corresponding
SW/HW processor instantiation, because nearly no overhead is
produced compared to the minimally needed one. For instance,
the proposed SW/HW design with UF=2 and SA operations
for increased performance hides the overhead of the address
generation and the memory accesses as they are executed
by the processor, while the co-processor computes the set
of the Sobel masks. The DP of the co-processor includes
no idle cycles during the mask execution, since the data are
already available and efficient mapping of the operations to
the co-processor is achieved. Industrial design practices with

experienced designers will potentially also reach these results,
but with substantial design effort and without the guarantee of
systematically finding the relevant Pareto points.

V. CONCLUSIONS

A systematic stepwise parameterized template-based
methodology is described to compose a Pareto Curve for
mapping of an application to a SW/HW design with a
processor and a HW accelerator taking into account the
SW/HW organization, the FG Memory Management and
the DP Mapping of the processor and the accelerator. The
suboptimal options are pruned early in the design process
based on efficient what-if analysis of each step leading to a
scalable and efficient approach.

REFERENCES

[1] S. B. A. Demiris, “Integrated system for the visual control, quantitative
and qualitative flow measurement in microfluidics,” Hellenic Industrial
Property Organisation Patent Application 20110100390, 2011.

[2] G. Kornaros, “A soft multi-core architecture for edge detection & data
analysis of microarray images,” J. Syst. Archit., vol. 56, pp. 48–62, Jan.
2010.

[3] D. Sheldon et al., “Making good points: application-specific pareto-point
generation for design space exploration using statistical methods,” in
Proc. Int’l Symp. FPGA. NY, USA: ACM, 2009, pp. 123–132.

[4] L. Jozwiak et al., “Multi-objective optimal controller synthesis for
heterogeneous embedded systems,” in Proc. Int’l Conf. EC-SAMOS, Jul.
2006, pp. 177–184.

[5] “Synopsys synphony – high level synthesis solution,” 2012.
[6] “Criticalblue cascade, programmable application coprocessor genera-

tion,” 2012.
[7] K. Compton et al., “Reconfigurable computing: a survey of systems and

software,” ACM Comput. Surv., vol. 34, pp. 171–210, June 2002.
[8] R. Dimond et al., “Custard - a customisable threaded fpga soft processor

and tools,” in Proc. Int’l Conf. Field Progr.Logic&Applic., 2005, pp. 1–6.
[9] G. Palermo et al., “Multi-objective design space exploration of embed-

ded systems,” J. Embedded Comput., vol. 1, pp. 305–316, Aug. 2005.
[10] M. Shahzad et al., “Image coprocessor: A real-time approach towards

object tracking,” in Proc. Int’l Conf. DIP, Mar. 2009, pp. 220–224.
[11] H. Flatt et al., “Mapping of a real-time object detection application

onto a configurable risc/coprocessor architecture at full hd resolution,”
in Proc. Int’l Conf. ReConFig & FPGAs, Dec. 2010, pp. 452–457.

[12] D. Gajski et al., “Specsyn: an environment supporting the specify-
explore-refine paradigm for hardware/software system design,” Trans.
VLSI, vol. 6, no. 1, pp. 84–100, Mar. 1998.

[13] T. Callahan et al., “The garp architecture and c compiler,” J. Computer,
vol. 33, no. 4, pp. 62–69, Apr. 2000.

[14] R. Gonzalez, “Software configurable processors change system design,”
in Hot Chips XVII, Palo Alto,CA, Aug. 2005.

[15] F. Ferrandi et al., “An evolutionary approach to area-time optimization
of fpga designs,” in Proc. Int’l Conf. ECSAMOS, Jul. 2007, pp. 145–152.

[16] G. Schewior et al., “A hardware accelerated configurable asip architec-
ture for embedded real-time video-based driver assistance applications,”
in Proc. Int’l Conf. EC-SAMOS, Jul. 2011, pp. 209–216.

[17] N. Vassiliadis et al., “The arise approach for extending embedded
processors with arbitrary hardware accelerators,” Trans. VLSI, vol. 17,
no. 2, pp. 221–233, Feb. 2009.

[18] J. Liao et al., “A model for hardware realization of kernel loops,” in
Proc. Int’l Conf. FPGA, vol. 2778. Springer, 2003, pp. 334–344.

[19] B. So et al., “A compiler approach to fast hw design space exploration in
fpga-based systems,” SIGPLAN Not., vol. 37, pp. 165–176, May 2002.

[20] C. Huang et al., “Scalable object detection accelerators on fpgas using
custom design space exploration,” in SASP, Jun. 2011, pp. 115–121.

[21] D. Sheldon et al., “Application-specific customization of parameterized
fpga soft-core processors,” in Proc. IC-CAD, Nov. 2006, pp. 261–268.

[22] J. Hennessy et al., Computer Architecture, Fourth Edition: A Quantita-
tive Approach. San Francisco, CA, USA: Mor.Kaufmann Pub., 2006.

[23] “Logicore ip multi-port memory controller,” Mar. 2011.
[24] P. Raghavan et al., “Empire: Empirical power/area/timing models for

register files.” Microproc. Microsyst., vol. 33, no. 4, pp. 295–300, 2009.

