
Array size computation under uniform overlapping and
irregular accesses

KRITIKAKOU, Angeliki, CATTHOOR, Francky, KELEFOURAS, Vasileios
<http://orcid.org/0000-0001-9591-913X> and GOUTIS, Costas

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/18341/

This document is the Accepted Version [AM]

Citation:

KRITIKAKOU, Angeliki, CATTHOOR, Francky, KELEFOURAS, Vasileios and
GOUTIS, Costas (2016). Array size computation under uniform overlapping and
irregular accesses. ACM Transactions on Design Automation of Electronic Systems,
21 (2), 22:1-22:35. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A

Array Size Computation under Uniform Overlapping & Irregular
Accesses

ANGELIKI KRITIKAKOU, IRISA & Dep. Computer Science & Electrical Engineering, Univ.
of Rennes 1
FRANCKY CATTHOOR, IMEC & Dep. Electrical Engineering, Kath.Univ. Leuven
VASILIOS KELEFOURAS, Dep. Electrical & Computer Engineering, Univ. of Patras and
COSTAS GOUTIS, Dep. Electrical & Computer Engineering Univ. of Patras

The size required to store an array is crucial for an embedded system, as it affects the memory size, the

energy per memory access and the overall system cost. Existing techniques for finding the minimum number
of resources required to store an array are less efficient for codes with large loops and not regularly occurring

memory accesses. They have to approximate the accessed parts of the array leading to overestimation of

the required resources. Otherwise their exploration time is increased with an increase over the number of
the different accessed parts of the array. We propose a methodology to compute the minimum resources

required for storing an array which keeps the exploration time low and provides a near-optimal result for

regularly and non-regularly occurring memory accesses and overlapping writes and reads.

Categories and Subject Descriptors: B.3.2 [Memory structures]: Design Styles—Primary Memory; C.3
[Special purpose and Application-Based Systems]: Real-time and Embedded Systems; D.3.4 [Pro-
gramming Languages]: Processors—Compilers, Optimization; E.1 [Data Structures]: Arrays

General Terms: Design

Additional Key Words and Phrases: Liveness, Resources Optimization, Near-optimality, Scalability, Itera-
tion Space

1. INTRODUCTION
The size required to store the information in a system is crucial for several domains,
because it is directly coupled with the cost of the system, the required area and the
energy consumption [Catthoor 1999]. Such examples are the scratchpad memories of
embedded systems [Grösslinger 2009], the hardware controlled caches of general pur-
pose systems [Catthoor 1999] and the industry storage management systems, such as
cargo [Lee et al. 2007]. In the embedded systems the memories have an important
part in the overall system cost [Catthoor 1999]. The embedded applications, such as
image, video and signal processing, mostly use arrays as data structures. Then, the
size required to store the arrays becomes an essential part of the overall system de-
sign cost. An overestimated size leads to increase in the memory size, the chip area
and the system energy consumption.

In this work we are computing the minimum size required to store an array un-
der a given schedule, which is required in memory optimizations and more pre-

Author’s address: A. Kritikakou, Dep. Computer Science & Electrical Engineering, Univ. of Rennes 1, &
IRISA-INRIA 35000, Rennes, France, angeliki.kritikakou@irisa.fr, C. Goutis, V. Kelefouras: Univ. of Patras,
Dep. Electrical & Computer Engineering, Rio, Patras, Greece, 26500, F. Catthoor: Inter-university Micro-
Electronics Center, Kapeldreef 75, 3001 Leuven, Belgium
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Kritikakou et al.

cisely in the intra-signal in-place step of the Data Transfer and Storage Exploration
(DTSE) [Catthoor et al. 1998]. The size is defined by the maximum number of array el-
ements that are concurrently alive, i.e. all the elements that have been already stored
(written) in memory and they will be loaded (read) in the future. When the writes and
the reads to the array are overlapping, the complexity of the computation of the max-
imum number of alive elements is increased. In the overlapping case the reads of the
array start before all the writes have finished. Therefore, the number of concurrently
alive elements is not unique among iterations, as the lifetime of each element can be
different. The overlapping case is different from the non-overlapping one [Kritikakou
et al. 2013]. In the latter, all the reads to the array are performed after all the writes
have finished and thus the maximum number of concurrently alive elements is the
footprint of the array.

Existing techniques to compute the minimum size required to store an array are
enumerative, symbolic/polyhedral or approximations, as described in Section 10. The
enumerative approaches find the optimal size, i.e. the exact number of concurrently
alive elements. However, when the array size is increased, the required exploration
time to find the size is highly increased. The symbolic/polyhedral approaches [De Greef
et al. 1997; Cohen et al. 1999; Darte et al. 2005; Clauss et al. 2011] use inequalities
to describe the edges of the shapes that describe the accessed parts of the array. They
provide the maximum number of alive elements by finding the maximum number of
integers through an ILP solver. Hence, when the array size is increased, some values
in the inequalities are modified, and thus, they are scaling well providing exact results.
However, when the accesses to the array are not regularly occurring, i.e. they become
irregular, the shape that describes an accessed part of the array loses its solidity, i.e.
regions exist inside the shape which are not accessed, creating holes. In addition, the
number of shapes of the accessed parts are increased and these shapes may not be
regularly repeated in the space. This irregularity is created by the data dependent and
the use case dependent array accesses. When the shapes of the accessed parts are not
similar to polyhedra or lattices, the symbolic/polyhedral approaches lose their ability
to efficiently describe them. The number of inequalities required to describe the edges
of the accessed shapes is increased, increasing the time of the ILP solver. To reduce
the number of inequalities and thus the exploration time, the shapes can be approxi-
mated, for instance using (approximated) convex hulls or approximated enumerators.
However, no control exist over the quality of the approximation. An approximated con-
vex hull can be applied to solidify both the holes inside and between the accessed parts
in order to create a simple shape. However, this process can highly overestimate the
number of concurrently alive elements leading to an overestimation of the size of the
required resources.

The notation used in the rest of this paper is summarized in Table I. The paper
organization is: Section 2 describes the motivation of our work providing relevant ex-
amples, Section 3 describes the contribution of the proposed methodology. Section 4
describes the target domain and the input to our approach, Section 5 described the
translation of the access scheme into patterns and Section 6 describes the computation
of the size. Section 7 and 8 presents the closed form solutions for several cases. Sec-
tion 9 presents evaluation results. Section 10 presents the related work on techniques
using the maximum number of concurrently alive elements. Section 11 concludes this
study.

2. MOTIVATION
The high irregularity in the array accesses of the applications derives from aspects
that cannot be modelled accurately statically and from different operation modes or

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:3

Table I: Summarized notation of the proposed methodology.
SIS Solid Iteration Space
ISH Iteration Space with Holes
ECS Enumerative Conditions for SIS
ECH Enumerative Conditions for ISH
PCS Parametric Conditions for SIS
PCH Parametric Conditions for ISH
SIR Segment Iterator Range
ST Segment Type
LB Lower Bound
UB Upper Bound
IR Iterator Range of pattern (IR=UB-LB-1)
PS Pattern Size (PS =

∑N
i=0 SIR(i))

RF Repetition factor (RF = IR
PS)

N Total number of pattern segments
Diff Exploration window, i.e. index difference of RD and WR
SID(i) Segment Iterator Domain of i pattern segment
HID(i) Hole Iterator Domain of i pattern segment
Sizei Size of i dimension
PSizei Partial size of exploration window of i dimension
Asizei Additional elements of exploration window of i dimension
CP Combined Pattern
ADiff Maximum number of A in the pattern section
HDiff Maximum number of H in the pattern section
extraPCH= Additional elements due to a PCH of == type
extraPCH=,A2A

Additional elements due to combination of PCHs of == type
extraPCH 6= Additional elements due to PCH of 6= type
extraWR Computation of additional written elements
extraRD,A Computation of additional not yet read elements before the exploration window where the WR state-

ment is A
extraRD,H Computation of additional not yet read elements before the exploration window where the WR state-

ment is H

use cases of the application. For instance, different video decoder modes like I, P and
B frames with different submodes [Juurlink et al. 2012] and applications with data
dependent conditions and loop bounds.

To deal with the different use cases or to remove the data dependencies in order to
continue with an efficient Design Space Exploration (DSE), the system scenarios ap-
proach [Filippopoulos et al. 2014; Filippopoulos et al. 2012; V.Gheorghita et al. 2009] is
a very promising direction. The alternative of considering the general worst case of all
the modes and the code instances leads to pessimistic over-approximations. The sys-
tem scenarios approach explores the potential values of the data and their effect in the
application. Based on this information it groups similar instances of the application
code into a common scenario. Due to the initial data dependencies the resulting appli-
cation instances have highly irregular array accesses. Now, we can use the worst case
code instance per scenario to continue with the DSE. The result of the system scenario
approach is a number of scenarios that have to be explored, where each scenario has
a different code instance with irregular array accesses. The number of code instances
to be explored is equal to the number of scenarios. A trade-off exists between the num-
ber of scenarios and the similarity in the code instances. In this paper we do not deal
with the system scenario creation, but we use the resulting codes as an input to our
methodology. More information about the memory-aware system scenario approaches
is presented in [Filippopoulos et al. 2014].

As we now have to explore a number of different application instances in this DSE
step, a general parametric approach is not applicable. The time required to explore
one instance becomes now an important factor in the overall time of DSE, as we need
to apply this step a lot of times in order to explore a set of different scenarios for the
application under study and we have to apply this process for all the arrays existing in
the application. To provide an intuition over the gains in the overall flow, we will use

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Kritikakou et al.

the information provided in [Balasa et al. 2008] using the STOREQ, a tool developed
for main parts of the steps [Kjeldsberg et al. 2003]. This tool is typically used in the
inner core of a loop transformation exploration kernel. The number of different loop
organisation schemes that have to be explored can be huge, e.g. for permutations it
is exponential and by adding loop splits this number is prohibitively increased. For
instance, for the Darwin algorithm with 27 arrays we observe the longest time for the
overall flow, i.e. 2.5s [Balasa et al. 2008]. Assuming that the array size computation
for polyhedral approach takes 81 ms, which was the lower value obtained during our
experimentations, then the total time dedicated to the computation of the maximum
alive elements for all the arrays is 2.187s, which is the dominant task as it takes 88%
of the total time. Replacing this step with the proposed approach (which in the worst
observed case takes 0.902 ms), we need 24.36ms for this step (a gain factor of 89.77)
and the total time is 337.36ms (gain factor of 7.4). As the computation of the maximum
number of alive elements is one step in the overall DSE process, we should keep the
exploration time reasonable, while providing a near-optimal result.

The near-optimality of this DSE step is essential, as the obtained result is used in
the next memory DSE phases, i.e. inter-signal in-place optimization, memory access
scheduling and memory address generation [Catthoor 1999], and thus the quality of
the result of this step affects the quality of the next phases. Therefore, we do not want
to increase the memory size without a reason.

As a high level of irregularity exists in the array accesses inside each code in-
stance, the existing approaches either require a higher exploration time to find an
near-optimal solution or they have to approximate the result. The enumerative ap-
proaches add the writes between the iteration where an element is written and the
iteration where this element is read for the last time. This process is repeated for all
the elements of the array. Hence, when the number of the accesses is increased, they
require significant exploration time. The symbolic/polyhedral approaches can repre-
sent the irregular space as unions of polytopes. However, when the number of dif-
ferent polytopes is increased, the exploration time is also increased. The alternative
is to approximate the array accesses by applying (approximated) convex hulls which
can over-approximate the size as the approximation is not performed in a controlled
way. The proposed methodology remains scalable and near-optimal, as it represents
the array accesses as patterns with accesses and holes and it combines iteratively the
patterns to find the required size. In case long patterns occur, the knowledge of the
holes allows us to approximate in a controlled way. By selecting few small holes to be
considered as accesses, the size of the patterns and the time of the proposed approach
are reduced. More details are provided in the rest of the manuscript.

2.1. Examples
Real-life applications are characterized by dynamic behavior which is also reflected in
fluctuating memory requirements [Filippopoulos et al. 2014]. Then, the conventional
allocation and assignment of data remains suboptimal. One example of such a code is
Hough transformation [Duda and Hart 1972], where the element of the accumulator
array that is accessed each time depends on the value of the image pixel and its po-
sition. Therefore, the accesses to the accumulator array are highly irregular without
following any specific pattern. In a conventional assignment the memory size used for
the storage of the accumulator is determined by the dimensions of the input image us-
ing the worst-case area for the accumulator array variable. However, only a part of the
allocated space may be accessed. To improve the memory management, memory-aware
system scenario approaches are applied [Filippopoulos et al. 2014], which create a set
of scenarios with different code instances describing highly irregular accesses to the
accumulator.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:5

For (i=0; i<14; i++)
For (j=0; j<7; j++)
If ((i>4j)&&(i<4j+3)||(i==2j+1))
If (i<12)&&(j<6)
B[i][j]=...
If (i>1)&&(j>0)
...=B[i-2][j-1]

(a) Overlapping

For (i=0; i<12; i++)
For (j=0; j<6; j++)
If ((i>4j)&&(i<4j+3)||(i==2j+1))
B[i][j]=...

For (i=2; i<14; i++)
For (j=1; j<7; j++)
If (i>4j-2)&&(i<4j+1)||(i==2j+1)
...=B[i-2][j-1]

(b) Non-overlapping

J

I

C1

(c)

J

I

C2

(d)

J

I

WR: B[I][J]

(e)

J

I

RD: B[I-2][J-1]

(f)

For (i=0; i<21; i++)
For (j=0; j<6; j++)
If (j==0)||(j==3)||(j==4)) ||
((i<2) || (i>3)&&(i<7) || (i==8) || (i>9)&&(i<12))
B[i][j]=...
If (j==0)||(j==3)||(j==4)) ||
((i>10)&&(i<13) || (i>14)&&(i<18) || (i==19) || (i<20))
...=B[i-11][j]

(g) Enumerative overlapping

I

J

WRITE

READ

0

(h)

I

J

WRITE

READ

I

WRITE

READ

I

WRITE

READ

I

WRITE

READ

I

WRITE

READ

I

WRITE

READ

K

0

(i)

Fig. 1: Application code for (a) overlapping and (b) non-overlapping case, iteration
spaces where the boxes describe accesses of the (c) C1, (d) C2, (e) written elements,
(f) read elements, (g) overlapping application code with enumerative conditions, (h)
iteration space with accesses and (i) extension to 3 dimensional case.

In the examples of the paper we keep the iteration space small for demonstration
reasons. Fig. 1 explores how the existing approaches behave on the different code in-
stances with high irregularity derived from the memory-aware scenario. The overlap-
ping application code is depicted in Fig. 1(a) and the non-overlapping code in Fig. 1(b)
to illustrate the difference between these two cases. The non-overlapping code consists
of two nested loops. The first loop performs a WR statement B[i][j] with conditions C1:
(i > 4j)&&(i < 4j+3) and C2: i == 2j+1 combined with an OR operation. The second
loop performs a RD statement B[i-2][j-1] with conditions C1: (i > 4j − 2)&&(i < 4j + 1)
and C2: i == 2j + 1 combined with an OR operation. The index difference of the RD
and the WR statement is 2 in I dimension and 1 in J dimension. The overlapping code
consists of one nested loop with the same conditions and some additional ones which
describe the beginning and the end of the iteration space of the WR and RD state-
ments. In the overlapping case at least in one iteration the WR and the RD statements
are both executed. For instance, we observe that when I=3 and J=1 both a WR and a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Kritikakou et al.

RD occurs to array B. The element B[1][0] is read and the element B[3][1] is written, as
depicted by the corresponding box in the iteration I=3 and J=1 at Fig.1(e) and Fig.1(f).
For this iteration, the number of alive elements is 2. For a later iteration (I=6, J=1),
the element B[6][1] is written, but no read occurs to free a memory position increasing
the number of alive elements to 3. In contrast, in the non-overlapping case during the
iterations where the writes are executed, no read occurs at the array. Therefore, by ap-
plying the solutions of the non-overlapping case [Kritikakou et al. 2013], the number
of alive elements will be computed equal to 11.

When only one of the conditions C1 or C2 exists, the access shape consists of holes
repeated in a regular way (Fig. 1(c) and Fig. 1(d)). This regular access scheme is ef-
ficiently represented by the symbolic/polyhedral approaches [Franssen et al. 1993;
Darte et al. 2005; Clauss et al. 2011]. When both conditions coexist, the repetition
of the first access shape C1 is disturbed due to the second access shape C2. In this ex-
ample, the symbolic/polyhedral approaches represent the space as the union between
these two polytopes. For the example of Fig. 1(a), the exploration time is 627 ms for
the polyhedral approach [Verdoolaege et al. 2013] and 27.8 sec for the enumerative
approach to find the optimal result. However, when the number of different polytopes
is increased, the exploration time is also increased, as shown in the experimental re-
sults. Another example is provided in Fig. 1(h) (code of 1(g)) which depicts the access
shape of a WR for a two dimensional case. The symbolic/polyhedral approaches need at
least 6 polytopes to describe the access shape when intersection and union are used in
the representation and 3 when subtraction is also included. The more irregularity is
present, the more polytopes are required to describe the space. The exploration time is
862 ms for the polyhedral approach and 38.8 sec for the enumerative approach to find
the optimal result. The alternative is to approximate the accessed region by a convex
hull. In this example, the holes of size 2x2 and 1x2 are considered as accesses and the
computed size is 55, instead of 47, and thus a loss of 17% is observed. By adding an-
other dimension, as depicted in Fig.1(i), the loss due to the convex hull approximation,
which is 8 in our example, is increased, as it is multiplied by the size of the dimension
K. The exploration time is 1482 ms for the polyhedral approach and 1223.5 sec for the
enumerative approach.

2.2. Target domain & Problem formulation
The domain under study consists of applications of one thread with high memory activ-
ity and with and without varying memory access intensity [Filippopoulos et al. 2014],
which possibly depends on input data variables. Such examples are high-speed data
intensive applications in the fields of speech, image and video processing, which re-
quire significant amount of storage resources [Jha et al. 1997]. In the case of varying
memory activity, a static study of the application code is insufficient since the appli-
cations have non-deterministic behaviour and thus memory-aware systems scenario
approaches are applied to remove the dynamic behavior by creating a number of sce-
narios [Filippopoulos et al. 2014]. Each scenario has different code instances with de-
terministic behaviour and high irregularity.

Therefore, the proposed methodology is applied to applications that have static con-
trol flow and regular and irregular array accesses. The irregularity derives from ap-
plications with data dependent accesses to the arrays through non-manifest condi-
tions and non statically known loop bounds. Applications with static nested loops and
manifest conditions, i.e. they can be analyzed to deduce which values they take with-
out executing the program, can also destroy the regularity of array accesses but in a
lower degree than the data dependent accesses. After applying the system scenario
approach [Filippopoulos et al. 2014; V.Gheorghita et al. 2009], we obtain a set of codes
instances of the initial application with static nested loops and manifest affine condi-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:7

tions, which describe different and irregular accesses to the arrays. Then, the worst
case code instance is explored to find the minimum required size to store the arrays.
However, in this work we deal with the computation of the maximum number of alive
elements, whereas the creation of systems scenarios is described in [Filippopoulos et al.
2014].

Our approach focuses on the computation of the size of an array, which belongs to the
intra-signal in-place optimization step of the DTSE. The DTSE methodology [Catthoor
et al. 1998] has three phases: (1) the pruning phase which preprocesses the program to
enable the optimization phase, (2) the DTSE methodology that optimizes the prepro-
cessed program and derives a memory hierarchy and layout, and (3) the depruning and
address optimization to remove the overhead introduced by DTSE. During the pruning
phase the Dynamic Single Assignment (DSA) form is used to represent the applications
in order to enable the memory optimizations. Several techniques exist to write the ap-
plication in DSA form, such as the work in [Feautrier 1988; Vanbroekhoven et al. 2003;
Vanbroekhoven et al. 2005]. The code application for our methodology writes at most
once each array element during the execution of the program, but it can read it several
times [Vanbroekhoven et al. 2005]. An example of transforming to DSA form is the
DGEMM of two two-dimensional arrays, where C[N][N] becomes C[N][N][N] and the
3rd dimension is used to index the values produced by the k loop. When we consider
the complete application and array C is used later by another part of the program,
then the number of maximum alive elements we compute using our methodology is
N2. Potential storage overhead introduced by the DSA due to the elimination of the
write-after-write dependencies can be removed as the in-place mapping intentionally
destroys the DSA property [Vanbroekhoven et al. 2007]. The result of our methodol-
ogy provides the minimal array size for the DSA. The values of the array elements
that are no longer needed can be overwritten by changing the indexation of the assign-
ments [Eddy De Greef and de Man 1996; Tronon et al. 2002].

After the memory management is completed by DTSE, all the required in-
formation is available to execute the address optimization and the final map-
ping/allocation [Catthoor et al. 1998]. The proposed approach supports an efficient
address scheme achieved when the addresses are quite regular, as it does not allow
exhaustive enumeration of accesses and uses repetitive patterns. When the size of
patterns is increased, the proposed methodology provides a control to reduce it by con-
sidering holes in the accesses with low repetition factor and of small size as virtual
accesses. In this way, the address complexity is reduced.

3. CONTRIBUTION
The contribution of this work is to propose a methodology which computes the max-
imum number of concurrently alive array elements keeping the exploration time low
and providing a controlled approximation when required, resulting to a near-optimal
and scalable approach. Compared to existing approaches, the proposed methodology
achieves low exploration time and near-optimal results in complex iteration spaces
with both regular and irregular array accesses and overlapping writes and reads, as
also verified by the experimental results in the Section 9.

The proposed methodology consists of three steps as depicted in Fig.2: the analysis,
the translation and the computation. When the methodology is applied, the steps are
executed following a sequence and the information is propagated from the analysis to
the computation step.

The analysis extracts the access scheme from the application code. As described in
Section 4, the input code is described by a parametric template. By parsing the code
under study, the template is instantiated. In this way we extract the access scheme,
which is propagated to the translation step.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Kritikakou et al.

Analysis Translation Computation

C1 C2 C3 C4

For (I>LBI; I<UBI; I++)
 For (J>LBJ; J<UBJ; I++)
 ...
 If (CI)...
 ...=Fx(B[I+bI]...)

1Segment N Segment

Pattern I:

Pattern J:
.
.
.

Cases & SolutionsApplication Patterns

1Segment N Segment

Access scheme
extracted from

application code

Dimension
pattern

sequences

Fig. 2: Methodology steps.

The translation step stores the access scheme received by the analysis step in a
near-optimal and scalable way using the representation of the pattern formulation
presented in [Kritikakou et al. 2014]. The patterns and the pattern operations are
applied per dimension. A pattern is a sequence of segments that describe Accesses (A)
or Holes (H), i.e. not accesses, to the array and has a set of parameters that describe
the position and the repetition of the pattern in the iteration space. In case more than
one pattern refers to the same parts of the iteration space, pattern operations are
applied to combine these patterns [Kritikakou et al. 2014], whenever it is possible. The
obtained result is a sequence of patterns for each dimension. The pattern sequences
are propagated to the computation step.

The focus of this paper is the last step, i.e. the computation step, which takes as
input the pattern sequences provided by the translation step. In contrast to the work
presented in [Kritikakou et al. 2014], the proposed methodology describes a framework
to compute the maximum number of alive elements for regular and irregular access
schemes for overlapping writes and reads. The proposed framework describes the pos-
sible cases that may occur by combining the pattern sequences of the translation step.
We have applied a systematic approach to derive the complete set of the potential
cases where we divide the exploration space in two non-overlapping and complemen-
tary parts, inspired by the approach presented in [Kritikakou et al. 2013]. In addition,
for each case we define a set of closed form equations and/or low complexity algorithms
using parameters. During the execution of the computation step, the parameters are
instantiated, i.e. they take specific values, based on the application under study each
time. The parameter instantiation decides which cases are valid from the framework
and thus selects the solutions to be applied.

To motivate the need of the proposed methodology we describe the gains of the moti-
vational examples of Fig.1. The proposed approach translates the extracted C1 condi-
tion of Fig.1(a) to the pattern {1H 2A 1H} with a repetition factor equal to 3 and the C2
condition to {1H 1A} with a repetition factor equal to 6. At computation step, the size
is computed equal to 3. The exploration time of our method is 103 ms. For the Fig.1(h),
the pattern of I dimension is {2A 2H 3A 1H 1A 1H 1A} and the one of J dimension is
{1A 2H 2A}. The size is computed by propagating the partial size due to I dimension
(outer dimension) to J dimension (inner dimension). The partial size is given by the
accesses of I dimension multiplied by the loop size of J dimension, i.e. 7*5. Then, the
additional accessed elements in J dimension are added without including the accesses
already computed in I dimension. Hence, the size in J dimension is given by the holes
of I dimension multiplied by the accesses of J dimension, i.e. 4*3. The result is 47,
which is optimal, and the exploration time is 82 ms.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:9

Pseudocode 1: Loop structure of the application code instances
for (i=LBi;i < UBi;i++) do...

for (k=LBk;k < UBk;k++) do...
if (C1(i, type1i , a1

i)..) then...
if (Cn(k, typenk , an

k)..) then...
S1:A[i+b1i]..[k+b1k]=....

if (C1(j, type1j , a1
j)..) then...

if (C2(l, type1l , a1
l)..) then

S2:...=F2(A[i+b2i]..[k+b2k])

4. ANALYSIS STEP
The input to our methodology is the code of the application under study. We present a
parametric template with primitive components to describe the structure of the appli-
cation code.

The analysis template consists of a generic structure depicted in Fig. 1 that describes
the application using a nested loop with 1) a set of condition expressions described
by primitive conditions and primitive logical operations and 2) single write multiple
read access statements that use the primitive index expression. The write and read
accesses are overlapping, i.e. at least in one iteration both write and read statements
are executed, and thus the lifetime of the array elements is not unique. This case is
complementary to the non-overlapping case [Kritikakou et al. 2013] and together they
cover all possible options that may occur.

In this paper, we will consider this type of applications as input to describe the solu-
tions of the proposed methodology. The approach can be further extended by general-
izing the description of the codes that are given as input to the methodology. However,
this is not the focus of this paper. We provide several hints for the direction of the
transformations that have to be applied. The use of primitive conditions and logical
operators provides a uniform input to our methodology and avoids the exploration of
the different ways of writing an application code.

The primitive conditions are expressed through manifest control affine statements,
CX (iterator, comparison-operator, expression) which describes a condition of “iterator
comparison-operator expression”, e.g. C1(i, <, 5) describes i<5 condition. The array ac-
cess statements are described by the function Fx(A[f iterator1

x]..[f
iteratorADim
x])). Fx is a

function of accessing arrays, fx is the index expression for the iterator of each dimen-
sion, which describes a set of array accesses to the background memory, ADim is the
number of array dimensions and A is the array being accessed. The array access state-
ments are uniformly generated, i.e. the index expressions of the array accesses differ in
a constant term. The access statements allow both group and self reuse since two dif-
ferent access statements can read the same element and an access statement can read
more than once a given element. Array A is used as an example to describe the arrays
of the application domain and many arrays similar to A may exist in the application,
for which the methodology is repeated. As we are focusing on loop dominated appli-
cations, few condition statements exist inside the loops and a high kernel unrolling
cannot occur. Hence, the number of condition and access statements in the application
is a small finite set. As the loop dimensions are few, the information extracted and
used by our approach is also a finite small set.

Definition 4.1. The types of iteration spaces are
(1) Solid Iteration Space (SIS), i.e. iteration space where the accesses to the array occur

without holes,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Kritikakou et al.

(2) Iteration Space with Holes (ISH), i.e. iteration space where the accesses to the array
occur with holes.

For instance, the presented motivational examples describe ISH.

Definition 4.2. The nested loop is described by the
(1) Dimensions: The number of nested levels,
(2) Order: The loop iterators order from outer to inner dimensions,
(3) Dimension description: For each dimension Dim we have the lower bound LB, the

upper bound UB and the step ST, which are given by numerical values and not in a
parameterized form.

For instance, the description of the nested loop of the example presented in Fig. 1(a)
has two dimensions which have the order i,j. The description of i dimension is LB=-1,
UB=14 and ST=1 and the one of j dimension is LB=-1, UB=7 and ST=1.

Definition 4.3. The types of conditions are Enumerative, where the expression in
the condition is only a constant, and Parametric, where the expression in the condition
is an affine expression.

For instance, in the description of the example of Fig. 1(a) two parametric conditions
exist, (i>4j)&&(i<4j+3) and (i==2j+1), and four enumerative conditions exist, two for
the write statement, (i<12)&&(j<6), and two for the read statement, (i>1)&&(j>0).
Further enumerative conditions are given in the example of Fig. 1(g), e.g. (j==0),
(j==3), (i>3)&&(i<7), (i>14)&&(i<18) etc.

Combining the types of the iteration spaces and the types of the conditions we derive
the primitive conditions which we use in our parametric template and can describe all
the possible cases that can occur in the applications.

Definition 4.4. The type of primitive conditions COND of the analysis template is:
(1) Enumerative Conditions for Solid iteration space (ECS), which are expressed

through the < and the > comparison operators, the combination of the < and the
> comparison operators with the AND logic operator (< && >) and the == com-
parison operator, i.e. i < a, i > a, (i < a)&&(i > b) and i == a.

(2) Enumerative Conditions with Holes (ECH), which are expressed by ECS combined
with || primitive operator.

(3) Parametric Conditions for Solid iteration space (PCS), which are expressed
through the < or > comparison operator with a linear expression, i.e. i < c ∗ k + d
and i > c ∗ k + d .

(4) Parametric Conditions for Iteration Space with Holes (PCH), which are expressed
with the == or 6= comparison operator, a combination of < and > compar-
ison operator with an && logic operator, i.e. i == c ∗ k + d , i 6= c ∗ k + d and
(i > c ∗ l + d1)&&(i < c ∗ k + d2) (with d1 < c and d2 < c).

For instance an ECS is i < 5 , an ECH is i == 5 , a PCS is i < 2 ∗ k + 1 and a PCH is
i == 4 ∗ k + 1 . In our template we will use the comparison operators of <, >, ==, and
6=.

Definition 4.5. The primitive condition operations of the analysis template are the
OR (||) and the AND (&&).

Definition 4.6. The primitive index expression which describes fx of the access
statement is the expression iterator + constant . We consider that the default index ex-
pression of the WR statement as i and of the RD statement as i + b.

The primitive index expression is a highly occurring case, especially in multimedia
applications, e.g. [Pouchet et al. 2012; Lee et al. 1997; Guthaus et al. 2001].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:11

In case the application under study has been written in a different way that the
generic one provided by the analysis template, a set of preprocessing operations are
applied to map the application code to our generic structure. The applied operations
are not transformations to the original code, as they are only applied for the mapping
to the analysis template. In case of:

(1) Non-primitive logical operators: they are transformed to combinations of the
primitive operations. For instance, i == a NAND j == b is transformed to
(i 6= a)||(j 6= b).

(2) Non-primitive conditions: they are mapped to primitive conditions. For instance, the
ECH condition i 6= d is mapped to the condition (i < d)||(i > d).

(3) The WR index expression is not the default (i): It is mapped to the default, e.g. when
the WR index expression is i + a and the RD index expression is i + b, the index
expressions are translated to i and i + (b − a), respectively.
In case that different index expressions than the primitive one are used, we provide

a set of possible preprocessing than can be applied to map them into the primitive
index expression. However, in this paper we are focusing on presenting the proposed
methodology using the primitive index expression.

(1) Index expressions with one iterator: These cases are similar to the primitive index
expression:
(a) The WR index expression is “coefficient iterator + constant” (e.g. ai + b): If the

coefficient is the same for the WR and RD, then the methodology can be used
directly, as the patterns of the access statement have constant difference. In
case different coefficients are used, one option is to translate every statement
into “iterator + constant” index type with a new loop dimension and parametric
manifest conditions to describe the holes in the iteration space. For instance,
index expression 2 ∗ i+ 1 executed from 0 to 9 is expressed as index expression
I+1 and an additional loop dimension K from 0 to 4 and a parametric condition
I == 2K.

(b) The WR index expression is “iterator % constant” (e.g. i%a + b): This iterator
can be expressed as “iterator + constant” index type and an additional loop
dimension with size equal to the constant. For instance, the index expression
i%4 becomes K and creates an K loop dimension from 0 to 3.

(2) Index expressions which couple iterators: Index expressions such as i+j+b are less
similar with the primitive index expression by the current version of the proposed
methodology. Heuristics to replace the i + j + b by a new iterator I and taking the
worst case in terms of bounds could be applied, but we are not focusing on this
case in this version of our methodology. We have as future work to provide further
extensions to the proposed methodology to near-optimally cover the case of index
expressions with coupling iterators.

(3) Non-affine index expressions: Existing work on transformations of complex expres-
sions to simpler ones, e.g. [Paek et al. 2002] could be applied to create approximated
affine expressions.
In case multiple write statements exist and the writes and the reads are executed:

(1) sequentially, i.e. a write statement and then a set of reads of this written element,
our methodology is applied for each pair of a single write and several reads.

(2) interleaved, they can be merged into a single statement combined with conditions
which control the correct behavior of the write statement.
Under these assumptions, the proposed approach is widely applicable. For instance,

by analysing the different codes provided by the Polybench benchmark suite (28 differ-
ent codes), the proposed approach is applicable in 23 codes, that is 82,14%. The reasons
for which our approach is not applicable in the current form for the remaining code are
the non-uniform array accesses statements and the coupling of iterators.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Kritikakou et al.

In the remaining sections, we illustrate the solutions using single read statements.
When multiple reads exist, the last read of an element is used as it defines the ele-
ment’s lifetime.

As the gains of our approach are in iteration spaces with holes, we focus on the
conditions that are able to create such iteration spaces, i.e. ECH and PCH primitive
conditions. In addition, we describe also the ECS which describes solid iteration spaces
in order to provide solutions in the cases where solid spaces are combined with spaces
with holes. The condition PCS describes solid iteration spaces similar to the ECS, but
they are parametric. We leave as future work the solutions for the PCS, as existing
approaches such as polyhedra provide exact results for this regular case [Clauss et al.
2011]. Our approach can be extended to PCS, as they can be computed in a similar way
to ECS with the number of accesses elements derived by the exploration window each
time.

5. TRANSLATION STEP
The translation receives the extracted information from the analysis and stores it in
patterns and applies pattern operations to combine the patterns per dimension.

Definition 5.1. A pattern is defined by a sequence of segments, a type and a set of
parameters. A segment is described by:
(1) the Segment Type (ST), i.e. the type of behavior of the statement. It can be Access

(A) or Hole (H),
(2) the Segment Iterator Range (SIR), i.e. the number of consecutive iterator values

where the statement has the same segment type:
(a) if ST == A of a segment i, it is called Segment Iterator Domain (SID(i)).
(b) otherwise, it is called Hole Iterator Domain (HID(i)).

The type of the pattern is a RD, WR or COND, where the condition type is given by
Definition 4.4.

The set of parameters are:
(1) the Lower Bound (LB), is the iterator value before the pattern begins. For the

ECS/PCS and ECH conditions (I > a) the LB is max (LBI, a) and for PCH conditions
(I > c ∗K + d), is max (LBI, c ∗ (LBK + 1) + d − 1),

(2) the Upper Bound (UB), is the iterator after the pattern ends. For the ECS/PCS
and ECH conditions (I < b) the UB is min(UBI, b) and for the PCH conditions
(I < c ∗K + d) is min(UBI, c ∗ (UBK − 1) + c + 1).

(3) the Iterator Range (IR), i.e. the iterator values where the pattern is valid, IR=UB-
LB-1

(4) the Number of pattern Segments (N), i.e. the total number of segments in the pat-
tern,

(5) the Pattern Size (PS), i.e. the summation of the SIR of all the segments in a pattern,
i.e.

∑N
i=1 SIR(i).

(6) the Repetition factor (R), which describes how many times the pattern is repeated
in the IR, i.e. IR

PS .
(7) the exploration window (Diff), which is defined for the patterns of WR and the RD

type and describes the difference between the RD and the WR index expressions.

We use the examples presented in Section 2 to illustrate how the patterns are defined
and how the pattern operations are applied. In the examples of Fig. 1(a), for the first
parametric condition, the pattern derived for the dimension i is {1H 2A 1H}. The type
of the pattern is COND and more precisely PCH. The corresponding parameters are LB
is -1, UB is 14, IR is 14, N is 3, PS is 4 and R is 3. For the second parametric condition,
the pattern derived for the dimension i is {1H 1A} with LB is -1, UB is 14, IR is 14, N is 3,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:13

PS is 2 and R is 6. The first enumerative condition gives a pattern for the i dimension,
which is {12A}. The type of the pattern is ECS. The corresponding parameters are LB
is -1, UB is 12, IR is 12, N is 1, PS is 12 and R is 1. The second enumerative condition
gives a pattern for the j dimension, which is {6A}. The type of the pattern is ECS. The
corresponding parameters are LB is -1, UB is 6, IR is 6, N is 1, PS is 6 and R is 1. The
access statement gives two patterns, one for each dimension. For the i dimension it is
{14A}. The type of the pattern is WR. The corresponding parameters are LB is -1, UB is
14, IR is 14, N is 1, PS is 14, and Diff is 2. For the j dimension it is {6A}. The type of the
pattern is WR. The corresponding parameters are LB is -1, UB is 6, IR is 6, N is 1, PS
is 6, R is 1 and Diff is 1. Similar are the patterns for the other enumerative conditions
and the read statement.

The algorithm of pseudocode 2 describes how we select the pattern operations be-
tween two patterns P1 and P2 of a dimension i. This process is repeated for each
dimension starting from the patterns with the lower LB and the larger size. Further
information is provided in [Kritikakou et al. 2014].

Pseudocode 2: Selecting pattern operations.
if (PS(P1) 6= PS(P2)) then

Modify patterns(P1,P2)
else

if (LB(P1)+IR(P1) > LB(P2)) then
if (LB(P1)+IR(P1) 6= LB(P2) + IR(P2)) then

if (LB(P1) < LB(P2)) then
LB alignment(P1,P2)

if (UB(P1) 6= UB(P2)) then
UB alignment(P1,P2)

if (LB(P1)+IR(P1)==LB(P2)+IR(P2)) then
PCH=Fully aligned operation(P1,P2, operation)

if (LB(P1)+IR(P1)==LB(P2)) then
Sequential(PCH1,PCH2)

if (LB(P1)+IR(P1) < LB(P2)) then
Non-sequential(P1,P2)

Using the pattern operations of Alg. 2 we combine the patterns to obtain the pattern
sequence. For i dimension, we apply the UB alignment operation and then the fully
aligned AND operation between the enumerative condition and the access statement.
The result gives us the following pattern: {12A}. The type of the pattern is WR. The
corresponding parameters are LB is -1, UB is 12, IR is 12, N is 1, PS is 12, and Diff is 2.
Then, we apply a fully aligned AND operation with the first parametric pattern. The
result is: {1H 2A 1H}. The type of the pattern is WR. LB is -1, UB is 12, IR is 12, N is 3,
PS is 4, R is 3, and Diff is 2. Similarly, the result after applying the fully aligned AND
operation with the second parametric condition is {1H 1A}. The type of the pattern is
WR. The parameters are LB is -1, UB is 12, IR is 12, N is 3, PS is 2, and Diff is 2.

6. COMPUTATION STEP
The computation step is a framework with the different cases that can occur when the
pattern sequences of different dimensions are combined. To find the different cases we
explore the position cases, which derive from the position of the access statements in
the application code and their behavior, and the condition cases, which derive from
the loop structure of the code and the type of the conditions. Then, we propose an
equation to compute the maximum number of alive elements per case. The creation of
these equations derives by following an incremental computation of the size by adding
dimensions.

Definition 6.1 (Incremental size computation). The incremental size computation:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Kritikakou et al.

I

J

WRITE

READ

(a)

I

J

RD
I

WRITE

READ READ

WRITE

K J K

I

(b)

Fig. 3: General process to calculate the number of alive elements for a) two dimensions
and b) three dimensions.

(1) starts by computing the partial size of the elements required to be stored due to the
outer dimension, PSize0;

(2) at each iteration i the size of an inner dimension is added by multiplying the size
computed up to now Sizei−1 with the size of the inner dimension Sizei and adding
the additional elements required to be stored due to the new dimension ASizei.

Size0 = PSize0 (1)
Size0−i = Sizei−1 ∗ Sizei + ASizei, for i=1...Dim (2)

This general process is schematically illustrated in Fig. 3, where we assume that
three dimensions exist, so iteration 0 corresponds to the outer dimension I, iteration 1
corresponds to the inner dimension J and iteration 2 to the second inner dimension K.
The PSize0 is computed by the required size only in the outer dimension I, i.e. the blue
boxes in Fig. 3(a). These elements are the maximum number of elements that have
been written and not yet read in the outer dimension. In the iteration 1, this size is
extended by the size of the inner dimension J, Size1, i.e. the green boxes in Fig. 3(a),
and by the additional elements ASize1 due to the inner dimension J, i.e. the red boxes
in Fig. 3(a). In the second iteration, this size is extended by the size of the next inner
dimension K, Size2, i.e. the purple boxes in Fig. 3(b). In Fig. 3(b) we can see the iteration
space using two different perspectives.

We describe the cases of our framework by presenting the position cases and the
condition cases that can occur. Then, the remaining sections will describe how this
general process is instantiated to create the final equations for each case and illustrate
the solution using representative examples. In Table II, we provide a summary of the
instantiations of the different cases, whereas Table IV provides the final equations for
several representative examples.

6.1. Position cases
To define the different position cases that may occur, we need to explore the possibili-
ties in the access statements and the loop structure. We apply a systematic approach
where we divide the exploration space into two complementary and non-overlapping
cases [Kritikakou et al. 2013]. By applying this process we obtain the splits depicted
in Fig. 4 and described below.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:15

Table II: Summary of instantiation of the general method based on the different cases.
Dominant segment Non-dominant segment

PSize0 Diff0 ADiff0
Dominant conditions

Sizei

Ni∑
l=0

SIDi(l)

Outer dimension
Dominant Non-dominant Dominant Non-dominant

ASizei

Diffi∑
l=0

SIDi(l) 0
Diffi∑
l=0

SIDi(l) 0

Non-dominant conditions

Sizei IRi for ADiff0: IRi & for HDiff0:
Ni∑
l=0

SIDi(l)

Outer dimension
Dominant Non-dominant Dominant Non-dominant

ASizei Diffi max(extraWR, extraRD) Diffi max(extraWR, extraRD)

Position cases

Outer dimension pattern Outer dimension type

Segments type Dominant Non-dominant Position of parts
to be explored

Dominant
Segment

Non-Dominant Segment
(Pattern Section with max A) First iteration Middle iteration

Fig. 4: Position cases.

The first division derives from the description of the pattern existing in the outer
dimension and the type of the dimension. In the left part, the description of the pat-
tern is divided into the type of the segments and the position of the segments to be
explored. The type of the segments is described by the existence or not of a dominant
segment in the outer dimension of the nested loop under study. When a segment of the
pattern of the outer dimension that is accessed is larger than the exploration window
of the outer dimension, then analyzing only this segment is enough to find the maxi-
mum number of alive elements of this dimension. Hence, this case is the dominant
segment. On the other hand, if all the segments of the pattern of the outer dimension
that are accessed are smaller than the exploration window of the outer dimension, we
are referring to the non-dominant segment. In this case, the maximum number of
concurrent alive elements cannot be found by exploring only one accessed segment, and
thus we have to find the section that includes the maximum number of accesses in the
pattern. Regarding the position of the segments to be explored (i.e. the aforementioned
dominant segment or pattern section), they can be placed in the first iteration or in a
middle iteration of the outer dimension. Exploring now the options in the type of the
outer dimension, it can be dominant or not. The dominant outer dimension occurs
when the behavior of the WR statement in the iteration just after the outer exploration
window is equal to A. Because of this A and the behavior of the inner dimension, the
number of alive elements is potentially increased. For instance, when a dominant seg-
ment occurs in the outer dimension and it is larger than its exploration window, then
the outer dimension is dominant. In the case when the dominant segment is equal to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Kritikakou et al.

Condition Statements

One condition Condition
expressions

Enumerative Parametric
AND OR

ECS ECH PCS PCH

One Loop Dimension Several Loop Dimensions

One
condition

Condition
expressions

ECS ECH AND OR

Fig. 5: Condition cases.

the outer exploration window, then the outer dimension is non-dominant, because
an H exists in the WR statement in the iteration just after the exploration window.

6.2. Condition cases
By combining the different options of the loop structure, of the primitive conditions and
the primitive logical operations that can occur in the generic structure of the analysis
template, we define the possible condition cases for the condition statements depicted
in Fig. 5. The first division is between a generic structure of a loop with one dimen-
sion and a structure with several loop dimensions. In the case of one dimension, a
condition statement can be expressed by a primitive condition or by condition expres-
sions with several primitive conditions. In the case of a primitive condition and one
dimension, it can only be of enumerative type, i.e. ECS and/or ECH. In the case of sev-
eral condition expressions and one dimension, the condition statement can combine
the enumerative primitive conditions using AND and/or OR primitive operations. For
several loop dimensions, a condition statement can be a primitive condition or several
condition expressions. As several dimensions exist, the primitive condition can be ei-
ther of enumerative or parametric type, i.e. ECS, ECH, PCS and/or PCH. The condition
expressions in the multidimensional case can be expressed by combining enumerative
or parametric primitive conditions using the primitive logical operators, i.e. AND or
OR.

The leaves of the tree presented in Fig. 5 and their combinations describe the pos-
sible condition statements that can occur. Exploring the different cases, we define the
dominant and the non-dominant conditions.

Definition 6.2. The dominant conditions are the conditions that do not allow ac-
cesses in the inner dimension, if no accesses exist in the outer dimension.

For instance, the condition (i 6= 5)&&(j > 8) does not allow the accesses of J pattern
to occur when the I pattern has holes, i.e. the iterator i is equal to 5. However, the con-
dition (i 6= 5)||(j > 8) does allow accesses in J pattern, when the I pattern has holes.
We cluster the different condition cases that can occur into five representative cases
which have a common equation and we classify them as dominant or non-dominant.
(1) Dominant conditions:

(a) The case i represents the primitive conditions ECS and ECH and their combi-
nation though the AND operator,

(b) The case ii refers to the case of a PCH with == comparison operator (PCH=)
and a PCH= combined with:

i. the OR operator with PCH=,
ii. the AND operator with PCH=, ECH, ECS.

(c) The case iii describes the PCH= combined through the OR operator with ECS
and ECH,

(2) Non-dominant conditions:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:17

LB

UB

W
RI

LB

UB
RD

I

I

(a)

For (I=0;I<11;I++)
If (I<6)
B[I]=...
If (4<I<11)
...=B[I-5]

(b)

LB

UB

W
RI

H

H

LB

RD
I

H

UB

H

I

(c)

For (I=0;I<11;I++)
If (I==0)||(2<I<6)||(I==7)
B[I]=...
If (I==5)||(7<I<11)||(I==12)
...=B[I-5]

(d)

Fig. 6: Iteration spaces of WR and RD statements and corresponding codes for the
Dominant segment with i) SIS (a)&(b) and ii) Non-Dominant segment with ISH
(c)&(d).

(a) The case iv describes the combination of ECS and ECH through the OR oper-
ator.

(b) The case v describes a PCH with 6= comparison operator (PCH6=) and a PCH 6=
combined with:

i. the AND operator with PCH6=, ECH, ECS,
ii. the OR operator with PCH, ECH, ECS.

7. SEGMENT CASE: DOMINANT OR NOT-DOMINANT?
7.1. Dominant segment
The dominant segment is valid when the exploration window of the dimension i is
smaller than or equal to a) the size of the dimension if the iteration space is SIS,
or b) the length of the larger access segment if the iteration space is ISH: (Diffi ≤
IRi)||(Diffi ≤ max (SIDi(k)) for k = 0 , ...,Ni. The analysis of only the dominant segment
can define the maximum number of alive elements for the dimension i. Hence, the size
is given by the exploration window of dimension i, PSize0=Diffi.

Example 7.1. One example is given in Fig. 6(a) (with the corresponding code at
Fig. 6(b)) for an iteration space without holes (SIS). The exploration window, i.e. the
index difference between WR and RD, is 5, whereas the size of the SIS is 6 (this is
the dominant segment marked by the blue dashed line). The first figure describes at
the same time the behaviour of both the write (light grey boxes) and the read (dark
grey boxes) statements. The next two figures describe the behaviour of each statement
separately in order to understand how the accesses occur. The pattern of I dimension
of WR statement is labelled as WRI and the pattern of RD statement is labelled as RDI.
We will keep this notation in all the examples presented in the rest of the paper. The
pattern of WR statement is {6A}, LB=-1, UB=6, IR=6, PS=6 and R=1 and the pattern of
RD statement is {6A}, LB=4, UB=11, IR=6, PS=6 and R=1. The figure depicts one specific
iteration, i.e. the WR is executed at the iteration 5 (black cell) and the next RD occurs
at the iteration 6 (white cell). The element B[5] is written and the element B[1] is read
in the next iteration. The number of alive elements is given by the exploration window,
Size0=PSize0=DiffI=5.

7.2. Non-Dominant segment
In the non-dominant segment, all lengths of the access segments in dimension i are
smaller than the exploration window. Hence, the size is Size0−0 = Size0 = PSize0 = ADiffi,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Kritikakou et al.

Pseudocode 3: Find maximum pattern section.
max=0; Part=0; Start=0
for (k=LBi+1; k< UBi+Diffi; k++) do

Size=0
if (k==Start+SIR(part)) then

Start+=SIR(part)
Offset=0

else Offset++
Length=0
while (Length+(SIR(Part)-Offset)≤ Diffi) do

if (PT(Part)==A) then Size+=SIR(Part)
Length+=SIR(Part)-Offset

Rem=Diffi-Length+(SIR(Part)-Offset)
if (ST(Part)==A) then Size+=Rem
if (Size>max) then max=Size, kmax=k

where ADiffi is given by the alive elements stored inside a section of the pattern which
is as large as the exploration window Diffi.

The process to find the maximum number of alive elements and the pattern section
is described by Pseudocode 3. The process searches the pattern in sections that have
size Diffi. It starts from the first iterator until UBi + Diffi, since the pattern describes
repetitive behaviour in the iteration space. In our algorithm, the parameter k gives the
start of the pattern section to be searched. The parameter Start is equal to the iterator
values of the next pattern segment. The Offset describes how far away is k from the
start of the segment. If k is equal to the first iterator of a pattern segment, Offset is
0. We add the segments with accesses as long as the total Length is smaller than the
exploration window Diffi. When the length goes over this value and the last pattern
segment describes accesses, we add the required elements to reach a size equal to Diffi.
Then, we increase k parameter and the process is repeated for the remaining sections
of size Diffi. When several pattern sections exist which have the maximum number of
elements, we explore the one that has an access just after the exploration window and
it is placed in the middle of the pattern, as this is most resource consuming case.

However, the fact that the segment is not dominant may affect Sizei of Definition 1
used when we add a new dimension. This may occur in the case of the non-dominant
conditions, because if an access occurs in the dimension i and a hole exists in 0 dimen-
sion, the element is still accessed. In this case, we need to also include these “hidden”
elements. They are computed by finding the number of H that exist in the pattern
section, HDiff0. We describe in Section 8.2 how they are used to compute Sizei.

The equation to compute the terms ADiffi and HDiffi is given by Eq. 3 and 4, where
kmax is the start of the pattern section with the maximum number of elements to be
explored.

ADiffi =
kmax+Diffi∑
l=kmax

SIDi(l) (3)

HDiffi =
kmax+Diffi∑
l=kmax

HIDi(l) (4)

Example 7.2. The Fig. 6(c) (corresponding code in Fig. 6(d)) depicts a non-dominant
segment in an iteration space with holes (ISH). The index difference is 5, whereas the
maximum segment length of the access segments is 3. The pattern of RD statement
is {1A 2H 3A 1H 1A} with LB=-1, UB=8, IR=8, PS=8 and R=1. The pattern section with
length equal to the exploration window which has to be explored to find the maximum

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:19

Table III: Computation of the additional elements ASizei.
Conditions Case Value Conditions Case Value

extraPCH= extraPCH6=
Diffi
PS < Diffi 1 Diffi > IRi − 1 -1

extraPCH=,A2A
extraWR

CPRD == H || 1 Diffi > LBWR
i + 1

Ni∑
l=0

SIDi(l)

CPRD == A && Diffi > 1
extraRD,A extraRD,H

LBRD
i + 1 < IRi &&

APos(IRi − LBRD
i − 1)

LBRD
i + 1 < UBWR

i &&
APos(UBWR

i − LBRD
i − 1)

UBRD
i > IRi UBRD

i > UBWR
i

LBRD
i + 1 ≥ IRi

Ni∑
l=0

SIDi(l) LBRD
i + 1 ≥ UBWR

i

Ni∑
l=0

SIDi(l)

number of alive elements is depicted by the blue dashed line. It starts at SID(2) and
ends at SID(3). By adding the occurring accesses, Size0=ADiffI=4, whereas the HDiffI is 1.

8. CONDITIONS CASE: DOMINANT OR NOT-DOMINANT?
However, when the size is computed using more than one iteration in definition 1, the
computation of the term Sizei is affected by the type of the conditions and the term
ASizei by the type of both the conditions and the outer dimension.

In case a condition is of parametric type, it couples the patterns of two dimensions
and thus, they cannot be explored independently. However, the pattern of the outer
dimension dominates. Hence, if the condition is of type:
(1) PCH= (PCH with the == comparison operator) or PCH&& (PCH with the < && >

comparison operator), Sizei is 1. Due to the repetition of the parametric pattern,
ASizei is given extraPCH= in Table III. When we have
(a) one condition PCH=, ASizei=extraPCH=,A

. The term Diffout
PS describes the repe-

tition of the pattern in the outer exploration window. If the inner exploration
window is larger than this repetition, an additional element must be stored.

(b) more than one condition PCH=, the term ASizei=extraPCH=,A2A , where CP is
the combined pattern of the initial PCH= patterns. These are the elements
accessed in both PCH patterns, i.e. Access to Access (A2A), but not computed
by the first equation of the case ii. For each of the A2A elements we verify if the
combined pattern (CP) has a hole or not. If an H exists, this A2A element has
not been read, so an extra element is stored. If an A exists, the extra element
is stored only if the inner exploration window is larger than one. Otherwise,
the A2A element has already been computed.

(2) PCH 6=, the term Sizei is equal to IRi for the partial size computed by ADiffi and
equal to IRi − 1 for the partial size computed by HDiffi.

8.1. Dominant conditions
The dominant conditions imply that an access in an element is valid when all dimen-
sions are accessing this element. Hence:

(1) Sizei is computed by adding only the elements that are accessed in the i dimension,
Ni∑
l=0

SIDi(l).

(2) ASizei is affected by the type of the outer dimension.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Kritikakou et al.

LB UB
LB

UB

WRJ

H

W
RI

UB LB RDJ

H

RD
I

H H
J

I

(a)

For (I=0;I<15;I++)
For (J=0;J<8;J++)
If (I<7)||(7<I<10) && (J<4)||(4<J<6)
B[I][J]=...
If (4<I<12)||(12<I<15) && (1<J<6)||(6<J<8)
...=B[I-5][J-2]

(b)

LB UB
LB

UB

WRJ

H
W

RI

H

H UB

LB

UB

LB RDJ
H

RD
I

H
H J

I

(c)

For (I=0;I<15;I++)
For (J=0;J<6;J++)
If ((I==0)||(I>3)&&(I<6)||(I>6)&&(I<10))&&((J<2)||(J==3))
B[I][J]=...
If ((I==5)||(I>8)&&(I<11)||(I>11))&&((J>1)&&(J<4)||(J ==5))
...=B[I-5][J-2]

(d)

W
RI

J

LB

UB

H

RD
IJ

LB

UB

H

J

I

(e)

For (I=0;I<15;I++)
For (J=0;J<3;J++)
If (I>6J)&&(I>6(J+1))&&(J<2)
B[I][J]=...
If (J>0)&&(I>6J-3)&&(I>6(J+1)-3)
...=B[I-3][J-1]

(f)

Fig. 7: Iteration spaces for WR and RD statements and corresponding codes for the
Dominant conditions for Dominant Outer Dimension with dominant segments for 1)
case i for ISH (a)&(b), 2) non-dominant segment for case i for ISH (c)&(d) and 3) case
ii for ISH (e)&(f).

8.1.1. Dominant outer dimension. When the outer dimension is dominant, it means that
the behavior of the pattern in the iteration after the exploration window is always A.
This access means that the WR statement of the outer dimension is always executed.
When the dominant segment is larger than the exploration window, it implies that the
outer dimension is always dominant. This access means that potentially additional
elements may occur in the i dimension. Hence, the term ASizei is computed by adding
the accessed segments in the pattern i for a length equal to the exploration window i,

which is given by
Diffi∑
l=0

SIDi(l).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:21

In the next paragraphs we provide several illustrative examples to show how the
proposed methodology computes the size. In addition, we provide the Pseudocode 4 to
illustrate in detail the computation process for the cases i and iv.

Pseudocode 4: Size computation for cases i and iv.
if ((condition type P1 == ’ECH’||’ECS’) && (condition type P2 ==’ECH’||’ECS’)) then

if (operation==’AND’) then /* Dominant condition */

Sizej=
Nj∑
l=0

SIDj(l)

if (WR iteration==’A’) then /* Dominant dimension */

ASizej=
Diffj∑
l=0

SIDj(l)

else /* Non-dominant dimension */
ASizej=0

if (operation==’OR’) then /* Non-dominant condition */
Sizej=IRj

if (WR iteration==’A’) then /* Dominant dimension */
ASizej=Diffj

else if (WR iteration==’H’) then /* Non-dominant dimension */
if (pattern section==0) then /* First iteration */

ASizej=extraWR

else /* Middle iteration */
ASizej=max(extraWR,extraRD)

if (Dominant Segment) then
Sizei, j=Diffi*Sizej+ASizej

else

Sizei, j=ADiffi*Sizej+HDiffi*
Diffj∑
l=0

SIDj(l)+ASizej

Example 8.1. The Fig. 7(a) (code in Fig. 7(b)) describes an example where the I and
J patterns describe an ISH and the I pattern has dominant segment. The condition
is dominant and belongs to case i. The computation of the size is depicted in Pseu-

docode 4, where Sizej is given by
Nj∑
l=0

SIDj(l), as we are in the dominant condition case,

and ASizej is given by
Diffj∑
l=0

SIDj(l), as the outer dimension is dominant. The final equa-

tion is given in the top-left part of Table IV. The dominant segment is marked by the
blue dashed line. The pattern RDI is {7A 1H 2A}, LB=-1, UB=10, IR=10, PS=10 and R=1.
The pattern RDJ is {4A 1H 1A}, LB=-1, UB=6, IR=6, PS=6 and R=1. The exploration win-
dow is 5 in I dimension and 2 in J dimension. The number of alive elements is given
by 5*(4+1)+2=27, where 5 is DiffI, 4 is the length of the first accessed segment and 1 is

the length of the second accessed segment in J pattern, and 2 is
DiffJ∑
l=0

SIDJ(l).

Example 8.2. In Fig. 7(c) describes an example where the I and J patterns describe
an ISH and the I pattern has a non-dominant segment. The condition is dominant
and belongs to case i. The computation of the size is depicted in Pseudocode 4, where

Sizej is given by
Nj∑
l=0

SIDj(l), as we are in the dominant condition case, and ASizej is

given by
Diffj∑
l=0

SIDj(l), as the outer dimension is dominant. The final equation is given in

the bottom-left part of Table IV. The pattern RDI is {1A 3H 2A 1H 3A}, LB=-1, UB=10,
IR=10, PS=10 and R=1. The pattern RDJ is {2A 1H 1A}, LB=-1, UB=4, IR=4, PS=4 and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Kritikakou et al.

Table IV: Equations for several representative cases. The black terms describe the
size due to I exploration window and the gray terms the additional elements due to J
exploration window

Dominant segment
Case Dominant outer dimension Non-dominant outer dimension

i DiffI ∗
NJ∑
l=0

SIDJ(l) +
DiffJ∑
l=0

SIDJ(l) DiffI ∗
NJ∑
l=0

SIDJ(l)

ii DiffI ∗ 1 + extraPCH= DiffI ∗ 1
iv DiffI ∗ IRJ + DiffJ DiffI ∗ IRJ +max(extraWR, extraRD,A)

Non-dominant segment
Case Dominant outer dimension Non-dominant outer dimension

i ADiffI ∗
NJ∑
l=0

SIDJ(l) +
DiffJ∑
l=0

SIDJ(l) ADiffI ∗
NJ∑
l=0

SIDJ(l)

ii ADiffI ∗ 1 + extraPCH= ADiffI ∗ 1

iv ADiffI ∗ IRJ + HDiffI ∗
NJ∑
l=0

SIDJ(l) + DiffJ ADiffI ∗ IRJ + HDiffI ∗
NJ∑
l=0

SIDJ(l)

+max(extraWR, extraRD)

R=1. The exploration window is 5 and 2 for I and J dimensions, respectively. The size
is (2+2)*(2+1)+2=14, where (2+2) is the summation of the accesses in a pattern sec-
tion of length 5, (2+1) is the summation for the accesses in dimension J and 2 is the
summation of the accesses in the exploration window J.

Example 8.3. Fig. 7(e) (code in Fig. 7(f)) describes an example where the I and the
J are coupled through a PCH. The I pattern has dominant segment. The condition
is dominant and belongs to case ii. The final equation is given in the top-left part
of Table IV. The pattern RDI is {1H 5A}, LB=-1, UB=12, IR=12, PS=6 and R=2. The
exploration window is 3 for I dimension and 1 for J dimension. The number of elements
is 3*1+1=4, where 3 is DiffI, 1 is the size of J dimension due the PCH condition and 1
is the additional element that needs to be stored due to DiffJ. We observe that when
B[5] is written, B[1] has not yet been read and that still needs to be stored. If in this
example the exploration window J was 0, the number of elements is 3, because when
B[5] is written, B[1] has already been read.

8.1.2. Non-dominant outer dimension. In contrast to the previous case, the behavior of
the pattern in the iteration after the exploration window is always H. Therefore, the
term ASizei equals to zero because at least in one dimension (dimension 0) the elements
are not accessed. Several final equations for the already presented cases i and ii and
for the non-dominant outer dimension are given in the top-right part of Table IV.

8.2. Non-dominant conditions
In the case of the non-dominant conditions, at least an access in one pattern of a di-
mension is enough to access the element.

(1) the term Sizei depends on the type of the segment:
(a) Dominant segment: all elements are accesses in the 0 dimension and thus the

size is given by the complete size of i dimension, IRi.
(b) Non-Dominant segment: even if a hole exists in 0 dimension, the element is

still accessed due to the access occurring in the i dimension. These “hidden”
elements are given by HDiff0. Hence, the size derives by multiplying ADiff0 with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:23

 WRJ

W
RI

LB UB
LB

UB

H
H

 RDJ

RD
I

LB UB

LB

UB

H
H

H H H H J

I

(a)

For (I=0;I<8;I++)
For (J=0;J<5;J++)
If (0<I<5)||(I==6)||(J==0)||(1<J<4)
B[I][J]=...

For (I=2;I<10;I++)
For (J=2;J<8;J++)
If (3<I<8)||(I==9)&&(J==3)||(4<J<7)
...=B[I-3][J-3]

(b)

 WRJ LB UB
LB

UB

H

H

H
H

W
RI

H

 RDJ

 R
DI

LB UB

LB

UB

H
H

H
H

H
J

I

(c)

For (I=0;I<15;I++)
For (J=0;J<6;J++)
If ((I==1)||(I>2)&&(I<5)||(I==6))&&((J==1)||(J>2)&&(J<5))
B[I][J]=...
((I==6)||(I>7)&&(I<10)||(I==11))&&((J==2)||(J>3))
...=B[I-5][J-1]

(d)

Fig. 8: Iteration spaces for WR and RD statements and corresponding codes for Non-
Dominant conditions for Dominant Outer Dimension for the case iv with 1) dominant
(a)&(b) and 2) non-dominant (c)&(d) segments.

IRi (as in the dominant segment case) and multiplying HDiff0 by the accessed

elements in the dimension i,
Ni∑
l=0

SIDi(l).

(2) ASizei derives from the type of the outer dimension and the position of the segment.

8.2.1. Dominant outer dimension. In this case ASizei is computed by the i exploration
window, Diffi.

Example 8.4. The Fig. 8(a) (code in Fig. 8(b)) describes an example where the pat-
tern I and the pattern J describe an ISH and I pattern has a dominant segment. The
condition is non-dominant and belongs to case iv. The computation of the size is de-
picted in Pseudocode 4, where Sizej is given by IRj , as we are in the non-dominant
condition case, and ASizej is given by Diffj as the outer dimension is dominant. The fi-
nal equation is given in the top-left part of Table IV. The pattern RDI is {1H 4A 1H 1A},
LB=-1, UB=7, IR=7, PS=7 and R=1. The pattern RDJ is {1A 1H 2A 1H}, LB=-1, UB=5, IR=5,
PS=5 and R=1. The exploration window is 3 in I dimension and 3 in J dimension. The
dominant segment is marked by the dashed blue line. The number of alive elements is
3*5+3=18, where 3 is I exploration window, 5 is the size of J loop, and 3 is J exploration
window.

Example 8.5. In Fig. 8(c) describes an example where the pattern I and the pat-
tern J describe an ISH and I pattern has a non-dominant segment. The condition is
non-dominant and belongs to case iv. The computation of the size is depicted in Pseu-
docode 4, where Sizej is given by IRj , as we are in the non-dominant condition case,
and ASizej is given by Diffj as the outer dimension is dominant. The final equation is
given in the bottom-left part of Table IV. The pattern RDI is {1H 1A 1H 2A 1H 1A 2H},
LB=-1, UB=9, IR=9, PS=9 and R=1. The pattern RDJ is {1A 2H 2A}, LB=-1, UB=5, IR=5,
PS=5 and R=1. The exploration window is 5 in I dimension and 1 in J dimension. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Kritikakou et al.

pattern section with the maximum number of alive elements in I dimension is {1A 1H
2A 1H}. The final number of elements is (1+2)*5+(1+1)*(1+2)+1 = 22, where (1+2) is
the summation of the accesses in I dimension, 5 is the size of J dimension, (1+1) is the
summation of the holes in the I dimension, (1+2) is the summation of the accesses in J
dimension and 1 is J exploration window.

8.2.2. Non-dominant dimension. The term ASizei depends on the position of the dominant
segment (or the pattern section with the maximum number of accessed elements in the
case of the non-dominant segment):

(1) First iteration: In this case no elements have been stored before the execution of the
dominant segment. Hence, the additional elements derive only from the writes after
the dominant segment. The term ASizei is given by extraWR computed in Table III.
If the exploration window i is smaller than the first written element in i dimension,
i.e. LBWR

i + 1, no elements have been written. Otherwise, the number of additional
elements is given by finding the accessed elements inside the exploration window i.

(2) Middle iteration: The additional elements in the dimension i are now given by the
maximum between the elements that have been written just after the dominant
segment and the elements that have been written, but and not yet read, just before
the dominant segment, i.e. max (extraWR, extraRD). The terms extraWR and extraRD

are computed in Table III. The term extraWR is the same with the case where the
dominant segment is placed in the first iteration. The term extraRD depends on the
behaviour of the pattern in the outer dimension before the dominant segment. If in
the outer dimension the pattern has an:
(a) Access: If the last occurred read is placed lower than or equal to the size of

the loop i, IRi, the elements written before the dominant segment have already
been read. Hence, the term extraRD,A is 0. Otherwise, the additional elements
are computed by adding the accesses occurring from the position IRi − LBRD

J − 1
until the end of i loop.

(b) Hole: The term extraRD,H is 0, when all the elements before the exploration
window have been read. Otherwise, the additional elements are computed by
adding the accesses from the position UBi − LBRD

i − 1 up to the end of i loop.

Example 8.6. Fig. 9(a) shows an example where the I and J patterns describe an
ISH and the I pattern has a dominant segment which is placed in the first iteration.
The condition is non-dominant and belongs to case iv. The computation of the size is
depicted in Pseudocode 4, where Sizej is given by IRj , as we are in the non-dominant
condition case, and ASizej is given by max(extraWR, extraWR) as the outer dimension is
non-dominant. The final equation is given in the top-right part of Table IV. The pattern
RDI is {4A 2H}, LB=-1, UB=6, IR=6, PS=6 and R=1, the pattern RDJ is {1A 1H 2A}, LB=-1,
UB=4, IR=4, PS=4 and R=1. The exploration window is 4 and 2 in I and J dimension,
respectively. The size is 4*5+1=21, where 4 is I exploration window, 5 is the size of J
dimension and 1 is the additional elements required to be stored in J dimension, since
one access exist in J exploration window.

Example 8.7. Fig. 9(b) shows an example where the patterns I and J describe an
ISH and the I pattern has a dominant segment which is placed in a middle iteration.
The condition is non-dominant and belongs to case iv. The computation of the size is
depicted in Pseudocode 4, where Sizej is given by IRj , as we are in the non-dominant
condition case, and ASizej is given by max(extraWR, extraWR) as the outer dimension
is non-dominant. The final equation is given in the top-right part of Table IV. The
pattern RDI is {2H 4A 2H}, LB=-1, UB=8, IR=8, PS=8 and R=1. The pattern RDJ is {1A
1H 2A}, LB=-1, UB=4, IR=4, PS=4 and R=1. The index difference is 4 and 1 in I and J
dimension, respectively. The size is 4*5+1=21, where 4 is I exploration window, 5 is the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:25

 WRJ

W
RI

LB UB
LB

UB

H

H RDJ

RD
I

LB UB

LB

UB

H

H

J

I

(a)

 WRJ

W
RI

LB UB
LB

UB

H

H

H

 RDJ

W
RI

LB UB

LB

UB

0
H

H
H

J

I

(b)

 W

RI

LB UB
LB

UB

WRJ

H

 R

DI

LB UB

UB

LB

RDJ

H

J

I

(c)

Fig. 9: Iteration spaces for the Non-dominant conditions for case iv with i) a Dominant
Segment and Non-Dominant Outer Dimension placed 1st iteration (a) and in a middle
iteration (b), and ii) a Non-Dominant Segment with Non-Dominant Outer Dimension
placed 1st iteration (c).

size of J dimension and 1 is the extra accessed element for an exploration window of
length 1 in J dimension (extraWR = 1 and extraRD,A = 0).

Example 8.8. Fig. 9(c) shows an example where the patterns I and J describe an
ISH, the I pattern has non-dominant segment which is placed in the 1st iteration.
The condition is non-dominant and belongs to case iv. The computation of the size is
depicted in Pseudocode 4, where Sizej is given by IRj , as we are in the non-dominant
condition case, and ASizej is given by max(extraWR, extraWR) as the outer dimension
is non-dominant. The final equation is given in the bottom-right part of Table IV. The
pattern RDI is {3A 2H 1H}, LB=-1, UB=6, IR=6, PS=6 and R=1. The pattern RDJ is {1A},
LB=1, UB=3, IR=1, PS=1 and R=1. The index difference is 4 and 1 for I and J dimensions.
The number of elements is 3*5+1*1+0=16.

9. EVALUATION
In section 9.1, we describe how our approach is applied in a complex example, whereas
section 9.2 presents the experimental results.

9.1. Demonstration case study
In this section we apply the proposed methodology for the example in Fig. 10(a). The
analysis step provides the information: three for nested loops, loop order I-J-K, a PCH
condition which couples iterator I and J (PCH1) of < && > type, two ECH conditions
on iterator J (ECH1 and ECH2) and a PCH condition which couples iterator I and K
(PCH2). All conditions are combined with || operation. The exploration window I is
2, the exploration window J is 1 and the exploration window K is 1. The translation
step creates the patterns of the PCH conditions per pair of dimensions: for condition
(I ≥ 4J)&&(I ≤ 4J + 2), LB of loop I is -1, UB=1024, PS is 4, IR is 1024, R is 256 and
the PCH1 pattern is {3A 1H}. The light grey elements of Fig. 10(b) depict the first part
of the accessed elements of PCH1 of the three dimensional array. The ECH1 condition

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Kritikakou et al.

For (I=0; I<1024; I++)
For (J=0; J<256; J++)
For (K=0; K<512; K++)
If ((I≥4J)&&(I≤4J+3))||
(J==7)||(J==4)||(I==2K)
B[I][J][K]=...

For (I=2; I<1026; I++)
For (J=1; J<257; J++)
For (K=1; K<513; K++)
If ((I≥4J)&&(I≤4J+3))||
(J==8)||(J==5)||(I==2K)
B[I-2][J-1][K-1]=...

(a)

K

J I

(b)

K

J I

(c)

Fig. 10: Demonstration case: (a) Code, (b) initial part of the iteration space for the WR
iterations and the accessed elements. Each colour corresponds to a condition and (c)
the execution of the RD statements in the iteration space.

of J == 4 creates a ECH2 of {1A} pattern with LB=3, UB=5, PS is 1, IR is 1, R is 1.
The ECH2 condition of J == 7 creates a ECH1 of {1A} pattern with LB=6, UB=8, PS
is 1, IR is 1, R is 1. The ECH1 and ECH2 access the dark grey elements in Fig. 10(b).
The PCH2 condition I == 2K has LB=-1 UB=1024, PS is 2, IR is 1024, R is 512 and the
PCH2 pattern is {1A 1H}. The PCH2 access the black elements of Fig. 10(b). In the
computation step, the process of computing the final storage size starts from the outer
dimension. The combined pattern of ECH1 and ECH2 is {1A 2H 1A} pattern with LB=3,
UB=8, PS is 5, IR is 5, R is 1. The dominant segment case in outer dimension is selected
since ECH is in inner dimensions and due to || operation the complete I dimension is
accessed. The size is computed as SizeI ,J=2*(1+1)+1+1*2+1=8. Then, we proceed to the
next dimension K. The propagation multiplies the partial storage size SizeI ,J by size
of K due to || operation. For the K index difference, the dominant segment in outer
dimension and the non-dominant outer dimension case is valid. The partial storage
size of K is given by case ii in Table IV top-right part. The additional elements in
all dimensions due to K index difference are pruned. Hence, the additional elements
in K dimension are given by the size in K dimension multiplied by IRJ minus the
summation of A in the combined pattern of I and J dimensions. The final result is
SizeI ,J ,K=8*512+1*(256-3)=4,349.

9.2. Experimental Results
We compared the exploration time of our method with the enumerative and the poly-
hedral approaches, which provide optimal results, and the approximation approach,
with overestimated results, with respect to the exploration time and to the maximum
number of concurrently alive elements. The enumerative approach computes this max-
imum number by adding the number of stored elements between the write and the
last read of an array element. The process is applied for all the elements and the
maximum result defines the required size. The enumerative approach produces opti-
mal results because all the cases are exhaustively explored and its exploration time
provides an upper bound in the exploration time of the methodologies. When the sym-
bolic/polyhedral approaches are applied in iteration spaces with holes, the number of
disjoint accessed regions in the iteration space is increased due to the existence of
holes. Hence, the number of polytopes and the number of linear equations which is
required to describe the space is increased. In order to reduce the exploration time,
the holes are considered as accesses decreasing the number of the required equations.
To compute the exploration times for our experiments we have used the barvinok tool,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:27

Table V: Dominant Segment in Outer Dimension

Alg.: Array Near-optimal Approx.
Loop bounds Size Execution Time(ms) Size

(Elem.) Proposed Polytopes Enumerative (Elem.)

Atax*: A

(32)(32) 32 0.101 103 14 32
(128)(128) 128 0.103 101 816 128
(512)(512) 512 0.104 105 52,059 512

(2,048)(2,048) 2,048 0.101 100 - 2,048

Reg detect*:
path

(20)(20) 21 0.104 98 4 21
(60)(60) 61 0.102 97 89 61

(200)(200) 201 0.104 98 3,070 201
(600)(600) 601 0.102 97 86,142 601

(2,000)(2,000) 2001 0.100 95 - 2001

Gsm**: Up-
date residual
signal P3: drp

(100)(3)(40) 80 0.100 87 153 80
(100)(3)(80) 160 0.102 89 609 160

(100)(3)(120) 240 0.104 85 1,341 240
(100)(3)(240) 480 0.103 81 5,377 480
(100)(3)(460) 920 0.104 87 19,166 920

Jacobi-2D*: A

(128)(32) 34 0.177 106 34 34
(1)(128)(64) 66 0.181 104 113 66

(1)(128)(1,000) 1,002 0.190 104 23,440 1,002
(1)(128)(8,000) 8,002 0.175 103 1,577,880 8,002

Doitgen*: sum

(10)(10)(10) 111 0.108 331 42 111
(16)(16)(16) 273 0.104 329 452 273
(28)(28)(28) 813 0.103 330 6,586 813
(32)(32)(32) 1,057 0.103 331 12,954 1,057

-:Memory Error produced during simulation.
(*) Polybench, (**) MediaBench, (-) Memory Overflow

barvinok-0.36 [Verdoolaege et al. 2013]. The approximation approach estimates the
shape by considering the holes in the iteration spaces between the WR and the RD
of the elements as accesses. In this way, we obtain a less pessimistic approximation
compared to other approaches, which tend to also simplify the outline of the shape,
such as approximated convex hulls or approximated enumerators, increasing the over-
approximations. For instance, in Fig. ?? the approximation makes the holes of 2x2 and
1x2 to accesses to have a convex hull 11x5 . We compare the result derived from an effi-
cient approximation applied in irregular iteration spaces, which computes the number
of elements as if the iteration space was solid but only for the exploration window.
Otherwise the approximation is quite pessimistic, e.g. the heuristic in [Ramanujam
et al. 2001] applied when the symbolic techniques cannot be applied due to access ir-
regularity. The approximation is computed by considering the holes in the exploration
windows as accesses and then the size can be computed based on the equations for the
dominant segment of Section IV. In this way, an optimistic upper bound is achieved.

We present the exploration time and the storage size (in number of required el-
ements) for several benchmarks from the PolyBench [Pouchet et al. 2012] and the
MediaBench [Lee et al. 1997]. For each benchmark, different sizes in the number of
accesses in the overall iteration space are tested by increasing the loop bounds to ex-
plore the scalability of the approaches. The benchmarks have been explored to iden-
tify arrays with overlapping writes and reads. We have manually extracted the access
schemes for the condition and access statements and we have provided the basic corre-
sponding patterns from the codes as input to our implementation. Therefore, the time
provided in the experiments coves the translation step and the computation step. The
presented benchmarks are selected to cover the different computation cases presented
in this paper. Table VII describes the patterns of each benchmark and in which case

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Kritikakou et al.

Table VI: Non-dominant Segment in Outer Dimension
Alg.: Array
(init.bounds)

Near-optimal Approx.
Loop Bounds Size Execution Time(ms) Size

(Elem.) Proposed Polytopes Enumerative (Elem.)

Jpeg**:
idct 2x2: wsptr

(128)(16) 84 0.901 514 132 132
(256)(32) 164 0.896 517 2,558 260

(512)(128) 644 0.902 511 44,244 1,028
(1,024)(384) 1,924 0.899 513 5,842,418 3,076

Jpeg**:
decompress
smooth data:
coef bits

(4)(228) 5 0.158 128 19 6
(4)(468) 10 0.175 134 65 12
(4)(708) 15 0.183 132 138 18
(4)(948) 20 0.219 129 234 24

(4)(1,188) 25 0.219 134 365 30

Jpeg**:
idct 2x2: wsptr
(un)

(128)(16) 80 0.798 516 113 132
(256)(32) 160 0.793 512 2,543 260

(512)(128) 640 0.795 517 44,143 1,028
(1,024)(384) 1,920 0.792 505 5,843,374 3,076

Gauss-Seidel:
A’

(32)(32) 31 0.161 275 13,701 34
(500)(500) 499 0.162 273 47,432 502

(1,000)(1,000) 999 0.164 265 397,212 1,002
(2,000)(2,000) 1,999 0.163 270 3,066,945 2,002

(**) MediaBench

they belong in our methodology. We have selected to present the two dimensions case
as it is more representative of realistic application codes. The time and size for the one
dimension cases have also been verified, e.g. for y array in Atax benchmark the time
of the proposed methodology is stable around 0.093 ms and the enumerative is from
1.486 - 86,270.273 ms depending on the number of accesses. We also provide one case
study of a three dimensional case, i.e. the Doitgen benchmark in Table V.

Table VII: Characterization of the experiments.
Algorithm #Array # Segments Diff Computation Case

Dimensions /pattern Dominant Non-dominant

Atax 2 i: 1 i: 0 Seg.,Cond.,Dim.j: 1 j: 1

Reg detect 2 i: 1 i: 1 Seg., Dim. Cond.j: 1 j: 1

Gsm 2 i: 1 i: 2*size of j Seg., Cond. Dim.j: 1 j: 0

Jacobi-2D 2 i: 1 i: 1 Seg. Dim., Cond.j: 1 j: 1

Doitgen 3
i: 1 i: 1

Seg., Cond., Dim.j: 1 j: 1
k: 1 k: 1

Jpeg (wsptr) 2 i: 7 (A: 5, H: 3) i: 8 Cond., Dim. Seg.j: 1 j: 4

Jpeg (coef bit) 2 i: 1 i: 0-4 Seg., Dim. Cond.j: 2 (A: 5, H: 1) j: 6

Jpeg (wsptr-un) 2 i: 7 (A: 5, H: 3) i: 8 Cond. Seg., Dim.j: 1 j: 4

Gauss-Seidel 2 i: 3 (1H Size-2 A 1H) i: 1 Seg., Cond., Dimj: 3 (1H Size-2 A 1H) j: 1

From the results provided for the dominant segment, e.g. benchmarks in Table V,
they are similar to the results when we are applying the methods in the solid iteration
spaces, i.e without holes, because the exploration window is smaller than the domi-
nant segment. When the segment which defines the size is solid, the approximation is
similar to the proposed methodology, which achieves optimal size with low time. For

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:29

0

1

10

100

1000

1 3 5 7 9 11 13 15 17 19

Ex
pl

or
at

io
n

tim
e

(m
s)

Multiplying loop bounds

Proposed Enumerative Polytopes

(a)

0.1

1

10

100

1000

2 4 9 11 13 15 17 19 21 23

Ex
pl

or
at

io
n

tim
e

(m
s)

Number of accessed regions

Proposed Polytopes

(b)

3

9

15
21

0

0.2

0.4

0.6

0.8

1

1.2

22.8 23 23.2 23.4 23.6 23.8 24

Ex
pl

or
at

io
n

tim
e

(m
s)

Size (KElements)

(c)

Fig. 11: Exploration times when the number of accesses is increased due to an increase
in the (a) loop bounds, (b) number of accessed regions and (c) trade-offs between explo-
ration time and optimal results.

the non-dominant segment case, e.g. benchmarks in Table VI, we searched the bench-
marks for instantiation of the codes where holes are included in the exploration win-
dow. When holes exist in the iteration space, the proposed methodology also maintains
optimal results and low exploration times. Due to the existing holes, the approxima-
tion leads to size overestimation as it finds an upper bound by considering the holes as
accesses. We observe from the results of Table V an increase in the computed size for
the Jpeg, and more precisely an over-approximation of 57.14% for the idct 2x2: wsptr,
20% for the coef bit and 65% for the idct 2x2: wsptr (un) compared with the optimal
case.

The size overestimation is increased with the increase in the loop bounds, when more
than one loop dimensions exist. This occurs because when the approximation approach
considers an H as an A in I dimension, the complete J dimension is considered as
accessed. For instance, in the Jpeg benchmark for the wsptr cases in Table VI, although
the cases are different, the approximation approach leads to the same results, as it
cannot distinguish the two cases. The size loss in the non-dominant outer dimension
case is larger, since the H of the iteration after the exploration window is considered as
an A.

From the experimental results, the exploration time of the enumerative approach
highly increases with the increase of the accesses in the iteration space. In contrast,
the proposed methodology achieves optimal storage size with stable exploration time
both for the SIS and the ISH spaces. The increase in the loop bounds modifies only the
pattern parameters, which does not affect the methodology exploration time. The ex-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Kritikakou et al.

ploration time of our approach is dominated by the setup times to select the equations
and the computation of their main primitive components, which is not affected by these
parameters. A similar behaviour holds also for the exploration time of the polytope ap-
proach [Verdoolaege et al. 2013] when the loop bounds are increased, as depicted in
Fig. 11(a), where we observe a gain of two orders of magnitude of our approach.

We observe that the exploration times of our method are quite close for almost all the
benchmarks. The time is slightly increased only for the non-dominant segment cases
due to the increase in the exploration window. This behaviour happens because we
apply an exploration of the pattern of the outer dimension to find the pattern section
with the maximum accesses. Therefore, we further explore the exploration time of the
polytope approaches and the proposed method when the irregularity in the application
array accesses is increased. Then, the number of accesses regions are increased, which
is equivalent in increasing the number of polytopes required to describe the explo-
ration space and the number of segments in the patterns of the proposed methodology.
Fig. 11(b) depicts the exploration times using the barvinok and the proposed approach
for different number of accessed regions. This is simulated in our benchmark by in-
creasing the access statements in the inner kernel by unrolling to observe the timing
behaviours. We observe a linear increase for the proposed methodology. From the ob-
tained results, an increase of 84,7% in time occurs for the proposed methodology when
the number of pattern segments is increased by a factor of 7, whereas the polytopes
have an increase of 287.7%, which is larger by a factor of 3.4 compared to our method.

In addition, the proposed methodology provides a control mechanism for the explo-
ration time which can reduce the number of pattern segments by considering a few
small holes of a pattern as accesses and, thus, merging the pattern segments. Hence,
our approach is capable of approximating the space in a controlled way in order to re-
duce the exploration time. Fig. 11(c) describes the size approximation and the decrease
in the exploration time, when a pattern with a high number of segments occurs in the
outer dimension. The optimal solution is 230*100, where 100 in the inner loop size and
the value 230 derives by exploring 21 segments of the initial pattern {32A 1H 16A 1H
32A 1H 16A 1H 16A 1H 8A 1H 22A 1H 8A 1H 32A 1H 16A 1H 32A}. We assume an ex-
ploration window of 240, which is the size of the pattern. Then, we are approximating
the space by considering each time 3 holes of size 1 as accesses and we thus obtain
new patterns of 15, 9, and 3 segments to be explored. We observe a gain of 84,7% in
decreasing the exploration time while we increase the calculated size by 4%. The loss
in size and the gain in time due the approximation depends on the size of the holes
and the accesses.

10. RELATED WORK
The existing techniques to compute the maximum number of concurrently alive ele-
ments can be enumerative, symbolic/polyhedral or approximations.

10.1. Enumerative approaches
The enumerative techniques describe each access to the array individually. An enumer-
ative approach is used in the symbolic evaluation for background memory size estima-
tion based on enumeration of the indexed signals of each index expressions [Nachter-
gaele et al. 1992]. Ref. [So et al. 2004] proposes a custom memory data layout, i.e.
placement of the elements into the memory resources, focusing on parallelization of
memory accesses based on the access pattern. Each access in the array access pattern
is analyzed and the accesses of independent array elements are placed in separate
partitions. The enumeration of the memory accesses is described through reference
lists-based schemes without applying any reference compression [Paek et al. 2002].
The enumeration of memory accesses is usually achieved through profiling and instru-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:31

mentation tools. A profiling based strategy to generate a memory access trace and a
heuristic approach to exploit the scratchpad memory hierarchy is proposed in [Cho
et al. 2007]. Ref [Ball et al. 1996] enumerates through profiling the iterations, where
the memory is accessed, to derive the information for selecting candidates for data
remapping [Palem et al. 2002]. Ref. [Rubin et al. 2002] searches all possible memory
data layouts by iteratively prototyping candidate data layouts and evaluating them on
a representative trace of memory accesses. SHMAP [Dongarra et al. 1990] tool anno-
tates the application and collects memory reference traces for arrays. Gleipnir [Jan-
jusic et al. 2011] collects memory access traces and associates each access with the
corresponding internal structure. Pin [Luk et al. 2005] provides an instrumentation
to create a trace of address and size of memory instructions. In [Weidendorfer et al.
2004] the data accesses are profiled through the instrumentation framework presented
in [Nethercote et al. 2006].

The enumerative approaches are optimal, but they lack scalability. As the applica-
tion size is increased, the number of accesses is increased highly affecting the explo-
ration time. In contrast, the exploration time of the proposed approach remains stable
when the number of memory accesses is increased, as depicted from the experimental
results in the evaluation section.

10.2. Symbolic/polyhedral approaches and approximations
Other techniques are symbolic and apply solvers to compute the size. For instance, in
linear constraint-based schemes the array accesses are expressed as convex regions in
a geometrical space [Paek et al. 2002]. The storage requirements derive from the inte-
ger points inside the convex regions of accesses. The symbolic approaches are scalable
and near-optimal in solid iteration spaces, as they efficiently represent the edges of
one convex region. For instance, simplified constraint-based forms (e.g. [Balasundaram
and Kennedy 1989]) are used to describe solid iteration spaces, e.g. diagonal or trian-
gular shapes, which are not applicable in iteration spaces with holes. Other symbolic
approaches with extensions can efficiently handle piece-wise regular spaces. For in-
stance, triple notation [Shen et al. 1990], i.e. lower bound, upper bound and stride per
dimension, has been used to describe regular spaces. Vectors have also been explored
for storage size management. Ref. [Clauss et al. 2000] focuses on spatial locality opti-
mization using utilization vectors to describe array references. Ref. [Jang et al. 2011]
uses memory access vectors, the loop nest depth and the array dimension. In [Kan-
demir 2001] an access matrix describes through the loop nest the array accesses to
explore data locality. Distance vectors with data access matrices are used, which are
applicable for uniform references [Ramanujam et al. 2001]. The survey in [Panda et al.
2001] describes several symbolic techniques for estimation of storage requirements.
Polytope theory is commonly used for regular spaces, e.g. the iteration space is repre-
sented by placing polytopes of signals in a common place with ILP techniques [Kjelds-
berg et al. 2003]. Mature tools are supporting the polytope theory, such as [Verdoolaege
et al. 2013]. The work presented in [Clauss et al. 2012] and in [Verdoolaege et al. 2007]
describes the polyhedral approach which computes exact results by viewing an in-
stance, or iteration, of each statement as an integer point in a polyhedron. Estimation
on storage requirements with a partial fixed ordering through polytopes is proposed
in [Kjeldsberg et al. 2004]. IMEC Atomium [Catthoor et al. 1998] supports memory
related steps through interactive or in a more automated way based on the polyhedral
dependency graph [van Swaaij et al. 1992]. The Data Transfer and Storage Exploration
(DTSE) methodology uses the polyhedral dependency graph to explore the memory
data layout optimization step. In [Wuytack et al. 1998] a data access graph based on
polytopes is used to describe all the memory operations in time for a given array, which
is used as input to the data reuse exploration and decision step of the memory hier-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Kritikakou et al.

archy design. Ref [Cong et al. 2011] applies polytope theory to memory partition and
scheduling problem. Philips Phideo [Lippens et al. 1993] is mainly oriented to stream-
based video applications and represents the iteration space as linear function of the
iteration index. In [Darte et al. 2005] an efficient representation using lattice matrices
is used to solve the memory allocation problem for iteration spaces with regular holes.
Ref. [Seghir et al. 2012] proposes a lattice intersection approach to count the integer
points in Z-polytopes. Ref. [Clauss et al. 2009] describes an approach to maximize
a parametrized and multivariate polynomial defined over a parametrized convex do-
main using unions of linear equations, which provides an upper bound to the required
resources. SUIF [Maydan et al. 1993] and PIPS [Creusillet and Irigoin 1996] add ad-
ditional constraint to the linear constraint-based representation to deal with a hole.
Additional symbolic constraints are needed to describe the different regions increas-
ing the exploration time [Paek et al. 2002]. To reduce the exploration time, the access
regions have to be widen in order to form a convex hull which approximates the size. A
wide survey of the existing methods and the relevant results for the approximations of
convex sets using polytopes is provided in [Bronstein 2008; Barany 2007]. In [Meister
and Verdoolaege 2008] a set of techniques which compute polynomial approximations
of the quasi-polynomials are presented. Other techniques [Ramanujam et al. 2001] ap-
proximates the number of distinct references of non-uniform access statements based
on the values of the index expressions on the loop bounds. Techniques to compute the
approximated convex hulls are presented in [Bentley et al. 1982].

The applications with design-time unknown array accesses, e.g. due to data depen-
dent conditions, create several codes instances with high irregularity, which are de-
scribed by irregularly placed holes and potentially a high number of irregularly placed
regions in the geometrical space. These geometrical shapes are not polytopes or lat-
tices, and therefore existing approaches require complex models to describe them.
Hence, the exploration time of the solvers applied in these complex formulations is
increased with an increase over the irregularities. The approximations can simplify
the shapes but without control over the resources overestimation. The contribution of
the proposed methodology is to provide optimal results for irregular iteration spaces
and a mechanism which controls the potential approximations applied, as depicted by
the experimental results. However, compared with the matured polytope approaches
the proposed method in its current first form does not deal with parametric expressions
of the application variables.

11. CONCLUSIONS
We have presented a methodology to compute in a scalable and near-optimal way the
maximum number of concurrently alive elements in iteration spaces with irregular
holes and overlapping write and read accesses. We propose a set of computation cases
with closed form equations to calculate the size. Based on the results conducted, the
proposed methodology achieves near-optimal size with low exploration time.

REFERENCES
BALASA, F., KJELDSBERG, P. G., VANDECAPPELLE, A., PALKOVIC, M., HU, Q., ZHU, H., AND CATTHOOR,

F. 2008. Storage estimation and design space exploration methodologies for the memory management
of signal processing applications. J. Signal Process. Syst. 53, 1-2, 51–71.

BALASUNDARAM, V. AND KENNEDY, K. 1989. A technique for summarizing data access and its use in
parallelism enhancing transformations. SIGPLAN Not. 24, 7, 41–53.

BALL, T. ET AL. 1996. Efficient path profiling. In MICRO. IEEE, USA, 46–57.
BARANY, I. 2007. Random polytopes, convex bodies, and approximation. In Stochastic Geometry, W. Weil,

Ed. Lecture Notes in Mathematics Series, vol. 1892. Springer Berlin Heidelberg, 77–118.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:33

BENTLEY, J. L., PREPARATA, F. P., AND FAUST, M. G. 1982. Approximation algorithms for convex hulls.
Commun. ACM 25, 1, 64–68.

BRONSTEIN, E. 2008. Approximation of convex sets by polytopes. Journal of Mathematical Sciences 153, 6,
727–762.

CATTHOOR, F. 1999. Energy-delay efficient data storage and transfer architectures and methodologies: Cur-
rent solutions and remaining problems. J. VLSI Signal Processing 21, 219–231.

CATTHOOR, F. ET AL. 1998. System-level transformations for low power data transfer & storage. In Low-
Power CMOS Design. IEEE, USA, 609–618.

CHO, D. ET AL. 2007. Software controlled memory layout reorganization for irregular array access patterns.
In CASES. ACM, USA, 179–188.

CLAUSS, P. ET AL. 2000. Automatic memory layout transformations to optimize spatial locality in parame-
terized loop nests. SIGARCH Comput. Archit. News 28, 11–19.

CLAUSS, P. ET AL. 2009. Symbolic polynomial maximization over convex sets and its application to memory
requirement estimation. Trans. VLSI 17, 8, 983–996.

CLAUSS, P., GARBERVETSKY, D., LOECHNER, V., AND VERDOOLAEGE, S. 2011. Polyhedral Techniques for
Parametric Memory Requirement Estimation. In Energy-Aware Memory Management for Embedded
Multimedia Systems: A Computer-Aided Design Approach, F. Balasa and D. Pradhan, Eds. Chapman &
Hall/Crc Computer and Information Science. Taylor and Francis.

CLAUSS, P., GARBERVETSKY, D., LOECHNER, V., AND VERDOOLAEGE, S. 2012. Polyhedral Techniques for
Parametric Memory Requirement Estimation in Energy-Aware Memory Management for Embedded Mul-
timedia Systems: A Computer-Aided Design Approach. CRC Press, Chapter 4, 117–149. Energy-Aware
Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach.

COHEN, A. ET AL. 1999. Storage mapping optimization for parallel programs. In Proc. Int’l Euro-Par.
Springer, London, UK, 375–382.

CONG, J. ET AL. 2011. Automatic memory partitioning and scheduling for throughput and power optimiza-
tion. ACM Trans. Des. Autom. Electron. Syst. 16, 2, 15:1–15:25.

CREUSILLET, B. AND IRIGOIN, F. 1996. Exact vs. approximate array region analyses.
DARTE, A., SCHREIBER, R., AND VILLARD, G. 2005. Lattice-based memory allocation. Computers, IEEE

Transactions on 54, 10, 1242–1257.
DE GREEF, E. ET AL. 1997. Memory size reduction through storage order optimization for embedded parallel

multimedia applications. In Parallel Computing. 84–98.
DONGARRA, J. ET AL. 1990. A tool to aid in the design, implementation, and understanding of matrix

algorithms for parallel processors. J. Parallel & Distributed Computing 9, 2, 185–202.
DUDA, R. O. AND HART, P. E. 1972. Use of the hough transformation to detect lines and curves in pictures.

Commun. ACM 15, 1, 11–15.
EDDY DE GREEF, F. C. AND DE MAN, H. 1996. Reducing storage size for static control programs mapped

onto parallel architectures. In Dagstuhl Seminar on Loop Parallelisation. IEEE, USA, 728–735.
FEAUTRIER, P. 1988. Array expansion. In Proceedings of the 2Nd International Conference on Supercomput-

ing. ICS ’88. ACM, New York, NY, USA, 429–441.
FILIPPOPOULOS, I., CATTHOOR, F., AND KJELDSBERG, P. 2014. Exploration of energy efficient memory

organisations for dynamic multimedia applications using system scenarios. Design Automation for Em-
bedded Systems, 1–24.

FILIPPOPOULOS, I., CATTHOOR, F., KJELDSBERG, P., HAMMARI, E., AND HUISKEN, J. 2012. Memory-
aware system scenario approach energy impact. In NORCHIP, 2012. 1–6.

FRANSSEN, F. ET AL. 1993. Modeling multidimensional data & control flow. VLSI 1, 3, 319–327.
GRÖSSLINGER, A. 2009. Precise management of scratchpad memories for localising array accesses in scien-

tific codes. In Proc. Int’l Conf. Compiler Construction. Springer, Berlin, 236–250.
GUTHAUS, M. R. ET AL. 2001. Mibench: A free, commercially representative embedded benchmark suite. In

IISWC. IEEE, USA, 3–14.
JANG, B. ET AL. 2011. Exploiting memory access patterns to improve memory performance in data-parallel

architectures. Trans. Parallel & Distributed Systems 22, 105–118.
JANJUSIC, T. ET AL. 2011. Gleipnir: A memory analysis tool. In Proc. ICCS. 2058–2067.
JHA, P. ET AL. 1997. Library mapping for memories. In Proc. EDAC. IEEE, USA, 288–.
JUURLINK, B., ALVAREZ-MESA, M., CHI, C., AZEVEDO, A., MEENDERINCK, C., AND RAMIREZ, A. 2012.

Understanding the application: An overview of the h.264 standard. In Scalable Parallel Programming
Applied to H.264/AVC Decoding. SpringerBriefs in Computer Science. Springer New York, 5–15.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Kritikakou et al.

KANDEMIR, M. T. 2001. A compiler technique for improving whole-program locality. SIGPLAN Not. 36, 3,
179–192.

KJELDSBERG, P. ET AL. 2003. Data dependency size estimation for use in memory optimization. IEEE
TCAD 22, 908–921.

KJELDSBERG, P. ET AL. 2004. Storage requirement estimation for optimized design of data intensive appli-
cations. ACM TODAES 9, 2, 133–158.

KRITIKAKOU, A. ET AL. 2013. Near-optimal & scalable intra-signal in-place for non-overlapping & irregular
access schemes. ACM TODAES 19, 1.

KRITIKAKOU, A., CATTHOOR, F., KELEFOURAS, V., AND GOUTIS, C. 2013. A systematic approach to classify
design-time global scheduling techniques. ACM Comput. Surv. 45, 2, 14:1–14:30.

KRITIKAKOU, A., CATTHOOR, F., KELEFOURAS, V., AND GOUTIS, C. 2014. A scalable and near-optimal
representation of access schemes for memory management. ACM Trans. Archit. Code Optim. 11, 1,
13:1–13:25.

LEE, C. ET AL. 1997. Mediabench: a tool for evaluating & synthesizing multimedia & communicatons sys-
tems. In Proc. Int’l Symp. Microarchitecture. IEEE, Washington, USA, 330–335.

LEE, L. ET AL. 2007. An optimization model for storage yard management in transshipment hubs. In Con-
tainer Terminals and Cargo Systems. Springer, Berlin, Heidelberg, 107–129.

LIPPENS, P. ET AL. 1993. Allocation of multiport memories for hierarchical data stream. In Proc. CAD.
IEEE, USA, 728–735.

LUK, C.-K. ET AL. 2005. Pin: building customized program analysis tools with dynamic instrumentation.
SIGPLAN Not. 40, 6, 190–200.

MAYDAN, D. E. ET AL. 1993. Array-data flow analysis and its use in array privatization. In Proc. Symp.
POPL. ACM, NY, USA, 2–15.

MEISTER, B. AND VERDOOLAEGE, S. 2008. Polynomial approximations in the polytope model: Bringing the
power of quasi-polynomials to the masses. In In ODES-6: 6th Workshop on Optimizations for DSP and
Embedded Systems.

NACHTERGAELE, L. ET AL. 1992. Specification and simulation front-end for hardware synthesis of dsp
applications. Int. J. Comp. Simulation 2, 213–2291.

NETHERCOTE, N. ET AL. 2006. Building workload characterization tools with valgrind.
PAEK, Y. ET AL. 2002. Efficient & precise array access analysis. TOPLAS 24, 1, 65–109.
PALEM, K. ET AL. 2002. Design space optimization of embedded memory systems via data remapping. In

LCTES. ACM, USA, 28–37.
PANDA, P. R. ET AL. 2001. Data and memory optimization techniques for embedded systems. ACM TO-

DAES 6, 2, 149–206.
POUCHET, L.-N. ET AL. 2012. Polybenchmarks benchmark suite. http://www.cse.ohio-state.edu/∼pouchet/

software/polybench/.
RAMANUJAM, J. ET AL. 2001. Reducing memory requirements of nested loops for embedded systems. In

Proc. DAC. ACM, USA, 359–364.
RUBIN, S. ET AL. 2002. An efficient profile-analysis framework for data-layout optimizations. SIGPLAN

Not. 37, 140–153.
SEGHIR, R. ET AL. 2012. Integer affine transformations of parametric polytopes and applications to loop

nest optimization. ACM Trans. Archit. Code Optim. 9, 2, 8:1–8:27.
SHEN, Z., LI, Z., AND YEW, P. 1990. An empirical study of fortran programs for parallelizing compilers.

IEEE Transactions on Parallel and Distributed Systems 1, 356–364.
SO, B. ET AL. 2004. Custom data layout for memory parallelism. In CGO. IEEE, USA, 291–.
TRONON, R., BRUYNOOGHE, M., JANSSENS, G., AND CATTHOOR, F. 2002. Storage size reduction by in-

place mapping of arrays. In Verification, Model Checking, and Abstract Interpretation, A. Cortesi, Ed.
Lecture Notes in Computer Science Series, vol. 2294. Springer Berlin Heidelberg, 167–181.

VAN SWAAIJ, M. ET AL. 1992. Automating high level control flow transformations for dsp memory manage-
ment. In Proc. Work. VLSI Signal Processing. IEEE, USA, 397–406.

VANBROEKHOVEN, P., JANSSENS, G., BRUYNOOGHE, M., AND CATTHOOR, F. 2005. Transformation to dy-
namic single assignment using a simple data flow analysis. In Programming Languages and Systems,
K. Yi, Ed. Lecture Notes in Computer Science Series, vol. 3780. Springer Berlin Heidelberg, 330–346.

VANBROEKHOVEN, P., JANSSENS, G., BRUYNOOGHE, M., AND CATTHOOR, F. 2007. A practical dynamic
single assignment transformation. ACM Trans. Des. Autom. Electron. Syst. 12, 4.

VANBROEKHOVEN, P., JANSSENS, G., BRUYNOOGHE, M., CORPORAAL, H., AND CATTHOOR, F. 2003. A
step towards a scalable dynamic single assignment conversion. Tech. rep.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Array Size Computation under Uniform Overlapping & Irregular Accesses A:35

VERDOOLAEGE, S. ET AL. 2013. Barvinok. http://barvinok.gforge.inria.fr/.
VERDOOLAEGE, S., SEGHIR, R., BEYLS, K., LOECHNER, V., AND BRUYNOOGHE, M. 2007. Counting integer

points in parametric polytopes using Barvinok’s rational functions. Algorithmica 48, 1, 37–66.
V.GHEORGHITA ET AL. 2009. System scenario based design of dynamic embedded systems. ACM TO-

DAES 14, 3, 1–45.
WEIDENDORFER, J. ET AL. 2004. A tool suite for simulation based analysis of memory access behavior. In

Proc. ICCS. Springer, 440–447.
WUYTACK, S. ET AL. 1998. Formalized methodology for data reuse exploration for low-power hierarchical

memory mappings. TVLSI 6, 529–537.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

