Effect of a medium-term exercise intervention on fat mass is partially compensated for by increased appetite, but not reduced non-exercise physical activity

MYERS, Anna <http://orcid.org/0000-0001-6432-8628>, DALTON, Michelle, GIBBONS, Catherine, FINLAYSON, Graham and BLUNDELL, John

Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/18265/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

MYERS, Anna, DALTON, Michelle, GIBBONS, Catherine, FINLAYSON, Graham and BLUNDELL, John (2017). Effect of a medium-term exercise intervention on fat mass is partially compensated for by increased appetite, but not reduced non-exercise physical activity. In: British Association of Sport and Exercise Science Conference, Nottingham, 28th-29th November.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Effect of a medium-term exercise intervention on fat mass is partially compensated for by increased appetite, but not reduced non-exercise physical activity

Anna Myers*, Michelle Dalton, Catherine Gibbons, Graham Finlayson & John Blundell
Centre for Sport and Exercise Science, Faculty of Health and Wellbeing, Sheffield Hallam University
Appetite Control & Energy Balance Research, School of Psychology, University of Leeds

Contact: a.myers@shu.ac.uk

Background

• Exercise-induced weight loss is often less than expected and highly variable between individuals (1-2).

• This implies some degree of compensation in response to the exercise-induced energy deficit (3-4).

• Given that energy intake (EI), non-exercise physical activity (NEPA) and sedentary behaviour (SB) are major determinants of body mass, compensation in these components could undermine the exercise-induced energy deficit and attenuate weight loss.

Aim

• The aim of this study was to examine changes in body composition, appetite, NEPA and SB in response to a 12-week supervised and monitored aerobic exercise intervention in overweight and obese women.

Table 1. Anthropometrics, body composition and RMR at baseline and post-intervention (n = 24). Data are mean (SD).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Baseline</th>
<th>Post-intervention</th>
<th>Change</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass (kg)</td>
<td>76.50 (10.40)</td>
<td>75.68 (10.23)</td>
<td>-0.83 (1.85)</td>
<td>.040</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.94 (2.67)</td>
<td>27.63 (2.70)</td>
<td>-0.30 (0.66)</td>
<td>.035</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>95.21 (9.89)</td>
<td>91.60 (9.03)</td>
<td>-3.62 (3.85)</td>
<td>< .001</td>
</tr>
<tr>
<td>FM (kg)</td>
<td>30.78 (7.97)</td>
<td>28.78 (7.96)</td>
<td>-1.50 (2.18)</td>
<td>.003</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>46.23 (4.16)</td>
<td>46.90 (3.89)</td>
<td>0.67 (0.98)</td>
<td>.003</td>
</tr>
<tr>
<td>RMR (kcal/d)</td>
<td>1616.09 (201.98)</td>
<td>1668.85 (205.12)</td>
<td>52.76 (154.51)</td>
<td>.108</td>
</tr>
</tbody>
</table>

• There was no evidence for a compensatory reduction in NEPA or an increase in SB.

• Exercise increased hunger and EI which only partially compensated for exercise-induced weight loss. Int J Obes 2008, 32:177-184.

• There was a small significant reduction in body mass (p = .04), BMI (p = .035), WC (p < .001), fat mass (p = .003) and a significant increase in fat-free mass (p = .003).

• There was no significant change in RMR from baseline to post-intervention (p = .304), see table 1.

• There was no significant change in RMR from baseline to post-intervention (p = .304), see table 1.

• There was a small significant reduction in body mass (p = .04), BMI (p = .035), WC (p < .001), fat mass (p = .003) and a significant increase in fat-free mass (p = .003).

Methods

• Twenty-four women aged 33.1 years (SD = 11.7) with a body mass index (BMI) of 27.9 kg/m² (SD = 2.7) completed twelve weeks of supervised exercise (500 kcal, 5 times per week). See figure 2 for overview of study procedures.

• Body mass, waist circumference (WC), body composition, resting metabolic rate (RMR), total daily EI and subjective appetite sensations were measured at baseline (week 0) and post-intervention (week 13).

• Free-living physical activity (PA) and SB were measured at baseline, week 1 and 10 of the exercise intervention, and post-intervention (week 13) using the SenseWear Armband Mini (SWA; see figure 1).

Results

• There was a small significant reduction in body mass (p = .04), BMI (p = .035), WC (p < .001), fat mass (p = .003) and a significant increase in fat-free mass (p = .003).

• There was no evidence for a compensatory reduction in NEPA or an increase in SB. See figure 2 for overview of study procedures.

• Overall, exercise increased hunger and EI which only partially compensated for the increase in energy expenditure (EE).

• There was no evidence for a compensatory reduction in NEPA or an increase in SB. The structured exercise displaced some SB.

Conclusions

• Twelve weeks of supervised aerobic exercise resulted in a small but significant reduction in FM and an increase in FFM. There was considerable individual variability.

• There was no compensatory reduction in NEPA (p = .99; figure 4), and no increase in SB as a result of increased structured exercise (p=.03).

• The structured exercise displaced some SB.

References

Figure 1. SenseWear Armband Mini specifications and positioning.

Figure 2. Overview of the medium-term exercise study procedures; FL-PA, free-living physical activity.

Figure 3. Visual analogue scale (VAS) hunger (A) and fullness (B) ratings during baseline and post-intervention probe days (error bars are standard error) * = p < .05 indicates significant difference between baseline and post-intervention.

Figure 4. Change in NDR before, during and after the exercise intervention.

Acknowledgements

This research was supported by an EU project under grant agreement number 289880 (SATIN).