Power assisted exercise for people with complex neurological impairment: a feasibility study

YOUNG, Rachel, RICHARDS, Emma, DARJI, Neha, VELPULA, Suchitra, SMITH, Christine <http://orcid.org/0000-0001-5354-953X>, BROOM, David <http://orcid.org/0000-0002-0305-937X> and GODDARD, Sara

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/18246/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Power Assisted Exercise for People with Complex Neurological Impairment: A Feasibility Study

Article category: Research

Rachel Elizabeth Young (MSc, BSc (hons) MCSP)
Emma Richards (MSc, MCSP)
Neha Darji (MSc)
Suchitra Velpula (MSc, MCSP)
Christine Smith (PhD)
David Broom (PhD)
Sara Goddard (BSc (hons) MCSP)

1. Rachel Young is a senior lecturer in physiotherapy at Sheffield Hallam University
2. Emma Richards is a senior lecturer in physiotherapy at Sheffield Hallam University
3. Neha Darji is the lead physiotherapist at Adi Pediatric Rehabilitation Clinic, Mumbai
4. Suchitra Velpula is a senior physiotherapist in acute medicine at Hull and East Yorkshire Hospitals NHS Trust
5. Dr Christine Smith is a Principal Lecturer and Deputy Head in the Department of Allied Health Professionals at Sheffield Hallam University
6. Dr David Broom is a Senior Lecturer in Sport and Physical Activity at Sheffield Hallam University
7. Sara Goddard is a senior physiotherapist at Sheffield Teaching Hospitals NHS Foundation Trust

Correspondence author:

Mrs Rachel E Young, Senior Lecturer Physiotherapy, L103 College House, Collegiate Crescent Campus, Sheffield Hallam University, Sheffield. S10 2BP

Tel: 07811467134

Email: r.young@shu.ac.uk
Power Assisted Exercise for People with Complex Neurological Impairment: A Feasibility Study

Abstract

Background/Aims: Participation in physical activity and exercise presents a challenge for adults with complex neurological impairment. Power assisted exercise facilitates combined limb and trunk movement and may be a feasible exercise option for people with movement impairment. The aim of this study was to determine whether power assisted exercise is a feasible activity option for people with complex neurological impairment.

Methods: Seven adults with complex neurological impairment were recruited to take part in a four week programme of twice weekly power assisted exercise. Programme attendance and completion was recorded and adverse events or effects documented. Mobility was monitored using the Timed Up and Go test (TUG). Upon completion of the programme, participants were interviewed regarding their experience of using the equipment.

Findings: All seven participants completed the programme and the overall attendance was 96%. No adverse events occurred; two participants reported minor adverse effects which were temporary. The TUG scores improved and participants enjoyed the programme, reporting perceived benefits in physical function and wellbeing.

Conclusions: The findings of this study demonstrate that people with complex neurological impairment can participate in a programme of power assisted exercise. Reported improvements in physical mobility suggest that further research in this area is indicated.

Key words: Power Assisted Exercise, Neurology, Feasibility, Mobility
INTRODUCTION

Long term neurological impairment results from disease or injury to the brain, spinal cord or peripheral nerves. It is estimated that ten million people in the United Kingdom have a neurological diagnosis; the most prevalent adult neurological conditions in the UK include stroke (CVA), Parkinson's disease, multiple sclerosis (MS) and traumatic brain injury (TBI) (Neurological Alliance 2015). People who live with a neurological condition often experience impaired movement, sensory changes and communication difficulties. These symptoms can impact physical function, reduce independence, limit participation in recreational activities and severely affect quality of life (Perez et al 2008).

Reported levels of physical activity amongst neurological groups are lower than the general population (English et al 2014). Low levels of physical activity are associated with reduced physical fitness and aerobic capacity (Morie et al 2010). Limited cardio-respiratory performance is a risk factor for the development of a range of comorbidities including heart disease and diabetes (Gill and Cooper 2008, Soares-Miranda et al 2015). There is increased focus on the promotion of exercise and physical activity for people living with a neurological condition. Improvements in function, cardiovascular fitness and mental health are reported for neurological participants who have engaged with exercise programmes (Billinger et al 2012, Marzolini et al 2014, Sandberg et al 2016).

Most exercise intervention studies have excluded participants with complex or severe neurological impairment, stipulating independent mobility of at least 5 metres within the inclusion criteria (Billinger et al 2012, Latimer-Cheung et al 2013, Marzolini et al 2014, Sandberg et al 2016). Interestingly, the neurological population also perceive that balance and independent mobility are prerequisites for participation in an exercise programme (Simpson et al 2011). However, it has been demonstrated that people with moderate or severe motor deficits can engage with and benefit from supervised exercise programmes (Kwanghyun et al 2014).

Barriers to exercise for individuals with a neurological condition include access to facilities and ability to use equipment (Simpson et al 2011, Rimmer et al 2014). The fitness industry is focussed on developing equipment and facilities which accommodate the specific needs of individuals with long term conditions (English Federation of Disability Sport 2017). Conventional resistance machines can be accessed by people with neurological deficits and are associated with improved agonist recruitment as the machine facilitates a linear motion (Vinstrup et al 2016). However, the use of resistance machines does require a minimum level of activity to activate and sustain muscular contraction through the available range of movement that might limit their use by people with neurological deficits.
Research has explored the use of isokinetic equipment with neurological participants. Findings indicate that isokinetic exercise can improve strength performance for people with stroke, but its impact upon mobility and function is inconclusive (Lee and Kang 2013, Chen et al 2015). Power assisted exercise machines (Shapemaster® 2017) are comparable to isokinetic equipment in that the machine generates the movement. The ethos of power assisted exercise is to offer an inclusive, client centred exercise experience as an alternative to more conventional exercise programmes. Power assisted exercise has been associated with increased muscular performance, balance and function in healthy older adults (Jacobson et al 2012). The machines are designed to support the limbs and simultaneously generate bilateral movement; participants are encouraged to move with the machine to stimulate an exercise response from the cardiorespiratory and muscular systems. To date, the feasibility of a power assisted exercise programme for participants with a neurological condition has not been explored.

The primary aim of this study was to determine the feasibility of a power assisted exercise programme for individuals with complex neurological impairment. Feasibility was defined in terms of participant’s ability to access the equipment, commit to regular attendance and complete the programme. The secondary aim was to explore the participant’s perceptions of the exercise programme through semi-structured interviews. Timed Up and Go (TUG) data was recorded to provide an indication of mobility at baseline and upon completion of the programme to describe trends.
METHOD

Setting

The feasibility study was located in the research suite at Sheffield Hallam University. Participants volunteered to undertake a four-week power assisted exercise programme through convenience sampling from two private physiotherapy services in Sheffield.

Ethics

Ethical permission was gained from the Faculty of Health and Wellbeing Ethics Committee at Sheffield Hallam University (SHU 66359) who permit research to be conducted within the institution in accordance with the Helsinke declaration of 1975 (revised in 2000). All participants provided informed consent and understood that they could withdraw from the study at any time.

Participants

In order to be eligible for inclusion in the study participants needed to:

- have a long term neurological condition
- be able to transfer with assistance of one
- be able to provide informed consent

Participants with significant cardio-vascular instability or other contraindications to exercise as identified by the American College of Sports Medicine (ACSM 2013) were excluded from the study.

Potential participants were provided with an information sheet and had the opportunity to discuss the study with the research therapists (ER and RY). Seven participants were recruited and their respective GP’s were contacted by the research therapists to gain approval for their involvement in the study. The anonymity and confidentiality of all data was assured through use of code numbers for each participant. The exercise programme was supervised by two physiotherapists (SV and ND) who were Health Care Professions Council (HCPC) registered. For monitoring purposes, blood pressure and heart rate was recorded at the start and end of each session to ensure that participants were working within recommended cardiovascular parameters as stipulated by the ACSM (2013)
Intervention

A four week programme of exercise was conducted in which participants attended a group session two times per week. Attendance was monitored and recorded by the research therapists. Two physiotherapists (SV and ND) supervised the exercise sessions and assisted participants on and off the equipment as required. Each exercise session lasted 40 minutes. During the first session participants were assessed to determine how much assistance was required to access the equipment. A step and some bolster cushions were used by smaller participants to enable access to the machines. Two participants with a history of stroke required additional straps to secure their paretic hand to the equipment.

Six power assisted machines which facilitated upper limb, lower limb and trunk movements were used in this study (Figures 1 and 2). Participants spent 5 minutes on each machine and rested for approximately two minutes between each machine. In order to facilitate group support, participants attended the sessions together, meaning that the sequence of accessing each machine varied from one session to the next. Participants were advised to warm up by working at a rate of perceived exertion (RPE) of three out of ten on the first machine. This was achieved by instructing participants to “move with” but not to try to “speed up” the machine.

The main component of the workout involved exercising on predominantly the seated machines. Participants were instructed to work at an RPE of six or seven out of ten. This was achieved by instructing participants to try to “speed up” the movement generated by the machines. The aim was to stimulate active assisted movements through concentric muscle contraction. A cool down phase was included by having each participant complete their work out on one of the supine lying machines. They were instructed to allow the machine to stretch the body without generating muscular activity. Figure 3 illustrates an example of a typical workout in terms of machine sequence and the targeted RPE. The duration of the exercises and guidance related to perceived effort remained the same throughout the course of the study.

Figure 1: Seated machines

Figure 2: Supine machines

Figure 3: Exercise programme

Taxi transport was provided to access the facility on the university campus. The participants continued to receive their usual physiotherapy treatment during the intervention period.
Measurement

Feasibility was defined by amount of attendance and ability to safely use the equipment. Attendance at the exercise sessions was monitored and adverse events such as falls, pain or individual concerns were recorded. Participants were asked at the start of the session to report if they had experienced any pain or discomfort following the previous session. They were also observed for any signs of pain during their exercise sessions. The amount of assistance required to use the equipment was noted for each participant.

The participant's experience of the exercise intervention was explored through semi-structured interviews scheduled one week following completion of the intervention period. All seven interviews were conducted by a physiotherapist (SV) in the participant's homes and recorded with a digital voice recorder. The topic guide included questions related to their experience of using the equipment, perceived benefits, limitations and suggestions for future use.

Table 1: Topic Guide

Mobility was assessed through the Timed Up and Go (TUG) test (Nilsagard et al 2007). The test has been validated as a measure of balance and mobility amongst people with neurological deficits (Bonnyaud et al 2015). One participant (PO5) did not have sufficient mobility to attempt the test, but did partake in the interviews. The TUG test was conducted upon the six remaining participants. A three metre walkway was measured and a 50cm chair with arms was positioned at the start point. Participants were allowed to use their usual walking aid to complete the test. Each participant was required to practise the test once before measurements were recorded. A five minute rest was scheduled between the practise and formal testing procedures. The test was timed using a stopwatch by the second research therapist. The TUG test was scheduled at baseline prior to the exercise programme and repeated at the end of the programme one hour following the final exercise session.

Data Analysis

Overall attendance and programme completion were calculated as a percentage score for each of the participants. Reported adverse incidents or responses were recorded in text format.

Data recorded from the interviews was transcribed. Framework analysis was used to facilitate the grouping and synthesis of identified themes with individual cases. This method
generates transparent results which can be related back to the original data (Ward et al 2013). Following initial familiarisation with the data, VP and ND independently coded the first three interviews. The themes identified and agreed through this process were charted and case by case data from the remaining interviews was added by the first research therapist. The data was mapped and interpreted to generate a descriptive summary; specific quotes from the transcripts were selected to illustrate key points.

Data from the TUG was recorded for each participant at baseline and on completion of the four-week programme. The TUG data provided an indication of baseline ability in the sample and enabled observation of any mobility trends amongst the participants.

FINDINGS

Seven local service users volunteered to take part in the study and all participants completed the four week trial period. The age range of the participants was 30-84 years and the diagnostic backgrounds were MS, CVA or TBI. Information regarding age, gender and diagnosis are detailed in Table 2.

<table>
<thead>
<tr>
<th>Table 2: Participant Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access and attendance</td>
</tr>
<tr>
<td>There was 100% completion with all seven participants finishing the four-week schedule. Attendance was 96% with all participants completing at least seven of the eight scheduled group sessions (see Table 3). Four of the participants (P02, P04, P06, P07) were able to access the equipment with supervision only. The three remaining participants (P01, P03, P05) required assistance from the physiotherapists to mount the machines. A step and bolster cushion were used to facilitate access for these individuals. An adapted hand strap was used by P01 and P03 to enable attachment of their paretic upper limb to the machines. Once positioned on the machines, all participants were able to independently continue the machine assisted exercise.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: Attendance and support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse events</td>
</tr>
<tr>
<td>No falls or adverse events occurred during any of the sessions. One participant (P05) reported increased fatigue during the course of the study; the participant was able to continue with the programme and attended all eight sessions. A different participant (P02) reported a brief episode of shoulder pain on the paretic side at the start of the programme;</td>
</tr>
</tbody>
</table>
this resolved spontaneously and the participant was able to continue with the programme without interruption or adaptation.

Three central themes emerged through analysis of the data; experience of using the equipment, physical response to the programme and recommendations for future developments.

Experience of using the equipment

All participants confirmed that they had enjoyed the programme and looked forward to the sessions. The participants reported feeling safe whilst using the equipment, although two participants (P01, P05) did recall experiencing some anxiety about using the machines during the first session. The specialist support of a physiotherapist was important during the initial session for those participants with greater mobility restrictions (P01, P03, P05). The physiotherapists advised on the use of steps, bolster cushions and hand straps according to height and mobility. This helped reduce initial anxiety and facilitated sustained engagement with the programme.

“I was anxious the first day; I looked at the equipment and thought ‘goodness, I have to climb onto them.’ But the step helped a lot and then I was okay after that.” (P01)

Following the initial session, there was variation in the perceived need for assistance to use the equipment. Two participants (PO2, PO6) reported that they felt that they could use the equipment without any direct assistance. Those participants with more significant motor impairment did indicate that they needed some physical assistance throughout the programme.

“I needed help to get on and off the machines and also to secure my limbs with the extra strap. My left leg and arm would have kept flopping down without that strap.” (P03)

All participants thought that continuous supervision was required throughout the programme, but several commented that this would not necessarily need to be a physiotherapist.

“I think we need someone to keep an eye and monitor what we are doing. I think we may not, say, need a physiotherapist; just somebody there to call on.” (P07)

Feedback about the group activity was positive and the participants perceived that a friendly and supportive atmosphere was generated during the sessions. Communication and comparison between group members was important and several participants indicated that they gained confidence and reassurance through the support of other group members.

“I think the group worked out well, we all came to know one another. I would prefer group work rather than one to one sessions for this type of exercise.” (P02)
Six of the participants felt that two sessions per week was manageable and indicated that they would commit to a longer term programme on this basis. One participant with MS (P04) did experience increased fatigue following the exercise sessions;
“I noticed my eyes getting foggy and headache and I think that’s fatigue setting in. Overall I think doing twice a week might have been too much for me with my MS.” (PO4)

Physical response to the programme

All seven participants stated a general improvement in their physical health during the intervention period. The perceived physical benefits included increased strength, decreased stiffness and improved symmetry. With the exception of P04, remaining participants described feeling energised during the course of the programme.

Decreased stiffness was reported by both participants with MS (PO4, PO5).
“I feel it’s made me much looser in my frame and I feel that I can move better.” (PO5)

Two of the stroke participants also described feeling more flexible and linked this to the exercise programme.
“The main benefit was stretching….feeling that the body was getting moved for the first time in ages. I liked the combined leg and upper body movements.” (PO3)

All participants felt that their balance and symmetry improved during the programme. Specific Improvements in mobility and gait pattern were also described by three participants (PO2, PO6, PO7).
“I noticed that my walking is more controlled. I definitely feel more controlled when out and about.” (PO6)

Changes in leg strength were noted by several participants (PO4, PO5, PO6). One participant (PO5) with a diagnosis of MS and severe motor impairment reported enhanced lower limb movement and strength which was most apparent during regular hydrotherapy sessions:
“It helps the strength in my thighs; when I have gone swimming I noticed a lot more activity in my bad leg and I have been able to use my thigh muscles more effectively in water.” (PO5)

Pre-existing musculoskeletal symptoms appeared to respond positively to the intervention with three participants (PO3, PO5, PO7) commenting that they had long term low back pain which noticeably decreased during the study. One participant (P01) with a history of stroke had a stiff and painful shoulder on her non-paretic side prior to commencing the study. This
resolved during the intervention period with reported recovery of full, pain free range of movement in the symptomatic joint.

The routine monitoring of blood pressure and heart rate was reassuring for several participants. Although this data was not analysed, three participants reported that they had noticed decreasing trends in blood pressure and heart rate during the intervention period and this boosted their overall perceived health status.

“I have always been concerned about my blood pressure so it was interesting to see it go down after a bit of exercise. I am glad that it seemed to do some good.” (PO5)

Recommendations

All seven participants suggested that the duration of each machine should be increased from five to approximately seven or eight minutes.

“Probably a bit more time on each equipment. Well, you get used to it and you feel that effort is stretching you so you want it to continue because it’s a good feeling like the movement in your body.” (PO3)

Two participants (PO2, PO6) also commented on the rate of the assisted movement, indicating that a graduated warm up and cool down would improve the effectiveness of the programme.

“You build your heart rate up in the first three minutes and then down again. I really liked the way you could adjust the speed” (PO6)

Adaptations to improve access to the equipment were suggested by several participants (PO1, PO3, PO5). The recommendations included fold away footrests, adjustable handles, adjustable range settings, and flat foot plates. The availability of an access step, bolster cushions and hand straps were also important for smaller participants (PO1) and those with severe motor impairment (PO2, PO5).

All seven participants reported that they would like to continue with the exercise programme and felt that this type of equipment should be available within community fitness settings or rehabilitation centres.

Mobility Measurement

Six of the seven participants completed the TUG. One participant (P05) did not have sufficient mobility to complete the mobility assessment. The range of baseline scores was
8.8 to 25.2 (mean 17.36) seconds. The follow up TUG scores recorded upon completion of the programme ranged from 7.1 to 22.4 (mean 11.96) seconds.

Table 4: TUG Result

DISCUSSION

Attendance and adherence

The primary purpose of this study was to determine the feasibility of using power assisted exercise for a neurological population. This adds to a growing body of research focused on exercise interventions with a neurological population. The unique contribution of this paper is the implementation of novel, power assisted equipment to explore its feasibility for people with complex, long term impairments. The participants in this study were varied in terms of age, neurological diagnosis and the nature of their physical impairment. They all completed the programme and the recorded attendance was 96%.

Exercise programmes with twice weekly sessions are associated with improved attendance and adherence when compared to more intensive schedules (Sandberg et al 2016). Most of the participants felt that twice weekly sessions were manageable, although one participant (PO4) with MS did report increased fatigue related symptoms during the study period and suggested that one session per week would have been preferable. Evidence related to the impact of exercise upon reported fatigue in MS is inconclusive (Latimer-Cheung et al 2013, Heine and Groot 2016). Future studies could explore the optimal frequency of power assisted exercise sessions in relation to the management of specific symptoms.

Other factors which may have supported attendance on the programme was the provision of transport and availability of professional personnel. Limited transport and concerns regarding staff expertise are recognised barriers to engagement with community based exercise amongst the neurological population (Rimmer et al 2014). This aside, the attendance and completion recorded in this study indicate that the programme was enjoyed by the diverse group of neurological participants. No major adverse events were recorded and all participants were able to safely access and use the equipment. The reported shoulder pain was recorded as an adverse effect. The participant was monitored by the research team and the symptoms subsided quickly; no further occurrence was reported. Once the power assisted mechanism was started all participants were able to continue independently, enabling an autonomous exercise experience.

According to the TUG data collected at baseline, all except one participant had impaired mobility (Kear et al 2017, Barron and Guidon 2011) and one participant was not able to
complete the test. Most of the participants included in this study would not have met the mobility criteria for the larger studies which have investigated exercise interventions on neurological populations.

Ploughman et al (2014) also recruited a heterogeneous population which aimed to measure the effectiveness of a community exercise programme for people with moderate to severe neurological disability. The 10-week intervention achieved a high completion rate of 93%; and 44% of participants continued to engage with the programme following the study period. These findings indicate that people with moderate or severe neurological disability can sustain engagement with exercise programmes.

Experience of using equipment

Previous research on the use of power assisted exercise amongst older participants established that it is perceived as a non-threatening exercise option (Jacobson et al 2012). The participants in this study reported that they enjoyed using the equipment and did not experience any notable physical discomfort during or after the exercise sessions. The participants were encouraged to generate an effort of up to 7/10 RPE but this was not quantified. Newer models of the manufactured equipment incorporate sensitivity to the force generated by the user and will provide visual and numerical feedback related to performance. Future research will process this additional data to enable more accurate analysis of effort muscular recruitment.

It has been hypothesised that power assisted exercise does not require eccentric muscle contraction as key muscle groups work concentrically with the direction of movement (Jacobson et al 2012). Eccentric contraction can induce micro-injury at a greater frequency and severity than other types of muscle actions, causing delayed soreness following exercise (Cheung et al 2003). The proposed avoidance of eccentric muscle contraction in power assisted exercise may contribute to its acceptability amongst complex populations. However, the importance of eccentric muscle contraction during every day activities such as sitting from standing is recognised; therefore an effective exercise programme should include components of eccentric muscle work. The current study did not accurately record the muscular activity generated by participants; this could be the focus of future research.

The support of qualified personnel has been identified as a key facilitator for engagement with community based exercise amongst the stroke population (Simpson et al 2011). The participants in this study felt that some level of professional support was required, but the continuous supervision and support of a qualified physiotherapist was not necessary. Future
research could explore the staffing requirements for power assisted exercise programmes for people with complex neurological deficits.

Peer support has been identified as an important factor in sustaining engagement with exercise for neurological groups (Simpson et al. 2011). Power assisted exercise equipment does facilitate interaction between participants as users can see and speak to each other throughout the session. Group cohesion is correlated with adherence in exercise groups (Spink et al. 2014). The participants in this study reported positive group support despite considerable variation in age and demographic status within the group.

Physical response

All participants interviewed in this study reported perceived improvements in their physical status. Participants across the three diagnostic groups felt that their balance and strength had improved. Improved flexibility was reported by those participants with a history of stroke or MS; in comparison, the TBI participants felt that their walking had improved. These perceived areas of improvement do concur with the mobility scores recorded through the TUG test as the participants with a history of TBI demonstrated the greatest improvements, whilst those people with a history of stroke gained only marginal changes in TUG score.

The purpose of recording TUG scores on completion of the exercise programme was to observe overall trends in mobility as it is acknowledged that the small sample size does not enable valid statistical analysis of the numerical data. Observation of individual TUG data for the participants with a history of TBI is comparable to that recorded by Vaz et al. (2008) who implemented the test to monitor the impact of treadmill training on two comparable adults with ataxia following TBI. The possibility of a test learning component should be acknowledged in relation to these scores. The validity of TUG measurements could have been improved by calculating the mean time across three trials per participant (Bonnyaud et al. 2015). Further research to explore the effect of power assisted exercise upon functional mobility is indicated.

Interestingly, the participants did not comment on their general levels of physical activity in relation to participation in the programme. This reflects a limitation within the topic guide as it would have been relevant to directly ask the participant about their overall physical activity levels. Previous research has identified a trend of decreased physical activity associated with the uptake of specific exercise amongst a neurological population (Elsworth et al. 2011). Exploring the effect of a power assisted exercise programme upon overall physical activity levels could be the focus of future studies.
Blood pressure and heart rate were monitored to ensure participant safety throughout the study. This data was recorded for screening and safety purposes only but the effect of power assisted exercise on health outcomes is an important area of enquiry. One participant specifically commented upon the downward trend in blood pressure over the course of the four weeks. It is possible that blood pressure may have been elevated during the initial sessions due to anxiety related to the new intervention (Edmondson et al 2015); therefore, the observed reduction in blood pressure cannot be directly attributed to the exercise programme. Saunders et al (2014) identify limited evidence related to exercise and blood pressure amongst the stroke population, particularly interventions which have included strength training. Future research could formally record and analyse blood pressure data.

Recommendations

Responses from interviews did generate numerous recommendations for the future development of the machines. All participants recommended that the default duration for each exercise should be set between 6-8 minutes. This would allow for a gradual warm up, an interval of intense activity and cool down on each machine. It was recognised that transition between the machines was difficult for some of the participants which may have contributed towards the perception that a longer duration on each machine would be preferable.

Limitations

It is acknowledged that this study was conducted on a small convenience sample. The diverse range of participants enriched the evaluation of feasibility, but valid statistical analysis could not be conducted on the TUG data. The duration of the study was four weeks; this enabled an evaluation of feasibility in terms of safe use of the equipment for this population group. The physiological effect and functional impact of the programme could be more accurately measured through the implementation of a longer programme. This would also establish whether sustained engagement with the intervention can be achieved.

The effort generated by participants and types of muscle contraction recruited were not measured. This limits the depth of physiological understanding related to power assisted exercise and also the impact of the programme upon physical performance during the study period. The programme did not incorporate any specific progression targets within the four week period. Future research could explore ways in which a power assisted exercise programme can be progressed to support the achievement of physical goals. Although the type of motor deficit was recorded for each participant, the severity of impairment was not measured. Future studies could aim to evaluate the longer term impact of a power assisted
exercise programme with a neurological population with examination between severity of impairment and response to the programme.

CONCLUSION

This is the first study to explore the use of power assisted equipment for people with complex neurological disabilities. The study offers a unique contribution to the growing field of research evidence surrounding exercise with the neurological population. The diverse sample included participants with very limited mobility who would not have met the inclusion criteria for conventional exercise programmes. All participants completed the programme and the findings indicate that the sample experienced a positive response to the intervention. High attendance and minimal reporting of adverse effects indicates that power assisted exercise is a feasible option for people with complex neurological impairment. Power assisted exercise enables people to experience continuous movement without direct assistance and has potential as a cost-effective option for the neurological population. Further research to explore the physiological impact and longer-term effects of power assisted exercise upon the neurological population is required.
References

Table 1: Topic Guide

<table>
<thead>
<tr>
<th>Perceptions of the equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Were the machines easy to use?</td>
</tr>
<tr>
<td>Did you feel safe and comfortable whilst using the equipment?</td>
</tr>
<tr>
<td>Did you identify any limitations associated with the machines?</td>
</tr>
<tr>
<td>Would you suggest any modifications to the machines?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivery of the exercise programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did you enjoy working in a group or would you prefer a one to one session?</td>
</tr>
<tr>
<td>How regularly would you like to use the equipment?</td>
</tr>
<tr>
<td>Is five minutes per machine a suitable duration for each exercise?</td>
</tr>
<tr>
<td>How much assistance or supervision is needed to use the machines safely?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact of the exercise programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did you notice any benefits from using the machines in terms of your physical function?</td>
</tr>
<tr>
<td>Did you experience any pain during or after the exercise session?</td>
</tr>
<tr>
<td>Did you notice any unwanted or adverse effects from using the equipment?</td>
</tr>
<tr>
<td>Would you continue with the exercise programme if it was available?</td>
</tr>
</tbody>
</table>

Table 2: Participant Information

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Diagnosis and code number</th>
<th>Type of motor deficit</th>
<th>Time since onset (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>73</td>
<td>CVA (P01)</td>
<td>Left Hemiparesis</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>69</td>
<td>CVA (P02)</td>
<td>Left Hemiparesis</td>
<td>2</td>
</tr>
<tr>
<td>Male</td>
<td>84</td>
<td>CVA (P03)</td>
<td>Right Hemiparesis</td>
<td>3</td>
</tr>
<tr>
<td>Female</td>
<td>39</td>
<td>MS (P04)</td>
<td>Ataxia</td>
<td>8</td>
</tr>
<tr>
<td>Female</td>
<td>55</td>
<td>MS (P05)</td>
<td>Tetraparesis</td>
<td>17</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>TBI (P06)</td>
<td>Ataxia</td>
<td>9</td>
</tr>
<tr>
<td>Male</td>
<td>54</td>
<td>TBI (P07)</td>
<td>Ataxia</td>
<td>14</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>57.7 (17.6)</td>
<td></td>
<td></td>
<td>8.2 (5.1)</td>
</tr>
</tbody>
</table>
Table 3: Attendance and support record

<table>
<thead>
<tr>
<th>Participant Number</th>
<th>Programme completion (yes/no)</th>
<th>Sessions attended (maximum 8)</th>
<th>Support required</th>
<th>Adverse event or effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>7</td>
<td>Assistance of one therapist to access machines. Step, bolster cushion and hand strap for seated machines.</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>7</td>
<td>Supervision</td>
<td>Shoulder pain post first session, resolved within 2 days</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>8</td>
<td>Assistance of one therapist to access machines. Hand strap for hemiplegic upper limb.</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>8</td>
<td>Supervision</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>8</td>
<td>Assistance of two therapists. Bolster cushion and hand strap for seated machines.</td>
<td>Increased fatigue reported</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>8</td>
<td>Supervision</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>8</td>
<td>Supervision</td>
<td>None</td>
</tr>
<tr>
<td>Total % completion</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total % attendance</td>
<td>96%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: TUG Results

<table>
<thead>
<tr>
<th>Participant</th>
<th>Pre Intervention TUG (seconds)</th>
<th>Post intervention TUG (seconds)</th>
<th>Pre and post intervention difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>15.0</td>
<td>14.3</td>
<td>0.7</td>
</tr>
<tr>
<td>PO2</td>
<td>8.8</td>
<td>7.0</td>
<td>1.8</td>
</tr>
<tr>
<td>PO3</td>
<td>25.2</td>
<td>22.4</td>
<td>2.8</td>
</tr>
<tr>
<td>PO4</td>
<td>18.1</td>
<td>13.1</td>
<td>5.0</td>
</tr>
<tr>
<td>PO6</td>
<td>19.0</td>
<td>7.9</td>
<td>11.1</td>
</tr>
<tr>
<td>PO7</td>
<td>18.1</td>
<td>7.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>17.36 (4.9)</td>
<td>11.96 (5.48)</td>
<td>5.4 (4.19)</td>
</tr>
</tbody>
</table>

Figure One: Seated Equipment

1: Hip abduction/adduction plus shoulder horizontal abduction/adduction
2: Hip flexion/extension plus shoulder and elbow flexion/extension
3: Hip and knee flexion/extension plus elbow extension/flexion
4: Trunk flexion and extension plus hip flexion/extension
Figure Two: Supine Equipment

1. Lateral flexion of the trunk

2. Flexion/extension of the hips
Figure three: Exercise programme

- **Supine Hipster**
 - RPE 3/10
 - Duration 5 minutes

- **Seated fly’s and thighs**
 - RPE 6/10
 - Duration 5 minutes

- **Seated climber**
 - RPE 7/10
 - Duration 5 minutes

- **Chest and legs**
 - RPE 6/10
 - Duration 5 minutes

- **Tummy crunch**
 - RPE 7/10
 - Duration 5 minutes

- **Supine waist away**
 - RPE 3/10
 - Duration 5 minutes