

Effects of physical activity on functional health of older adults: a systematic review

LAM, Michael Huen Sum, LEI, Yang, HO, Roberta Kwan Sum, CHEUNG, Bryan Chun Man, LO, Doris Shuk Ting, SUN, Lily Hongli, LAI, Cherrie Chung Yan, TAM, Winnie Ka Man, KWOK, Stella Sin Tung, FLINT, Stuart W, PEAKE, Rebecca and LEE, Ka Yiu

Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/18237/

This document is the Accepted Version [AM]

Citation:

LAM, Michael Huen Sum, LEI, Yang, HO, Roberta Kwan Sum, CHEUNG, Bryan Chun Man, LO, Doris Shuk Ting, SUN, Lily Hongli, LAI, Cherrie Chung Yan, TAM, Winnie Ka Man, KWOK, Stella Sin Tung, FLINT, Stuart W, PEAKE, Rebecca and LEE, Ka Yiu (2017). Effects of physical activity on functional health of older adults: a systematic review. Journal of Athletic Enhancement, 6 (3). [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Title Page

Manuscript Title: Effects of physical activity on functional health of older adults: a systematic review

Dr. Michael Huen Sum LAM (PhD)

Overall Programme Director, Collaborative Bachelor and Master Degree, Vocational Training Council (VTC), Hong Kong (HK)

Prof. Yang Lei

Dean, Institute of Physical Education, University of Jinan, Shandong, China

Ms. Roberta Kwan Sum HO (PhD Candidate)

Head, Department of Hotel, Service and Tourism Studies, VTC, HK

Dr. Bryan Chun Man CHEUNG (PhD)

Head, Department of Hotel, Service and Tourism Studies, VTC, HK

Ms. Doris Shuk Ting LO (PhD Candidate)

Programme Director of Collaborative Bachelor Degree, VTC, HK

Dr. Lily Hongli SUN (PhD)

Programme Director of Collaborative Bachelor Degree, VTC, HK

Ms. Cherrie Chung Yan LAI (PhD Candidate)

Programme Director of Collaborative Bachelor Degree, VTC, HK

Ms. Winnie Ka Man TAM (PhD Candidate)

Senior Lecturer, Department of Hotel, Service and Tourism Studies, VTC, HK

Ms. Stella Sin Tung KWOK (PhD Candidate)

Research Support Unit, VTC, HK

Dr. Stuart W. Flint (PhD)

Leeds Beckett University

Ms. Rebecca Peake (Doctorate Candidate)

Senior Lecturer, Academy of Sport and Physical Activity, Sheffield Hallam University, United Kingdom

Dr. Ka Yiu LEE (PhD)*

Programme Director of Collaborative Bachelor Degree, VTC, Hong Kong

Email: kyle2015@vtc.edu.hk

Address: 3/F, Admin Block, VTC, Shing Tai Road, HK

Correspondence *

Abstract

Reviews on the relationships between functional health and physical activity of general older adults have been well documented in literature. However, specific age range of older adults, in particular, older adults of 75 years or above, is currently under-examined. A systematic review was conducted to investigate the effects of physical activity on functional health older adults aged 75 years or above. The reviewed articles cover a variety range of functional health outcomes, including balance, muscle conditioning, joint range of motion, quadriceps strength, reaction time, gait speed, health-related quality of life, back and knee pain, muscle mass, and walking ability. In general, interventions of the reviewed articles had favorable effects on function health of older adults. While physical activity has been identified as an important determinant of functional health, the ways to engage in and accumulate sufficient daily physical activity warrant investigation. It is also important to explore interventions which enhance daily, self-driven physical activity of elderly, as normally supervised physical activity bears higher costs.

Introduction

A recent projection showed that life expectancy will break the 90-year barrier by 2030 ⁽¹⁾. The increased longevity indicates the need for healthcare planning for the aging population and the accompanied growing disease burden. The body of evidence shows that frailty increases with age ⁽²⁾, and that functional health of an individual is associated with daily physical activity ^(3, 4, 5). Reviews on the relationships between functional health and physical activity of general older adults have been well documented in literature ⁽⁶⁾. However, specific age range of older adults, in particular, older adults of 75 years or above, is currently under-examined. As the life expectancy is going to break the 90-year barrier, it is of paramount importance to examined population group of older age range in an attempt to introduce tailor-made interventions that can prevent and delay frailty of older adults.

Methods

Search protocol

A keyword search in the subject and title categories of four electronic databases was performed: MEDLINE, CINAHL, EMBASE and SPORTDiscus.

Two sets of search terms were used to look into the physical trials of older adults with functional incapacity in activities of daily living ^(7, 8). The first set of terms

related to senior populations consisted of aged, aging, ageing, old, older, elder, elderly, senior, geriatric and gerontology.

The second set of terms pertained to the functional health: functional health, functional capacity, physical health, physical capacity, physical function, physical functioning, activities of daily living and instrumental activities of daily living. Physical trial search terms included intervention, training, activity, exercise, program, program and randomized controlled trial.

The searches were limited to English and full text. There was no limitation by publication year. Since this study does not involve meta-analyses, means and standard errors ⁽⁹⁾ of effect size were not computed.

Study identification

The title, keywords, and abstracts were screened to identify potentially relevant studies. When the abstract indicated relevance, the full text paper was retrieved and a final decision made about inclusion of the study. The inclusion criteria were: (a) empirical studies that included interventions (which include training, program, or exercise); (b) interventions aimed at the improvement of functional health in older adults; (c) participants 75 and older; and (d) English. The primary exclusion criterion was: participants living in hospital, nursing or care homes.

Results

Search results

The initial search yielded 29,898 articles. Based on the titles and abstracts, 33 studies were further reviewed, of which 14 fulfilled the study inclusion criteria (10-23). The remaining articles were excluded for the following reasons: 8 did not apply physical intervention, 5 recruited participants living in hospitals, nursing or care facilities, 2 were not focused on functional health, 4 were not primary research. Of the 14 studies that met the inclusion criteria, only two did not apply randomized controlled trial. For each eligible study, information extracted and recorded included: (a) last name of the first authors and year of the study's publication; (b) description of participants; (c) duration of intervention; (d) focus of functional health; (e) general information of intervention and control group; (f) outcome measurement tools; and (g) results. In general, interventions of the reviewed articles had favorable effects on function health of older adults (Appendix A)

Functional health outcomes

The reviewed articles cover a variety range of functional health outcomes, including balance, muscle conditioning, joint range of motion, quadriceps strength, reaction

time, gait speed, health-related quality of life, back and knee pain, muscle mass, and walking ability.

Intervention design

All except two of the reviewed articles had both intervention and control groups. Intervention groups included the use of elastic bands and balance exercises, resistance and agility training, coordination and reaction training, chair exercise, and gait training. Control groups included a health educational program, stretching classes, relaxation techniques teaching, posture education, social visits, flexibility exercises and memory tasks.

Measurements

Most reviewed articles adopted both subjective and objective assessments on functional health, including self-reported activities of daily living, health-related quality of life, and fear of falling and depressive symptoms. Objective assessments included mobility testing, posture stability test, 30-second chair stand test, balance test, gait speed, calf girth, knee extension strength, body composition measurement, and grip strength.

Discussion

As healthcare technology advances, long life expectancy is expected. Aging has become a vital and important issue attracting the world's attention due to the huge costs imposed on the healthcare sector. In this connection, interventions to prevent and delay functional decline of older adults are meaningful and not to be ignored. The body of evidence supports a variety of approaches to prevent and delay age-related functional decline. For example, resistance training that improves muscular strength and endurance; balance exercise that prevents the risk of falls; and aerobic training that enhances cardiorespiratory capacity. Interventions using physical activities and exercises to improve functional health of general older adults have been extensively documented. Interventions targeting specific age range of older adults, however, are rare. As life expectancy is going to break the 90-year barrier, it is important to divide older adults into smaller age-range, as different age groups may have different level of functional decline and thus respond differently to specific interventions. However, systematic reviews on the relationships between functional health and physical activity of older adults beyond 75 years old are rare. Therefore, this study will examine the relationships between functional health and physical activity of older adults under different age range.

Results of this study are consistent with the extent of literature, that physical

activity, in general, can improve the functional health of older adults (24-35). While physical activity has been identified as an important determinant of functional health, the ways to engage in and accumulate sufficient daily physical activity warrant investigation. For example, traditional resistance training may have low adherence and therefore the incorporation of exercise games and functional training becomes necessary (25). It is also important to explore interventions which enhance daily, self-driven physical activity of elderly, as normally supervised physical activity bears higher costs. In addition, the assessments of functional health, including subjective and objective measures (36), call for more investigations on their reliability and validity, especially when these measurements are carried out for participants at the age of 75 and above who have different cognitive and physical abilities. Evidences have shown that objective measurements are vital to improve the objectivity (37-41). Limitations of this study pertain to the absence of meta-analyses and in-depth statistical approaches (42,43) which may affect the findings of this study (44).

<u>References</u>

- 1. Kontis, V., Bennett, J. E., Mathers, C. D., Li, G., Foreman, K., & Ezzati, M. (2017). Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. The Lancet.
 - doi:http://dx.doi.org/10.1016/S0140-6736(16)32381-9
- 2. Collard, R. M., Boter, H., Schoevers, R. A., & Oude Voshaar, R. C. (2012). Prevalence of Frailty in Community-Dwelling Older Persons: A Systematic Review. Journal of the American Geriatrics Society, 60(8), 1487-1492. doi:10.1111/j.1532-5415.2012.04054.x
- 3. Ekblom-Bak, E., Ekblom, B., Vikström, M., de Faire, U., & Hellénius, M.-L. (2014). The importance of non-exercise physical activity for cardiovascular health and longevity. British Journal of Sports Medicine, 48(3), 233-238. doi:10.1136/bjsports-2012-092038
- 4. Lam, M. H. S., Cheung, S. Y., & Chow, B. C. (2011a). The effects of Tai-Chi-Soft-Ball training on physical functional health of Chinese older adult. *Journal of Human Sport and Exercise*, 6(3), 540-553.
- 5. Fung, L., & Lam, M. H. S. (2012). Effectiveness of a progressive stepping program on lower limb function in community dwelling older adults. Journal of Exercise Science & Fitness, 10(1), 8-11.
- 6. Giné-Garriga, M., Roqué-Fíguls, M., Coll-Planas, L., Sitjà-Rabert, M., & Salvà, A. (2014). Physical Exercise Interventions for Improving Performance-Based Measures of Physical Function in Community-Dwelling, Frail Older Adults: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation, 95(4), 753-769.e753. doi:http://dx.doi.org/10.1016/j.apmr.2013.11.007
- 7. Lam, M. H. S., Leung, A. Y. M., & Chan, S. S. C. (2011). Psychological And Cognitive Determinants Of The Health Literacy On Soon To Be Aged And Older Adults: A Systematic Review. i-manager's Journal on Nursing, 1(2), 46.
- 8. Lam, M. H. S., & Leung, A. Y. M. (2016). The effectiveness of health literacy oriented programs on physical activity behaviour in middle aged and older adults with type 2 diabetes: a systematic review. Health Psychology Research, 4(1), 5595
- 9. Lee, K. Y., & Cerin, E. (2014). Standard Errors. In A. C. Michalos (Ed.), *Encyclopedia of Quality of Life and Well-Being Research.* (pp. 6319-6320). Netherlands: Springer.
- 10. Aartolahti, E., Tolppanen, A.-M., Lönnroos, E., Hartikainen, S., & Häkkinen, A. (2015). Health condition and physical function as predictors of adherence in

- long-term strength and balance training among community-dwelling older adults. *Archives of gerontology and geriatrics*, *61*(3), 452-457.
- 11. El-Khoury, F., Cassou, B., Latouche, A., Aegerter, P., Charles, M.-A., & Dargent-Molina, P. (2015). Effectiveness of two year balance training programme on prevention of fall induced injuries in at risk women aged 75-85 living in community: Ossébo randomised controlled trial. *BMJ*, *351*, h3830.
- 12. Gill, T. M., Baker, D. I., Gottschalk, M., Peduzzi, P. N., Allore, H., & Van Ness, P. H. (2004). A prehabilitation program for the prevention of functional decline: effect on higher-level physical function. *Archives of Physical Medicine and Rehabilitation*, 85(7), 1043-1049.
- 13. Hauer, K., Rost, B., Rütschle, K., Opitz, H., Specht, N., Bärtsch, P., . . . Schlierf, G. (2001). Exercise training for rehabilitation and secondary prevention of falls in geriatric patients with a history of injurious falls. *Journal of the American Geriatrics Society*, 49(1), 10-20.
- 14. Helbostad, J. L., Sletvold, O., & Moe-Nilssen, R. (2004). Effects of home exercises and group training on functional abilities in home-dwelling older persons with mobility and balance problems. A randomized study. *Aging clinical and experimental research*, 16(2), 113-121.
- 15. Kim, H., Suzuki, T., Kim, M., Kojima, N., Ota, N., Shimotoyodome, A., . . . Yoshida, H. (2015). Effects of exercise and milk fat globule membrane (MFGM) supplementation on body composition, physical function, and hematological parameters in community-dwelling frail Japanese women: a randomized double blind, placebo-controlled, follow-up trial. *PLoS One, 10*(2), e0116256.
- 16. Kim, H., Suzuki, T., Saito, K., Kim, M., Kojima, N., Ishizaki, T., . . . Yoshida, H. (2013). Effectiveness of exercise with or without thermal therapy for community-dwelling elderly Japanese women with non-specific knee pain: A randomized controlled trial. *Archives of gerontology and geriatrics*, *57*(3), 352-359.
- 17. Kim, H., Suzuki, T., Saito, K., Yoshida, H., Kojima, N., Kim, M., . . . Tokimitsu, I. (2013). Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. *Geriatrics & Gerontology International, 13*(2), 458-465.
- 18. Kim, H. K., Suzuki, T., Saito, K., Yoshida, H., Kobayashi, H., Kato, H., & Katayama, M. (2012). Effects of Exercise and Amino Acid Supplementation on Body Composition and Physical Function in Community-Dwelling Elderly Japanese Sarcopenic Women: A Randomized Controlled Trial. *Journal of the American Geriatrics Society*, 60(1), 16-23.

- 19. Lihavainen, K., Sipilä, S., Rantanen, T., Kauppinen, M., Sulkava, R., & Hartikainen, S. (2012). Effects of comprehensive geriatric assessment and targeted intervention on mobility in persons aged 75 years and over: a randomized controlled trial. *Clinical Rehabilitation*, 26(4), 314-326.
- 20. Liu-Ambrose, T., Khan, K. M., Eng, J. J., Lord, S. R., & McKay, H. A. (2004). Balance confidence improves with resistance or agility training. *Gerontology*, *50*(6), 373-382.
- 21. Liu-Ambrose, T. Y., Khan, K. M., Eng, J. J., Lord, S. R., Lentle, B., & McKay, H. A. (2005). Both resistance and agility training reduce back pain and improve health-related quality of life in older women with low bone mass.

 Osteoporosis international, 16(11), 1321-1329.
- 22. Raina, E. C., Robertson, M. C., Garrett, S., Kerse, N. M., McKinlay, E., Lawton, B., . . . Tinetti, M. E. (2008). Effectiveness of a Falls-and-Fracture Nurse Coordinator to Reduce Falls: A Randomized, Controlled Trial of At-Risk Older Adults. Commentary. *Journal of the American Geriatrics Society*, *56*(8).
- 23. Tikkanen, P., Lönnroos, E., Sipilä, S., Nykänen, I., Sulkava, R., & Hartikainen, S. (2013). Effects of comprehensive health assessment and targeted intervention on chair rise capacity in active and inactive community-dwelling older people. *Gerontology*, *59*(4), 324-327.
- 24. Cerin, E., Lee, K. Y., Barnett, A., Sit, C. H., Cheung, M. C., Chan, W. M., & Johnston, J. M. (2013). Walking for transportation in Hong Kong Chinese urban elders: a cross-sectional study on what destinations matter and when. *International journal of behavioral nutrition and physical activity, 10*(1), 78.
- 25. Lam, M. H. S. (2016). Exercise Game Exhilarates the Elderly: A Challenge to Traditional Training. *Journal of Athletic Enhancement 5:1.*doi:10.4172/2324-9080.1000e109.
- 26. Lam, M. H. S., Cheung, S. Y., & Chow, B. C. (2011b). Effects of Tai Chi soft ball training on health-related quality of life of older adults with functional limitations. *Asian Journal of Gerontology & Geriatrics*, 6(2), 65-71.
- 27. Lam, M. H. S., Kok, E. Y. L., Louie, H. T. L., & Lee, K. Y. (2014). External Chinese martial arts and health. In S. FONG (Ed.), *Martial Arts for Health: Translating Research into Practice.* (pp. 16-21). CA, USA: OMICS Group Incorporation.
- 28. Lee, K. Y., Lam, M. H. S., Lam, N. K. T., Sin, H. M. Y., & Louis, L. H. T. (2014). Wrestling and Health. In S. FONG (Ed.), *Martial Arts for Health: Translating Research into Practice*. (pp. 38-41). CA, USA: OMICS Group Incorporation.
- 29. Lee, K. Y., Lee, P. H., & Macfarlane, D. (2014). Associations between moderate-to-vigorous physical activity and neighbourhood recreational facilities: the features of the facilities matter. *International journal of*

- environmental research and public health, 11(12), 12594-12610.
- 30. Li, E. J., Lam, M. H. S., Louie, L. H. T., & Li, S. S. S. (2012). An Analysis on History and Cultural Background of Chinese Tai Chi Soft Ball. *Asian Journal of Physical Education & Recreation*, 18(1), 27-30.
- 31. Lau, P. W., Lam, M. H. S., & Leung, B. W. (2010). National Identity and the Beijing Olympics: School Children's Responses in Mainland China, Taiwan & Hong Kong. *Procedia-Social and Behavioral Sciences*, *2*(5), 6729-6738.
- 32. Lau, P. W., Lam, M. H. S., Leung, B. W., Choi, C. R., & Ransdell, L. B. (2012). The longitudinal changes of national identity in mainland China, Hong Kong and Taiwan before, during and after the 2008 Beijing Olympics Games. *The International Journal of the History of Sport*, *29*(9), 1281-1294.
- 33. Lau, P. W., Lam, M. H. S., & Leung, B. W. (2011). The Beijing Olympics and Expressions of National Identity in China, Taiwan and Hong Kong. *The Olympics in East Asia: Nationalism, Regionalism, and Globalism on the Center Stage of World Sports*, 147.
- 34. Ho, G., Yiu, E. Y. M., & Lam, M. H. S. (2016). The Hong Kong Games in the Eyes of Local Sports and Recreation Students. *The International Journal of the History of Sport*, 33(11), 1209-1225.
- 35. Lam, M. H. S. (2010). Management Evaluation of the Healthy Athlete program of 2007 Shanghai Special Olympics World Summer Games. *Asian Journal of Physical Education & Recreation*, 16(2).
- 36. Lee, K. Y., Lam, M. H. S., & Lee, P. H. (2017). Distance From Home to the Nearest Tobacco Outlet May Not Reflect the True Accessibility. *JAMA Internal Medicine*, *177*(2), 287-287.
- 37. Cerin, E., Chan, K. W., Macfarlane, D. J., Lee, K. Y., & Lai, P. C. (2011).

 Objective assessment of walking environments in ultra-dense cities:

 development and reliability of the Environment in Asia Scan Tool—Hong Kong version (EAST-HK). *Health & place*, *17*(4), 937-945.
- 38. Cerin, E., Lee, K. Y., Barnett, A., Sit, C. H., Cheung, M. C., & Chan, W. M. (2013).

 Objectively-measured neighborhood environments and leisure-time physical activity in Chinese urban elders. *Preventive medicine*, *56*(1), 86-89.
- 39. Lee, K. Y., Lam, M. H. S., & Deng, Y. (2017b). Measuring Postconcussive Activity Levels of Patients: Step Count or Activity Intensity? *JAMA Pediatrics*. doi:10.1001/jamapediatrics.2017.0131.
- 40. Lee, K. Y., Macfarlane, D., & Cerin, E. (2013a). Objective evaluation of recreational facilities: Development and reliability of the recreational facility audit tool. *Journal of Park and Recreation Administration*, 31(4), 92-109.

- 41. Lee, K. Y., Macfarlane, D. J., & Cerin, E. (2013b). Comparison of three models of actigraph accelerometers during free living and controlled laboratory conditions. *European journal of sport science*, *13*(3), 332-339.
- 42. Lee, P. H., Tse, A. C., & Lee, K. Y. (2016). A new statistical model for the Day Reconstruction Method. *International journal of methods in psychiatric research*. doi: 10.1002/mpr.1547.
- 43. Deng, Y., Lee, K. Y., Lam, M. H. S., & Lee, P. H. (2016). Understanding Sociobehavioral Mitigators of Depressive Symptoms among US Young Adults. *Behavioral Medicine*, *42*(4), 217-226.
- 44. Lee, K. Y., Lam, M. H. S., & Deng, Y. (2017a). Interventions for Anxiety and Depression in Conflict-Affected Areas. *JAMA*, *317*(13), 1376-1376.

Authors and year,	Focus of Functional	Intervention & Control	Measurements	Results
Participants' description,	Health			
Duration of intervention				
 Gill et al., 2004 188 persons (aged ≥75, mean=83) who were physically frail (determined by rapid gait and single chair stand tests) and living at home 6-month intervention 	 Joint range of motion Balance, and muscle conditioning and strengthening Ability to perform instrumental activities of daily living 	Interventions: Progressive, competency-based conditioning exercises of the arms and legs with resistant elastic bands; balance exercises Control: Educational program	 5 self-reported IADL, including shopping for groceries, meal preparation, housework, laundry, and getting to places beyond walking distance Mobility: timed rapid gait and timed chair stands; modified POMA Integrated physical performance: modified PPT 	Compared to the educational control group, intervention group had reductions in IADL disability of 17.7% at 7 months (P=.036) and 12.0% at 12 months (P=.143) and had gains, ranging from 7.2% to 15.6%, in mobility and integrated physical performance at 7 and 12 months.
Liu-Ambrose et al.,200498 women aged 75–	 Fall risk: postural stability, dominant quadriceps strength, 	Interventions: a. Resistance training group: with the aims of	Fall risk: PPAPosture stability testGait speed test	Both resistance training and agility training significantly improved
85 years (mean=79)	dominant hand	increasing muscle	General physical	balance confidence by 6%

	1		1				
with low bone mass		reaction time, joint		strength in the		function: CB&M	from baseline after 13
• 13-week intervention		position sense, and		extremities and trunk;	•	Balance confidence:	weeks.
		edge contrast	b.	Agility training group:		ABC	However, the change in
		sensitivity		with the aims of	•	Physical activity level:	balance confidence was
	•	Gait speed: walking		increasing hand-eye		PASE	only weakly correlated
	•	General physical		and foot-eye			with improved general
		function: balance		coordination, dynamic			physical function and not
		and mobility		and static balance, and			significantly correlated
	•	Balance confidence		psychomotor			with the changes in fall
				performance (reaction			risk score, postural
				time)			stability, gait speed, or
							physical activity level.
			Co	ntrol: Stretching class			
			coı	nsisted of stretching			
			exe	ercises, deep breathing			
			an	d relaxation techniques,			
			an	d general posture			
			ed	ucation.			
Liu-Ambrose et al.,	•	Back pain and its	Int	erventions:	•	Back pain intensity	Back pain and its related
2005		related disabilities	a.	Resistance training		and its related	disabilities significantly
● 98 women aged 75-	•	Health-related		group: with the aims of		disabilities: ODQ	improved within each of
85 years (mean=79)		quality of life		increasing muscle	•	Health-related qualify	the three experimental
with low bone mass				strength in the		of life: QUALEFFO	groups. Specifically, agility

 25-week intervention 			extremities (upper and			training improved back
			lower) and trunk;			pain and its related
			b. Agility training group:			disabilities by 32%
			with the aims of			(P=0.05), resistance
			increasing			training by 27% (P=0.01)
			coordination,			and stretching by 21%
			balance, and			(P=0.05).
			psychomotor			However, only resistance
			performance (reaction			training and agility training
			time)			significantly enhanced
						health-related quality of
			Control: Stretching class			life.
			consisted of general			
			stretching and relaxation			
			techniques.			
• Elley et al., 2008	•	Muscle strength and	Interventions:	•	Muscle strength and	This nurse-led
• 312 community-living		balance	Home-based nurse		balance: TUG,	intervention was not
people (aged ≥75,	•	Ability to perform	assessment of		30-second chair	effective in reducing falls
mean=80.8) who had		instrumental	falls-and-fracture risk		stand test, four-test	in older people who had
fallen in the previous		activities of daily	factors and home hazards,		balance scale, and	fallen previously.
year		living	referral to appropriate		7.5-cm block step	Implementation and
• 12-month			community interventions,		test)	adherence to the
intervention			and strength and balance	•	Fear of falling: MFES	fall-prevention measures

			exe	ercise program.	•	Activities of daily	was dependent on referral
						living: NEADL	to other health
			Со	ntrol: Usual care and	•	Level of physical	professionals working in
			so	cial visits		activity: AHSPAQ	their usual clinical
					•	Quality of life: SF36	practice. This may have
							limited the effectiveness
							of the interventions.
• Kim et al., 2013	•	Knee pain	Int	erventions:	•	Degree of pain: VAS	The results showed VAS
• 150 women (aged	•	Functional mobility	a.	Exercise (Ex) group:	•	Pain and stiffness in	improvements in the Ex +
≥75, mean=80.5)	•	Muscle strength		Group-based 60-min		the knees: JKOM	HSGS and HSGS groups.
with knee pain				exercise class focusing	•	Physical mobility,	Total JKOM score, muscle
3-month intervention				on strengthening of		balance, gait speed,	strength, and functional
				the muscles around		and functional ability:	mobility significantly
				the knee such as the		TUG	improved in the Ex + HSGS
				quadriceps and			group compared with the
				hamstrings, as well as			HE group. The odds ratio
				the tibialis anterior,			(OR) for VAS and
				gastrocnemius and			functional mobility
				soleus;			improvement was more
			b.	Heat/steam generating			than eight times as great
				sheet (HSGS) group:			in the Ex + HSGS group
				The participants were			(OR = 8.60, 95%
				asked to place on the			confidence interval (CI) =

			painful knee for 6 h a			2.82–32.73) compared
			day immediately after			with the education group.
			waking up, and if they			Ex or HSGS alone were
			had pain in both knees			insufficient in enhancing
			they were asked to			functional fitness or
			place the HSGS on the			improving pain and quality
			most painful knee;			of life. The combined
			c. Ex+HSGS group: A			effects of both Ex and heat
			combination of the			therapy seems to have an
			same intervention as			added benefit of
			the EX and HSGS			decreasing pain,
			group.			improving physical
						function and increasing
			Control: Educational			quality of life.
			classes focused on			
			nutrition, cognitive			
			function, and oral hygiene.			
• El-Khoury et al., 2015	•	Balance and gait	Intervention: Exercises	•	Rates of all falls	Women in the
 706 women aged 		capacities	were designed to improve	•	Physical functional	intervention group
75-85 (mean=79.7),			postural stability (assessed		capacities: balance	performed significantly
living in their own			by body sway), muscle		and motor function	better on all physical tests
home, and with			extensibility and to a		test	and had significantly
diminished balance			lesser degree joint	•	Fear of falling: FES-I	better perception of their

and gait capacities		flexibility (for example, hip	•	Physical activity level:	overall physical function
				•	than women in the control
(assessed by the time		flexor and calf stretches),		casual walking,	
they took to walk a 6-		balance (for example, knee		walking for exercise,	group.
meter course and the		bends, tandem stance,		and total leisure	
tandem walk test.		backward walking, sit to		physical activities	
2-year intervention		stand), reaction time (for	•	Perceived health	
		example, play in group		related quality of life:	
		with a ball), coordination		SF36	
		(for example, side leg			
		swings, front leg swings),			
		muscle strength critical for			
		posture and balance (for			
		example, hip abductor,			
		knee extensor, ankle			
		plantar-flexors), and			
		internal sense of spatial			
		orientation (senses of			
		position and movement of			
		limbs and trunk).			
		Control: Educational			
		program			
• Lihavainen et al, 2011	Mobility limitation	Interventions: The	•	Mobility limitation:	The treatment effect of

		T			1
• 781 persons aged	Persistent	intervention, which		self-reported	the intervention on
75-98 years	musculoskeletal pain.	consisted of a medical and		difficulties in walking	mobility was significant
(mean=81.1) with		a physical activity	•	Persistent	(OR 0.75, 95% CI 0.59–
persistent		component, was based on		musculoskeletal pain:	0.96) at the end of the
musculoskeletal pain		the comprehensive		questions	two-year intervention
 2-year intervention 		geriatric assessment and		ascertaining pain in	among persons with pain.
		multidisciplinary team		the shoulders, neck,	The effect remained
		approach. Group-based		back, hips, knees or	significant (OR 0.79, 95%
		progressive resistance		other sites in the	CI 0.67–0.93) when the
		training was offered to the		upper or lower body	one-year
		intervention group once a	•	Level of physical	post-intervention
		week, the objective was to		activity: modified	follow-up was taken into
		increase mobility, and the		version of the scale	account,
		emphasis was on the		by Grimby	
		lower limbs. The training	•	Depressive	
		included leg press, leg		symptoms: 15-item	
		extension, leg curl, hip		GDS	
		abduction, hip adduction,	•	Cognitive function:	
		hip extension and		MMSE	
		abdominal crunch.			
		Control: did not receive			
1	1	T .	1		

any intervention.

•	Tikkanen et al., 2013	•	Chair rise capacity:	Intervention: All the	•	Level of Physical	The intervention improved
•	559		lower extremity	participants of the		activity: modified	the chair rise capacity in
	community-dwelling		muscle power and	intervention group		Grimby scale	physically active women
	participants aged ≥75		postural control	received individually	•	Chair rise capacity:	(adjusted mean difference
	(mean=80.6). They	•	Ability to perform	targeted physical activity		timed chair rise test	–1.67 s, 95% confidence
	were further		instrumental	counseling annually and	•	Comorbidity:	interval –3.21 to –0.13, p =
	categorized as		activities of daily	had an opportunity to		modified version of	0.02). There was no
	inactive or active		living	participate in supervised		the FCI	improvement in inactive
	men or women			strength (lower	•	Cognitive function:	women or in men,
	according to their			extremities) and balance		MMSE	regardless of their physical
	physical activity level.			training once a week.	•	8-item IADL scale	activity level.
•	2-year intervention						
				Control: did not receive			
				any interventions			
•	Kim et al., 2012	•	Sarcopenia (loss of	Interventions:	•	Body composition:	This study demonstrated
•	155 women aged ≥75		skeletal muscle mass	a. Exercises group:		segmental	walking speed significantly
	(mean=79.1)		and strength)	muscle strength		multifrequency	increased in all three
	identified with			training, including		bioelectrical	intervention groups, leg
	sarcopenic obesity			chair exercise (e.g. toe		impedance analysis	muscle mass in the
•	3-month intervention			raises, heel raises,		instrument	exercise + AAS and
				knee lifts, knee	•	Calf girth and	exercise groups, and knee
				extensions, hip		functional fitness	extension strength only in
				flexions, and lateral leg		variables (e.g.	the exercise + AAS group

T		T	1
	raises); ankle-weight	walking speeds and	(9.3% increase, P = .01).
	exercise (to strengthen	knee extension	The odds ratio for leg
	lower extremities);	strength): FFT	muscle mass and knee
	resistance band		extension strength
	exercise (to strengthen		improvement was more
	the upper and lower		than four times as great in
	body); balance and gait		the exercise + AAS group
	training (improvement		(odds ratio = 4.89, 95%
	of static, dynamic, and		confidence interval =
	lateral balancing		1.89-11.27) as in the
	ability);		control group.
	b. Amino Acid		
	Supplementation (AAS)		
	group: Packets of		
	powdered amino acid		
	supplements were		
	provided for the		
	participants to be		
	taken with water or		
	milk, two times a day		
	every day for 3		
	months;		
	c. Exercise+AAS group: A		

		combination of the		
		same intervention as		
		the exercise and AAS		
		group.		
		Control: educational		
		program		
• Kim et al., 2015	 Frailty, which 	Interventions:	Frailty status:	Frailty reversal rate was
• 131 frail women aged	includes weigh	t loss, a. Milk fat globule	interview surveys,	significantly higher in the
≥75 (mean=80.85)	muscle weakne	ess, membrane (MFGM)	body composition	Ex+MFGM (57.6%) than in
• 3-month intervention	exhaustion, slo	w supplementation	assessments using	the MFGM (28.1%) or
	walking speed,	and group: the MFGM	dual-energy x-ray	placebo (30.3%) groups at
	low physical ac	tivity group was provided	absorptiometry (DXA;	post-intervention (χ2 =
	level	with supplements in	Hologic QDR 4500A,	8.827, P = 0.032), and at
		pill form, every 2	USA), and physical	the follow-up was also
		weeks;	function tests (grip	significantly greater in the
		b. Exercises+MFGM	strength, isometric	Ex+MFGM (45.5%) and
		group: strengthening	knee extension	Ex+Plac (39.4%) groups
		exercises including	strength, walking	compared with the
		chair exercise,	speed)	placebo (15.2%) group (χ2
		resistance band		= 8.607, P = 0.035). The
		exercise, and balance		exercise+MFGM group
		and gait training.		had the highest odds ratio

		MFGM were provided for this group; c. Exercises+placebo group: A combination of the same intervention as the exercise and placebo group.		(OR) for frailty reversal at post-intervention and follow-up (OR = 3.12, 95% confidence interval (CI) = 1.13–8.60; and OR = 4.67, 95% CI = 1.45–15.08, respectively).
		Control (Placebo): The placebo group followed the same protocol as the MFGM supplementation group; however, pill included whole milk powder instead of MFGM.		
 Kim et al., 2013 128 women aged over 75 years (mean=80.2) were defined as sarcoper 3-month intervention 	Muscle mass, strength and walking ability in sarcopenic women	Interventions: a. Exercise group: the exercise consisted of stretching, muscle strengthening, balance and gait training of moderate intensity;	The performance measures included muscular strength (grip strength, knee extension strength), walking ability (usual and maximum walking speed, and timed	There were significant group X time interactions observed in timed up & go (P < 0.001), usual walking speed (P = 0.007) and maximum walking speed (P < 0.001). The exercise +

			b.	Tea catechin (TC) supplementation group: Bottles containing 350 mL of tea fortified with 540 mg of catechin were provided for the participants in the TC supplementation group every 2 weeks; Exercise+TC group: A combination of the same intervention as the exercise and TC group.	bala	& go [TUG]) and ance ability (one leg nding time with eyes en).	catechin group showed a significant effect (odds ratio 3.61, 95% confidence interval 1.05–13.66) for changes in the combined variables of leg muscle mass and usual walking speed compared with the health education group.
				ntrol: health ucational program			
• Hauer, 2001	•	Fall: strength,	-	ervention: The patients	•	Medical status,	The patients in the
• 57 female geriatric		mobility, and balance	un	derwent a regimen of		comorbidity,	intervention group
patients (mean age	•	Muscle function:	hi	gh-intensity progressive		medication, and	increased strength,
82±4.8 years; range		muscle strength of	re	sistance training of		functional status:	functional motor
75–90) admitted to		leg extension, knee	fu	nctionally relevant		ADL and IADL	performance, and balance

acute care or inpatient rehabilitation with a history of recurrent or injurious falls including patients with acute fall-related fracture.

• 3-month intervention

extension, knee flexion, ankle plantar flexion, and handgrip strength

- Motor performance such as walking, stepping, standing up, balance performance, and complex performance
- Ability to perform activities and instrumental activities of daily living.

muscle groups, including
Knee and hip extensions,
hip abduction and
extension, ankle plantar
flexion, and bilateral
plantar flexion.
Participants were trained
in basic functions such as

walking, stepping, and sitting to modify unsafe or inefficient performance.
Balance training was performed in static and dynamic positions. Group games, basic forms of dance, and basic forms of tai chi were used when patients' performance would allow it.

Control: motor placebo activities including flexibility exercise,

- Maximal dynamic concentric muscle strength in hip and knee extensors:
 One-Repetition-Maximum
- More-complex motor function: TUG
- Motor deficits: POMA
- Balance: FRT and modified test battery
- Cognitive status:MMSE

significantly. Fall-related behavioral and emotional restrictions were reduced significantly.
Improvements persisted during the 3-month follow- up with only moderate losses. Fall incidence was reduced non-significantly by 25% in the intervention group compared with the control group (RR:0.753 CI:0.455–1.245).

			calisthenics, ball games,			
			and memory tasks while			
			seated.			
• Aartolahti et al., 2015	•	Balance and mobility	Intervention: Strength and	•	Balance and basic	High adherence was
● 182	•	Grip Strength	balance training (SBT).		mobility skills: BBS	predicted by female sex;
community-dwelling	•	Maximal isometric	Progressive strength		and TUG	younger age; better
individuals (aged 75-		knee extension	training included knee	•	Grip Strength:	cognition; independence
98 years, mean=79.7)		strength	extension and flexion, leg		Seahan	in Instrumental Activities
The total length of	•	Ability to perform	press, hip adduction,		dynamometer	of Daily Living; higher
training was 2.3 years		instrumental	abduction and extension,	•	Maximal isometric	knee extension strength;
but the number of		activities of daily	and abdominal crunch		knee extension	faster walking speed; and
offered training		living	with gym equipment.		strength: adjustable	better performance on the
sessions per					dynamometer chair	Berg Balance Scale and
participant varied			Training was offered once	•	Ability to perform	Timed Up and Go tests.
from 94 to 104			a week for 2.3 years.		instrumental	Poorer self-perceived
			Adherence was defined as		activities of daily	health and the use of a
			the proportion of attended		living: IADL	walking aid were related
			sessions relative to offered	•	Level of physical	to low adherence.
			sessions. Participants were		activity: modified	
			classified based on their		Grimby scale	The findings showed that
			adherence level into low	•	Cognitive function:	long-term continuation of
			(≤33.3%), moderate (33.4–		MMSE	training is possible for
			66.5%) and high (≥66.6%)	•	Depressive	older community-dwelling

			ad	herers.		symptoms: 15-item GDS	adults, although poorer health and functional limitations affect training
							adherence.
 Helbostad, 2004 	•	Walking	Int	ervention:	•	Walking and	Daily home exercises
• 77 persons aged 75	•	Balance	a.	Home training (HT)		functional tasks:	supervised by physical
years and older	•	Muscle strength		group: four		walking speed,	therapists were effective
(mean 81, SD4.5),				non-progressive		sit-to-stand, timed	in improving functional
living at home				exercises, aimed at		pick-up, maximum	abilities, and that
• 12-week intervention				improving functional		step length, and TUG	supplementary
				aspects of balance and	•	Isometric muscle	individualized group
				strength were used,		strength: digital	exercises did not have an
				there was no contact		dynamometer	additional effects.
				between the	•	Postural sway: trunk	
				participants of the		accelerometer fixed	
				group and physical		to the lower back	
				therapists;			
			b.	Combined training (CT)			
				group: there were 5 to			
				8 participants in each			
				of subgroups, and each			
				training class was run			
				by one physical			

	therapist. Subjects in	
	the CT group were	
	instructed to do the	
	same hone exercises	
	and at the same	
	intensity as the HT	
	group.	

ABC=Activities-Specific Balance Confidence Scale;

ADL= Barthel/Mahoney Activities of Daily Living Index;

AHSPAQ=Auckland Heart Study physical activity questionnaire;

BBS=Berg Balance Scale;

CB&M= Community Balance and Mobility Scale;

FCI= functional comorbidity index;

FES-I=Falls Efficacy Scale-International;

FFT= Functional Fitness Test;

FRT=Functional Reach Test;

GDS= Geriatric Depression Scale;

IADL= Lawton/Brody Instrumental Activities of Daily Living Index;

JKOM=Japanese knee osteoarthritis measure;

MFES=Modified Falls Efficacy Scale;

MMSE=Mini-Mental State Examination;

NEADL=Nottingham Extended Activities of Daily Living;

PASE=Physical Activities Scale for the Elderly;

PPT=Physical Performance Test;

POMA=Performance Oriented Mobility Assessment;

QUALEFFO=Quality of life questionnaire of the European Foundation for Osteoporosis;

SF36= Medical Outcomes Study 36-item Short Form Questionnaire;

TUG=Timed Up & Go;

VAS=Visual Analog Scale;