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Abstract

Datacompression techniques are widely usedhe transmission and storage 289
image, video and 3D datsatructures The thesis addresses two aspects of data
compressin: 2D images and 3D structures by focusing research on solving the
problem of compressingfructuredight images foi3D reconstructionlt is useful then

to describe the research by separating the compression of 2D images from the
compression of 3D data&oncerning image compressiomete are many types of
techniques and among the mgsbpular are JPEG and JPEG2000.e Tthesis
addressesdifferent types of discrete transformatien (DWT, DCT and DST)
thatcombinedin particular ways followed biatrix Minimization algorithmwhich is
achievechigh compression ratio bgonverting groups of da into asingle valueThis

IS an essential step to achieve lEgltompression ratiogeaches to 99%lt is
demonstratedthat the approach is superior to bof?EG and JPEG2000 for
compresmg 2D images used in 3BeconstructionThe approachas also been tested
oncompresmg natural or generic 2D imagesainly through DCT followed by Matrix
Minimization and arithmetic codinBesults showthat the method is superior JIPEG

in terms of compression ratios and image quahiyd equivalent to JBG2000 in
terms of image quality

Concerning the compression of 3D data structuredyltitex Minimization algorithm
Is usedto compresgeometry and connectivity represented by adistertices andh
list of triangulated facedt is demonstrated thdhe methodcan compress vertices
very efficiently compared with other 3D formatslere the Matrix Minimization
algorithmconverts each vertex (X, Y and iffo a singlevaluewithout the useof any
prior discrete transformatiora$ used ir2D images) and withoulising any coding
algorithm.Concerningonnectivitythe triangulated face data are ateonpressed with
the Matrix Minimizatioralgorithm followed byarithmetic coding yielding stream of
compressed dat&esultsshow compression rascloseto 95% which are far superior
to compressiowith other3D techniques.

The compression methods presented in this thesis are definedfés pempression.

The methods to generate compression keys depend on the data to be compressed.
Thus, ad file generates theiown set of compression keys and their own set of
unique data. This feature enables application in the security domain for safe
transmission and stage of data. Thgeneratedkeys together with theet ofunique

data can be defineasan encryption key for the filas without this information, the

file cannot be decompressed.
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Chapter 1
Introduction

1.1. Introduction

In the lastdecade,we have sa®@ large expansiom the way we communicate
through digital mediaand still the process in progress. Teenablersinclude a
growing Internetinfrastructurewith increased bandwidth, storage spacel user
base the explosive development of mobile communications; #relincreasing
importance ofmageandvideodata incommunication. Dataompression is one of the
techrologies used to squeeze data size (neage, video, and audio) to reduce
communication delayimes. Websitesare not restricted to imagethey also contain
video and audi@andfor this reason data compression algorittares required1]. For
instance, sart phonesvould not be able to provide fast communication without data
compression.Digital TV camot be realizedwithout data compression. Data
compressions used inall domairs, for example: make dong-distancecall through
digital media requiredata compression2]. Other examples includax, andlistenng
to music on your player or watch a DVBEquiredata compressioj3].

Data compressions algorithms are used to reducantioeintof data required to save
an image or a video or musi@&]. In brief, data compression is the art and science for
representing data in a compact forme structures that exist in the datahesamples

of audio or image waveforms or numbers that are generatgdologssing4].Data
compressionencodesinformation usedor generated in digital form (numbers
represented by bytes), and these numbezsused to represemtultimediafiles. For
example, to represent 1 second of movie without compression (using the CCIR 601
format) it is requiredapproximately 20VIB, or 160MB, for this reason we need to
compress each frame the movieTo represent 2 minutes of uncompressed music
(44,100 samples per second, 16 bits per sample) requires approximabtdly. 4
downloading thisuncompressednusic from a websitegr streaming the same file,
longtime spans anequired[3].

As any human activity hasrainfluence on the environment, there is an increasing
needfor information about thenvironment to reduce harmful impac¥ariousspace
agencies from around the world, including the European Space Agency (ESA), the
National Aeronautics and Space Agency (NASA), the Canadian Space Agency
(CSA), and the Japanese Space Agency (STA), a@eming on a program to
observe changes ihe global environmentthat generatenanyterabyte of data per

day; comparethis with 130 terabytes of data currently stored at the EROS data center
in South Dakota, which is the largest archivéhiaworld [5].

According to growth of data that needslie transmited and savd, there is the
guestion ofwhy there is not a more concerted effor developingsophisticated
transmission and storage technologies? This is happebut still it is not enough.
There have been significant developmenthat allov transmitting and storingatge
amountsof information without using compression, including ®®Ms, optical
fibores Asymmetric Digital Subscriber Lines (ADSL), and cabieodems [6].
However,asboth storage and transmission capacities iner@ék new technological
innovations, as a outcome to Parkinson€s East *Work expands so as to fill the
time available,, in Parkinson€s Law and Other Studies in Administration, by Cyril



Northcote Parkinson, Ballantine Books, New York, 1951 seemghat the need for

mass storage and transmission increases at least twice as fast than storage and
transmission capacitieShere are obvious physical limitatigreich agthe amount of
information we can transmit over the airwaves will alwaysirnfeiencedby the
characteristics of thatmospherg5] and the limitations of bandwidth capacity.

The main motivation for the research stems from the large size of 3D face meshes
generated by the GMPR 3D scan technolof®$ (around 20MB for geometry and
connectivity plus 4MB for texture mappinghich limitedtheir intended application

in a security contexfThe GMPR technologies were tried in an airport scenario in a
confidential trial with the main outcome being the reslian that the size of the data

files made the system unworkable. The idea was that each passenger was to be
scanned at chedk and again at the gates before boarding the plane. All data were to
be sent to the Police who had exactly 24 hours to perfookgbaund checking. If
needed, the Police could apply for judicial order to keep the data for longer, otherwise
all data had to deleted within 24 hourdf the plane were say, from London to New
York, all data would be sent to the Police in New York beftaking off. The law
enforcement abroad would have the same limitations of keeping the data as the UK
Police.

Around 70 million passengers per year go through London Heathrow Aigradta
simple multiplication of two 3D scans per passenger by the esfjuisk storage
clearly indicateghe need forhuge bandwidth requirementdrémsfer dataHaving
identified the bottleneckthe solution wouldrequire data compression af least 2
orders of magnitude, say a file of 24 MB be reduced to around 240 KB. From these
considerations, thellowing research questisare posed

Can a method be developed to efficiently compress geometryctivitypand

textureby 2 orders of magtude?

Can the method be generic enough to be applied to any kind of data such as

text, video and audid

To investigate the issudhe starting point must b2D image compression as the
GMPR 3D technologies are based on generating 3D meshes from 2D ifegest

3D data are not generated by structured ligichniques2D images are used for
texture mappingof 3D models, thus, there is a clear requirement 2ior image
compression. In the following sections, emphasis is placed on two popular and
standard image representation techniqgues namely JPEG and JPEG2000 that keep the
data in compressed formatlany otherrepresentationgxist such as BMP, PNG,

TIFF, GIF,and so on. Some are more efficient than others in terms of image size but
these will not be considered in this thesis for comparative analliseshesis focuses

on JPEG2000, which is the best and the standard method of image compression so
any proposed¢ompression technique should stake its case against JPEG2000, and on
JPEG, which is a popular standard technique for image and video coding.

1.2. Compression Techniqus

When we talk about compression techniques or compression algofithme are
actually referring to two algorithmdhere is the compression algorithm that takes an
input X and generates mew stream of dat&. that requires fewer bits, anihe
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decompressioralgorithm operates on xto reconstruction Y. These operations are
shown in Figure 1.1.

#in.clude.<stdio #include <stdio
ma|n()_{*|nt X, y @=#3%% main() { int x,
t Yy=X*X+x/3; / K@t =41 \ Y=X*X+xX/3;
cout<< y; .
} Compress X Reconstri COUt;< s
I LR e
[IThis C progra /IThis C progra
[ljust as text dd /ljust as text dd
X Y

Figure 1.1: Compression and Reconstruction

We will follow current understandingnd refer to both the compression and
decompression algorithms to mean the compression algorithm based on the
requirements of reconstructi@ata compression prograsican be divided into two
broad classes: lossless compression algorithms, in which Y is identical to X, and lossy
compression algorithms, which provide higher compression than lossless
compression, and the resulti&’not strictly equato X butnot much differer6, 10].

1.2.1. Lossless Data Compression

Lossless compression techniquesiynplo loss of information. If data have been
lossless compressed, the original data can be recovered exatttyoaginal data.
Lossless compression generally used for applications like: texts, word documents,
executable files, and library documents used by computer programming languages
(i.e. C++, java or any machine languags).

Text compression is an important area for lossless compression. It is very important
that the reconstruction is identical to the original testenvery small differences
between original and recovered dasm result in &ig change in meaningonsider
theoriginaltext *Do nd send moneyand receivedsentences:Do nov sendmoney.

If any kind of data are enhanced (after compression algorithey) may yield
additionalinformation [L2].For example, assume we compressed a radiological image
as lossytype, and the difference between the decompressed image and the original
image was visually negligibldf this imagewere later enhancedi may cause the
appearance of artifacts that could delude the radiologist. Because tltewddie a
human life, 1 is important to be very careful about using a compressiethod that,

after reconstructionshows significantlifferences(large and smalljrom the original
image[13].

Data obtained from satellites anéien processed later to obtain numerical indicators
about our environmentf the reconstructed data are not approximately identical to the
original data, the result is enhadag#ata. h this caseit may benpossible tarecover
theoriginal data. Thereforen processing satellite datis normally not allowed for

any differences or degrdiitan to happenn the compressioprocesg14, 15 16|.
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There are many applications that requdegacompression where the reconstagtt
datamustbe identical to the originaHowever there are also myriad of applications
in which some data loss is acceptable and indéeis, requiremettoobtain higher

compression rat®

1.2.2. Lossy Data Compression

Lossy compression techniques lead to loksome information, and data that have
been compressed generally cannot be recovered or reconstructed identithdy to
original. By accepting lossy in the reconstructed image, we can generally obtain much
higher compression ratios than is possible witslesscompressionl17].

In many applications, exact reconstruction is not necessary. For example, when
transmittingspeech or an image \odeo. Dependingn the quality required of the
reconstructed datapme reduction idataaccuracycan betolerated[18]. However, if

the reconstructed data needs to behigh quality, the amount of information loss
must be controlled to low level9].

Once we havespecifieddata compressiorequirementswe need to measutke data
compressiordecompressioperformancePerformance is elusive as it can refer to the
perceived accuracy or some quantifiable paramdteis is sbecausean different
fields of application, different terms haveeen used to describe performance
measuremest[20]. In this thesis we focus on the perceived quality, the compression
ratios, and the root mean square errors between reconstructed and original data.

1.3. 2D Image Compression
A digital image is a matrix of dots, arrangechirows andm columns. The expression
[m n] represents the resolution of the image and the dots refer to pixels. The term
sresolution, is used to show the number of pixels per unit length of the image.
Therefore, dpi stands for dots pierch [21]. We can classify thenmnages in the
following: [22, 23, 24]
A. A monochromatic imagelhis simplest type of imagesontairs two values
referring to black and white, each pixel represented by one bit.
B. A grayscale imageln this type of image pixel valsearebetween 0 and 255,
andeach pixel is representég a byte.
C. Colour image/natural imagerhis type of images similar to grayscale type,
but consist of three layers RGB (Red, Green and Blue), pixel values in each
layer between 0 and 255. A pixel in three layers lmarepregnted by 24it
[25]. When adjacent pixelare slightly similar, it may be impossible for the
eye to recognize thetolour. This type of image can obtainéar example,
from digital camera Figures 1.2howsa typical example of colour images
[3].
D. A graphical imageThis type of imagés normally an artificial image: cartoon
or a graphthatcontains texts (obtained from Photoshop programs, or any paint
programs). It may have a fewolours (not natural) free from noise or blurring
as appears in a fmal image.

It is axiomaticthat each type of image has redundancy in colour, but they are
redundant in different waysTherefore, image compression algorithms cannot

12



perform well acrosall imagesand different algorithmsare required to compress
different types of image6]. There are also methods that break an image into parts,
to rendercompression easi¢27].

Figure 1.2 (left) Lenaand details, this image is part of the RPIBgy centerfold for November, 1972
(right) Mandrill and detailsyused as sample in MATLAB language for image processing test

The idea of lossy compression becomes more agreeable with digital images; this is
because the images are created by the following: 1) an image may be scanmad fr
photograph and digitized (i.e. converted to pixe23)An image may be captured by a
digital camera that creates pixels and save them directly in mgB)oky image may

be painted on the screen (i.e. paint softwit8).In all these cases, some data is lost
when the image is digitizedNormally the viewer acceptthis loss of information if
done properly. Digitizing an image can be defined in two steps: sampling and
guantization. Sampling an image is the process divittiagoriginal image into small
regionsof pixels. Quantization is the process of assigning an integer value to each
pixel (i.e. thresholding®9], for example, ifa pixel valueis greater thara threshold,

the pixelvalue changg otherwise no action.

We present a simple process that can be used as a measurement to determine the
amount of data loss in a compressed imd&ge.example,an original image Mis
compressdto T, and then decompress T to S, finally subtract \f M.Sf theimage

S is identical to original image M then V should be uniformly black (V=0).
Ifsomedetails arelost during compressioV would beapproximately black30] and

may be acceptable, depending on the application.

1.3.1. The JPEG Technique

The name JPEG is a shortcut that standsdéant Photographic Experts Group. This
was a joint effortby the CCITT and the ISO (the International Standards
Organization) that started in 1987 and produced the first JPEG draft proposal in 1991.
The JPEG standard has proved successful and has beddelg wsed for image
compresion, especially in Wepageg21, 27,30]

JPEG is a lossy/lossless compression method fouicolograyscale still images. An
important feature of JPEG is itsse oparameters, allowing the user to adjust the
amount of dataguality or compression ratio. Often, the eye cannot see any image
degradation even at compression ratio more than .B@%this reason most
implementations support JPEG methtmbsy mode [31,32,33]The main JPEG
compression steps are descrilbsdollows

A- Colour images are transformed from RGB into a luminance and chrominance
colour space (YCbCr format). The eye is sensitive to small changes in
luminance (Y) but not in chrominance (CrCb),so the chrominance part can

13



later be compressedat high compression ratio, without iog muchvisual
quality [31]. Figure 1.3 shows the RGB conversidhe main reason for this
conversions to achievdéigher compression rato

Each layer in an image (Y or Cb or @s)divided into noninterleaved blocks
(8x8) pixels, and each blo¢k compressed separately.thie image sizas not
compatible with8x8 block, the bottom row and the rightmost column are
duplicatedTo be compatible, the JPEG encoder holds all the blocks of the first
image layer, then the eader operaton the second layer, and finallthe
encoder is applied on the third layer. If the user choosemaximum
compression ratio, bloclrtefactsappear in the decompressed im&ge as
shown in figure 1.4.

The Discrete Cosine Transform (DCiE)applied to each block to create new
8x8 datablock of frequency componenliscontains lowfrequency at the top
corner, while other values represent higfieguency. The main advantage
ofDCT is decorrelatethe data and some data irthe right bottom are
negligible. This process increasése compression ratiowhile another
advantage the reconstructed dmtapproximately similar to original datas
thehuman eye cannot recognizesedifferenceq29].

Each of the 64 frequency components in a block is divided by a separate
number called quantization coefficient (QC), and then keeping an integer part.
This is whereoriginal information becomes irretrievabld_arge QCs values
cause more losse¥he JPEG cmpression algorithm implemenaQC table

for luminance anadifferent QC table for chrominance compondit.

The 64 quantized frequency coefficienistéger values of each blockare
scanned to ondimensional array then encoded by a combination of RLE and
Huffman coding. An arithmetic coding different from Huffman coding known
as the QM codef32, 33] can optionally be used instead of Huffman coding
[32]. Figure 1.5 shows JPEG stepssompress an image.

Figure 1.3: (Top) original image RGB, (bottom) RGB converted to three different layers YCbCr
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Figure 1.4: Lena's pictumompressed at bitrate 8,2he artifact block appeared on the decompressed
image (picture zoomeith 3 times)

Figure 1.5 Layout JPEG compression steps for one layer or grayscale image

1.3.2. The JPEG 2000 Technique

The current JPEG standard provides excellent compression performance at rates
above 0.25 bits per pixel. However, at lower rates there is a sharp degradation in the
guality of the reconstructed image. To correct this and other shortcomings, the JPEG
commitee initiated work on another standard, commonly known as JPEG2000. The
JPEG2000 is the standard based on wawebmpositiori34].The mainsources of
information on JPE@D00 ardSO/IEC (2000), International Standard IS 154424,

36] the final committeadraft (FCD) released in March 2000. This document defines
the compressed stream (referred to as kiltestream) and the operations of the
decoder. It contains informative sections about the encoder, but any encoder that
produces a validit streamis considered a validPE@000encoder. Followings a

list of features JPEG2000 is expected to improve upon existing meétigds

A. High compression efficiencyitrates less than 0.25 bpp are expeetet
high qualityimages.
B. The abilityof DWT being applietb large blocls of images oover the
complete imageThe JPEGnaximum block size 8X8
C. Progressive image transmission, the proposed standard can decompress an
image progressively.
D. The decoder cadecompress part of an imaigside a ROI (Region Of
Interes}.

15



To illustrateJPER000encoding algorithmassumea coloumrmagehais divided into
three componentdy convering RGB into YCbCr format Each component is
partitioned into rectangular, nawverlapping regions callediles, and each are
compressed individuallgs illustrated in the followingpur step§37]:

1- Compute a Digital Wavelet Tansforms(DWT) the resultsissubbands of
coefficients LL (low frequency sutband) LH, HL and HH are high
frequenciesubbands

2- The waveletcoefficientsare quantized. This is done if the uspecifiesa
target bitrate The lower the bitrate, most of higlrequenciesbecomeeros
(LH, HL and HH), roughlysimilar to quantizinghe wavelet coefficients39].

3- It uses arithmetic codingpcompressachsubband coefficientsndividually

[37].

The EBCOT algorithm(Embedded Block Coding with Optimized Trunca)ig8|

has been adopted for the encodsigp. Theprinciple of EBCOT is to divide each
subband intoblocks (.e. codeblocks) that are coded individually. The bits resulting
from coding several codalocks become a packet and the packets are the components
of the bit stream The packets are used later tne decoder to decode spee area

and skip other areas, thereby displayimgROI. The packebit streamis organized in
layers. E&ch layer containenage information; thereforelecoding the image layer by
layer is a natural way to achieve gressive datadecompressiofn37, 4Q. Figure 1.6
depicts thdayout of the JPE@I00 compression technique

In summarygurrent experiments indicate that JPEG2000 performs better than the
previous JPEG, in still images at higher compressionsratiovhernvery high image
quality isrequired41].0On the other hand, a decompressed image by JPEG2000
contains blurring at higher compression rgtithis is because mulkevel DWT is
applied[43].Figure 1.7 shows Lena's image compeedsy JPEG2000.

® »| Ly HE HL

LL

RGB layers LEH HH

—»| convertedto |—

YCbCr layers

LH LH
Arithmetic coding, Quantization /
apply oneach [¢—— each dwamnd
subband
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Figurel.6: Two levels DWTdecompositiorapplied oreach layer in @olour imageo create
six highfrequency coefficients matrices and onefsequency coefficient matrjpeach sub
band compress independently.

Figure 1.7: Lena's picture compressedbitrates0.25, the decompressed image zoormed times

1.4. 3D Surface Data

3D meshes maybe the most popular discrete virtual surface and volume
representation. Its simplicity makes it so popular today that electobips, called
GPUs (Gaphical Processing Units), partially specialized in the rendering of images
from 3D mesheare integrated in all personal computensg someablets. However,
their datarepresentation takeslarge amount of spa¢€?].

3D meshes are used in maapplication areascluding computational simulation,
entertainment, medical imaging, digital heritage, compaitded design,-eommerce,

etcThe need for precision is unstoppabieis leads to the generation of meshes
composed ofnany elementsdemandingprocessingand complexvisualization and
storage.3D mesh compression has been an active research topic since the mid 90€s.
Because 3D meshes are normally large data files, it is important that good
compression methods are available for efficient storagéransmissiorj44].

Two different methods exist for mesh compression: sirgfie and progressive
approaches. The advantage of the shngte methodss that generallythey output
higher compression rais. However, the reconstructedesh isonly available when

all data aredecoded at the decompston stag¢45,46] The progressive approaches
arerelevant;to cooperative visualization that requires fast data transmissionaalso
progressive compressioapproachallows achieving high compression ratio and
produces different levels of detail. They provide the chance to obtain an unpolished
pattern (version of 3D meghatneeds some enhancement) of the original object and
to polish it progressively until théevels of detds are the most suitable for the
terminal clien47, 48]
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A polygon mesh is defined by a set of vertices and by its trifagke (incidence
graph). The vertexlescription involveshree coordinates peertex: x, y and z[49].
Incidence (sometimes referred to as stopology,) defines each tridagkeby three
integer values that refer to ngrtices,ashown in figure 1.50,51]

Figure 1.8: (ajbyetriizegldcflacsesface topology

Some mesh connectivitg said to be "regular" because they are collected together of
the repetition of the same pattern. In case of few/some elements of thelomesh
havea regular connectivity, then the mastcalled "semiregular”. When there is no
regular structure conpgvity in the mesh, in this caseis called "irregular[51, 52]

Thereare several3D mesh structuse such a©BJ, VRML, X3D, COLLADA, etc.
These methodare based on an indexed data structure. The first part of this structure
consistsof a list of all the vertices: XY and Z (coordinates) that also introduces an
ordering of the mesh vertices. The second part describes the connectivity of the mesh
consising of a list of triangledaces. Each triangls composed of three indices (i.e.
3-indices reér to 3 vericesin the 3D mesh file)Suchdata structurédormats have the
advantage of being simple. Additionally, most 3D mesh compression algorithms
depend on this structure as infa®, 54] Figure 1.9 showthe Wavefront&bject file
structure as anxample.In this section,we will divide 3D mesh surface compression
into two parts: (1) 3D mesh compression based on 3D dat2) 3D surface
compression based on 2D Bitmap image.

1.4.1. 3D Mesh Compression Based on 3D Data

3D mesh compression techniques are diffefean compres®n methods forother
multimedia €.g.images, video)The common point between images and videos is
that their structure is known (pixels value in an image are limited) by the compression
and thedecompression algorithm. While in 3D meskhe connectivity is completely
unknown to the encoder before compression. So, besides comgrdesgeometry
(vertex positions), a connectivity structure malsbbe encodeb5, 56.
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Index

Figure 1.93D object tiangleface refers to indicas vertex

A. Geometry  CompressionMesh  geometry  compression  represents

compression the vertex coordinates, in most cases larger than the
connectivity information (triangle faces). Usualtile compressiorof the
geometry of a mesh begins with tQeantizaton of all the coordinates. Next

in each compressioalgorithm iteration the position of anencoded vertex is
predictedfthe prediction is accurate, the prediction error is small so, it can be
laterefficiently codedoy Huffman or Arithmeticoding[57, 59.

A vertex coordinates are represented bybR&loating-point numbers. This
accuracy is not importanfor most 3D applications, in this case the
guantization can significantly reduce the amount of data to encode without any
distinguishable quality lo§s9].The number of quantization bits usually
ranges between {8 and 1fits}, as accordingly, the mesh geomesoftly
changed60].

. Connectivity Compression: The general principle for all connectivity
compression techniques is implementing a traversal to the mesh (vertices
connectivity) and outputa table of symbols depending on the
configuration§51]. The main point in the traversal, definesnew set of
numberingdor the mesh, different from the one used in the input indexed data
structure[62]. The generated symbols are encoded by Huffman coding or
Arithmetic coding[63].

3D meshconnectivity compressiorequires high computational capabilities.
The GPUs (Graphic Processor jntan be usedtgrocessa 3D mesh in
paralle[64]. An optimizedmethod to transfer mesh data can significantly
decrease processing tinseich as the use dfiangle stripsThesestrips are
transferred from main memory to GPU memory. Triangle strips can be defined
by a sequence of vertices, where a new verteaddedto atriangle strip
created with two previous vertices. This meth®anuch more efficient tha

the indexed representation that requires three vertices to encodeizagle
[65,66, 67.
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1.4.2 3D Mesh Compression Based on 2D Image

Still high-quality cameras and imaging sensors are @bttaingood2D images, but

these images do not contain full 2Dject representatioecause depth information

is abseh This restriction limits our ability t@xtrapolate from a 2D image to3®

surface. The last two decades characterized significant progress in research related to
3D surfacesthrough developed ath commercialized 3D imaging techniques. This
encouraged 3D applicatiorthat, in turn,demand high resolution and high speed
electronic imaging systen§9].

3D images refer to techniques that are capable to obtaining 3D data (i.e. such as
distributionof density for 3D objecthurface imaging measures the coordinafesn
object€ssurface (i.e. measurement points x,y2hcethe surfacas normally non

planar the result of the measuremerd 8D surface imagéhatcan be descrilskas a

three dimensinal matrix (i.e. first layer contain coordinates: x,y. while second layer
contairs depth z)

A general 3D surface imaging systdmased on structured lightor laser scanning
canestimate scalar valueepresenting the depth frosurface reflectance. Each point
in the nonplanar surfaceas represented as point cloud Pi (i.e=F, Vi, z and
fi)\wherefrepresents a colour titei-th pointin the surfaces shown in Figure 1.10

The GMPR group has developed and patented new 3D scanning methods at Sheffield
Hallam University[70, 71] based on structured light. The methods convert a single
image into a 3D surface by processing the light patterns in the image. The scanner
processes pattern of projected stripes on the target object. The shape of the captured
pattern is combined with light source and the camera, to determine the 3D position of
the surface along the pattdif2] as showed in the Figure 1.1The system can work

in realtime enabling the concept of 3D CCTV to be implement&d. The issue is

the massive amount of generated data which is addressed in this thesis.
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Original object 2D image with structdights 3D data created

Figure1.1Q (Top) showe projector used spaht on an objectand cameraused tocapture2D image
for anobject with patternfights (structured lights) as a 2D image, (bottom) shows an example the 2D
image converted to 3D object data.

Fig. 1.11 (left) 3D scannerconvertany object to 2D bitmapatternimage (middle) 2D image
captured by 2D camera on the top of the 3D scanner, (righthedbcreated by software developed by
GMPR70].

1.5. Aimsand Obijectives

In this section,we will mention how our proposed methizdused in 2D images, 3D
from structuredight data and general data. Our proposed method focuses omgeduc
the amount of datt 2 orders of magnitude compared to standard uncompressed data.

Becausdhere arananykinds of data(images, text, audio, video, 3D, efdhe steps
described byour approach differdepending on the type of data. For exar@ple
images need discrete transformasimefore codingwhile in 3D meshesve donot
necessaly apply discrete transformatietio reducethe numberof vertices. Andfor
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other type of the datathe methoddepends on redundadataand the relationship
between data neighbours.

The purpose othe proposeanethodis to combine group of data toa single value.
Before we apply our proposed method, mast analysehe data (i.e. image or 3D
data or tek or other type Because some data canoompressed without sonpee-
processlg, as an example an image must be transtdribefore appling our
proposed approachin lossy compressignredundant vertices fron3D data are
reducedbeforeapplying our proposed approachossy compression allows for more
flexibility on the number and type of transformations we can use before applying the
main steps of thproposed compression method.

In losslesstext data compression, our approach dmnappied directly to the
datalnthat case the compression ratio for a text file will not fery high, so it is not
possible to reduce this type of data by 2 orders of magnitatethis reason we can
apply some lossless ppocess (i.e. RLE)3]to reduce the amount of data followed
by our proposed method to incredlsecompression ratio.

The aims of this thesis are itovestigate andmprove compression ratios and image
quality in the context of 3D reconstructiptacing in the context of current
technologiesThe quantitative target is reduction in file size by 2 orders of magnitude
with acceptable quality parameteiidie quality ofdecompressed imagdge computed

by the RootMeanSquareError (RMSE) technique for both 2@bmagesand 3D
surfacesAlso the Human Visual System (HVS) is used as a measure of image quality
(i.e. it depends omuman visual perception, as pure arithmetic is not a sufficient
measure of quality between decompressed and original image data). The objectives of
PhD research are highlighted in the following steps:

A) Investigate discrete transformations and theircombination for digital image
processing, assessing their combined effects on compression and
decompression The principle of operation we are pursuing is that in data
compression, the discrete transformation should divide an image into low and high
frequency bands. In case the number of high frequencies is increased, the
compression ratio will increase. Additionally, some of the less significant high
frequency coefficients can be neglected by quantization. The aim of the
transformation is thus, to separalew frequencies from high frequencies.
Similarly, low frequencies are subject to a possibly different or same type of
transformation. By increasing the number of high frequency coefficients, higher
compression ratios are obtained. Thereafter, a singlee tgp discrete
transformation is applied to the image and compared with a-heudi discrete
transformation appliedo the same image. Moreover, it is an objective of the
dissertation to adapt the same transformations or sequence of operations to
directly compress 3D geometry data.

B) Investigate and develop novel ways to exploit wavelet decomposition to
various areas of an image for efficient compressiori-or example, by applying
a twolevel DWT decomposition: LL2, LH2, HL2 and HH2 on a 2D image, and
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C)

then sing quantization processn LL2 to generate new Iofrequency
coefficients (LLZuanizeg SUBband. Furthermore, exploit the Matfiinimization
algorithm applied to high frequency matrices. The advantage ofiVidigix
Minimization algorithmmethod is that it decreases the matrix size to 1/3 of its
original size and increases the compression ratio. The main reason for using the
Matrix Minimization algorithmis because we have many matrices that must be
reduced before using a coding algorithridditionally, Matrix Minimization
algorithmapplied tovertices in3D geometry datéo show the ability our method

to compress 3D mesh surfaéérstly, the differences computed between each two
vertices, and then our method applies to convert eacta3alaingle value.

Develop novel methods and algorithms for accurate decompression of high
frequency matrices For instance, the Limite8equential Search Algorithm (LSS
Algorithm) is used to decompress high frequency matrices. The LSS algorithm is
a seaching method used to find the original data matrix through space search (i.e.
using a table that contains minimum and maximum values of the original matrix
before compression).The LSS algorithm searches for the original data sequentially
using the table (. decode the original highequency matrix). So, this algorithm
represents the inverse of thdatrix Minimization algorithm If no search
algorithm is used, it is not possible to decode the matrices and thus, not possible to
decompress the 2D ima@® surface Furthermore, we propose to develop this
algorithm into aBlock-SequentialSearch Algorithm, which represents two or
more LSSAlgorithm working together and synchronize their results to speed up
the searching method.

D) To perform a comparative analysis of performance with standard

compression algorithms for image and data structureSPEG and JPEG2000
represent the most popular image and video compression technldnese two
techniques willbe compare with the proposed algorithenThe comparisn will
bebased on compression rat@nd image qualitthrough RMS error and HVS.

1.6. Contribution sto Knowledge

The expectedcontributiors to knowledge from this thesis can be summarized as

follows:

A Matrix Minimization algorithm encoding/compresg each group of
data itens into a single value.

A method to generate a datapendent set of compression keys. The keys
are used both for compression and decompression of data.

A method to define the space domain of seawrhqle datathat is dso
data deendent. The set ofnigue data can beseenas a compression
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encryption key Without the set of unique data, the file cannot be
decompressed.

An iterative method to recover the original dataking use ofthe
compressiorkeys and the unique data set. Iteration is required as there is
one equation for 3 variablea the demonstrated exampleshich is a
mathematically underdetermined problem.

Concerning the compression step, thesis is focused on thHdatrix Minimization
algorithm The algorithmis based on mrging agroup of data (normally three data
itemsused in this thesis) @single value. Taalgorithmis used to reduce theumber
of high-frequency componesitin otherwords, asthe highfrequengy matrices' size
arereducedhere is a correspondimgcreasen thecompression ratio.

The Matrix Minimization algorithmis based on keys (three different keys are
suggested in this thesid)hesekeys are usetbr encoding/compression (See Section
1.7.2), and willbe use later in the decompression algoritHhorthermore, during
encoding bythe Matrix Minimization algorithm the spacesearch iscreatedto
determinethe minimum and maximum boundarie$ the coded dataDur proposed
decompression algorithm uses this spsearch for fast decoding (See Figure 1.15)

Concerning the decompression step, the thesis is focuseiterative decoding
algorithmsthat are applied to recover the original matric8hese are normally
matrices of higHrequency coefficients but the nheid is valid for any matrix or
vector that has been coded by the Matrix Minimization algoritBecause the
decompressioralgorithms rely on iterative search, there are various optimization
techniques that can be used. Some are explorékdis thess, suchas the Limited
Sequential Search algorithrh§SAlgorithm), whichis used torecoverthe original
data as illustrated in section 1.7.4.

1.7. General Research Methodology
This section describes thgeneralmethodological approach and main ideas to be

developed into a PhD dissertation in image and data compresasionspecific
examples Many different algorithms were developed and are demonstrated in
Chapters 2 8 with the general methodology described h&re method depends on
the use of discreteansformations to generate two types of matrices namely a low and
a high frequency matrix. Subsequently, Matrix Minimization algorithmcodes the
high frequency matrix reducing it to 1/3 of its original size. This reduced matrix is
then subject to arithetic coding. Also, the Limite&equentialSearch algorithm is
illustratedas a search method for decoding higlguency matrices. §ure 1.12
shows a dataflow of the proposed compression methods.

1.7.1. The Use of Digital Signal Transformations
The starting point in thisesearchs the use of one or more types of transformations

(i.,e. DCT/DWT/DFT). The main objective from the digital transformation is to
decompose the data into low and high frequency matrices. It is important to note that
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the dpgital transformation can also be applied to the previously obtained low
frequency matrix, this willincrease the number of hififequencies that can be
subsequently eliminated. This process will be investigated by using two different
types of digital trarffermations. As discussed above, a DWT divides an image into
four subbands, three of them highequency sutbandslabelled "LH", "HL" and

"HH", and the last one is the lefrequency sulbandlabelled"LL". In this stage the

"LL" sub-band data are quantzeThe value of the quantization could be selected by
a user/programmer. The dimensions of "LL" and data size are not appropriate for
compression without excessive deterioration in quality. For this reason, another
transformation is used for reducing theesof "LL" and increase the number of high
frequencies that can then be safely quantized, compressed or digdard&t]

The second type of transformation is applied to the-flequency suiband by
dividing it into blocks (i.e. block size 2x2 / 4x4 | 8x8...etc.), and then one of the
digital transformations are applied (i.e. DWT/DCT/DFT) on each block. Each block
consists of aDC component and high frequency coefficients. The DC component
from each block is stored in a new matrix cal@-Matrix. The dimensions of this
matrix are much smaller than "LL", while, higlequency data are stored in a new
matrix called AGMatrix. After this process, th&C-Matrix is ready for coding by the
Matrix Minimization algorithm The DGMatrix can be transformed again (i.e. apply
DWT/DCT/DFT) to increase the number of hifflequency coefficients. Following
the transformationthe DGMatrix corsist of: 1) high frequency coefficients, which
can be coded by thdatrix Minimization algorithm and 2) all DGvalues, which are
approximately similar, and thus the differences betweenva@lGes are small and
amenable to compression by arithmetic codiig).

1.7.2. The Matrix Minimization algorithm Applied to High Frequency
Matrices

Each high frequency matrix (i.e. LH, HL, HH, and AGefficients) are compressed
by our Matrix Minimization algorithm. This method converts three items of data or
more into a single value. This is achieved by using a random key. For example:

Original_data=[1 0002 0]
Key =[0.8147, 0.9058, 0.1270]

Which results in the minimized data illustrated as follows:
Datal=[1*0.8147 + 0*0.9058 + 0*0.1270] = 0.8147
Data2=[0*0.8147 + {2)*0.9058 + 0*0.1270]=1.8116
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Figure 1.P2: Proposed steps f@D image compression

The final result will beMinimized_array=[0.8147, -1.8116] The advantage of this
method is that it eliminates some zeros and keeps thefrieighency data without the
need for additional quantization. The used key in this method is user dgfitjeiche
key values are generated randomly (i.e. random numbédme mange =[0...1]), which
are then multiplied by each row of matrix to produce the minimized array.

The Matrix Minimization algorithm is applied to each sililand independently; this
means each minimized siand is independently compressed by arithmetic coding.
Figure 1.1 illustrates theMatrix Minimization algorithm applied to a matrix.
Likewise, for larger reductions in dasize, it is possible to compress the resulting
minimized array by th&latrix Minimization algorithm However, care must be taken

if this further compression is used, as the side effect is less reliable probability

uniquedatd4?2, 43.

Figure 1.B:The originalarray sizen is minimizedto another arra.

Before applying theMatrix Minimization algorithm our compression algorithm
computes the probability of the data for each high frequency matrix. These
probabilities are calledimitedData or Unique data which is used later in the
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decompression stage. The LimiBdta are stored as a header in the compressed file
and are nosubject to compression. Figure 4 illustrates the probability of data in a
matrix [42].

Figure 1.8: TheLimited-Data for aarray size 1% illustrated as a list afnique data

1.7.3. Coding Stage
After compression of high frequency coefficients by thkatrix Minimization

algorithm the final compressed array contains a lot of zeros and nedatoln this

case all nonzerdata will be stored in the new array followed by Arithmetic coding.

On the other hand, the number of zeros counted and stored in another new array. For
example: minimizedgarray=[1.7 0 00-1.7 0 0 9.2 0 000], nonzero=[1.4,.7, 9.2],
zercscount=p,3,2,4]. The first number2™ at "zeroscount" refers to the position of

first zero, while the other numbers in array refer to the number of zeros between data,
which are then compressed by Arithmetoding[42].

The main reason for using Arithtne coding rather than Huffman coding is because
Huffman coding uses a binary tree to generate a stream of bits, and this needsa huge
amount of memory. For this reason, Huffman coding is useful for small matrices, for
example, in JPEG Huffman coding is ilemented on each 8x8 block, this means
each block is compressed independently. On the other hand, arithmetic coding
generates just one table for an image. The table needs less memory space than a
binary tree.

1.7.4. Decompression Algorithm
The decompressioralgorithm reverses the compression steps. This proposal

introduces new algorithms for searching methods for decompressing the reduced
matrices. These algorithms will be tested on different types of 2D and 3D images. The
main parameters to judge the sucaafsthe searching methods are the efficiency and
accuracy of decompression. The following steps illustrate the proposed novel
methods:

A) The DCMatrix together with nonzero and zerocoantays (as defined above) are

decompressed by using Arithmetic Decoding. Moreover, the no@zeay is
merged with the zerocouatray producing the minimizeairay.
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B)

C)

D)

As described above the minimizaday is obtained from theMatrix
Minimization algorithm. The Decompression algorithm uses a new method called
Limited-SequentialSearch Algorithm (LS&\lgorithm), the idea being to restore
the original data from the LimiteData. This process depends on the random key.
Other algorithms than the LSS will beptared in subsequent chapters of this
thesis.Initially, the LSSAIgorithm assigns three pointers (P1,P2 and P3) where
each pointer is increment by one at each iteration loop. This process looks like a
digital clock [sec, min, hour]. For example: assume hexe the following
information about the compressed data:

Limited_Data=[3-1 0 1],Key=[0.8147, 0.9058, 0.1270].

The compressed data wasMinimized_array=[0.8147, -1.8116] The
decompression by the LSEgorithm is illustrated in Tabld..

Tabdle Th&Algorithm iterative search

P1 P2 P3 Computation
keyo finid 814

10a[3] 10a[3] 10a[3] Result= 5.5
20a[-1] 10a[3] 10a[3] Resu2t2837
30a[0] 10a[3] 10a[3] Resu3tg§984
40a 1] 104 [3] 164 [3] Result=4.0{
164 [3] 20a[-1] 164 [3] Result=1.9
20a[-1] 20a [-1] 164 [3] Resullt3395
30a[0] 20a [-1] 164 [3] Resubt5248
46a[1] 20a [-1] 164 [3] Result=0.2

And so oné&

P1, P2 and P3 refers to locations in Limif@dta, whichrepresents the search
space. In the above Tahkle P1=1, P2=1 and P3=1 mean the first value: Limited
Data(1)=3. If "Result" in the above table is matched with
Minimized_array(1)=[0.8147], this means P1,P2 and P3 found the data in
Limited-Data (i.e. P1=4, =3 and P3=3). Similarly, the second data picked from
minimizedarray (2)=f1.8116] for processing. In other words, the LA§orithm
works until finding all the original higffrequency dat&?2].

Finally, the decoded AMatrix is combined with the D® atrix to obtain the
"LL" sub-band, and then applied inverse digital transformation (i.e.
DCT/DWT/DFT) on each block (i.e. block size 2x2/4x4/8x8) followed by inverse
second stage digital transformation for obtains 2D/3Ddecompressed4ifjage

1.8. Overview ofthe Thesis

1. Chapterl: general introduction about data and ZDage compression
methods, thendiscusses the way that 3D mesh data represented and
introduces the maindeasfor data compression explored in subsequent
chapters
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Chapter2: introduces previos works for 3D mesh dat@mpression.
Chapter3: demonstratesompres®n of 2D structured lighimages used in
3D applicationsThese2D imagesare transformed by using discrete DWT
and DCT then the final transformed image coded by usiigMatrix
Minimization algorithm which is used to reducthe number of high
frequeng coefficients.

Chapter4: the DWT is combined withthe JPEG techniquend usedto
reducethe numbenof transformation steps and incredéisenumber ofhigh-
frequeng coefficientsAdditionallya newsearch algorithms designed to
speed ughedecompressiortage

Chapter5: the sameMatrix Minimization algorithmused inthe previous
chapterextended bya novel search algorithm called FMRast Matching
Algorithm that ismuch fastetthanthe previous decompression algorithm.
Additionally, we enhanced the compression method by deleting zeros from
each sukband created bthe DWT.

Chapter6: in this chapterwe transformed a 2D image by DCT followey
DST applied over the entire image with Matrix Minimization
algorithmResults showthe effectiveness of the method compresmg
images up to 99% with higliccuracy

Chapter7: we applied DCTuni-transformation) on each block of an image
followed by removingthe number of zeros fronthe transformed matrix,
then appliedthe Matrix Minimization algorithm for codingmpressive
results were obtained compared with JPEG and JPEG2000. The
decompression algorithrwas based ona new ConcurrenBinary-Search
algorithm which isour fastest decddg algorithm to recovethe original
data.

Chapter8: we appliedthe methods developed in the thesis3D datafor
coding both geometryand connectivity. Firstly, we convert tlggometry
vertices (X, Y, Z) to integer values bashift totheleft. Thenhe differences
for all X€s, Y€s and Z€s respectivelgre computed The
MatrixMinimization methods then appliedt@onvert eaclset ofX, Y and

Z to a single value. Alsothe same compression stepge appliedto the
connectivity (triangle faces)Results of thecomparisorwith other 3D
formats areampressive representing the statd-the-art technology for 3D
data compression of geometry and connectiVibe algorithm yielded
compressiomatios up to 97% with higly accurate 3D dataeconstruction.
Chapter9: presents theanclusion anduture workThe chaptediscusses
advantagesnd disadvantages the proposed methodolog® number of
possibletransformationgo be use with our method have not been tried and
these are discussed as further wdéetditionally, we propose further work
on applying the Matrix Minimization algorithm tmore than three data
itemsto asingle valueand approaches to optimizing decoding speeds.
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Chapter 2
Overview of 3D Mesh Compression

2.1. Introduction
Graphics dataare widelyused in several applicationsuch asvideo games

CAD/CAM design virtual reality and visualizatiomamong othersWithin 3D
environmentgriangular meshes represent the metandisplay and visualiz8D
models Normally, the geometryverticeg and connectivity (triangulated faces)
areused tocreate 3Dpolygonaieshesand other propertiessuch as illumination
are usedn 3D design Connectivity describethe geometry relationshgwith data
attributes such as colour, normal and texture coordinates (2D image
coordinatesBD trianglefaces handlegrticesand attributeslata inthe sameavay.
Therefore, we concentrate on fometry ad connectivitycompressiomethods

in this chapter.

To obtain ahigh definition 3D model normally a large amount of data are
required The dataamcquiredfrom3D softwarenappingreal world pointsto 3D
modelrepresentationfor example, a&oftwarethatconvertsa series of 2D images
to asingle 3D model) oa 3D scanner systethatconvers asingle image to a 3D
object 3D models require large space (memory/hard dislknd bandwidth
fortransmissionas 1D-array. Thus, the expected level rehlism from 3D
representations calls fostorage space, paralletCPUs, efficient computing
algorithnms, and high speed bandwidths. Network bandwidth representsa
bottleneck tahe use antransmssion of3D data. Thus, it isssentialthat methods
be develop to compre8D data at higher ratiokan currently availabld&Research
on this topibas received attention and thdras beeprogress in this direction
over thelast two decade

3D mesh compression it has been stored in several standard formats. ERML
one of standarébrmatsused for transmitting 3D models through th&ernet[75].
Initially, 3D mesh datavere represeted as ASCIl without compresg it into
VRML format Taubirj76] with his colleagues developéke topological surgery
algorithm, a compression method for VRMior efficient transmission MPEG
(Moving Picture Experts Group) developed by multimedia standard ISO/IEC
includedencoded algorithm foBD mesh data, which is based on the topological
surgery algorithmjmplementing asinglerate coder for manifold triangle faces
[65]. SubsequentlyMPEG incorporaté progressive 3D mesh compression for
nonrmanifold meshes.

In this chapter, we review different types of 3D mesh compressietnods
focusing on vertices and triangular faces compression. Many surveyed papers
pointed out to this interéagy subject. RossignalZ7] summarized a schema for
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vertex andtriangle facesdaa compressioiaubif54] reviewed progressiad
mesh compression img topological surgery. Shikhaifg8] classifed 3D mesh
compression schemast this type of schema did not work with progressive
compression. Gotsman et al.[79] introduced a tutorialabout 3D mesh
compressiorand3D geometry compression. Howeverisifocused on singleate
regiongrowing schemes Alliez and Gotsmad5] reviewed singlegate and
progressive compression of 3D meshesiil proposedlgorithmis classifiedasa
high-level algorithm however, it focugson static 3D polygon compression

2.2. Basicconcepts of3D mesh compression
3D mesh compression algorithms encode each of connectivity data and geometry

data individuallyEarlierresearatoncentrate on connectivity compressiaith

geometry coding determineflom theconnectivity coding. Howevergeometry
data required more bits than triangle fa@eg]several methodaere developetb

compress geometry data.

2.2.1. Triangle faces (Connectivity) Compression
In this Section, we will describe previous workon connectivity compression

methods; theseanbe classifed into different categories:

Index Triangle FaceCompression
The triangular mesh in the VRMiormat [75] represented with an index set,

which is consisting of: array locations (vertices locations) and triangle faces
location by its verticeskigure 2.1 showsndexed faceepresentation. Tindex

each vertexit is requiredat least logv bits approximatelyFor this reason, each
triangle face (conectivity information) need#gyv bits. This method provides
triangular mesh representatidn.other words, in this method no compressi®n
involved. Inthis approach, each vertéx indexed multiple times. The peated
vertexthus,degrades compression performance. To solve this prolershould
reduce the number of repeated vertices reference.

Figure 2.1 Triangle face indexed representation

Triangle Strips Compression
The 3D mesh can be divided into long triangle strips, and then encode each strip.

The main advantagefthis methodis to reducethe amount of data transmitted
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betweenthe CPU and video graphic adapter (VGA). Although this method
requires less memory spaeed transmission bandwidth thame previous one
(indexed Trangle Face method), it still does not representa very efficient
compression methdeigure2.2 shows a triangle strip, where each vertex is
combined with the previous two vertices in a vertex saga to form a new
triangle[79].However, many vertices are repeatedh@generalized triangle strip
of the mesh, which isa waste of storage. Taddresthis type of problem, many
schemesveredeveloped.

Figure 2.2 (a) The triangle strip, (blhegeneralized triangle stifip9]

The cancept oftrianglestrip meshwasintroducedby Deering[79]. Itis formed by
combining avertexwith groups of strips Deeringused FIFO (Fistn-FirstOut)
buffer to savandicesof 16 visited verticehe vertices are saved in the buffer
requiredfewelbits thana global vertices indeach vertexs used once by the
FIFO index,and Taubin and RossigngE’| showedthe generalized trianglenesh
requires approximately 1thpv to encode connectivigata

Chow [64]proposed a mesh compression method for-tresd rendering as
showed in Figure€.3 The methods start with finding the boundary edges, next
step searching for triangle fans around a vertex fallen on two successive boundary
edges. The triangles irhis strip are marked as#€discovered triangles
Undiscovered boundary trianglase similarly formed from new setof boundary
edges. The vertices in the vertex buffer can be reusetthdarext triangle strip,
finally this process stop if all thigiangles are visited in a mds§i]. This method

is efficient if the meshis decomposed into long triangle stripbut it is
achallenging computational mesh probléonobtaintriangle strip decomposition
[81]. Many heuristic methods are suggested for tiendgular decomposition
withaverage computational cdst?,83.

Triangle Spanning Tree Compression

3D mesh can be represedtas a graph, which means vest nodes linked through
edges look likdriangleform. This conversion from 3D mesh to graph representation
can be used in 3D mesh compression. Tl first proposedan algorithmto
enumerate triangulation,a technique that compressed approximately 3.25
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bpv.Thetechnique provedthe feasibility of mesh connectivity codinft7].Turan
[84]showedthat88BD mesh can be compressed with a fixed number of bits using
Spanning Tree for bothpeometryand connectivity as shown in Figure 2.4.

Figure 2.3 (a) Findingboundary edgesb) and (c)showstrianglesat first strip and seconsirip. The
arrows show selected boundary edges, while bots lines show the triangles associated with each inner
boundary vertep64].

Figure2.4: (A) 3D mesh|dft) its vertex spanning treajdht) the cut and flattened mesh with
triangle spanning tree shown by dashed [#és

The encoding theory based dhe Taubin and Rossigng5]| approach (topological
surgery algorithmtogether with the impact of graph encoding cahe felt on
connectivity mesh compression technigocempressg about 2.5bpv to 6bplas we
know,connectivity data is twice as large as geometry ddia) HandandGlove
encoding algathm from DiazGutierrezetal. [68]compresss amesh by using two

types of spanning tree (the Hand and Glove trees). These two trees are applied in
orderon trianglesstrips loop traversinghe entire meshThe trees are encoded with
2bpv andan additionalbit per triangle (allow to rduildthetriangle strip), this means

the total number of Btneeadto compress vertexs 4bits.Li and Kud86] suggested

an algorithm to compress connectivity of a triangle with dual graph. Each node in this
graph refers to three edges. BreaHitst Traversal algorithnwas applied to dual

graph produced binary datgor edgss, if the edgevasalready visited onot.Triangle
spanning tree generates such a tree by using breadth first traversal algorithm, during
compression step some faces probably are visited while other3dmstprobably
makes one or more closed border ed@es.advantage of the spanning tremglicity

makes the algorithmeppropriate to represemteshdata[87].
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The CutBorder maching88] technique is used to extend the border by adding a new
vertex to triangle iterativelyln case the bordas separatedr joined togetherthe
schene is able to compresmanifold triangle mesh about 4bpvhe method ignly
applied to regular meshes.

EdgeBreaker Compression
The EdgeBreaker technique suggested by RossiffitacOlgenerate asymbol for

each triangle, this guarantebp¥. While, in realworld (in practice) a mesis coded
between 1.8 2.4bpv. Thadeabehind thealgorithmis toencodea mesh by iteratively
nibbling its faces, and each tineenew face is traversed. Figure 2.5 shows the
configuration for fivepatcheg89 ,90, 91]

Figure2.5¢Top) Five encodes C, L, R, E, and S, while the gate g is the input to the triangle, and
(Bottom) showstraversalriangles toencode part of medk4].

In Figure2.5 (bottom) shows the encoding process, by usimgedgebreaker
algorithm. The triangles are filled with amwde matching with opode in
Figure2.5(top), in this case the encoded meSGECRSRLLRSEERLRE

The edgedreaker method can encode data of manifold meshes with multiple
boundary andthe worstcase compressiors approximately 4 bpvHoweverthe
method is not suitable for streaming applications, it takeg)QOi(e. execution time)

of decompression time. Additionally, for regular meshes andregular meshethe
same bitrates required[87].

The original EdgeBreaker techniqueas optimized to encode 3D mesh with
maximum regularity, the worst case for this method ddarge regular mesh is
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1.62bpv[92]. Coors and Rossigngztjadded connectivity prediction based on mesh
geometry93]. The Edgebreaker configuration usedorpredictng the distance
between position of parallelogram and the positions of active gate vehagsn
average connectivity compression ratio approximately less than 0.Gopvhold in
200588| proposed an enhaed Markov model coding conventg to arithmetic
coding. While Ying in 2010 [74]design an algorithm to select edge gate vertex
toreducethe number of "s" symbols. Additionallyit creats a table dependg on
thenumber of traversed faces connected to gate vertices; this depends on
connectivity prediction method.

Kingetet al. [90] introducedan algorithm of generalized eddeeaker to compress
qguad triangle mesh connectivityhis algorithm based on spiihg each quadrangle
into two triangles that are on the same traversal sequence, dds te efficient
compression&cause some combinations of edigeaker canot encode quadrangle
[91].

Lee in 200295|proposed anglanalyzer scheme to encode the connectivity for
manifold triangular at 1.5 bpv. The next face chosen to ensure the border between
regions of the mesh the most convex as possible,ekLes. [95]in 2005 proposed
acompression ratithatcan be reduced by using aritatic coding

Valence Encoding
In valence encoding manifold triangle mesh contairdglf the number ofertices

than trianglesFor this reasonan algorithm focusg on inserting a new vertexto

the mesh and geneaiiag a symbol for the vertex, produces less symbols than
triangle traversal algorithm. So, this method leads to better connectivity compression
performance[44].The valence approacls driven from Touma and Gotsman in
199846]. The algorithmdetectsthe edge bundary formed byrainitial triangle and
expand the boundary by adding adjacent vertices iterativEtherefore the generated

list of vertex valences can be efficiently compress&2l 3bpv. This algorithmis still

one of moskefficient connectivity compressiomethods

The Face Fixeby Isenburg and Snoeyif)] compresss connectivity of manifold
mesh with face degree by using face traversal. The algorithm gengyatbek for
each edge and experimental results showed compressios between 1.7bpv and
2.9bpvThealgorithmis more efficient than Kronrod and Gotsnp@él,however, their
encoder algorithns easier to implement.

Isenburg and khodakovsky in 2002,98] worked independentlyonvalence
approachetoencode connectivity of manifold meshes. Their wistkased on Touma
and Gotsman approa¢ht]. Khodakovskegt. al.[98]demonstratesthemedor entropy
matchesthrough Tutte's entropy for planar graphs. For botethodsexperimental
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resultsshowcompression ratio between 0.8bpv and 2.6lopproving over the face
fixer [50].

Table 2.1 summarizethestateof-the-art technique for 3D mesh compression. The
bitrate of various connectivity coding methods reviewed was obtained theoretically
througlworstcaseanalysis.

Table 2.13D mesh compression technigue
bitrate in worstcase

Algorithm Proposed by (bpv)
Deering Deering in 1995 11
Topological surgery| Taubin and Rossignac in 199 6
Cut border machine] Gumhold and StraBer 1998 4.4
Valence coder Touma and Gotsman 1998 2.3
EdgeBreaker Rossignac in 1999 and 4

Gumhold in 2000
Alliez and Desbrun 2001 2.1

Khodakovsky et al. 2002 and
Isenburg 2002

Proved optimality
for Valence coder

Valencemanifold 2.6

2.2.2. Geometry Compression
Geometry compression is concerned wethmpresmg vertex coordinates (Xx,,3).

Normally the compression of geometry bediyguantizngthecoordinates of vertices
(i.e. geometry encoded in lossy mode). Subsequently, encode tredagh aoding
algorithni44, 871

Quantization
Vertices in computer memomyre often represented by 3t floating point mmber

for eachcoordinate (x, yz). Suchaccuracyis not neeed in some applicationgor

this reasonaguantization processsused to reduce themounof data without
adversely Hecting its quality. However, for some highaccurate 3D data the
degradation appea it is noticeableon the 3D surface[99].0One of the mosused
guantizatiotechniquesmt 3D meshis called Scalar Quantization whichconsists
oftransforming the floatingpoint number vertices into integer vertices. The
guantizationis based orthe maximuminteger that can be coded with the number of
guantization bit$Generallythegeometry compression methods that go along with
well-known connectivity compression schemes proposed by Deering, Rossignac,
Gotsmaet. al[46, 63,67]use uniform scalar quantizatidhe number of bits range
between &it to 16bit, thus connectivity in 3D mesh softly confBatith geometry
Bajajet. at [61] and Leeet. at [60]proposedo encode a vertex with three angles, by
usinganangleanalyser encoder. The computatiesmbased on two internal angles and
one dihedral angley applying different quantization to these local angle=e and
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Park [62]proposed to locate vertices in 4 different range sizes; howthere are
some vertices located in biggenges. Thus the verex is encoded accordintp the
type of therange[10Q.

Prediction
Prediction meas encoding vertex positions predictively. The prediction uses

correlation between adjacent coordinates, and the most impasia@tt oprediction
is to reduce themount of geometry, and then enicapwith one of entropy coding
method (Huffman or Arithmetic codingTherearedifferent prediction methodhat
havebeen proposed ithditerature: deltgorediction[78], linear prediction[64, 6],
and parallelograprediction[101]. Overall the predictions schema considered as
linear prediction and their coefficients are chosarefully.

Delta Predictionmeans the differences between coordinates are usually. sfoall

this reason adjacent vertices havslightly different coordinates.Deering and
Chowused delta coordinates rather thleoriginal coordinates followed by encoding

with variable length codes. In each work quantized coordinates range between was
10, 16bpv and 13 18bpv respective[¥2,79.

Linear Predictiorsuggestedy Taubin and Rossigng&S] predicaessertex position
from a group of positions of previous verticeghevertex spanning tree. The number
of previous verticesre selected from the root to the current vertex in the spanning
tree. The estimated geometry bitrate is reported by Tuma and Gatsaraond
13bp\46].

Parallelogram predictiorsuggested by Touma and Gotsid&ih encods new vertex
"r'" within a triangle vertices "u and v" as show in in liig2.6, where the triangle "u,
v, W" is already encoded. Parallelogram predicegw vertex "r" position by usm
the form Pi=v+u-w. The rule for this prediction is thatthe four verticesnust
beexactlycoplanar. Theparallelogram improved the prediction accuracy by udirey
angle between twadjacent triangldsestimate vertex positiof.ras shown in Figre
2.6 Thistype ofprediction achieve@bp\46, 101.

Additionally, Isenburg and Alliea0Z]used parallelogram prediction for geometry
compression of polygon mesheghe psition of amissing vertex of a polygors
predicted with weights computdéam different degrees and computiedm different
known vertices.
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Figure 2.6 Parallelogram predictigh02]

Geometry-driven compression
In 2002 Kronrod and Gotsmgr3]designed a geometgriven compression scheme.

The approach coverthe traversalree that contains all verticeShe reasosfor using
the tree is to minimize parallelogram prediction errors between esegiositions.
Geometry compressioryielded ratios 50% more efficient than connectivity
compression. This approachused for CAD models, whicbften have nonsmooth
geometry

Shikhare with hiscolleaguein 2001 [104] developeda geometrydriven compression
methodthattries to find repeated geometry patternsh@3D mesh. Theraremany
options to recognize patternshese can bein componerg or regiors inside
components. Tdapproachis usetil for large 3DCAD modek or digital heritage
models.Cat alin 2009 [105]adced scaling andransformation for finding repeated
patterns anapproaclthatachieveglightly betterperformance

Asconnectivity and geometry are compressed at same tinleeimbove methods

their data are interleaved in the compressed streéamwinereet al. [106]in 2006
proposed an alternative geometrgriven algorithm. This algorithm compresses
geometry independently from the connectivity encoding. Thies surface is
recmnstructed iterativeland eacmew triangle connected to the border of the mesh

built by selecting a new vertex among the candidates. This algorithm can compress
any type of trianglatednesh Additionally, Chainet al[107] in 2009 proposed a
mesh connectivity compression schethat assumes that the geometsyalready
decoded. While the connectivity between vertices are generateébeldyelaunay
triangulationbased on point set, in this method the mesg&mcoded at low &t
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Compressing floatingpoint vertices
The methods described abowse based on lossy mesh compression (i.e. the

compression algorithm quantized the vertices). But some application required
encodingtheexact floating point coordinates. Isenbif@gJin 2005 investigatethat

the floating point can be broken éxponentand mantissa Meanwhile, the predicted
error between decompressed and original mesimegkgible, his methods able to
compress geometry about 35bpv

Siddeq and Rodrigue$109]in 2016suggested compressing 3wint cloud by
converting floatingpoint vertices to integer then endogl by the Matrix
Minimization algorithm. This algorithms designed to encodencrypt a vertex t@
single integer value, thethe resultcan be subjedb arithmetic codingCompression
ratios about 3.7bpvwere obtained while the connectivity (triangle meshegspgs
compressed independently by compgtthe differences between vextreferences
(i.,e. in OBJ and COLLADAformatsthe verex referenceslefindriangle faces)The
compression ratio for the connectivity theapproach is about 0.69bit for each
triangle inthe best case. Howevgieworst case reaches to Bilisfor each triangle. In
same year they developed connectivitgcompres®n by applying the Matrix
Minimizationalgorithmon the seamof triangle facego reducefrom 20bit/triangleto
13bits/triangleintheworst case.

2.3. 3D mesh Compression based on 2D images
In 2012 Siew and Rahmah10] pointed outhatXML is a candidate to represents the

meaning ofa 3D data structurewhich is distributed in many application€@n
theotherhand XML generate large files that concatenated with geometry
informationrendersthe scheme impracticable. The issue lies odifipg a way to
compress the semantic of data that represents calibration of geometry and
connectivityof a3D surface.

Rodriguesand Robinsofr 3] earlier in 2008 reconstructed 3D data from BMP images
using structured light techniques.Aprojector and camera setting was
developedtogether with image processing functions to project, capture, and process
and image of an object with a projected pattern of stripes. The image processing
functions detected the projected patterns and reconstruct the iobdg&xtasshown in

Figure 2.T73, 111,112, 113]. The capturedBMP images withstructured light
information can be saved for lateruse in many applicationssuch as3D face
recognition andgharing of 3@ata.

Rodrigues and Osméril4] in 2010 proposed polynomial interpolation metid
tocompress 3D data féel'he source data model uses vertices which are the standard
data in all 3D geometry models, such as 3D Wavef@aiJ, VRML and COLLADA
data files[55, 74, 15]. Only geometry data was compressed wethmpression
ratiosove®7%. The method did not compress connectivity as this could be directly
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inferred from the projected patterns, so the solution was specific to a scanning
method, which limited its application.h€& resultwas only applicable to surface
patches and, if structured pattern information were not available, Dietaunay
triangulationcould be apled to recover the surface from the point clidui@].

(a) (Right)The projector spad pattern of lighobn an object(Left) A camera records the reflected
patterrs with the object.

(b) The 3D surface generated from stripes available in the 2D image, compression and decompression
algorithm works just on 2D images.

Figure 2.7 (a) and (b) shows the high quality 2D images are used to recor&rscirfacesnodel
[114]
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24. Summary
Thereare many 3D mesh compression technigassreviewed in this Chapteand

each of these techniquesay besuitableto a particularapplicationonly such as
AutoCAD or a specific structured light scannem$ compression techniques are
slow duringcompression, but fasturingdecompressiarthis is normally desired in 3D
graphics for gameslThe main disadvantagef some 3D compression techniquss
that they fail tcompress some 3D objects. While other technigaesonlyompress
the geometry but not the connectivity of thetices.

For thesereasos,the work in this thesisoncerning 3D mesh compressisrdivided
into two parts:

1) Compress 2D imagthat containstructured lighpatterns(such as stripes or
dots)this kind of image contaginformationenablin@D reconstruction of the
object. After compression, reconstruct the object and compare with other
compression methods namely JPEG and JPEG2000.

2) Compress 3D object data files which contain informationgeometry and
connectivity f i.e. verticesand triangle faceslt is proposed tocompress
vertices and triangle faces independently

A comparativeanalysis will be performefletween 2D image compressitollowed

by 3D reconstructiorand direct 3D object compression. The analysis is based on
speedf compression and decompression, compressiorsf&MSE (image quality

and perceptual assessmentha image and 3D model quality.

Recently, some applicationgere developed and aevailableto converta series of
images taa 3D object, one of these applications is 123D AutoDg&sle big challenge
is to compress these 3D objects by our propasgarithns and compare the results
with other 3D mesh compression techniques. Additionally proposed algorithm
will compressa streanof 2D images thatreused bythe 123D Autodesk softwaréA
comparative analysis of results will be performed, of2D images and 3@bject
which are described in the following Chapters.
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Chapter 3

DWT -DCT based Compression with Sequential Search
Decompression

3.1. Introduction

Despite recemast progress in storage density aniehcreased processor
performance,there istill demand for algorithmghat work on images and these
algorithms continue to exceed the abilities of available technoldfied. Recent
growth of multimedia based applications have encour#ige need for very efficient
ways to compress signals and imagasmainreasons beirgpmpession for storage

and digital communicatiofiL18].Compressing an image is significantly different from
compressin@g streamof data(i.e. losslessstream ofdata).lt is certainly the case that
general purpose compression algorithms can be used to compress images, but the
result is noroptimal. This is because images have statistical properties that can be
used by encoders specifically designed for thehd, 119] Also, some of the details

in the image can bemitted for saving bandwidth or storage space. Lossless
compressiommean thatawhen decompressethe exact replica of the original image

is obtained[120]. On the other handossy image compressiatoesnot needbe
decodd exactlyas the originalAn approximation of the original image is acceptable
for most purposese(g. large images with highesolution or video compressigns

much as the differences between the original and the compressed intkegsmisd
adequaté¢l21].

In most caseghe pixels in an image are correlated (i.e. a pixel has mutual connection
with anothemeighbourpixel), therefore we use this idea for reducing the number of
redundant information. Furthermoramnajor taskis to find out unorrelated pixels

(i.e. the other pixelsvherethere is no connection between thefje main task
inimage compressiois toredu@ theamount of redundant data to an acceptable level
without degrading the quality of themage[122].

We can divide image compression into: 1) redundancy reduatidf) insignificance
reduction. Theredurdancy reduction aims to remowiplication from the signal
source image, while the insignificance reduction delete parts of the image that is not
noticed by the receiver (i.e. cannot discover the distortion by Human Visual System
(HVS), and this depersdon image details and image size). Consequently, repeated
pixels are eliminated according to statisticgpropertiesand the HVS will not detect

the differance between original and reproduced imgd@és|.

The standardPEGfor compression of still imagases théiscrete Cosine Transform
(DCT), which represents an image as a superposition of cosine functions with
different discrete frequencies. The DCT can be regarded as a discrete time version of
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the Fourier Cosine series. It is a close relative of Discrete éfolransform (DFT), a
technique for converting a signal into elementary frequency components. Thus, DCT
can be computed with a Fast Fourier Transform (F&Tglgorithm of complexity
O(nlog2 n[123]. More recently, the wavelet transform has emergedcatting-edge
technology within the field of image analysiEhe wavelet transformhas a wide
variety of different applications in computer graphics including radiosity, multi
resolution painting, curve design, mesh optimization, volume visualization, image
searching and one of the first applications in computer graphics, image compression
[22]. The Discrete Wavelet Transform (DWT) provides adaptive spatial frequency
resolution (better spatial resolution at high frequencies and better frequency resolution
at low frequencies) that is well matched to the properties of a Human Visual System
(HVS)[118, 124]

Here a further requirement is introduced concerning the compression of 3D data. We
demonstrated that while geometry and connectivity of a 3D mesh can be tackled by
severaltechniques such as high degree polynomial interpolgtldd| or partial
differentid equationg125], the issue of efficient compression of 2D images both for
3D reconstruction and texture mapping for structured light 3D applications hgestnot
been addressed. Moreover, in many applications, it is necessary to transmit 3D
models over the Internet to share CADAM models with ecommerce customers, to
update content for entertainment applications, or to support collaborative design,
analysis, anddisplay of engineering, medical, and scientific datasets. Bandwidth
imposes hard limits on the amount of data transmission and, together with storage
costs, limit the complexity of the 3D models that can be transmitted over the Internet
and other networleeenvironment$125].

In this Chapterit isinvestigatedhat surface patches can be compressed as a 2D image
together with 3D calibration parameter®. lossy compression jransmitted over a
network and remotely reconstructed (geometry, connectiviytexture map) at the
receiving end with the same resolution as the original data.The widespread integration
of 3D models in different fields motivates the need to be able to store, index, classify,
and retrieve 3D objects automatically and efficientlytHa following sections,we
describe a novel algorithm that can robustly achieve the aims of efficient compression
and accurate 3D reconstruction.

3.2. The Proposed Compression Algorithm

Thelossymage compression methpdoposed here isased on DWT and DCWhich
are used to increasthe number of hifp-frequency subbands with few significant
data. Thefirst stage DWTis applied to decompose an image into four-bahds
(LL,LH,HL and HH). The LL is approximatelgimilar to the original image(i.e.LL
represnte average value of the 2D imag€sFor this reason all the values in this
subband are postiveyhile the other subands represent image detailsd contain
few data with hug number of zerogi.e. the main reason most of valua® zeros,
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this is becausaeighboursin a part of original image are similar to each other)
FurthermorethelLL sub-band is divided intmonoverlappedlock of matrices(4 x 4
pixels). These blocks are transformed by DCT produamC value(i.e. this value is
positive coefficiens with is repr@ents average value of 4 x 4nd a set ofAC
coefficientsdata(i.e. reprintedthe approximatiorcoefficients these values argary
from topleft to butonright, which isnormally be around zeno Additionally, the
DC-valuesof each blockare saved in a matrix called BENZatrix whichrepresers a
new low frequency suband. Similarly, the AC coefficientsare collected ira new
matrix called AGMatrix which isequivalentto the high frequencysubband.Finally,
the AGMatrix with other highfrequency subbands arecoded bythe Matrix
Minimization algorithm while the DGCGMatrix transformed again by DWTo
increaséhe number of highfrequencysubbands. Also, this chapter describid®
Limited-Sequential Search Algorithm (LS"gorithm) used to decode the B\@atrix
and AGMatrix to reconstru@pproximatelythe originaimage @2]. Figure 3.1shows
the main steps of the proposed compression method in a flowchart style.

Figure3.1 proposed image compression method flowchart

3.2.1. The Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) used to transform an image into four sub
bandsfrom low to high frequency coeffiams. The DWT is used for multi resolution
data analyis (i.e. it can be used in progressive transmission and image zooming
without requestingadditional storage)[42,126] Additionally, theinverseDWT has
thesame complexity,which means the forward and inverse transformatien
symmetri¢ this feature of DWT is suited for fast image compression and
decompression. Furtheore it has very good energy compaction capabilities,
robustness under transmission and high compression [rEZios
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The DWT is appliedtoimage compression by usirggDaubechies (db3jilter that
decomposedhke original image. The output of the filter bank is desampled sub
bands. The inverse DWT decodes bysappling and recompost#®e original image
[37]. The DWT divide an image into four stands (LL, LH, HL andHH). LL is
represented dowsampled original image (Lodvequency coefficient), which is
represented important information about original image. While otherbants
represent vertical, horizontal and diagonal details of an image -fifeighency
coefficients). In case these details are sntl#ir values can be set to zero without
change in image detailor this reasophe highfrequency sulbands can be
compressed ta few bits/bytes [128]. In thisChaptenve will use DWT twice
toincreasehe number ofhigh-frequeng coefficients. This process will reduce image
size toa fraction of the originalmage size enabling high compressratios §2].

3.2.2. The Discrete Cosine Transform (DCT)

After DWT applied on an imagé¢he LL subbandis transformed again bgpplying
DCT on each 4x4 suimatrix (block) as shown in Figure 3.2.

Figure3.2: LL; sub-band transformed by DCT for each 4x4 block set.

The data available ithe LL sub-band are still correlatedror this reasonDCT is
applied to transform LL to decorrelated coefficients. Firsthe LL subband is
divided into small blocks (4 x 4). Second, D&Timplemented on each block, the top
corner of the blockof positive value represents peak of energy ahe other
coefficients are cédd decorrelated (higHrequency domainintil thebottom right of

the block. The coefficients with small values da@& discarecd without affecting
image quality. The transformed block by DCT can compress more efficiently than a
correlated block. The follwing equations illustrated DCT and Inverse DCT fundion

for two-dimensional matriceg!2]:

(2 +1) (2 +1)

()= OO () . .

(3.1)
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(2 +1) (2 +1)

()= () O () . .

(32)

Wheref(x,y), C(u,v)are represented original and transformed image respectively, and
the main differences between DWT and DCT is that D&CApplied on small block or
rectangularregions of images, this is because DQ3 progressivelycomplex to
calculate on lager blocks, for this reason we used small blooks4x4 pixels
Whereas,the DWT can be applied on an image as a large block, it works more
efficiently yielding better compression ratio [42, 122].

After DCT is applied on eachdx4 block of LL;, these blocks are ready for
guantization. Theuantizationprocesseadivides each value in the block kg/factor Q
which removes trivial coefficients keg fewer data fromthe block. The factor Q
can be computed as folloy&2]:

I
X
3
N

=

(33)

()=, ] : (3.4)

Notai, j=1,2,3,4

The maximum value in L4 subband is used to computkee parameter L in Eg3.4

(i.e. used as quantization value "L"). Additionally, the quality vaduesed to control

the maximum value, for exampld maximum valueis 51 and Quality=0.01, this
means all the values in a shbndwill be divided by 0.51If this value isncreasedit
leads tathe removal ofarge number of coefficients (i.e. forced data to zero), and this
leads tolower image quality. The O-Matrix is created bythe DC values from each
block (4x4) of LL, while other coefficients (4x4) are stored asolumnin a rew
matrix called AGMatrix. HL;,LH; and HH subbands are quantized by E8.3
followed by coding byMatrix Minimization algorithm[42].

DWT is used again to transforthe DGMatrix yielding new sukbands: LL, LH,,
HL, and HH. The size of LL small can beencodedinto a few BytesKbytes
(according to image size). While other hifgaquencies subands LH, HL, and HH
are gquantized by diding the coefficient matrices by "2", for normalization and
increasethe number of zeros tde eamr encodd by the Matrix Minimization
algorithm([42].

To compressthe subband LL, first transform each 4 da{@nedimensional array
size 4)of the LL, by using onedimensional DCT (i.e. usinthe same Eq3.1 with
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u=0 and v=0) and thetmuncate each valu® integer valugin this stageve should

not use scalar quantizatidime difference between two adjacent valueghie same
column is computed andstoredin the same position matrix LL, this difference
computation isshown in Figure 3.3. This procesassumesthat neighbar's
coefficients are correlated. The correlated values are generally similar so the
differences will be small and more data are repeated. This process will inttrease
compression ratio. Eg. (3.5) mggentsthe difference foreach column in LE[42].

Third, applyanencoding method to convert the final transformed mattixa stream

of bits.

D(i) 3D(i) 3-D(i 6%) (35)

Wherd i=1,2,3,€, m-1 and mis the column size of Ld

Figure3.3: (a) A matrix before DBV, (b) Apply DVB between tweighboursn each column.

3.2.3. Compress Data byMatrix Minimization Algorithm

This algorithmis designed to reduce highequency coefficients. This algorithis
applied onthe AC-Matrix and other highHrequency sulbands independently. The
main idea for tk algorithmis to convert three adjacent coefficients to one encoded
valueThe calculation depels on RandorWeightValues and three adjacent
coefficients andhe resuls restoredin a new encoded arrdjhe following List 3.1
describes the steps of the algoritf]:

List 3.1 Matrix Minimization Algorithm

Let K=3 %% take each three coefficieritem a matrix

W=GenerateRansomWeights (K) %% generate three random weights values according
%% to the number of coefficients

Let p=1
Fori=1 to column size
For j=1 to row size
Intermediate [p]=Matrix]i,j] %% Scan rowby-row
p++
End
End

Let j=1; p=1

While (j<row size*column size)
Arr=Read_K_coefficients (Intermediate [j])
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K
M (p) 3DV () * Arr (i)
io%
=itk
p++
End

In the above List 3.1 weight valuasegenerated by usingrandom function (random
number range ={0...1}). These weights are multiplgdArr(i), Arr(i+1) and Arr(i+2)
represenng three coefficientswithin the high-frequency domain to produce
minimized array "M".Since theMatrix Minimization algorithm is applied to each
subband independently, each sbhénd has its own encoded minimizaday. Figure
3.4 illustrates th&latrix Minimization algorithm implementation.

Figure3.4: An nxmmatrix is minimized into an arralyl.

Before applying theMatrix Minimization algorithm, we need to choose a
valudbetween duplicate numbers of hiffequency domain; thesealuesre called
Limited-Data, this new stream of dais used & decompressiorstage These data
limit the search spacafdecompressiof¥2]. Figure 3.5 illustratethe computation of
the LimitedData.

Figure3.5: The LimitedData for a 5x5 matrix is illustrated as a list of probabilities and the minimized array is
subject to arithmetic coding.

Arithmetic Coding is the final step in the compression algorithe@scribethis
Chapter. This lossless coding algorithm apptiedstream of data convethe stream
to a singléoating point valuethis output in the range between zero and dvileen
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decockd, theexact original datarerecovered. To summarize this lossless algorithm,
we need to compute the probability of all the data (before compression), to assign a
low and high valugfor each data (each coefficient)

3.3. The Decompression Algorithm

This sectiordescribegletailsthedecompression algorithm, whichtlse inverse of the
compression algorithm. The first stageesigrithmetic decoding for decody the
minimizedarray. Next,we have designedLamited Sequential Search Algorithm
(LSS-Algorithm) to decode each sddand. The LS&\gorithm used LimiteeData

array with RandorWeights to reconstru¢he original coefficientslf Limited-Data is
missed or destroyed, the image cannot be recovered. Figure 3.6 shows the
decompression method in a flowchart stylg].

Figure 3.6: A two-stage decompression algorithm is depidteth) and (b).

Themain reason to design this decoding algorithm @&&gorithm) is tosearcior the
original coefficients insideéhe Limited-Data array this operation is done by using
three pointers (S1, S2 and S3), whiobfer to positions inthe Limited-Data
arrayThese pointers work in sequendes a clock: where S1, S2 and S3 represent
hour, minutesand seconsl respectively.Initially these values are set to ;1(i.e.
S1=S2=S3=1)To illustratetheLSSAlgorithm assume that we have the follogiax3
matrix:

| 30 1] 0]
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First, the above matrix wilbe compressd by theMatrix Minimization algorithm to
produce a minimized array M={3.65, 2973}  with Limited
Data={30,19,1,0}Additionally, threeandom weight valuesor key={0.1, 0.65, and
0.423}. Secondthe LSS-Algorithm is usedto decodethe minimized arrayeturring
the original 2x3 matrix. The decoding algorithstartsbypicking up thefirst dataitem
from Limited-Data (S1=S2=S3=1) and theomputethe estimated value bysing the
following equation [42]:

Est 33V (1) Limited (S1) 3% (2) Limited (S2) 3%V (3) Limited (S3) (3.6)

Where "W" is RandorWeightValues and "Limited" is the Limite®ata matrix. The
LSSAlgorithm computes "Est" at each iteration and compares with). M{ne

iteration means S3 will increment by 1 (iileworks like a seconthiandin a clock),

after all the positions in Limite®ata, the S2 start work (lika minute handin a

clock) followedby S1 (like an houthandin a clock). f M(i)=Est, this meanshie

original coefficients data are in locations {S1, S2 and S3} according to LhDid¢al

Otherwise, the decoding algorithm will continue searching to fimel original

coefficients. This process continues until the entheminimize array M(i). The Lis$

3.2 illustrates the LSBlgorithm [42].

Lis32L SSlgorithm
Leltimited[1&m] %% represents Limited Data

LeM [1&p] %% represents minimized array with size p
LeK=3%% number of estimated coefficients
Foi=l to p

S1=1; S2=1;%983diviadtion
| terations=1
Est=W(1)*Limited[S1] + W(2)*Limited[S2]+W(3)*Limited[S3]

While(M(iBstd* 0) %% check if Error =0 or not
S3++ %% increment pointer represents "Seconds”
IRS3>)82++; 88% % check oveSr3the limit, return back to "1", and increment S
IRS2>)81++; 82gl
IS 1>)81=€elnd
Est=W(1)*Limited[S1] + W(2)*Limited]S2toW p3)teL Bitted{SB8ncrements
Ilterations++% % compute number of iterations

End %% nd while

End

After the LSSAlgorithm hasdecompressed all higinequencies matrices, the next
stepis to reverse the difference operation of Eqg. 3.5 by additsotiefined in equation
3.70n the decoded LL2 to recover the original coefficient vallies is appliedto
eachcolumn by taking the last value at positionaddingit to the position i, and
then the total adds to the next positioR2nand so on. The following Figure 3.7
illustrates theadditiondecode42].
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D(i 84) 8-D(i 82) 5-D(i) 3.7)
Whereli=m, (m1), (m2), (m3),€,2

Before the final stepsthe inverse onalimensional DCTis applied to each 4
coefficients for Ll,, followed by the compo#ion of all subbands (LL, LH,, HL;
and HH) by applyingthe inverse DWTresulting in thedecoded D&Matrix.Finally,
combinethe DC-Matrix with AC-Matrix (same way they decomposed from LL1 see
section 3.2) to generate LLand then apglinverse DCT.The inverse DWT will
recomposall decoded LLto recover the origindD image[42].

Figure 3.7: A Matrix before Apply ABV, (b) Apply ABV between two neightis in each column

3.4. Experimental Results in 2D and 3D

The algorithms describeid this Chapterwere tested with three types of 2D images
type RGBFirstly, the RGB colour convert toGbCr format(i.e. this format is useful

by any compression method, which is converts true colour to arfotineula, all the
image data will be available in single layailed «Y,. While other layers are contains
lessinformationcapable to empress at higher compressioithaut affects on image
details) [131]. Secondhe algorithmswereimplementedin MATLAB running on a
Laptop AMD quaedcore: 2.4GHz with SDRAM: 6GByte®Also, the decompressed
2D images showed b3D visualization software running on the same laptop. Figure
3.8 shows 2D images used for tegtour approach, and Table 3.1 shows the
compressed size for each image.

The 3D visualization software reah image with structured lighgatternson, and
determines the position of the 3D vertices in space from each stripe in the image. The
software was develop within tt@MPR group[135]at Sheffield Hallam University

The patternf stripes are projected dhe surface on an object and captured by a
high resolution camera. The GMPR 3D reconstruction software creates a 3D
representation of the object in a fewilliseconds. The main advantagyef the
developed 3D scannerapeed and accuragy36].
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(a) 2D BMP <Wall,, dimension
1280x1024 pixels, size=3.75
Mbytes

(b) 2D BMP «Girl,, dimension
1392x1040 pixels,sizé=38 Mbytes

(c) 2D BMP Woman,, 1392x1040
pixels, size2.38Mbytes

Figure3.8: (a) 2Dcolour MPimage, (bc) 2D grey scale images

Table 3.1: Compressetnagesizes usindnigh frequenciesn firstlevel DWT

Quantization
Image | Origina | Compressed| Compression Values
name | size size Ratio .
Low-frequency | High-frequency

Wall 3.75MB 74 KB 98% 0.02 0.02
Wall 3.75MB 47.6 KB 98.7% 0.04 0.04
Wall 3.75MB 33.7 KB 99.1% 0.08 0.08
Girl 1.38VIB 78 KB 94.4% 0.02 0.02
Girl 1.38MB 48 KB 96.6% 0.04 0.04
Girl 1.38MB 29.1 KB 97.9% 0.08 0.08
Woman | 1.38MB 62.1 KB 95.6% 0.02 0.02
Woman | 1.38MB 38.1 KB 97.3% 0.04 0.04
Woman | 1.38MB 24.5 KB 98.2% 0.08 0.08

The quantization values: "0.02", "0.04" and "0.08" in abov&able 3.1refer to
image quality: high, median and low respectively (i.e. the Quality value in Eq. 3.3
responsibldor keepng 2D image details: Lk HL; and HH in DWT at first level).
For example: if Quality=0.02, this refers almost all coefficient data remain, otherwise,
if Quality valueis greater than 0.02 this means partially the coefficient are set to zero
in a subband. The LL; subband depends othe DCT coefficients. Additionally,
Table 3.2 showshat high frequenciesare ignored from the first level of DWT

decomposition (i.e. all higfrequency coefficients argeto zero) [42].

Table 3.2 Compresseimage size without using higinequencies in first level DWT

Image | Original | Compressed | Compression Quantization Values
name size size Ratio Low- High-
Frequency | frequency
Wall 3.75MB 62 KB 98.3% 0.02 ignored
Wall 3.75MB 45 KB 98.8% 0.04 ignored
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Wall 3.75MB 33.5 KB 99.1% 0.08 ignored
Girl 1.38MB 61.2 KB 95.6% 0.02 ignored
Girl 1.38MB 42.6 KB 96.9% 0.04 ignored
Girl 1.38MB 28.3 KB 97.9% 0.08 ignored
Woman | 1.38MB 53.4 KB 96.2% 0.02 ignored
Woman | 1.38MB 35.4 KB 97 4% 0.04 ignored
Woman | 1.38MB 24.3 KB 98.2% 0.08 ignored

The proposed image compression algoritw@applied by usinga range of Quality
factorstoeach image and the decompressed images are used by our GMPR software
to reconstrudhe 3D mesh,which isthen compar with original 3D mesh model.
Figures 3.9, 3.10 and 3.11 show the 3D reconstructed Wall, Girl and Woman
respectively. Table 3.3 shows the 2D RMSE and 3D RMSE for each 2D
decompressed image and 3D reconstructed surfidoe RootMean Square Error
(RMSE) isused to calculate 2D/3D image quality mathematically. RMSE is a very
popular measure to compute the differences between decoded image and original
image[42,129]

(a) 3D Wall textured, Quality=0.( 3D Wall shaded, Quality =

(b) 3\all textured, Quality = 0.04 3D Wall shaded, Quality = 0.04
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(c) 3D Wall shaded (red) com 3D Wall shaded (red) compared t
(textured), Quality = 0.02 Quality = 0.04

(d) 3D Wall shaded (red)yigomap atedtuaced), Quality = 0.

Figure 3.9: (a) and (b) 3D decompressed image of Wall with different quality values, (c), (d) and (e) Differences
between original 3D Wall image and Decompressed 3D Wall image according to quality parametegided
representhe 3D Wall decompressed image matched with the background original 3D Wall image in three cases,
i.e., High, Median and Low quality parameters.

(a) 3D Girl image texture and shaded, Quality=0.02

(b) 3D Girl image shaded anelxture, Quality=0.04
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(c) Quality=0.02 (d) Quality=0.04

(e) Quality=0.08
Figure 3.10: (a) and (b) 3D decompressed Girl image with different quality values, (c), (d) and (e) Differences

between original 3D Girl image and Decompressed 3D Girl image according to quality parameters.The pink model
represents the original background 3D imaghijlevother colows represent the 3D decompressed image with

various quality parameters.

(a) 3D Woman image shaded and texture, Quality=0.02

55



(b) 3D Woman image shaded and texture, Quality=0.04

(c) Quality=0.02 (d) Quality=0.04

(e) Quality=0.08

Figure 3.11: (a) and (b) 3D decompressed Woman image with different quality values, (c), (d) and (e) Differences
between original 3D Woman image and Decompressed 3D Woman image according to quality parameters. The
pink model is the original 3D Woman model while blgegen, and goldemodelsrefer to high, median and low

image quality respectively.
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Table 3.3:PSNR and MSE between original and decompressed 2D images

Image name | RMSE | 3D RMSE Quantization Values
Low-frequency | High-frequency
Wall 2.49 2.09 0.02 0.02
Wall 2.82 3.95 0.04 0.04
Wall 3.25 4.72 0.08 0.08
Girl 3.09 3.78 0.02 0.02
Girl 4.08 3.94 0.04 0.04
Girl 5.25 3.66 0.08 0.08
Woman 2.88 3.37 0.02 0.02
Woman 3.53 3.09 0.04 0.04
Woman 4.35 2.61 0.08 0.08
Image name | RMSE | 3D RMSE | Low-frequency | High-frequency
Wall 2.66 2.09 0.02 Ignored
Wall 2.86 3.95 0.04 Ignored
Wall 3.24 4.72 0.08 Ignored
Girl 4.39 3.41 0.02 Ignored
Girl 4.71 3.83 0.04 Ignored
Girl 5.34 3.74 0.08 Ignored
Woman 3.38 3.12 0.02 Ignored
Woman 3.73 3.07 0.04 Ignored
Woman 4.38 2.71 0.08 Ignored

3.5. Comparison with JPEG2000 and JPEG Compression
Techniques

The proposed compressi@hgorithm iscompared with two techniques widely used in image,
video compression and image transmission: JPEGIRE{52000. As mentioned din Chapter 1
(See section 1.2)1he JPEGtechniqueis based on two dimensional DCT applie@dn image,

and previously the images divided into 8x8 blocks. Additionally, each bloak encoded
separatelpt2, 127] While JPEG200@s based on DWT, which is applied apartitioned image

into non-overlappedblocks (i.e. block size variable specified by the use/programmer), then the
transformed blocked addressed t coding algorithm for compression (See sectioj2] 2\pst
image compession applications allow the use/programmer to determine image quality by using
specific parameters for balance between image quality and compressiori2dtio The
comparison between these two methods and our appi®aalsedon RootMeanSquareError
(RMSE).

Table 3.4: "High", "Median” and "Low" represent image quality used by each method.
Moreover, "FAIL" means that the method (JPEG or JPEG2000) cannot compress images when
the quality value is "Low" as reached by our approach and unable to recbise 3D model.
Figures 3.12, 3.13 and 3.14 show the 3D reconstructed images by JPEG and JPEG2000.
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Table 3.4: Comparison between the proposed algorithm and JPEG2000 and JPEG techniques

Image oual Proposal Method JPEG2000 JPEG Con&prgssion

uality 3D 3D 3D atio
Name RMSE RMSE RMSE RMSE RMSE RMSE

Wall High 2.49 2.09 1.92 4.28 3.14 2.8 98%
Median | 2.82 3.95 2.14 5.01 3.87 4.5 98.7%
Low 3.25 4.72 2.42 3.562 5.34 6.9 99.1%
Girl High 3.09 3.78 2.14 3.94 3.28 3.94 94.4%
Median | 4.08 3.94 2.88 4.02 4.72 3.72 96.6%
Low 5.25 3.66 4.1 151 FAIL FAIL 97.9%
Woman High 2.88 3.37 2.14 3.14 2.6 2.55 95.6%
Median | 3.53 3.09 2.7 3.2 4.58 2.75 97.3%
Low 4.35 2.61 FAIL FAIL FAIL FAIL 98.2%

(a) Decompressed by JPEG2000 3D Fratge(b) Decompressed by JPEG2000 3D Flat image,
3D RMSE =4.283D RMSE=5.01

(c) 3D image decompressed by (d) 3D image decompressed by
JPEG2000 3D RMSE=3.52 JPEG Quality=56% (ded@Bjled

(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]
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Figure3.12: (a), (b) and (c) Decompressed 3D Wall image by JPEG2000, Decompressed image with quality=40% most of
regions are matched with the original imageikirty with quality=26% and quality=10%approximately matched with the
original image, (d,e) Decompressed 3D Flat image by JPEG (degradeshagmized with original image. Median quality

2D decompressed image by JPEG at quality=51%, quality=23%aquabé of generating 3D model.

(a) Decompressed 3D image by JPEG2000, 3D RMSE=3.94

(b) Decompressed 3D image by JPEG2000, 3D RMSE=4.02

(c) Decompressed 3D image by JPEG2000, 3D RMSE=1.51
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(d) Decompressed 3D image by JPEG, Quality=45%RBISE=3.94

(e) Decompressed 3D image by JPEG, Quality=17%, 3D RMSE=3.72

Figure3.13: (a), (b)and (c)Decompressed 3D Girl image by JPEG20a), () Decompressed 3D Girl image by JPEG.For
low quality, JPEG cannot compres29.1KB.

(a) Decompressed 3D image by JPEG2000, 3D RMSE=3.14
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(b) Decompressed 3D image by JPEG2000, 3D RMSE=3.2

(c) Decompressed 3D image by JPEG, Quality=56%, 3D RMSE=2.55,

(d) Decompressed 3D image by JPEG, Quality=13%, 3D RMSE=2.75

Figure 3.14: (a), (b) Decompressed Women image by JPEG2000, (c), (d) Decompressed 3D Women
image by JPEG. For low quality JPEG cannot compass5KB.
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3.6. Conclusion

In this Chapter we demonstrated a new image compressai@thodvhich is used in 3D
applications. Our methoid based on two different types of transformations: DWT and
DCT respectivelyfollowed by theMatrix Minimization algorithm which is proposed in
this thesis. The results shothat our approach produced image duyalat higher
compression ratios thate capable to reconstruthe3D object. Another advantage, our
approach has better image quality than JPEG and JPEG20@e Othehand, thesteps

in the algorithm are more complex than JPEG and JPEG2000. The nmopbritant
feature ofthis methodis its ability to provide high quality imageathigh compression
ratios. Themain features of theechniques proposed and demonstrated in this Chager
highlighted adollows [42].

1- The two transformations apoposed by the methdd increasehe high-frequency
coefficients, this is one dhereasons t@achievehigher compression rat®

2- The proposed Matriinimization algorithm is used to collect each three adjacent
coefficients from the higfrequency matces converting toa single floating point
value. Thisis a lossless step that reduces the size of the data and at the same time
preservesmage qualy,

3- The main reasotouse Daubechi@gmvelet(db3)is that it helps our approach to get
higher compression ratios, becauise Daubechiegdb3) DWT family canzoontin
an image anall high-frequeng subbands areset to zeratthefirst level: HL1, LH1
and HH1 (i.ethehigh-frequerty submatrices are ignoredSee ®ble 3.3)

4- The new decoding algorithm is proposed in this chapter calledAlgBithm,
whichrepresents the cod# the proposedlecompression algorithm. This algorithm
retrieve a matrix from a orgimensional array depending on RandomWeightValues
(i.e. which is themain key responsible for coding/decoding).In addititre LSS
Algorithm represents lossless decompressiomecoveing the exact original
coefficients

5- The RandomWeightValues with Limitddata are the keys used for coding and
decoding an imagevyithout these two keys an imagannot be recovered,

6- Another featureoftheproposedapproach has better visual image quality at higher
compression rat®compared with JPEG and JPEG2000. Thisesaustheapproach
removes most of the blocktefactscausedby the 8x8 twedimensional DCT of the
JPEG techniqueAlso, our approach removes some blurring caused by quantization
used in multlevel DWT of the JPEG200@2].

Thedisadvantagesf the methods arndlustrated as follows

1- The compression/decompressgirpsaremore complex than JPEG and JPEG2000,
leadng to increased execution timecompared with JPEG and JPEG2000.
Furthermorethe LSSAIgorithm iterative method is particularly complex.

2- BecausetheMatrix Minimization algorithm converts each integer coefficients to
floating-point number, thereby causing increasing headerpressed file size.
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Chapter 4

DWT -JPEGbasedCompression with Block Sequential Search
Decompression

4.1. Introduction

The JPEG image compression method is based on the Discrete Cosine TréD€fjr{See

section 1.2.1).17]. The mage is divided into segments and each segiméhén a subject of

the transform, creating a series of frequency components that correspond with detail levels of
the imaggl27,133]. A step beyond JPEG is the JPEG288thniquethat is based oBWT

(See section 1.2.2)hich is one of the mathematictdols for hierarchically decomposing
functions. Image compression using Wavelet Transforms is a powerful method that is
preferred by scientists to get compressed imagehigher compression ratios with higher
PSNR values3][5]. Its superiority in achieving high compression ratio, error resilience, and
other features promotes it to becotnday'scompression standard lead to the JPEG2000

ISO.

As referred to the JPEG abbreviatiavhich stands for Joint Photographic Expert Grou
JPEG2000 codec is more efficient than its predecessor JPEG and overcomes its drawbacks
[12]. It also offers higher flexibility compared to even many other codec such as region of
interest, high dynamic range of intensity values, multi component, losdylassless
compression, efficient computation, compression rate control, etc. The robustness of
JPEG2000 stems from its utilizatiarf the Discrete Wavelet Transform (DWT) in encoding

the image data. DWT exhibits high effectiveness in image compressgoto dis support to
multi-resolution representation in both spatial and frequency domains. In addition, DWT
supports progressive image transmission and region of interest ¢hdig19].

We describedn the previous Chaptera two level DWT and two leveDCT transforms
appliedto 2D structured lightimages. Thalrawbacksf that method motivaté us to reduce
the number of transformation steps and incretse search algorith®s speedto reduce
coding and decoding tinda this Chaptey we introduce a nemethod ofapplying the JPEG
technique withthe Discrete Wavelet Transform (DWT) for higlhsolutioncompressionThis
image compression algorithnstars with transfornming an image bya single level
DWT,followed by the JPEG technique applied to the "LL" sub-band (Low-frequency
coefficients)this process is calletlere theJPEG Transfon. Next, we separate the final
transformed matrix inta DC-Array andan AC-Matrix containng theDC values andhe AC
coefficients respectively. Finally, thdatrix Minimization algorithmis appliedto the AC-
Matrix followed by arithmetic codir{d33].

The novel decompression algorithpnoposedin this chapteris a Block Sequential Search
Algorithm, which is represesttheinverseof theMatrix Minimization algorithm. Thisseach
algorithm consist opointers(P) searchingas a blockto find the original ACcoefficients.
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Thereafter,it combines all decoded D@lues with the decoded Acfefficients in one
matrix followed by inverse JPEG transformed and inverse DWilknewtechniqie is tested
by compression and reastruction of 2Dstructured lighimages Additionally, this technique
is compared with JPEG and JPEG2000 algorithradwyg 2D and 3D RMSE33].

4.2. Proposed 2D Image Compression Algorithm

The JPEG technique is one of ttechnques used in image compressionjaportant feature
of the JPEGnethodis the "Quality" parameter, which all@the user to adjust the amount of
the data lost over a very wide range. In tlsction we explain indetail thdPEG
transformation appled on the outputs of adiscrete wavelet transform. The JPEG
transformation consists :0fl) Apply DCT on each 8x8 block followed kay quantization
process. 2) Zigzag scan converting each block into 64 coefficients, and tis¢ofel-
coefficients in two diffeent matriced130. Figure 41 describes the proposed DWPEG
algorithm steps.

Figure 4.1 ProposedWT-JPEG Compression Techniques

4.2.1. The Discrete Wavelet Transform

DWT is the first phase in the proposed image compression algorithm, to producitbour
bands $ee Section 3.2)1131]. Most values in the higlrequency domains (i.e HL, LH and

HH) are insignificant coefficients without affecting on the reconstructed image. For this

reason all the high frequency domains are discarded in this researcke(iall values to
zero), and this does not metnatthe image will lose much information, this depends on the
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image dimensions. Fige 42 shows the decomposition image by Daubechies filterttzed
recomposes subands without higtirequenciefL34].

Figure 4.2 reconstructed image by using Daubechies single stage DWT

4.2.2. The JPEG Transform

The "LL" subband partitioned into neaverlappng 8x8 blocks, each block is transformed
by usinga two-dimensional DCT to produce a®rrelated coefficients. Each 8x8 frequency
domain consists of D@alue at the first location, whilthe other coefficients are called AC
coefficients(See Section 3.2.5]. After applying the tweadimensional DCT on eac8x8
block, each blocks quantized by the Quantization Matrix "QM" using -dtwision-matrix
with truncates the results. This process removes insignificant coefficients and increases the
number of zeros in the each block. QM computes as fallid3#s133]:

oM (i, i) 6%}3Iock 6{? 641:), if (QM (i., j?) d=odd (a1)
5JBIock o«i 0+) otif (QM (i, j)) d=even
Where\ Block: is represented block size i ,j=1,2,3+,Block

()= () (42)

In the above Eg4.2), the factor "Scale” is used to increase/decrease the values of the "QM".
Thus, image detailsrereduced in case factor Scale >1. There is nd liamge for this factor,
because this depends on the DCT coeffic[@B(3].

Each guantized 8x8 block is converted into-dimeensional array (i.e. the array contains 64
coefficients) by zigzag scdn18].Whereas, the first value transferred into new array called
DC-Array, while the other63 coefficients are stor@ato a new matrix "LLac". Finally, the
DC-Array is compressed by Arithmetic coding. The Arithmetic coding is one of the
important methods used inath compression method, especially used in JPEG2000.
Arithmetic coding depends on "Low" and "High" equations to generate streams|[af3bijts
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Figure 4.30peration and separah of DC-value fromthe 64 coefficients

4.2.3. The Matrix Minimization Algorithm

The LL oc matrix ready for coding bthe Matrix Minimization algorithm which isappliedto
each three coefficien{See section 3.2.3)o produce single datatem.

In this Chapter we applyhe Matrix Minimization algorithm to each three columaof an
image this means redurng each three column® asingle codeccolumn However, the bit
size for each data in theinimized arayis increased. Figre 44 illustrates the conversion of
three columns into one dimensional arfé®,133]

Figure 4.4 MatrixMinimization Algorithm

In above Figure4.4 (a) K1, K2 and K3 represerthe conversionkeys of the Matrix
Minimization algorithm The following equation ilistrates converting three ddtaa single
data itenfSeeList 3.1)42,133]

Di=(K1 Ai)+ (K2 Bi) + (K3 Ci) (4.3)

Wherd i=1, 2, 3,sn
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If the keyvalues ardost, the data cannot be retrieved, because the keys ardoudsath
coding and decoding. The key value generatedhrough arandom number generator. For
example, Keyl= 0.8147, KeyR.9058, and Key3=0.1270. The kegregenerated once for
all matrix dataand, after calculation, all coded data "Défe arranged togethanto aone
dimensional arrgy2,133]

Before appfing the Matrix Minimization algorithm, the probability of the data for A@Gatrix
is computed These probabilities are called Limit€éhta, whichare used later inthe
decompression stage (See Figure .3[%)e LimitedData set isstoredin the header fileas
additional informabn of compressed dafd2,133]

4.3. Proposed Decompression Algorithm

The decompression algorithm represeheseverse stepsf the proposed image compression
method First, appy arithmetic eécodingto decompresshe DC-array Thereafter,decode
theminimizedarray. Second, e$he novel Block Sequential Search Algorithm &
Algorithm), which istheinverseof the Matrix Minimization Algorithm to reconstruct th&C-
Matrix. The BSSAlgorithmestimates (Ai, Bi and Ci) by using "Di" witthe compression
keys. Whereas, Ai, Bi and Crepresentstimedcolumns of the AC-Matrix. The BSS
Algorithm can bedescribedy the following stepi.33].

Step 1 BSSAlgorithm startsby picking thefirst block of data from the LimitedDatathe

size of this block PEach value oblock relatesto each other like a network as shown in
Figure 4.5, wheré'Column1" is connected with "Colum#", which is connectedvith
"Column-3". In other words, the search algorithm computes all options in parallel. For
example: A=[1-1 0] , B=[1-2 0] and C=[3-1 5], and P=3According to Eq(4.3), "A","B"

and "C"are computel 27 times. This means, all optioase computel in parallel and one
option will be matched with "Di", and "Ai", "Bi" and "Ci" in "Columt", "Column2" and
"Column-3" representethedecompressed dais3].

Initially, the BSS algorithm starts with P=10 from "Limitd2ata(110.)" which isused by
the algorithmto estimate three columns (A, Bnd C), as mentioned in Figureth
Thereatfter, the algorithm starts searchingtf@roriginal data (Ai, Bi and Ci) which depends
on compressed column "Di" anithe values of the keys The first iteration starts with
matchingthe selected "Di" with 10 outputsin other word€q(4.3)is executed 1000 times in
parallelto find the original values for columns (A,Bnd C) as mentioned in Figure ¢hp If
the result is unmatched, in this case the second option will be taken form "Limited
Data(11+20.)" (i.e. selecting another 10 data from Litked-Data transferred to Arrayivhile
"Array2" and "Array3" remain in same old optiolisthe processing stilcannotfind the
result, in this case"Array2=Arrayl" (i.e. transferred data from Arrayl to Array2),ahew
processing starfBhrough this exfanation, "Arrayl", "Array2" and "Array3" are working
like a digital clock: sec, min. and hour respectively, this process will continuefunatill
original columns (Ai, Bi and Ci) ithe AC-Matrix[133].
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Step 2 In this stepthedecompressed A®atrix is composed with each DGalue (i.e. DC
values fromthe DC-array), then followed byinverse zigzag scan to convert each-64
coefficients to 8x8 blocks. These blockie combined with each other to buitde LL sub-
bands. Subsequentlgppl inverse quantization (i.e. datultiplication), followed by inverse
DCT on each 8x8 block. Finally, agpthe inverse DWT for obtaininghe 2D image. The
decompression algorithm steps are showed in Figy{&33].

(8) copyP data from LimitedData to temporary ,Arraylf for 8SAlgorithm

(b) data matched througdSSAlgorithm

Figure 4.5 (a, b) strategy fothe BSS-Algorithm
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Figure 4.6 Flowchartof the proposed Decompression Algorithm

4.4. Experimental Results
The proposed compressiomethod wasapplied on five typesf images, as shown in Figure
4.7. The tests have been performed using Daubechies DWT (db3), the block sizes used by
DCT (4x4 and 8x8). The results described below WAJTLAB for 2D image compression
in connection with a 3@isualization softwaréSee Section 3.4unning on an AMD Quad

Core microprocessor. Tables: 4.1, 4.2, 4.3, 4.4 and 4.5 show the compresséat gaeh
image.

(a) 2D BMP ,Wallf, dimension1280x1024 pixels (b) 2D BMP ,Corndithension1280x1024 pixels

(c) 2D BMP ,Facelf, dimension 1392x1040 (d) 2D BMP ,Face2f, dimension 1392x1040
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(e) 2D BMP ,Face3f, dimension 1392x1040

Figure4.7: (a, b) Colour 2D BMP image, size=3.78\(c,d,e)grayscale2D BMP image, size=1.381B

Table 41: 2D image"Wall.bmp'of 3.75 MBcompressed by the proposed image compression algorithm
Scale€ parameter used by

Block size used

guantization by Compressed| Compression
. . S .
L$r;1lsr:2n|(:e © | Chrominance JPEG- (KI; Ratio
Iaye? [Cb, Cr] Transformation
: X . 2%
2 2,2] 8x8 27.2 99.2
2 [4,4] 8x8 21.7 99.4%
4 [4,4] 8x8 17.5 99.5%
4 [8,8] 8x8 135 99.6%

Table 42: 2D image"Corner.ompdf 3.75 MBcompressed by the proposed image compression algorithm

Scale€ parameter used by _
o Block size used
quantization b Compressed )
Luminance . y Size Compre_:ssmn
Y / sinale Chrominance JPEG- (KB) Ratio
9 [Cb, Cr] Transformation
layer
7 2.2] 8x8 52.6 98.6%
7 [4,4] 8x8 39.9 98.9%
4 [4.4] 8x8 33.4 99.1%
4 8.8] 8x8 25.1 99.3%
8 8.8] 8x8 20.1 99.4%

Table 43: 2D image"FACE1.bmpbdf 1.38 MBcompressed by the proposed image compression algorithm
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Scale€ parameter used by Block size used by Compressed Compression
ization (si i Size Ratio

guantization (single layer) JPEG-Transformation (KB)

2 4x4 51.6 96.3%

4 8x8 16.3 98.8%

5 8x8 135 99%

6 8x8 11.6 99.1%

8 8x8 9 99.3%

Table 44: 2D image"FACE2.bmpbdf 1.38 MBcompressed by the proposed image compression algorithm

Scale€ parameter used by Block size used by Comspizssed Corgrzgssmn
quantization (single layer) JPEG-Transformation (KB)

2 4x4 39 97.2%

2 8x8 20 98.5%

4 8x8 11.6 99.1%

5 8x8 8.4 99.4%

6 8x8 9.6 99.3%

8 8x8 6.7 99.5%

Table 45: 2D image"FACE3.bmpbf 1.38 MBcompressed by the proposed image compression algorithm

Scale€ parameter used by Block size used by Compressed Compression
quantization (single layer) JPEG-Transformation (KB)

2 4x4 33 97.6%

2 8x8 16.8 98.8%

4 8x8 9.4 99.3%

5 8x8 7.7 99.4%

The proposed decompression algoritwasappliedto each compressathage as mentioned
before in section 4.2ZT'he decompressed algorithm shawrange of imageguality according
to "Scale" parameter and block size usedhe JPEGTransformation (See EQ.(2))idare
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4.8 Figure 4.9 Figure 4.10Figure 4.11and Figure 4.13howsequence of decompressed 3D
images: Wall, Corner, Facel, Face2 and Face3 respectivedye the quality of the 3D
reconstruction can be assessed.

(a) Decompressed "Wall" 3D nBdy e hadxle arRdR)ePtaicempressednWpd | S8 e=[2,4,4]

(c) Decompressad "Mhalde Scal@)[Delcdinpressed "Wall" 3D image Scale=[4,8,8], 3D s

Figure4.8 (a) Decompresse8D wall image shaded by using high quality parameters applied on each layer in
colour image "YCrCb". (b)Decompressed 3D wall image shaded by using normal quality parameters shows the
details of 3D surface. (c) ard) shows decompressed 3D surface at low quality parameters, the degradation

starts appearg on the 3D wall image.

(a) Decompressed "Corner"” 3D image Scale=[2,2,2], 3D shaded and te.
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(b) Decompressed "Corner" 3D imeegreo@Bpatéasaspd, 4Cdrndc) BD image Scale=]

(d) Decompressed "Corner" 3D image Scale=[4,8,8], 3D shaded and te:

(e) Decompressed "Corner" 3D image Scale=[8,8,8], 3D shaded and te:

Figure4.9: (a) Decompressed 3D corner image shaded by using high quality parameters applied on each layer in
colour image "YCrCb". (b, ¢c) Decompressed 3D Corner image shaded by using normal quality parameters
shows the details of 3D surface. (d) Decompressed 3DeCamage shaded by using low quality parameters

and the details of 3D surface still approximately sawehe original (€) Decompressed 3D Corner image
shaded by using very low qualiparameterand small amount of the degradation starts ajppgan the3D

surface.

(@ Decompressed "Facel" 3D image Scale=2, block size =[4x4] 3D texture and shz
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(b) Decompresstld 3D i(cagkecomprfescsed" "3D (id)aecompriease’tl 3hbage
Scale=2, iwlexkdzs4] 3D Sramded4d, block size=[8XF]aBD-5hbhdedk sizkad@x8] 3D

(e) Decompreased" "3D (MaBDecompressed "Facel" 3D image Scale=8
Scale=6, block sigead@xiBlo8k size=[8x8] 3D shaded and texture

Figure4.10 (a) Decompressed 3D Facel image shaded by using high quality parameters applied on the grey
scale image. (b, ¢, d) Decompressed 3D Facel image shaded by using normal quality parameters shows the
details of 3D surface. (e) Decompressed 3D Facel imagedshgdising low quality parameters and the details

of 3D surface still approximatelyne sameas the original(f) Decompressed 3D Facel image shaded by using

very low quality parameters, and small amount of the degradation startsiagpeahe 3D surfae.

(a) Decompressed "Face2" 3D image Scale=2, block size =[4x4] 3D textur
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(b) Decompreace" "3D (ic ayeco mpresce” "3D (daDecomprieaced"iBdge
Scale=2, block size=[8x8] 3Dbbbhladede=[8xBdal®cdbeate,dblock size=[8x8] 3D shaded

(e) Decompressed "Face2" 3D image (f) Decompressed "Face2" 3D imz:
Scale=6, block size=[8x8] 3D shaded block size=[8x8] 3D shact

Figure4.11 (a) and (b) Decompressed 3D Face2 image shaded by using high and normal quality parameters
respectively, applied on the gregaleimage thedetails of 3D surfaces near to original 3D surface. (c)dnd(
Decompressed 3D Face2 image shaded by using normal quality parameters and some details of 3D surface are
changed. (e) and (f) Decompressed 3D Face2 image shaded by using low quality parameters, and small amount
of the degradation appears on the 3D s&fa

(a) Decompressed "Face3" 3D image Scale=2, block size =[4x4] 3D textur
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(b) Decompreacedt) Decompreassedd) Decompressed "Face3" 3D image
Scale®dock size=pBxaldf=4khdize=[8xBdalelrlDck size=[8x8] 3Qextaded and

Figure4.12 (a) Decompressed 3D Face3 image shaded by using high quality parameters applied on the grey

scale image. (jc) Decompressed 3D Face3 image shaded by using normal quality parameters shows the details
of the 3D surface is near to original 3D surface. (d) Decompressed 3D Face3 image shaded by using low quality
parameters, and small amount of the degradation egpea the 3D surface.

The following Tables4.6, 4.7, 4.8, 4.9 and4.10 show time execution fadhe BSSalgorithm
for each image using two types of pointedPs§ andP=10). The pointer refers to number of
coefficients using imlock for space search (i.e. searching in Limif2aia).

Table 4.6:BSSAlgorithm time execution for image: Wall.bmp

Parameters Time execution (sec.) for Time execution (sec.) for
BSSAlgorithm, P=5 BSSAlgorithm, P=10
. . . Total time
Luminance Chrominance Total time
Y Cb C Y C Cb
% [Cb, Cr] ' ) ' )
2 [2, 2] 10.95 6 11.87 28.82 7.8 4.36 7.45 1961
2 [4, 4] 10 | 355| 427 1782 | 7.97 2.24 2.43 1264
8.79
4 [4, 4] 3.66 2.9 4.29 10.85 3.19 2.6 3.0
7.75
4 [8, 8] 3.25 291| 272 8.87 3 2.6 2.15

Table 4.7:BSS-Algorithmtime execution for imag€orner.bmp

Parameters Time execution (sec.) for Time execution (sec.) for
BSSAlgorithm, P=5 BSS-Algorithm, P=10
Luminance Chrominance v Cb cr Total time v cr Ch Total time
Y [Cb, Cr] ©) )
2 2, 2] 3661 | 9.28 | 21 66.89 2751 | 9.42 14.25 5118
2 [4, 4] 3575 | 4.69 | 6.13 4657 2555 | 352 55 34.57
4 [4, 4] 5.44 4.58 6.48 16.50 6.22 3.57 5.99 15.78
4 8, 8] 55 | 269 | 3 11.19 6.0 4.22 3.16 13.38
8 [8, 8] 2.94 2.93 3.32 9.19 2.93 4.46 341 10.8
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Table 4.8:BSSAlgorithmtime execution for imageACE1.bmp

Parameters BSSAlgorithm, P=5 BSSAlgorithm, P=10
Lumi\r;ance Block size Total time(s) Total time (s)
2 [4x4] 126.20 122.24
2 (8x8] 65.59 6112
4 [8x8] 15.22 8.47
5 [8x8] 937 6.91
6 [8x8] 6.14 491
8 [8x8] 3.38 4.77
Table 4.9:BSSAlgorithmtime execution for imageACE2.bmp
Parameters BSSAlgorithm, P=5 BSSAlgorithm, P=10
Lumi\r;ance Block size Total time(s) Total time (s)
2 [4x4] 81.83 76.58
2 8x8] 44.69 43.24
4 [8x8] 7.53 8.42
5 [8x8] 776 8.59
6 [8x8] 4.74 5.24
8 [8x8] 4.39 4.49
Table 4.10:BSSAlgorithmtime execution for imageACE3.bmp
Parameters BSSAlgorithm, P=5 BSSAlgorithm, P=10
Lumi\r;ance Block size Total time(s) Total time ¢)
2 [4x4] 16.27 10.67
2 [8x8] 9.0 7.8
4 [8x8] 3.1 3.77
5 [8x8] 30 3.21

45. Comparison with JPEG and JPEG2000
Our approach is compared with JPEG and JPEG2000; these two techniques are used widely
in digital image compressioespecially foimage transmission and video compression. The
JPEG technique is based on the 2D DCT applied on the partitioned image into 8x8 blocks,
and then each block encoded by RLE and Huffroading [129, 133] The JPEG2000 is
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based on the muitevel DWT 9/%daulechies filter, applied on the partitioned image and
then each partition quantized and coded by Arithmetic coding. Most image compression
applications allow the user to specify a quality parameter for the compression. If the image
quality is increased the caqmression ratio is decreased and vimysa[l131, 133] The
comparison is based on the 2D image and 3D image quality forgiéisé quality by Rooct
MeanSquareError (RMSE). Tables4.11, 4.12,4.13, 4.14 and4.15 show the comparison
between the three mettis for Wall, Corner, Facel, Face2 and Face3 respectively.

Table 4.11:Sequence of'Wall.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression Proposed Method JPEG2000 JPEG
Ratio 2D RMSE | 3D RMSE | 2D RMSE | 3D RMSE | 2DRMsE | 3P RMSE
00 205 | 28 6.44 26 0.26 9.4 0.33
99.4% 3.5 6.45 2.8 0.26 15.4 24.4
00 505 | 37 0.49 31 055 FAIL FAIL
00 605 | 49 0.47 33 058 FAIL FAIL

Table 4.122 Sequenceof "Corner.omp"” 2D and 3D decompressed image by three methods, according to
compressed size

Compression Proposed Method JPEG2000 JPEG
Ratio 2D RMSE | 3D RMSE | 2D RMSE | 3D RMSE | 2D RMsE | 3D RMSE
o8 6% |58 0.07 4.7 0.05 11.2 1.15
o8 99 |68 1.14 5.6 0.25 13.7 1.18
00 100 | 71 1.14 6.1 1.83 16.0 1.81
00 39 | 94 1.15 6.6 0.25 20 56.8
00 a9 | 99 0.34 7.2 1.17 FAIL FAIL

Table 4.13: Sequence of "FACEl.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression Proposed Method JPEG2000 JPEG
Ratio 2D RMSE | 3D RMSE | 2D RMSE | 3D RMSE | 2D RMsE | 3D RMSE
o6 30 |43 0.85 40 0.66 40 1.8
07 o0 |47 0.82 37 1.43 76 1.97
o5 69 |54 1.48 47 18 122 1165
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99% 5.7 1.80 5.1 1.81 FAIL FAIL

99.1% 6.1 1.98 5.4 1.93 FAIL FAIL

99.3% 6.7 1.94 5.8 1.86 FAIL FAIL

Table 4.14: Sequenceof "FACE2.bmp" 2D and 3D decompressed image by three metleodsyding to
compressed size

Compression Proposed Method JPEG2000 JPEG

Ratio 2D RMSE | 3D RMSE | 2D RMSE | 3D RMSE | 2D RMsE | 3D RMSE
07 205 |24 0.47 15 0.62 2.1 0.49

os 5o | 28 0.66 1.8 05 26 15.0

00 195 | 34 1.18 24 0.93 11.0 FAIL

o0 a9 |38 15.8 3.0 1.06 FAIL FAIL

00 306 | A1 14.9 3.1 15.2 FAIL FAIL

0o cop | 46 15.4 33 15.1 FAIL FAIL

Table 4.15:Sequenceof "FACE3.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression Proposed Method JPEG2000 JPEG
Ratio 2D RMSE | 3D RMSE | 2D RMSE | 3D RMSE | 2D RMsE | 3D RMSE
07 6o |23 0.55 1.8 0.93 2.7 0.49
o5 8o | 26 0.55 24 0.97 9.7 FAIL
00 39 | 33 0.59 2.9 0.67 FAIL FAIL
o0 a9 |36 0.70 32 0.77 FAIL FAIL

In the above table#t.11,4.12,4.13,4.14 and4.15 "FAIL " means that tREPEG algorithm
wasunable to compress/decompress an image at high compression ratiche/btleer two
methods (our proposednd JPEG2000tan compress/decompress successfully. In some
casesthe 3D RMSE vary, if we compare it with 2D RMSE, this is because the dimensions of
the original 3D image and 3D decompressed image unmatched. In this casthe
unmatched regions are discarded.On the other hand, RMSE is not enough to show the real
comparison between these three methods.The following figdr¥s; 4.16, 4.17, 4.18 and

4.19 shows the visual properties for the 3D decompressed images: Waler CBACEL,

FACE2 and FACES3 respectively by using JPEG and JPEG&O@Perceptual assessment of
guality can be made.
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(a) JPEG2000, 3D RMSE= 0.26(b) JPEG2000, 3D RMSE=0.26 (c) JPEG2000, 3D RMSE=0.55
Compress size=27.2 Kbytes Compress size=RlyfesCompress size=17.5 Kbytes

(d) JPEG2000, 3D RMSE=0.58 (e) JPEG, 3D RMSE=0.33 (f) JPEG, 3D RMSE=24.4
Compress size=13.5 Kbytes  Compress size=27.2 Kbytes =~ Compress size=21.7 Kbytes

Figure4.15:(a, d) Decompressed Wall image bging JPEG2000¢(f) Decompressed Wall image BREG

(a) JPEG2000, 3D RMSE=0.05 (b) JPEG2000, 3D RMSE=0.25 (c) JPEG2000, 3D RMSE=1.83
Compress size=52.2 Kbytes =~ Compress size=39.9 Kbytes Compress size=33.4 Kbytes

(d) JPEG20003D RMSE=0.25 (e) JPEG2000, 3D RMSE=1.17 (f) JPEG, 3D RMSE=1.15
Compress size=25.1 Kbytes = Compress size=20.1 KbytesCompress size=52.2 Kbytes
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(9) JPEG, 3D RMSE=1.18 (h) JPE® BMSE=1.81 (i) JPEG, 3D RMSE=56.8
Compressize=39.9 Khytes  Compress size=33.4 KbytesCompress size=25.1 Kbytes

Figure 4.16: (a, €) Decompressed Corner image by JPEG2000i) ecompressed Corner image by JPEG.

(a) JPEG2000, 3D RMSE=1.18 (b) JPEG2000, 3D RMSE=1.81 (c) JPEGIEMSE=56.8 (dJPEG2000, 3D
RMSE=56.8
Compress size=51.6 Kbytes Compress size=28.4 Khytes Compress size=16.3 KbytesCompress size=13.5Kbytes

(e) JPEG2000, 3D RMSE=1.18 (f) JPEG2000, 3D RMSE=1.81(g) JPEG, 3D RMSE=1.8(h) JPEG, 3D RMSE=1.97
Compress size=11.6 Kbytes Compress size=9.0 KbytesCompress size=51.6 KbytesCompress size=28.4 Khytes

(i) JPEG, 3D RMSE=116.5
Compress size=16.3 Kbytes

Figure4.17: (a, f) Decompressed FACE1 image by JPEG200Q,ifd>ecompressed FACE1 image by JPE
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(a) JPEG2000, 3D RMSE=0.62 (b) JPEG2000, 3D RMSE=0.5(c) JPEG2000, 3D RMSE=0.93(d) JPEG2000, 3D
RMSE=1.06
Compress size=39 Kbytes Compress size=20 Kbytes Compress size=11.6 KbytesCompress size=8.4 Kbytes

(e) JPEG2000, 3D RMSE=15.2 {fpEG2000, 3D RMSE=15.1(g) JPEG, 3D RMSE=0.49 (h) JPEG, 3D RMSE=15.0
Compress size=9.6 Kbytes Compress size=6.7 KbytesCompress size=39 Kbytes Compress size=20 Kbytes

Figure4.18: (a, f) Decompressed FACE?2 image by JPEG2000, (g, h) Decompressed FACE?2 image by JPEG.

(a) JPEG2000, 3D RMSE=0.93 (b) JPEG2000, 3D RMSE=0.97 (c) JPEG2000, 3D RMSE=0.67(d) JPEG2000, 3D
RMSE=0.77
Compress size=33 Kbytes Compress size=16.8 Kbgtepress size=9.4 Kbytes Compress size=7.7 Kbytes

(e) JPEG, 3D RMSE=0.49
Compress size=33 Kbytes

Figure4.19: (a, d) Decompressed FACE3 image by JPEG2000, (e) Decompressed FACE3 image by JPEG.
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4.6. Conclusion

In this Chapterwe presentec&aind demonstrated a new metrefdmagecompression used in 3D
applications. The method is based@WT and JPEG transformation with the proposéatrix
Minimization algorithm. The results showed that our approach introduced better image quality
at higher compression ratios than JPEG and JPEG2000 being capable of accurate 3D
reconstructon at higher compression ratios. On the other hand, it is more complex than
JPEG2000 and JPEG. The most important aspects of the method and their role in providing high
gualty image with high compression ratios are discussddliasvs [133]:

1- Using two transformations helpedur compression algorithm to increase the number of
high-frequency coefficients, and reduce the {vaquency domains leading to incredse
compression ratios.

2- The Matrix Minimization algorithm is used to collect each three coefficients from the AC
matrix, toa singlefloating-point value. This process converts a matrix into an array, leading
to increasd compression ratios and keeping thalgy of the highfrequency coefficients.

3- The BSSAlgorithm represents the core of odecompressiomlgorithm toreconstructthe
exact original data (i.e. decompression algorithtopvertinga onedimensional array (i.e.
the Minimized-Array) to the originalmatrix, and depends on the organized-kalies and
Limited-Data

4- Thekeyvaluesand LimitedData are used in coding and decoding an image, without these
information imagescannot be reconstructedhis feature makes owapproachuseful in
image encryption.

5- Our approaclprovidesa bettervisual image quality compared to JPEG and JPEG2000. This
is because our approach removes most of the bdotactscaused by the 8x8 two
dimensional DCT of the JPEG technique and thigdug tothe Matrix Minimization
algorithm. Also, our approach uses single level DWT rather than muliével DWT of
JPEG2000, for this reason blurrirleyemovedby ourapproach.

However, thee are morestepsin the proposed compression and decompression algorithm than
in the JPEG and JPEG206&chniques.Alsdhe complexity oBSSalgorithm leads to increased
execution time fordecompression, because tiberative nature of themethod is particularly
complex.
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Chapter 5

Enhanced DWT-DCT based Image Compression withrastMatching-Search
Decompression

5.1. Introduction

We demonstrateth Chaptes 3 and 4that structured light images for 3Beconstruction cane
compressed lije proposed techniques with high aemy and high compression raiorhe
research addresseefficient compression of 2D images for 3D reconstruction and texture
mapping The proposealgorithmsby Siddeq andRodrigueq42,133136 arauseful tanany3D
applicationsscientific datasets, medicahd engineeringnd so on.

In this Chapteiwe describe a new method for image compression based on two separate
transformationsa two-levelDWT andatwo-level DCT, leading to an increased number of high
frequency matrices, which are then shrisgikthe Enhanceatrix Minimization algorithm. This
Chapterdemonstrates that our compression algorittan achieveefficient image compression
ratios up to 99.5% ad superior accurate 3D reconstruction compared with standard JPEG and
JPEG200{L37].

5.2. The Proposed 2D Image Compression Algorithm

This section presents a rehdossy compression algorithm implemented D&Tand DCT. he

algorithm starts witha two-level DWT. While all high frequencies (HL.LH;, HH;) of the first

level are discarded, all stdands of the second level are furtkaecoded. Wehenapply DCTo

the lowfrequency suiband(LL ) of the second levethe main reason for using D@&Tto split

into another lowfrequency and higifrequency matrice4DC and ACMatrix).The Ehhanced
Matrix Minimization algorithnis then applied t@ompresghe AC-Matrix; and high frequency
matrices (Hk, LH,, HHy). The DCGMatrix; is subject to a second D@hoseAC-Matrix; is

guantized then subject to arithmetic coding together with-MX@ix, and the output of
EMMalgorithm as depicted Higures.1[137].
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Figures.1: Layoutproposed bthetwo-level DWT-DCT compressiontechnique

5.2.1.Two-Level DiscreteWavelet Transform (DWT)

The Wavelet Transform divides the image into four 4amds: LL (i.e. whichrepreserg an
approximation ofthe original image) andhe other three represent details dsscribedin
Chapters 3 and 4. Practicallthe details carbe compressd into a few bytes, this is because
these detailgdo not affect significantlythe image quality.Given this we can setll detail
coefficientsto zero[133,137] The DWT uses filters for decomposiran image;these filters
helptoincrease the number of zerostle high frequency subands. One common filtersed in
decomposition and compositiontiee Daubechies Filtefdb3)132,141]

In the proposedalgorithm,the high frequencysubbandf first level are set to zerf.e. discard

HL, LH and HH). These subandsdo not affectimage details. Additionl, only a small

number ofnon-zero valuesrepresenin these sulbbands In contrasthigh-frequencysub-bands

in the second level (HL2, LH2 and HH2) cannot tiecardé, as this would significantly affect
image quality. For this reason, higltequeng values in this regionare quantized. The
guantization process in thimlgorithm depends on the maximum value in each-lsabd, as

shownby thefollowing equation 137]:

= (5.1)

=mak ) (529
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Where, €l,¢ represents each highequency sulbband at second level in DW(l.e. HL2, LH2

and HH2). WhileEH,me represents maximum value in a sdnd, andhe "Ratid’ valueis used

as a control fothe maximum véue, which isused to control image quality. For examplethe

maximumvalue in a sudband is 60 andRatic=0.1, the quantization value m=6, this means
all values in a suibbandare divided by 6

Each sukband has different prioritjor keepingimage details The higher priorities are: Lk
HL, and then HH Most of information about image detaidse inHL, and LH. If most of
nonzero data in these sbhndsare retainedthe image quality will behigh even ifsome
informationis lost in HH,.For this reasotthe Ratio value for HL,, LH,andHH,is definedin the
range ={0.1, 0.5} .

5.2.2 Two Level Discrete Cosine Transform (DCT)

In this Section,we describethe two-levelDCT appliedto low-frequencysubband €L (see
Figure51). A quantizations first applied to LL2 as followsAll values in LL, are subtracted by
the minimum of LLj,and then dividedby 2 (i.e. a constant even numberjhereaftera two-
dimensional DCT& applied to produce deorrelated coefficients. Eaclariable size block (e.qg.
8x8)in the frequencydomain consist®f: theDC-value at the first location, whilall the other
coefficients are called AC coefficients. The followingsteps illustrate théwo-levelDCT
implementation:

A- Organize Ll into 8x8 nonoverlapping kbcks (other sizes can also be used such as
16x16, then applpCTto eachblock followed byquantization The following equations
represent theCT andits invers¢130,131,138]

The quantization tablés a matrixof the same block sizéhat can be represesd as
follows:

()= +(+) (5.3)
(.)= () (54

Wherai, j=1,2,€Block , Scale=1,2,3,€ Block

After applying the twedimensional DCT on each 8x& 16x1@lock, each blockis
guantized by the@» using dotdivision-matrix, which truncates the results. This process
removes insignificant coefficients and increases the number of zeros in each block.
However,in the above Eq5(4), the factor Scalé is used to increase/decrease the values
of "Q". Thus, image details areducel in case o5cale-1. There is no limihg range for

this factor, because this depends on the [BQ&fficients[137].
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B- Converteach block to 1D arraynd thentransfer the first valuéo anew matrix called
DC-Matrix. While the rest of data AC coefficierdse saved into aew matrix called A€
Matrix. Similarity, the DC-Matrix is transformed again by DCT intanother two
different matricesDCT-Matrix2 and AGMatrix2. Figure52 illustrates the details of the
two-level DCT applied to the stiband LL,,

Figure5.2:(a) and (b}wo levelsDCT appliedto LL ,

The result from DEMatrix, size is very small and can be represeriiga few bytes. On the
other hand, the A@/atrix, contains lots of zeros with only a few nonzero data. All zeros can be
erased and just nonzero data are retained.

5.2.3EnhancedMatrix Minimization Algorithm

Each highfrequency sutband contains lots of zeros wita few nonzero data. We propose a
technique to eliminate block of zeros, and store blocks of nonzero data in an array. This
technique is useful for squeezing all higaquency sudbands, this process lsbelledEliminate

Zeros and Store Nonzero data (EZSM) Figure 53, applied to eachhigh frequency
independently. The EZSN algorithm starts to partition the-frigduency sutbands into non
overlappng blocks [K x K], and then search for nonzero blocks (i.e. search for at least one
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nonzero inside a blég. If a block contains any nonzero data, this block will be stored in the
array calledReduceeArray, with the position of that block. Otherwise, the block will be
ignored, and the algorithm continues to search for other nonzero blocks. The EZSNralgorith
illustrated in List 5.1 beloy37].

Figure53;Layoubf the EnhancedVatrix Minimization Algorithm

List 5.1:EZSN Algorithm
K=8; %% block size = [KK]
I=1; LOC=1
while (I< column sze for highfrequency sutband
J=1;
while (J<row size for highfrequency sufband)
Block[1..K*K]= Read_Block_from_Matrix(l,J) ; %%read 8x8lockfrom highfrequency sufband
if(Check_BlockBlocK) = = honzer) %%check the Block' contenthasta nonzero?
POSTION [LOC] =I; POSITION [LOC+1] =J; %% Save original location for block contains
%%nonzero data in higfrequency suiband
LOC=LOC+2;
Forn=1: Block_Size* Block_Size
Reduced_Array[P]= Blockj]; %%save nonzero data in new array
++P;
Endfor
Endif
J=J+K;
Endwhile% inner loop
I=l+ K;
Endwhile% outer loop

After each sulbandis squeezednto an array, thereafterthe Matrix Minimizationalgorithms
appliedto each reduced array independently. Tiistlod reduces thereay sizeby 66%, the
calculation depends on kenalues andcoefficients of the reducedray, andthe resultis stored
in a new array calledMinimized-Array. The following equation representbe Matrix
Minimizationalgorithm[133,134,137]
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MinimzedArray(P)=Key(1)RA(L) + Key(2)RA(L+1) + Key(BA(L+2) (5.5

Note that€RAs represent®ReducedArray (HL,, LH,, HH, and AGMatrix,)
L=1, 2, 3,€ N-3, *N« is thesize of Reducedrray
P=1,2,3€N/3

The Keyvaluesn the aboveEqg. (5.5) are generated bya key generator algorithminitially
computethe maximum value ireduced sulband andthree keysaregenerated according the
following equationg137]:

=15mafk ) (56)
"e 1 (5.7)
= + + (58)

= ( + ) (59)
Key=[K31, Ky, K3];% Final Key valuesor compression and decompression

WhereM representshe maximum value irthe high-frequency matrikl, Fa c t'®rland K "e
Jare integer valuegach reduced sdband(SeeFigures.3) has its own key value. Thaepends
on the maximunvalue in each subandThe idea for the key isimilar to weights used ira
Perceptron Neural NetwalR=AW;+BW,+CWs;, where Ware the weight values generated
randomlyand €A« €B+ and€Ce aredata. The output of this summation€R> and there is only
one possible combination for the data values gigiSee £ction 32.3)[133,134,137]

The Matrix Minimization algorithnproducea minimizedarraythat contains lo$ of zeros with a

few nonzero data. In this case separat zeros from nonzero data, as shown in FigudeThe
zercarray can be computed easily by calculating the number of zeros between two nonzero data.
For example, assume the followiMynimized-Array=[0.5, 0, 0, 0, 7.3, 0, O, O, O, &],the zere

array will be D,3,0,5,0lwhere the zeros in red refer tonmzero data existing at these positions in

the originalMinimized-Array and the numbers in black refer to the number of zeros between two
consecutive nozero dataf137].
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Figure 5.4 Separat®linimized-Array into zercarray and nonzerarray

Before applying the EnhancedMatrix Minimization algorithm, our compression algorithm
computes the probability of tReducedArray (i.e. computehe probability for each Hg, LHo,
HH, and AGMartix;). These probabilities are callédmited-Data, which is used later ithe
decompressiostage gee Figure 3.5)

The final step of the compression algorithm iighametic codingwhich isone of the important
methods used in daompressionit takesa stream of data and converttda single floating
point value. These valud#e in the range lesshan one and greater than zero thahen
decodegreturnthe exact stream of data. The arithmetic coding séeccompute the probability
of all data and assiga range for each datflow and high) to generate streams of bits
[33,57,131]

5.3 The FastMatching-Search Decompression Algorithm (FMS -

Algorithm)
Theproposediecompressionlgorithm s theinverseof compression andonsiss of threestages

[137]:

1) First levellnverseDCTto reconstructhe DC-Matrixg;

2) Apply the FMS-Algorithm to decode each stitand independently (i.e. HLLH,, HH,,
AC-Matrixy);

3) Apply thesecond leveinverseDCT with two levelsinverseDWTto reconstructhe 2D
image.

Once the 2D image is reconstructed, we agpiyctured light3D reconstruction algorithms to
obtain an approximation of the original 3D surface, from which errors can be coniputad
entire surface Figure55 showsthe layout of the main steps in thproposed decompression
algorithm.
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(a) First level inverse DCT

(b) FMS-Algorithm applied to reconstruct highequency matrices

(c) Two levels inverse DWT with two levels inverse DCT leggpto decompress 2D image

Figure55: (a),(b) and (Irepresentsdyout of the proposed Decompression algorithm

The FMS-Algorithm has beendesignedto recover the original high frequency data. The
conpressed dateontains information abotihe compressiokeys and probability data (Limited
data) followed by streasnof compressed higfiequency data. Thereforéhe FMS &orithm
picks up each compressed high frequedata and reainformation (key values and Limited

Data) from which the original high frequenajata arerecovered. ThHeMS-Algorithm is
illustratedthrough the following steps A and B:
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A) Initially, Limited-Dataare copied(in memory)three times into separated arrays. This is
becausexpanding the compressed data with the three keys resembidsrannnected
datg similar to a networkasshown inFigure56

B) Pick up a data itenfrom€De, the compressed array (i.e. CodellL., or CodedLH, or
CodedHH; or CodedAC-Matrix;) and searchfor the combination of (A,B,C)with
respective keythat satisfyD. Returnthe tripletdecompressed valuéa,B,C).

Figure56: Firststage FMSAlgorithm for reconstructing high frequendgatafrom Limited-Data. A, B and C arthe
uncompressed data which a@eterminedy the unique combination of keys

Since the three arrayd Limited-Datacontain the same value$at is A1=BEC1, A2=B2=C2,

and so on the searching algorithm computes all possible combinations of A with Keyl, B with
Key2 and C with Key3 that yield a result D. As a means of an exatopkider that Limited
Data=[A1 A2 A3] , Limited-Data=[B1 B2 B3] and LimitedData=[C1 C2 C3]. Then,
according to Eq.(10) these represent RA(L), RA(L+1) and RA(L+2) respectively, the equation is
executed 27 times {327) testing all indices and keys. Owfethese combinations will match the
data in (D) (i.e. the original high frequency Coddd, or CodedHL, or CodedHH, or Coded
AC-Matrix;) as described ifFigure56. The match indicates that the unique combination of
A,B,C are the orgininal data we areeaifl 37].

The searching algorithm used in our decompression meshoalled Binary Search Algorithm
the algorithmfinds theoriginal data (A,B,¢ for any inputfronarray€De. For the binary search,
the array should be arranged in ascending order. In each step, the algorithm compapes the
valuewith the middle of element of the arré.. If the valuematches, then a matching element
has been found and its position is retuffi8d]. Otherwise, if thesearchis less than the middle
element of€De, then the algorithm repeats its action on the-auhy to the left of the rddle
element or, ithe valueis greater, on the stdrray to the rightThere is ngrobability for €Not
Matched, because the FM8Igorithm computed all compression dg@t@assibilities previously

After the ReducedArrays (LH,, LH,, HH, and AGMatrix;) are recovered, their full
corresponding high frequencyatrices are re-build by placing nonzeredata in the exact
locations according t&ZSN algorithm (seList 5.1). Then the sulbandLL ,is reconstructedby
combining the DC-Matrix;and AC-Matrix; followed bythe inverse DCT. iRally, a two-
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levelinvers®WTis applied to recover the origindD BMP image (®eFigure5.5c)). Once the
2D image is decompressed 33 geometric surfacs remnstructedsuch that error analysis can
be perfemed in thisdimension137].

5.4 Experimental Results
The results described below USRATLAB -R2013afor performin@D imagecompression and

decompression, ar8D surfacereconstruction was performed with cawn softwaredeveloped
within the GMPR groudSeeSection3.4yunning on an AMD quadore microprocessor. The
justification for introducing 3D reconstruction is that we cagkeuseof a new set of mecs in
terms of error measuremerand perceigd quality of the 3D visualizatn to assess the quality
of the compresion/decompressialgorithms[135, 136]

The results in thischapter aredivided into two parts: firstwe apply the proposed image
compression and decompression methods to 2isgade imagesf human faces. The original

and decompressed images are used to generate 3D surface models from which direct
comparisons are made in terms of perceived quality of the mesh and objective error measures
such as RMSESecond, weaepeat all procedure®r 2Dcompression2D decompressign3D
reconstruction but this time with colour images of objects other than fAdégionally, the
computed 2D and 3D RMSi#e used directlyffor comparison with JPEG and JPEG2000
techniques.

5.4.1Compression, ecompression an8D Reconstructionfrom Greyscald mages

As described above thproposed imge compression started with DWThd level of DWT
decompositioraffectsthe image qualitylso thecompression raticsowe divided the results into
two parts to showthe effects of each independentbingle level DWHBNd two-level DWT.
Figure 57 showsthe original 2Chuman faces tested kiye proposed algorithmmTable5.1,
Tablés.2 and Tablb.3 showthe compressed sid®y usingour algorithm with asingle leveland
two-leveDWTforFacel Face® andFace3respectively.

(a) Original 2DFacedimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface
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(b) Original 2DFace2imensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface

(c) Original 2DFace8limensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface

Figure 57:(a), (b) and (cpriginal 2D imagegleft) with 3D surfaceeconstruction (right).

Table5.1:Compressed size for 2D imagacel

Applied single leveDWT
Single level DWT DCT parameters . .
High-frequencies | Block Compressed size Comprgssmn
g q : Scale (KB) Ratio
(HL,LH and HH) size
Discarded 8 x8 0.5 51.4 96.3%
Discarded 8 x8 1 29.33 97.9%
Discarded 8 x8 2 15.6 98.8%
Discarded 8 x8 3 10.58 99.2%
Discarded 8 x8 4 8 99.4%
Discarded 8 x8 5 6.37 99.5%
Discarded 16 x16 0.5 28.52 97.9%
Discarded 16 x16 1 14.74 98.9%
Discarded 16 x16 2 7.38 99.4%
Applied twolevelsDWT
Two levels DCT parameters
DWTHigh- C dsizd C .
frequencies Block ompressed size Compression
Ratio value ( size Scale (KB) Ratio
Eq.(5))
LH, | HL, | HH,
0.3 | 03| 0.3 | 29.93 0.5 29.93 97.8%
03| 03| 0.3 | 17.55 1 17.55 98.7%
03| 03] 0.3 9.7 2 9.7 99.3%
03| 03] 0.3 6.74 3 6.74 99.5%
0.3 | 03] 0.3 21 0.5 21 98.5%
0.3| 03] 0.3 | 1054 1 10.54 99.2%
03| 03] 0.3 5.19 2 5.19 99.6%
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Table 5.2: Compressed sizer 2D imageFace?2

Applied single level DWT

Single level DWT DCT parameters . .
. . Compressed size Compression
High-frequencies | Block Scale (KB) Ratio
(HL, LH and HH) size
Discarded 8 x8 0.5 47 96.6%
Discarded 8 x8 1 26.85 98%
Discarded 8 x8 2 14.42 98.9%
Discarded 8 x8 3 9.91 99.2%
Discarded 8 x8 4 7.4 99.4%
Discarded 16 x16 0.5 25.33 98.2%
Discarded 16 x16 1 13.3 99%
Discarded 16 x16 2 6.77 99.5%
Applied Two levels DWT
k-:—igr?-lfe}\é(equeDrY(\:/iZs DCT parameters Compressed Comprgssion
Ratio value ( Eq.(5) ) BI.OCk Scale size Ratio
LH, | HL, | HH, size (KB)
0.3 | 0.3 0.3 8 x8 0.5 35 97.5%
0.3 | 0.3 0.3 8 x8 1 19.34 98.6%
0.3 | 0.3 0.3 8 x8 2 9.9 99.2%
0.3 | 0.3 0.3 8 x8 3 6.41 99.5%
0.3 | 0.3 0.3 8 x8 4 4.66 99.6%
0.3 | 0.3 0.3 16x16 0.5 26.3 98.1%
0.3 | 0.3 0.3 16x16 1 12.96 99%
0.3 | 0.3 0.3 16 x16 2 5.76 99.5%
Table 5.3:Compressed size for 2D imagace3
Applied single level DWT
DCT
Single level DWT | parameters | Compresseq Compression
High-frequencies Block size Ratio
(HL, LH and HH) . Scale (KB)
size
Discarded 8 x8 0.5 49.53 96.4%
Discarded 8 x8 1 275 98%
Discarded 8 x8 2 14.31 98.9%
Discarded 8 x8 3 9.45 99.3%
Discarded 8 x8 4 7.13 99.4%
Discarded 16x16| 0.5 26.83 98.1%
Discarded 16 x16 1 13.53 99%
Discarded 16 x16 2 6.52 99.5%
Applied Two levels DWT
Two levels DWT DCT
High-frequencies | parameters | Compressed Compression
Ratio value Block size Ratio
Eq.(5) size Scale (KB)
LH, | HL, | HH,
03] 03| 0.3 8 x8 0.5 35.78 97.4%
03] 03| 0.3 8 x8 1 19.6 98.6%
03] 03| 0.3 8 x8 2 9.63 99.3%
03| 03| 0.3 8 x8 3 6.2 99.5%
03| 03| 0.3 |16x16| 0.5 25.78 98.1%
0.3 | 0.3 | 0.3 | 16x16 1 12.4 99.1%
03] 03| 03 |16x16| 1.7 6.45 99.5%
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The prgposed decompression algorithneésSectiorb.3) appliedto the compressed imagkata
recovershe 2D imageswhich are then used by tI3® reconstruction to generate the respective
3D surface. The following figuregigures.9, Figures.10 and Figire5.11 show highquality,

medianquality and lowquality compressed images for; Facel, Face2 and Face3. AlsebBa
Tablés.5 and Table.6 show thdime execution fothe FMS-Algorithm.

(a) Decompessed 2D BMP imagex Single level DWT converted to 3D surfa@® surface with scale=0.5 represents high quality
imagecomparable to theriginal image and 3D surface with scale=2 represents median quality image approximately high quality
image.Also 3D surface with scale=5 is low quality image somegursurfae failing to reconstruct Additionally, using ablock size
of16 x16 DCTfurther degrades th&D surface.

(b) Decompressed 2D BMP imagasstwolevels DWT converted to 3D surface; 3D surface with scaldad DCT 8x8 represetdw quality
imagesurfacewith degradation Additionally, using ablock sizeof 16x16 DCTurther degrades tH&D surface.

Figure59: (a) and (b decompresse®D image Facel by our proposed decompression method, and then converted to
a 3D surface
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Table 5.4:FMS time execution fobecompressed imadgeacel

Applied single level DWT with two levels DCT
DCT Decompressed RMSE FMS-Algorithm Time executiong)
3D .
Block Scale 2D RMSE RMSE AC-Matrix; LH HL HH
8 x8 0.5 4.42 1.9 4.25 Discarded Discarded Discarded
8 x8 1 4.83 2.31 1.31 Discarded Discarded Discarded
8 x8 2 5.58 2.07 0.23 Discarded Discarded Discarded
8 x8 3 6.21 2.4 0.1 Discarded Discarded Discarded
8 x8 4 6.87 3.34 0.046 Discarded Discarded Discarded
8 x8 5 7.41 3.39 0.046 Discarded Discarded Discarded
16 x16 0.5 6.0 3.96 2.24 Discarded Discarded Discarded
16 x16 1 6.63 2.48 0.23 Discarded Discarded Discarded
Applied Two levels DWT with two levels DCT
beT Scale Used in DCT Decompressed RMSE FMS-Algorithm Time executions)
and second level DW1 2D 3D )
RMSE RMSE AC-Matrix, LH» HL, HH,»
Block | Scale | LH, HL, HH,
8 x8 0.5 0.3 0.3 0.3 6.79 2.19 9.1 0.031 "HO
8 x8 1 0.3 0.3 0.3 7.5 4.77 1.75 "HO 0.031
8 x8 2 0.3 0.3 0.3 8.1 2.46 0.24 "HO "HO
8 x8 3 0.3 0.3 0.3 8.46 3.95 0.1 "HO "HO
16 x16 0.5 0.3 0.3 0.3 8.1 3.69 2.82 0.031 "HO
16 x16 1 0.3 0.3 0.3 8.89 5.18 0.65 "HO "HO
16 x16 2 0.3 0.3 0.3 9.62 5.1 0.18 "HO "HO

(a) Decompressed 2D BMP images at Single level DWT converted to 3D surface; 3D surface with scale=0.5 represents high quality
imagelike theoriginal image, and 3D surface with scale=2 represemtsdian quality imageilso, 3D surface with scale=4 is low
qudity withsurface slightlgegraded Additionally, ablock sizeof 16x16 DCT used in our approadhgrades somgarts of3D
surface.
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(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface; 3D surface with scale2C% 8ithrepresent low quality
image surface with degradation. Similadyblock size of 16x16 DCT used in our approach degrades the 3D surface.

Figure 5.D: (a) and (b)Decompressed 2D imagé Face2imageby our proposed decompression method, and then
converted to 3D surface

Table 5.5: FMS time execution for Decompressed imagee?2

Applied single level DWT with two levels DCT
DCT Decompressed RMSE FMS-Algorithm Time executiong)
3D .
Block Scale 2D RMSE RMSE AC-Matrix; LH HL HH
8x8 0.5 4.88 1.24 7 .06 Discarded Discarded Discarded
8x8 1 5.22 2.19 1.09 Discarded Discarded Discarded
8x8 2 5.86 1.64 0.208 Discarded Discarded Discarded
8x8 3 6.46 2.55 0.109 Discarded Discarded Discarded
8x8 4 6.96 2.16 0.046 Discarded Discarded Discarded
16x16 0.5 5.57 1.7 3.4 Discarded Discarded Discarded
16x16 1 6.09 2.13 0.56 Discarded Discarded Discarded
16x16 2 6.94 1.63 0.093 Discarded Discarded Discarded
Applied Two levels DWT with two levels DCT
Scale Used in Decompressed RMSE FMS-Algorithm Time executions)
DCT DCTand second leve
DWT Rf/l%E R&%E AC-Matrix, LH, HL, HH,
Block Scale | LH, | HL; HH,
8x8 0.5 0.3 0.3 0.3 5.16 1.33 13.15 0.046 0.046 0.031
8x8 1 0.3 0.3 0.3 5.76 2.07 2.1 0.031 "HO "HO
8x8 2 0.3 0.3 0.3 7.04 2.04 0.35 0.062 "HO "HO
8x8 3 0.3 0.3 0.3 7.91 1.39 0.109 "HO "HO "HO
8x8 4 0.3 0.3 0.3 8.43 1.48 0.062 "HO "HO 0.031
16x16 0.5 0.3 0.3 0.3 5.73 2.08 2.96 0.093 0.031 0.031
16x16 1 0.3 0.3 0.3 6.44 2.39 0.59 0.031 0.031 "HO
16x16 2 0.3 0.3 0.3 7.85 3.16 0.124 0.015 "HO "HO
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(a) Decompressed 2D BMP eges at Single level DWdonverted to 3D surface; 3Dirface with scale=0.5 represénigh quality imagdike
theoriginal image, and 3D surface with scale=2 represents median quality Biagerface witrscale=3 and 4 atew quality imagewith
slightly degradedurface while usingl6x16 blocksize doesot seem to degrade the 3D surface

(b) Decompresed 2D BMP images at two les&WT converted to 3D surface; 3D surface witlale=3, 4 and DC8x8 represeribw quality
imagedegraded surface. However, thleck sizeof 16x16 DCT used in our approach fesetter quality3D surfacefor higher compression
ratics.

Figure5.11: (a) and (b): Decompressed 2DFace3mage byour proposed decomgssion method, and then
converted t@ 3D surface

Table 5.6:FMS time execution for Decompressed ima&gpee3

Applied single level DWT with two levels DCT

DCT Decompressed RMSE FMS-Algorithm Time executiong)
3D .

Block Scale 2D RMSE RMSE AC-Matrix; LH HL HH
8x8 0.5 4,29 1.26 5.91 Discarded Discarded Discarded
8x8 1 4.7 1.32 1.1 Discarded Discarded Discarded
8x8 2 5.43 0.83 0.171 Discarded Discarded Discarded
8x8 3 6.09 1.68 0.093 Discarded Discarded Discarded
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8x8 4 6.67 1.67 0.046 Discarded Discarded Discarded
16x16 0.5 1.94 1.29 3.12 Discarded Discarded Discarded
16x16 1 1.52 1.5 0.59 Discarded Discarded Discarded
16x16 2 6.65 4.02 0.1 Discarded Discarded Discarded
Applied Two levels DWT with two levels DCT
Scale Used iDCT Decompressed RMSE FMS-Algorithm Time executions)
DCT and second level
DWT Rf/l%E Rf/l%E AC-Matrix, LH, HL, HH,
Block Scale | LH, | HL; HH,
8x8 0.5 0.3 0.3 0.3 4.81 1.13 12.00 0.078 0.046 "HO
8x8 1 0.3 0.3 0.3 5.53 1.83 1.96 0.015 "HO "HO
8x8 2 0.3 0.3 0.3 6.7 1.48 0.28 0.031 "HO "HO
8x8 3 0.3 0.3 0.3 7.47 1.63 0.078 "HO 0.031 "HO
16x16 0.5 0.3 0.3 0.3 5.58 2.08 4.69 0.062 0.015 0.031
16x16 1 0.3 0.3 0.3 6.42 1.96 0.98 0.046 "HO "HO
16x16 1.7 0.3 0.3 0.3 7.38 2.61 0.171 "HO "HO "HO

It is shown through the pictures and tables above that the proposgaression algorithis
successfullyappliedto greyscale imageslable 51, Tablé.2 andTable5.3 show a compression
of more than 99% othe original image size compressed ahd recostructed 3D surfacestill
preserve most of theguality. Some imageare compressed by DCT with block sipé 16x16
are also shown capable of generatimgh quality3D surface Also, there is nobmuch difference
between block sizeof8x8 and 16x16 fohigh quality reconstructioimages withEScale=0.5e.

5.4.2Compression, Becompression andBD Reconstructionfrom Colour Images

Colour imagescontainred, green and blue layers. In JPEG and JPEG2000 colour kagers
transformed to €YCbCre layers befotempression. This is because most of information about
images available in layer €Y+ while other layers €CrCbe containifésemation[118, 140] The
proposed imageompression wasested with YCbCr layers, and then applied on true colour
layers (Red, Geen and Blue). Fige5.2 showsthe original colour images tested by our
approach.

(a) Original 2D€Wall "dimensionsl280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface
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(b) Original 2D€Roonrdimensions 1280 x 1024, Image size: 3.75 Mbytesyerted to 3D surface

(c) Original 2D €ornerdimensions 1280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface

Figure5.2: (a), (b) and (c) Original 2D images with 3D surface conversion

First theVall,Roomand Cornerimages as depicted iabove Figure512 were transformed
toY cbCrbefore applyingour proposed image compressfdsoth using single level artdvo-level
DWT decompositionSecond our approachkvasapplied on thesame colour images but this time
usingtrue colour layer3ale5.7, 5.8 and5.9 showshecompressedize for the colour images by
the proposedcompressionalgorithmFigure5.4, 5.15 and 5.16 show decompressed colour
images(Wall, Roomand Cornerrespectively)as 3D surfaceAdditionally, Table.10, 5.11 and
5.12llustrate thexecution timefor the FMS-Algorithmat single level DWTfor the colour
imagesSmilarly, Table.13, 5.14 and5.15 show th&MS-Algorithm executiontime forthe same
colourimages bysingtwo-level DWT.

Table5.7:Compressed sizdéer 2D colourimageWall

Applied single level DWT with two levels DCT
Single level DWT DCT parameters .
High-frequencies(HL, LH and s Scale Compressed Con';pr_essmn
HH) Block size (KB) atio
For all colour layer size Y Cb Cr
Ignored 8x8 0.5 1 1 26.3 99.3%
Ignored 8x8 1 2 2 14.23 99.6%
Ignored 8x8 2 4 4 7,53 99.8%
Ignored 16x16 0.5 1 1 12.3 99.6%
Ignored 16x16 1 2 2 6.55 99.8%
Single level DWT High Blpck Red | Green | Blue Co_mpressed Comprgssion
Frequencies size Size (KB) Ratio
Ignored 8x8 1 1 1 24.42 99.3%
Ignored 8x8 3 3 3 8.47 99.7%
Ignored 8x8 5 5 5 5.46 99.8%
Ignored 16x16 1 1 1 11.47 99.7%
Ignored 16x16 2 2 2 5.9 99.8%
Ignored 16x16 25 25 25 4.85 99.8%




Applied Two levels DWT with two levels DCT

Two levels DWT High
frequencies

DCT parameters

Compression

Ratio value ( Eq.(5) for all Block Scale Cqmpressed Ratio

colour layers size size(KB)

LH, | HL, HH, Y Cb Cr

0.3 0.3 0.3 8x8 0.5 1 1 28.1 99.2%

0.3 0.3 0.3 8x8 1 2 2 11.8 99.6%

0.3 0.3 0.3 16x16 0.5 1 1 21.8 99.4%

0.3 0.3 0.3 16x16 1 2 2 8.29 99.7%

Two levels DWT High BSI?Zcek Red | Green | Blue Cst)ir;epEeKsSed Corr};[;rtiessmn

Frequencies

0.3 0.3 0.3 8x8 1 1 1 19.32 99.4%

0.3 0.3 0.3 8x8 2 2 2 8.4 99.7%

0.3 0.3 0.3 16x16 1 1 1 12.89 99.6%

0.3 0.3 0.3 16x16 2 2 2 5 99.8%

Table5.8:Compressed size for 2D colour imageom

Applied single level DWT with two levels DCT

Single level DWT

DCT parameters

High-frequencies(HL, LH and Scale Compressed | Compression
HH) BlQCk size (KB) Ratio
For all colour layer size Y Cb Cr
Ignored 8x8 0.5 1 1 58.21 98.4%
Ignored 8x8 1 2 2 34 99.1%
Ignored 8x8 2 4 4 18.92 99.5%
Ignored 16x16 0.5 1 1 29.86 99.2%
Ignored 16x16 1 2 2 16.19 99.5%
Ignored 16x16 2 4 4 8.07 99.7%
Single level DWT High Blpck Red | Green| Blue Co_mpressed Compr(_ession
Frequencies size Size (KB) Ratio
Ignored 8x8 1 1 1 53.25 98.6%
Ignored 8x8 3 3 3 17.66 99.5%
Ignored 8x8 5 5 5 10.73 99.7%
Ignored 8x8 9 9 9 6.28 99.8%
Ignored 16x16 1 1 1 23.83 99.3%
Ignored 16x16 3 3 3 791 99.7%
Ignored 16x16 5 5 5 4.65 99.8%
Ignored 16x16 7 7 7 3.38 99.9%
Applied Two levels DWT with two levels DCT
Two levels DWT High DCT parameters
frequencies Compressed | Compression
Ratio value ( Eq.(5) ) for all Block Scale mp pre
colour layers size size (KB) Ratio
LH, | HL, HH, Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 47.25 98.7%
0.3 0.3 0.3 8x8 1 2 2 23.96 99.3%
0.3 0.3 0.3 8x8 2 4 4 11.85 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 35.94 99%
0.3 0.3 0.3 16x16 1 2 2 17.62 99.5%
0.3 0.3 0.3 16x16 2 4 4 7.94 99.7%
Two levels DWT High Block Red | Green| Blue Compressed | Compression
Frequencies size Size (KB) Ratio
0.3 0.3 0.3 8x8 1 1 1 49 98.7%
0.3 0.3 0.3 8x8 3 3 3 10.42 99.7%
0.3 0.3 0.3 8x8 5 5 5 5.12 99.8%
0.3 0.3 0.3 16x16 1 1 1 36.34 99%
0.3 0.3 0.3 16x16 3 3 3 6.61 99.8%
0.3 0.3 0.3 16x16 5 5 5 2.93 99.9%
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Table5.9: Compressedize for 2D colour imag€orner

Applied single level DWT with two levels DCT
Single level DWT Compressed | Compression
High—frquuencies(HL, LH and DCT parameters size (KB) Ratio
HH) Block Scale
For all colour layer size Y Cb Cr
Ignored 8x8 0.5 1 1 31.59 99.1%
Ignored 8x8 1 2 2 15.85 99.5%
Ignored 16x16 0.5 1 1 15.39 99.5%
Ignored 16x16 0.8 6 6 7.8 99.7%
Single level DWT High Blpck Red | Green | Blue Co_mpressed Compr(_ession
Frequencies size Size (KB) Ratio
Ignored 8x8 1 1 1 44.5 98.8%
Ignored 8x8 2 2 2 22 99.4%
Ignored 16x16 1 1 1 21.16 99.4%
Ignored 16x16 2 2 2 10 99.7%
Applied Two levels DWT with two levels DCT
Two levels DWT High DCT parameters
frequencies Compressed | Compression
Ratio value ( Eq.(5) ) for all Block Scale sizep(KB) Rgtio
colour layers size
LH, | HL, HH, Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 31.72 99.1%
0.3 0.3 0.3 8x8 1 2 2 13.11 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 23.14 99.3%

(a) Decompressed 2D BMP images iagée level DWT converted to 3D surfgaecompresse8D surface by using RGB layer has better
quality than YCbCr layer.
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(b) Decompressed 2D BMP images at two levels DWT converted to 3D surfaceeatsopressed 3D surfagsing RGB layer has better
quality than YCbCr layer at higher compression ratio.

Figure5.14: (a) and (b) Decompressed colMiall image byour proposed decompressiapproachand then
converted to 3D surface

(a) Decompressed 2D BMP imagesSagle level DWT results converted to 3D surfasecompresse8D surface by using RGB layer has
better quality than YCbCr layer at higher compression ratio using both bloslo&Be8 or 16x16by DCT.

104



(b) Decompressed 2D BMP images at two leD&lETconverted to 3D surfaceecompresse8D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using blocls si#8x8, alsoby using block 16x1@he surfaceis still approximately nordegraded

Figure5.15: (a) and (b)Decompressed colotoorimageby our proposed decompression method, and then
converted to 3D surface

Figure5.16: Decompressed colo@Cornerimage byour proposed decompression method, and then converted to
3D surface The c&ecompressed 3D surface at single level DWT using YCbCr has better quality at higher
compression ratio than using R@Bers also at two levels DWdegradation appears and some parts from surface
fail to reconstruct
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Table5.10:Estimate@xecution time foFMS-Algorithm at single level DWTfdNall image

Compressed size|

Time executiong)

(KB) Block size Y ' Cb ' Cr '
AC-Matrix, AC-Matrix; AC-Matrix;
26.3 8x8 1.77 0.093 0.187
14.23 8x8 0.202 0.031 0.078
753 8x8 0.062 "H) 0.031
12.3 16x16 0.54 0.015 0.031
6.55 16x16 0.109 "H) 0.031
Compressed siz Block size Red Green Blue
(KB) AC-Matrix; AC-Matrix; AC-Matrix;
24.42 8x8 0.12 1.27 0.12
8.47 8x8 "H) 0.078 0.031
5.46 8x8 "H) 0.046 "H
11.47 16x16 0.078 0.46 0.093
5.9 16x16 0.015 0.078 0.031
4.85 16x16 0.031 0.031 "H

Table 5.11:Estimate@xecution time for FMS\lgorithm at single level DWT foRoonimage

Compressed size

Time executions)

(KB) Block size Y ' Cb ' Cr '
AC-Matrix AC-Matrix AC-Matrix
58.21 8x8 1.2 0.093 0.17
34 8x8 0.17 0.046 0.046
18.92 8x8 0.046 0.046 0.031
29.86 16x16 0.96 0.062 0.093
16.19 16x16 0.156 0.046 0.046
8.07 16x16 0.046 0.031 "H)
Compressed size Block size Red Green Blue
(KB) AC-Matrix AC-Matrix AC-Matrix
53.25 8x8 0.062 14 0.21
17.66 8x8 "H) 0.124 0.015
10.73 8x8 "H 0.062 "HD
6.28 8x8 "HD 0.031 "H
23.83 16x16 0.046 0.68 0.078
7.91 16x16 "HD 0.062 0.031
4.65 16x16 "H 0.046 "HD
3.38 16x16 "H 0.031 "HD

Table 5.12:Estimate@xecution time for FMS\lgorithm at single level DWT fo€ornerimage

Time executions)

ComﬁzeBs)sed SiZe| B|ock size Y Cb Cr
AC-Matrix AC-Matrix AC-Matrix
31.59 8x8 1.2 0.031 0.015
15.85 8x8 0.3 0.031 0.031
15.39 16x16 1.07 0.031 0.046
7.8 16x16 0.5 "H "H
Compressed size Block size Red Green Blue
(KB) AC-Matrix AC-Matrix AC-Matrix
44.5 8x8 0.34 0.48 0.34
22 8x8 0.06 0.09 0.09
21.16 16x16 0.46 0.48 0.37
10 16x16 0.1 0.14 0.1
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Table5.13: Estimated executiotime for FMSAlgorithm at two levels DWT fokVall image

Compressed Block = Y = Cb i n Cr - -
Size . - - - 2 2 2
(KB) Size Matrix, HL. LH. HH, Matrix, LH, HL HH; Matrix,

28.1 8x8 3.1 0.062 | 0.062 | 0.031 0.062 0.03 "H "H 0.24 0.031 "H "H
11.8 8x8 0.6 0.015 "H) "H) 0.046 0.031 "H) "H) 0.046 0.031 "H) "H)
21.8 16x16 1.5 0.031 | 0.031 "HD 0.046 0.03 0.031 "H) 0.093 0.031 "H) "H)
8.29 16x16 0.026 0.015 "H) 0.031 0.031 0.03 "H) "H) 0.062 0.015 "H) "H)
Compressed | Block AC- Red AC- Green AC- HLI?Iue [H, HH,
SIZE(KB) Size Matrix; HL, LH, HH, Matrix, HL, LH, HH; Matrix;
19.32 8x8 0.23 0 "H) "HD 1.5 0.031 0.031 "HD 0.26 "H "H "H)
8.4 8x8 0.062 0.031 "H) "HD 0.24 "H) "H) "HD 0.078 "H) 0.031 "H)
12.89 16x16 0.21 0.078 "H 0.031 0.081 "H "H "H 0.17 "H 0 "H
5 16x16 0.062 "H "H "H 0.093 0.031 0.031 "H 0.062 "H "H "H
Table5.14:Estimate@xecution time for FMSAlgorithm at two levels DWT foRoomimage
Compressed | Block Y Cb Cr
size(KB) size AC-Matrix; HL, LH, HH, AC-Matrix; | HL, LH, HH, | AC-Matrix, HL, LH, LH,
47.25 8x8 0.15 0.046| "H "H) 0.1 0.031| 0.031| "H 2.19 0.078 | 0.062 | 0.062
23.96 8x8 0.046 0.015| "H "H) 0.015 0.031| "H "HD 0.43 0.078 | 0.031 | 0.031
11.85 8x8 "H "H "H "H "H 0.031| "H "H 0.078 0.015| "H "H
35.94 16x16 0.124 0.031| "H "H 0.078 0.015] 0.031| "H 1.21 0.062 | 0.015 | 0.015
17.62 16x16 0.015 0.031| "H "H 0.031 0.031| "H "H 0.28 0.031| 0.031 | 0.031
7.94 16x16 0.015 0.031| "H "H) 0.031 0.031| 0.031| "H 0.093 0.031| "H "H)
Compressed | Block Red Green Blue
size(KB) size AC-Matrix, HL, LH, LH, AC-Matrix, HL, LH, | HH, | AC-Matrix, HL, LH, LH,
49 8x8 0.35 0.046 | 0.031| 0.031 1.76 0.015| "H "H) 0.062 "H) "H) "H)
10.42 8x8 0.046 "H) "H) "H) 0.124 "H) "H) "H) "H) "H) "H) "H)
5.12 8x8 0.031 "H) "H) "H) 0.062 "H) "H) "H) "H) "H) "H) "H)
36.34 16x16 0.17 0.046 | 0.062 | 0.062 1.27 0.031| "H "HD 0.015 0.031 "H) "H)
6.61 16x16 "H) "H) "H) "H) 0.1 "HD "H) "HD "H) "H) "H) "H)
2.93 16x16 0.031 "H "H "H 0.062 "H "H "H "H 0.031| "H "H
Table5.15: Estimate@xecution time for FMS&\lgorithm at two levels DWT foCornerimage
Compressed | o0y size [ AC- : AC- = AC- b
size(KB) Matrix1 LH» HL» HH,» Matrixl LH» HL» HH, Matrix1 LH, HL, HH,
31.72 8x8 4 0.016 | 0.031 "H) 0.093 "HD 0.015 "H) 0.1 0.031| 0.031 "H)
13.11 8x8 0.85 "H) 0.031 "H) 0.031 "H) "H) "H) 0.046 "H) 0.031 "H)
23.14 16x16 0.2.49 | 0.015| 0.016 "H) 0.062 | 0.031| "H "H) 0.1 0.031| 0.031 "HD

It can be seen from the above figures and tables thagke level DWTs applied successfullio
the colour images using botiCbCr and RGB layersAlso, the twolevel DWT gives good
performance However, the two-level DWT did not perform wellon YCbCr layerat higher
compression rat® Both colour imagedVall and Roomcontain greerstripe lines this renders
RGB layersmore appropriatéo be used with the proposed approd@h.the other hand, for the
image Cornerthe YCbCrlayer proved more appropriate

Eachlayer fromtrue colour RGB, compresadependentlywithout change in colcour format,

and thisnew feature added to our proposed algorithm to compress true colour images RGB

without needs to any kind of layer transformatioAslditionally, same colour imageare

transformed to different colour format (YcbCr) to show our compression algorithm ability to

compress the images.
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JPEG and JPEG2000 are tested with the same 2D images for compdatisamur proposed
method basedon similar compressiorratios; we also testd imagegualitythroughiRootMean
SquareError (RMSE).We alscshow the visualization of 3D surfaces for decompress@d
images by JPEG and JPEG2000 as a means of comparison.

Table5.16 ComparisorlPEG2000 and JPEG with capproach foFacelimage

Proposed algorithm JPEG2000 JPEG
Compression Ratio 2D 3D 2D 3D 2D 3D
RMSE RMSE RMSE RMSE RMSE RMSE
97.9% 4.83 231 3.48 331 12 2.73
99.2% 6.21 2.4 5.33 3.49 Not Applicable | Not Applicable
99.5% 7.41 3.39 6.32 291 Not Applicable | Not Applicable

Table5.17 Compariso’]JPEG2000 and JPEG with aapproach foFaceZimage

Our Proposed algorithm JPEG2000 JPEG
Compression Raio 2D 3D 2D 3D 2D 3D
RMSE RMSE RMSE RMSE RMSE RMSE
98% 5.22 2.19 4.1 151 8.57 1.67
98.9% 5.86 1.64 5.3 2.68 Not Applicable | Not Applicable
99.4% 6.96 2.16 6.61 2,57 Not Applicable | Not Applicable
99.6% 8.43 1.48 7.61 2.62 Not Applicable | Not Applicable

Table5.18: Comparison JPEG2000 and JPEG with approach foFace image

Proposed algorithm JPEG2000 JPEG
Compression Raio 2D 3D 2D 3D 2D 3D
RMSE RMSE RMSE RMSE RMSE RMSE
98% 4.7 1.32 3.83 1.25 7.64 1.78
98.9% 5.43 0.83 5.05 1.82 Not Applicable | Not Applicable
99.5% 6.65 4.02 6.54 1.85 Not Applicable | Not Applicable

Table5.19:ComparisodPEG2000 and JPEG with capproach fowall image

Proposed algorithm JPEG2000 JPEG
. . 2D 3D 2D 3D 2D 3D
CompressionRalo|  pyse | RMSE RMSE RMSE RMSE RMSE
99.3% 4.37 1.96 2.63 0.31 9.66 0.66
99.7% 4.36 0.2 3.47 0.49 Not Applicable | Not Applicable
99.8% 4.85 0.37 4.79 1.1 Not Applicable | Not Applicable

Table 520:comparison JPEG2000 and JPEG with approach foRoomimage

Proposed algorithm JPEG2000 JPEG
Compression Ratio 2D 3D 2D 3D 2D 3D
RMSE RMSE RMSE RMSE RMSE RMSE
99.5% 6.36 0.12 7.59 0.23 20 113.59 (ot matched
99.8% 9.0 1.65 11.33 1.35 Not Applicable Not Applicable
99.9% 9.22 2.21 13.59 94.67 ot matched Not Applicable Not Applicable
99.9% 11.26 0.42 15.06 Not Applicable Not Applicable Not Applicable
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Table 521:comparison JPEG2000 and JPEG with approach foCornerimage

Proposed algorithm JPEG2000 JPEG
Compression 2D 3D
Ratio RMSE | RMSE 2D RMSE 3D RMSE 2DRMSE 3DRMSE
99.1% 3.58 1.78 3.12 1.92 5.86 16.46
99.5% 4.59 0.42 3.86 74.64 ot matched Not Applicable | Not Applicable
99.7% 6.5 2.1 4.64 69.55 ot matched Not Applicable | Not Applicable

In Tables5.16,5.17, 5.18, 5.19, 5.20 and5.21€not matching meansthe relevant algorithm cannot
compresdo the requiresize successfully.

Figure 5.17: Decompressed 2Bacelimage by using JPEG2000 and JPEG algorithm, JPEG algorithm can,t
compresshe 2D Facel image under 2B.

Figure 5.8: Decompressed 2D Face2 image by using JPEG2000 andalg&@hndegradation appeared BPEG
on thesurfaceat 26 KB.
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Figure 519: Decompressed 2D Face3 image by using JPEG2000 and JPEG algorithm, parts ditedges
reconstructn 3D by JPEG2000 algorithm at KB, degradation appears tresurface by JPEG2000 undeKB,
also JPEG algorithrdegrades thsurface at compresdsize 27KB (JPEGfails to compress under 4B).

Figure 520: DecompresseWall image by using JPEG2000 and JPEG algorithm, degradation appears on surface by
JPEG200Gewer than1XB, also JPEG algorithmdegrades theurface at compresd size 2KB, JPEGfails to
compress under 24B.

110



Figure5.21: Decompressd@oomimage by using JPEG2000 and JPEG algorithm, degradation appears on surface
by JPEG2000 fewer thankB, also JPEG2000 cannot reconstructs?liface matches with originalidace (grey
colour) at 4KB, similarly, JPEG algorithnfails to reconstruct 3D surface matchinigh original surface at 2KB

111



Figure5.2: Decompresse@ornerimage by using JPEG2000 and JPEG algorithmeéipsurface decompressed
successfully by JPEG2000, in toight decompressed surface by JPEG2000mached with original surface (gye
surface). Under 8B, similarly, JPEGalgorithm fils tocompress suessfully fewer than 3&B.

55. Conclusion

This Chapter has presented and demonstratechavel method for image compressioand
comparetheguality of compression throu@D reconstruction, 3D RMSE and the perceived quality

of the 3D visualisation The method is based oam twolevelDWT transformand two-level
DCTtransform in connection witthe proposedatrix Minimization algorithm. The results showed

that our approach introduced better image quality at higher compression ratios than JPEG and
JPEG2000 being capable of accurate 3D reconstructing at higher compression ratios. On the other
hand, it is more complex than JPE®RGand JPEG. The most important aspects of the method and
their role in providing high quality image with high compression ratios are discussed as follows:

1- In a wo-levelDCT, the first level separate the DC-values and AGralues into different
matrices;the second level DCiE thenappliedto the DC-valuesand thigenerate two new
matrices. he size of the twaew matrices areonly afew byteslong (because they contain
manyzeros) this process increastee compression ratio.

2- Since mosbf the high-frequencymatrices contaitot of zerosas abovein thischaptemwe used
the EZSN algorithm to eliminatezeros and keeponzero data. Tis process keeps significant
informationwhile reducingmatrix sizesup to50% or more

3- The Matrix Minimization algorithm is used ta@eplaceeach three coefficients from thegh
frequencies matricey asingle floatingpoint value.This process converts each higaquency
matrix into a onalimensional array, leading to increassampression ratioghile keeping the
quality of the highfrequency coefficients.

4- The FMS-Algorithm represents theore of our search algorithm féinding the exact original
datafromaonedimensional array (i.eReduceédArray) converting ta matrix and depends on
the organized keyalues andLimited-DataAccording totime execution tablesthe FMS-
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Algorithm finds valuesin a few micraseconds for some higHrequencies needs just few
nanosecondat higher compression rasio

5- The key-valuesand LimitedData are used in coding and decoding an image, without these
information imagegannot be reconstructed.

6- Our proposed image compression algoritivas tested on true colour images (i.e. Red, Green
and Blue), otained higher compression ratiasd highimage quality for images containing
green stripedines. This makesour proposed compression algorithm featured more than JPEG
and JPEG2000, because thesethodscan,t not compress 2D images without using YcbCr
format. Additionally, our approach hdseentesedon YCbCr layersvith good quality at higher
compression rat® This makes ourlgorithm run better no both colour formats ( RGB and
YcbCr).

7- Our approach gives better visual image quality compared to JPEG and JPEG2000. This is
because our apprdacemoves most of the block afidets causedby the 8x8 twedimensional
DCT. Also,our approach usessingle level DWDr twolevelDWT rather than multlevel
DWTas in JPEG2000dpr this reason blurringypical of JPEG2000 issmovedinourapproach.
JPEG and JPEG200failed to reconstruct a surface in 3D when compressedhigber
ratioswhileit is demonstrated that our approa@n successfully reconstruct the surfacel
thus, is superior to both on this aspect.

However, thereisa larger number ofteps inthe proposed compression and decompression
algorithm thanin JPEG and JPEG200A8Iso, the complexity ofFMS-algorithm leads to increased
execution time for decompression, becausedlgorithms based ora binary searcimethod.
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Chapter 6

DCT and DST based Image Compressiowith Fast-Matching-
SearchDecompression

6.1. Introduction

The two most widely used image compression transforms are the discrete cosine transform
(DCT) and the discrete wavelet transform (DWTI)L9,15]. The DCT is usually applied to
small, regularblocks of image samples (e.g.8squares) and the DWT is usually applied to
largerimage sectionsr to complete images. Many alternatives have been proposed, for example
3D transforms (dealing with spatiahé temporal correlation), variable block size transforms,
fractal transformsand Gabor analysis. The DCT has proved particuladgfulandit is at the

core of most current generation of image and video coding standards, including JPEG, H.261,
H.263, H.53+, MPEGI, MPEG-2 and MPE&4 [22,157.

In line with previous chaptersye focus on compressing 2D image data appropriate for 3D
reconstruction. This includes 3D reconstruction from structured light images, and 3D
reconstruction from multiple viewpoint imagds. previous publicationswe havearguedthat

while geometry and emectivity of a 3D mesh can be tackleddgyveratechniques such as high
degree polynomial interpolatiofi14] or partial differential equationgl25135, the issue of
efficient compression of 2D images both for 3D reconstruction and texture mappingtheet

been addressed in a satisfactory manner. Using structured light techniques for 3D reconstruction,
surface patches can be compressed as a 2D image together with 3D calibration parameters,
transmitted over a network and remotely reconstructed (gegneennectivity and texture map)

at the receiving end with the same resolution as the original biz#al 36.

In previous chapterg/e proposeda methowhere a single level DWT is followed by a DCT on
the LL subband yielding the DC component and the-Ag@trix. A second DWT is applied to

the DC components whose second level LL2-lsabd is transformed again by DCT.matrix
minimization algorithm wasppied to the AGmatrix and other subands. Compression ratios

of up to 98% were achievedith a sequential search algorithm being used at decompression
stageln Chapter 4 we proposed atechniqué42]where a DWT was applied to variant
arrangements of data blocks followed by arithmetic coding. The novel aspect of that paper is at
decompression stage, where Block Sequential Search Algorithm waproposed and
demonstrated. Compression ratios of up to 98.8% were achiéneChapter5[137]a twolevel

DWT was applied followed by a DCT to generate a-&nponent array and an M¥atrix
(Multi-Array Matrix). The MAMatrix was then partitioned into blocks dna minimization
algorithm codecdkach block followedy theremoval of zero valued coefficientand arithmetic
coding. At decompression stagenew algorithmcalled Fadatch-Search decompressiaras

used to reconstrutie high-frequency matrices by computing data probabilities through a binary
search algorithmin assoaition with alook up table. A comparative analysis of various
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combinatims of DWT and DCT block sizes wamerformed, with compression ratios up to
99.5%.

This Chapter introduces a new method for 2D image compression whose quality is demonstrated
through accurate 3D reconstruction using structured light techniques and 3D reconstruction from
multiple viewpoints. The method is based on two discrete transforms: dreflimensional
Discrete Cosine Transform (DCT)is applied to each row of the image followed by quantization
of the high frequencies. 2) The output from the previous step is transformed again by a one
dimensional Discrete Sine Transform (DST), which is iggplo each column of data generating
new sets of higlirequency components. The output is then divided into two parts where the low
frequency components are compressed by arithmetic coding and the high frequency anes by
high frequency nmimizationalgonthm[158].

At decompression stage,a binary search algorithm is used to recover the original high frequency
components. The technique is demonstrated by compressing 2D images up to 99% compression
ratio. The decompressed images, which include images sintictured light patterns for 3D
reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D
reconstruction. Perceptual assessment and objective quality of compression are compared with
JPEG and JPEG2000 through 2D &l RMSE. Results show that the proposed compression
method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with
equivalent perceptual quality to JPEG2000e main steps in the compression algorithm are
depicted inFigure6.1.

Figure6.1:The main steps of the proposammpression algorithm
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6.2. Usingthe One-Dimensional Discrete Cosine Transform (DCT)
The onedimensional DCT is used to transform each row from an image (spatial domain) to

obtainthetransforned datacalled "Tyc', @ shown in the followindg119,131,151 158:

o \/E . nol 6621: 6‘]‘.)|p 6
O 6.1
“0 = C08A0 cogg o g 1)
10 = Y258 )T (i) co B ODIP O 6.2
0= O&() T cogg P g 62)
whera c(j) 982", i59
& .if i 39

Wherei=0, 1, 2, 3, €n-1 is the image row indexand the output is a set of DCT coefficients
"Taci'- The first coefficient is callethe DC coefficient, and the rest are referred to as the AC
coefficients. Notice that the coefficienteeareal numbers, antthey are rounded ot integers
The important feature of the DCT is thitis useful in imagecompression134]. It takes
correlated input data and concentrates its energy in just the first few transform coefficients. If the
input data consists of correlated quantitiesy most of the A" transform coefficients produced
by the DCT are zeros or small numbgt53], and only a few are large (normally the first data).
The earlycoefficients contairthe mostimportant (lowfrequency) image information and the
later coefficients contain the leBaportant (highfrequency) image informatiofi54, 159. This
featureallows good compression performanceagroportion ofthe less importantoefficients
canbe discardedvithout much degradatiom image qualityFigure6.2 shows the DCT applied

to each rowof ar8 ¥8block without using scalar quantization.

Original data Tyct: DCT applied taeach row
(Coefficientsare rounded off tinteges)

Figure6.2: (Left) Original block of data, (right)produced by applying orgimensional DCT to each row
independently.
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6.3. One Dimensional Discrete Sine Transform (DST)
Our research has indicated thatze dimensional DCT works together walonedimensional

DST yielding largeamounts of higHrequencycomponents. Thedsaigh frequencycomponents
areusefulto obtain highcompressiomatios comparablé theJPEG technique. In this research
we will apply one dimensional DSTo each column of the transformed matriXqc" from
previous section. The DSAdinition is representeds follow$153155:

U . k ot
6.3
Tye(K) 6§¥§dcto>sldp 59 (63)

k=1,2,€n, (wheren: is column size )

IOL : MOEACESY (64)
Eq. (6.3) is used to transformn™ values of Ty' matrix into 'n" coefficients. These are thew
andhigh frequencycoefficientscontaining important ankkss importantmageinformation. The
onedimensional DSTis appliedto each column of Ty to producea new transformed matrix
"Tasi. The DST is equwialent to the imaginary part of thRiscrete Burier Transformation
(DFT), while in this chaptethe resul of the DSTarereal numbers156157, 158. The main
advantageof using the DSTfor image compression in this context is that the p8dservers
thamage qualityencoded by the low frequencpmponera of "Tye' and increasethe number
of zeros which can be discarded without loss of quality.

After the DST, we applya quantization of the high frequency components oftridwesformed
matrix "Tysi'. In this way, he quantizatioimeans losingnly insignificant information from the
matrix. Each coefficient in the matrix is divided by the corresponding number &om
*Quantization tableand the result is roundedff to the nearest integer. The following equation
IS proposeds aquantizatiortable.

Q(i.j)=(i+)) F (65)
Where: F>0and i,j=1,2,3,...,nxm (image dimensions)

In Eg (6.5) "F" is a real number gater than zero. This valufextsimage quality aer "F>1"
image qualityis decreased. There is no liniar F, however, fronour experimentsve suggeskE
from 0.1 to 10. Figuré.3 shows the DST appli@d each column and quantized by.{p).
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Figure6.3: DST appliedo each Column of 4 followed by quantization with-=2 (cf. Eq.(6.5))

In the above exampléow andhigh frequencycomponentsre controlledby the userThe low
frequencyones are not compressed any furthewe just represent them ifewer bytes by
arithmetic codingMeanwhile,the highfrequencycomponents eithenorizontalor vertical are
compressethy the High-Frequency Minimization algorithm described in the next section.

6.4. High Frequency Minimization Algorithm

In this sectionwe describean algorithm to convert the highequency coefficientgi.e. from
previous section results passed to Minimization algoritim a compressed array called
MinimizedArray through a matrix minimization method involving eliminating zeros and triplet
encoding whose output is then subjected to aetiuncoding.Normally, the highfrequency
componentsontainlarge numbes of zeroes with a few nonzero dafiéhe technique eliminate
zeroes and enharstkee compressiomatio [134, 154 15§.

The highfrequency minimization algorithm is applied further reducing the size of- high
frequency submatrix by 1/3.This process hinges on defining three key values and multiplying
these by three adjacent entriesHnwhich are then summed over producing single integer
valuegcf. Section 3.2.3)42,137].Thus, each set of the three entries fidnare converted into a
single value which are then stored into a new coded away/ m i/ z4& ar a fxssuming that is the
length of , =12,&, " 3, and is the index ofnew coded arrgythe following
transformations define thegh frequency encodirid33]:

_ = oot ) (6.6)
Thekey values , , are generateldy a key generator algorith(of. Sedion 5.2.3- Key
generatothrough Eq5.6)f (5.9) J137,154.

The keys are the weights amach tripletsummatioim theminimizedarray that can later be
recovered by estimating thd valuegcf. Section6.5) for the Minimized . Aollwing the
models above,the Minimized_ forrthe example in Figure6.3 can be illustratedy the
followingTable6.1[158].

118



Table 6.1: From the example of Figuf3: each higHfrequencysubmatrixis compressed independently

Assumethat:
M =2 (Maximum value in high-frequency submatrix: Horizontal)
Keys K;=1, K,=5, K;=18 (for both high-frequency components: Horizontal and Vertica)

High-Frequency Submatrix Compressed Size | Comments

Minimized A#i#r1,0,0,0,..0} | compressed size 16 48(original size)/3 =16 data

Minimized_g#ihdF2,0,0, 0,00} compressed size 6 | 16(original size)/3 = 5.3 (last zero is alone

Our compressiommethod createsa new array ofheaderdatad, which is used lateby the
decompression algorithio estimatethe original data values. This information is kept in the
header of the compressed file as a st(cfgChaptes3f 5 )).Per aboveexample in Figure 8,
the LimitedData can beestimated from higiirequency submatrices (Horizontal and
Vertical).Limited-Datgvericay= {-1,0} and LimitedDat&gorizontai={2,0}.

The encoded tripletg the Minimized may £entain large number of zeros which can be
further encoded through a process propaagdrithm in chapter %cf. Figure 5.3)[137]. For
example, assumthe following encodedvinimized s4126y0, 0,0,73, 0, 0,0,0,617}.The

zero array will be{0,3,0,5,0} where the zeros in red refer to nonzero data existing at these
positions and the numbers in black refer to the number of zeros between two consecutive non
zero data. According to thimethod, thev/n/mize d_betrdorizontal and ¥rtical can be
illustrated in Table5.2.

Table 6.2: EachMinimizedArray is coded to zer@rray and nonzerarray

High-Frequency Submatrix Zero-Array Nonzero-Array
Minimized \Ad&i2{1,0,0, 0 ... 0} | ZerQuericay={0,5, 5, 5} | Nonzero Arrayvericay={ -1}
Minimize d_(l—fé‘ri[oﬁ@)}{Z,o,Q 0.01 ZerO(HorizomaI):{ 0, 5} NOnzerO_Array(Horizontal):{z}
0}

Note:the '0" refers to the nonzero data in Nonzénrays

6.5. The FastMatching SearchDecompression Algorithm
The decompression algorithmtise inverseof compressionFirst, decodethe Minimized-Array

for both horizontal ath vertical components lyombining theeroarraywith the nonzercarray
Second decode highHrequenciesfrom the Minimized-Array using the fast matching search
(FMS) algorithni137].Third, inversethe DST and DCTto reconstructhe original2D imageThe
images are theassessedn their perceptual quality and on their ability to reconstruct the 3D
structures compared with the original imadégure6.4 illustratesthe decompression method

The Fast Matching Search Algorithm (FM®gs been designed to recover the original high
frequency data. The compressed data contains information about the compression, kgys (K
and Kg) and LimitedData followed by streams of comgeed high frequency data. Therefore,

the FMS algorithm picks up each compressed high frequency data and decodes it using the key
values and compares whether the result is expressed in the LDatad Given 3 possible
values from Limited Data, there islgrone possible correct result for each key combination, so

the data is uniquely decoded. FM®jorithm is described in Bapter5 (cf.Section 5.3137].
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After inverse DCT After inverse DST

Figure6.4: The steps in the decompression algorithm

Once the horizontal and vertical high frequermymponentsare recovered bythe FMS
Algorithm, they arecombinedto regeneratehe 2D matrix Then each data from the matis
multiplied by each data if®Q (Eq. (6.5)) followed by the inverse DST (Eq6.4)) appliedto each
column. Finally we multiply each data bl followed by the inverse DCT (Eq6.2)) applied to
each row taecover theoriginal 2D image as shown in Figuet. If we compare the results in
Figure 6.4 with the original 88 matrix of Figure6.2, wefindthat there is not much difference
and these differenca notaffect imagequality. This demonstrates that the propdsetinique
is very attractivefor image compressn.

6.6. Experimental Results

The experimental results described here were implemented in MATLAB R2013a and Visual
C++ 2008 running on an AMD Quggdore microprocessor. We describe the results in two parts:
first, we apply the compression and decompression algorithms to 2D imagesomniain c
structured light patterns allowing 3D surface data to be generated from those patterns. The
rationale is that ehigh-quality image compression is required otherwise the resulting 3D
structure from the decompressed image will contain apparent dassiies when compared to

the 3D structure obtained from the original (uncompressed) data. We report on these differences
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in 3D through visualization and standard measures of RM8Emean square error. Second, we
apply the method to general 2D imagestlwio structured light patterns) of different sizes and
assess their perceived visual quality and RMSE. Additionally, we compare our compression
method with JPEG and JPEG2000 through the visualization of 2D images, 3D surface
reconstruction from multipleisws and RMSE error measures.

6.6.1. Results for Structured Light Images and 3D Surfaces

3D surface reconstruction was performed with our own software developed within the GMPR
groud125, 135 136. The justification for introducing 3D reconstruction is that veem make

use of a new set of metrics in terms of error measures and perceived quality of the 3D
visualization to assess the quality of the compression/decompression alg@fit®astion 3.4)

Figure6.5 showsseveraltest images used to generate 3D surfaces bajhayscaleand colour.
The top row shows twa@rayscaleface images, FACE1 and FACE2 with size 1.37MB and
dimensions1 39 & 1 0 4fixels. The bottom row stws colour images CORNE&1d METAL

with size 3.75MB andlimension1 2 8 8 1 0 2pixels. We usethe RMSE measur® compute

the differences between decompressed images and origirelTdvee RMSE however, cannot
give an absoluténdication ofwhich is the ,best... reconstructed image or 3D suafa@srors
may beconcentratedn a regiorthat may or may not be relevant to the perception of quality. To
get a better assessment of quality, we andikseurface images at various compression satio

Table 6.3 Structured light images compressed by our approach

Original Original Image size

Image Image = = Comspi;issed Compression 2D 3D

Name Size DCT DST (KB) Ratio RMSE RMSE
(MB)

1 2 18.75 98.6% 4.82 151

FACEL 137 1 6 11.7 99.1% 6.22 1.54
1 2 15.6 98.8% 1.89 2.25

FACE2 1.37 1 6 7.8 99.4% 2.56 2.67
{1,5,5} | {2,2,2} 21.2 99.4% 5.56 1.36

CORNER 3.75 {1,5,5} | {2,3,3} 14.7 99.6% 7.0 05
{1,5,5} | {1,5,5} 27.5 99.2% 5.25 1.87

METAL 3.75 {1,5,5} | {2,5,5} 12.1 99.6% 5.62 1.98

Table 6.3shows the compressed size for our approach using two different values of quantization.
First, the quantization scalar for FACE1 and FACEZ2 is 1. This means that after DCT each
coefficient is divided by 1, this means rounding off each flogtiomt value ¢ integer.
Similarly, after DST the quantization equation is applied Witlef. Eq. 6.5).
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Figure6.5: Structured light images used to generate 3D surfaces. Top row grayscale images FACE1 and FACEZ2, and colour
images CORNER and METAtespectively.

The colour imageare definedy using colour transformatidr22, 118 into YCbCr formatWe
then apply the proposedipproachto each layer independentlyoiFthis reasonafter DCT the
guantizatiorscalar forcolour imagess {1, 5, 5} for each layeof Y, Cb andCr respectively.

FACEL: Compressed size 18.KB (texture and shadedfompressed Size=11.B{shaded)
3D reconstructed FACE1 from decompressed image by our approach
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FACE2: Compressed size 15.@Ktexture and shaded) Compressed Size=B&dkaded)
3D reconstructed FACE2 from decompressed image by our approach

2D decompressed images zooniegdto show the details: FACE1 and FACE2 at higher compression ratio

Figure6.6: Top: FACE1 shows decompressed 3D surfaitb texture and shadeat compressed size 18.7KB and 11.7KB
Middle: FACE2 shows decompressed 3D surfaih texture andshaded at compressed size 15.6&#8l7.8KB. Bottom:details
of 2D images FACE1 and FACE&spectively at the high€89%)compression ratio.

Figure 6.6 shows the visualization of the decompressed 2D images using differens f@lue
guantization. These decompressed images are converted to 3D surfaces. FAQEGS diigure

6.6 from left to right are higér quality surfaceper 3D RMSE. In fact, some parts of 3D surface
havedisappeared at higher compression ratio. But in FACEZ2 in the middle, the 3D reconstructed
image at higher compression ratgoapproximatelythe sameasfolow compression ratio. This
meansthat 3D reconstruction depends on the struatdight's quality in an imagekigure 6.6
(bottom) showszoomedin regionsfor the two images;the structure light patterns are clearly
presentvenat 99% compression ratio

Figure 6.7shows 3D reconstructed surfaces for CORNER and METAL images respectively. On
top, the quality of CORNER 3D surface at 99% compression ratio. But the 3D surface (top right)
has some artefacts; this type of artefacts does not show in the odgohalecompressed 2D
image at lower compression ratio. Artefacts appear when the structure light patterns are not
clearly defined in the image, or are degraded after compression and decompression. In Figure 6.7
middle, the decompressed METAL image is coteerto a 3D surface. The reconstructed 3D
surface of middle right is degraded for all cases in which compression ratios exceed 99%. To
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analyse 2D colour image compression, we zoemdtle decompressed 2D images. It is shown
that the structured light pattes are clearly visible at higher compression ratios of 99%.

CORNER: Compressed size 21.8 exture and shaded) Compressed Size=14.78BKshaded)

METAL: Left and middle: ompressed size 27.58(texture and shaded) Right: mompresse®&ize=2.1KB (shaded)

2D decompressed images zoonirgto show the details: CORNER and METAL at higher compressi
ratio

Figure 6.7: Top row:showsdecompressed 3D surfacé CORNER withtexture and stded at compressed sizes 21.2KBand
14.7KB. Middle row: shows decompressed 3D surfafeMETAL with texture and shaded at compressedssZa5KBand
12.1KB. Bottomrow: zoomedin details for 2D image€ORNERandMETAL respectively at higher compression ratio.
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JPEG2000 18.75KB JPEG2000 11.7KB JPEG2000 15.6KB JPEG2000 7.8KB

JPEG20006 21.2KB JPEG2000 14.7KB

Figure 6.8: Top: 3D reconstructed surface for FACE1 and FACE2 respectighyy JPEG2000. Bottol@ORNER image
successfully 3Deconstructed, whilthe METAL image failed3D reconstruction.

Table 6.4: Compression and decompression of 3D images by JPEG2000 and JPEG at higher compression ratios

. JPEG2000 JPEG
Image Compression
name Ratio 2D 3D 2D 3D
RMSE RMSE RMSE RMSE

FACE1 99.1% 6.3 1.8 FAIL FAIL
FACE2 99.4% 3.2 2.66 FAIL FAIL
CORNER 99.6% 5.7 0.63 FAIL FAIL
METAL 99.6% 4.17 FAIL FAIL FAIL

For a comparative analysiwe compressed and decompres#iegl2D images by JPEG20Ghd
JPEG then converted t@a 3D surfacerigure 6.8 andlable 6.4describethe compressed and
decompressed resultsr JPEG2000only, as JPEG compression at equivalattos failed3D
reconstructionthat is, the images haa snany artefacts that the 3D reconstruction algorithms
were unable to successfully reconstru@ba surface The comparison is based applying the
samecompression ratmbetween JPEG2000 and our approastishow the visualization for the
two methods. Whilghe JPEG algorithm simply failed to compress the images at the required
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ratio, it is importantto stress thatIPEG200{B7] cannotdecompress some 2D images to
equivalent quality 3D reconstructioas our method.Gf it does, the3D surface contains
degradationFigure 6.9 shows the compressed 2D images by JPEG2000zoomed inimage
details.

Figure 6.9.Details of2D decompressed imageg JPEG2000Top: FACElon the left isclearly blurredeading to degraded
3D reconstructionBottom: METAL image on the right is blurregndering itunable tareconstruct 8D surface.

6.6.2. Results for 2D Images
In this Sectionwe apply the algorithm generic 2D images, that is, images that do not contain

structured light patterns as described in the previous sedtiotis casethe quality of the
compressionis performed by perceptual assessment and by the RMSE measuraseéNe
imagesvith varyingsizesfrom 2.25MB to 9MB Also, we present a comparisomith JPEG and
JPEG200highlighting the differences irtompressed image sizaadthe perceivedjuality of
thecompression.

Figure6.10(a) gives an indication of compression ratios achieved with our appwhité in (b)

is shown details with comparative analysis with JPEG2000 and JPEG thérstecoded 'baby’
image by JPEG2000 contains some blurring at plaedsile the same image decoded by our
approach and JPE&eof higher quality Second the decoded 'eyes’' image byE@algorithm
had some block artefacts resulting in a lower quality compresaiso,thesameimage decoded
by our approach and JPEG2000 at equivalent compression, ta® excellent image quality.
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Finally, the decoded 'girl' image by JPEG2060slightly degraded, whil®ur approachand
JPEGshowgood image quality.

Compressed siz&07.7 KB Compressed size: 59.4 KB Compressed size: 59.9 KB
Original size: 2.25 MB Original size:3 MB Original size: 9 MB
Compression ratio: 95% Compression ratio: 98% Compression ratio: 99%

(a) Compressednd decompressed 2D images by approach

Our approach: RMSE5 . 95 Our approach: RMSE4 . 84 Our approach: RMSE5S . 94

JPEG2000RMSE=2.71 JPEG2000RMSE=2.83
JPEG2000RMSE=3.49

JPEG RMSE=3.2 JPEG RMSE=6.66

JPES: RMSE=5.02
(b) Details of compression/decompressiorohy approach,JPEG2000 and JPEG respectively

Figure6.10: Compresse@mages by JPEG and JPEG2000 at equivalent compressed fiassizith our approach.
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Additionally, we applied our compression techniques to a series of 2D images and
usedutodesk 123DCatch software to generate a 3D model from multiple imagise
objective is to perform a direct comparison between our approach and both JPEG and JPEG2000
on the ability to perform 3D reconstruction from multiple viewsages are uploaded to the
Autodeskserver for processing which normally takes a feimutes. The 123D Catch software

uses photogrammetric techniques to measure distances between objects producing a 3D model
(i.e. image processing is performed by stitching a plain seam with corresttsgither) The
applicationmay ask the user to select common points on the seam that could not be determined
aubmatically[143 144. Compressiorsizes and RMSEor all images used adepictedn Table

6.5.

Table 6.5: Compressedizesand 2D RMSHneasures

il Original Quantization | essed Average Average
Image of _ornginai parameters -Ompres: Compression | compressed size of 9
. image size ; image size - X 2D
Name | images (MB) used in DST (MB) Ratio each image RMSE
Y [Cb|Cr (MB)
Baby 1 3 05| 5|5 0.0594 98% 0.0594 5.95
Eyes 1 9 05| 5|5 0.0599 99.3% 0.0599 4.84
Girl 1 2.25 05| 5|5 0.1077 95.2% 0.1077 5.94
Apple 48 336 2 5|5 1.94 99.4% 0.0414 8.33
Face 28 200.7 1 5|5 1.72 99.1% 0.0629 5.68

Figure 6.11 shows two series of 2D images for objecAPPLE, and *FACE, (all images
aravailablefrom 123D Catch website). We start byngpressing each series infiages whose
compressed sizes and 2D RMSE measures are shown in bebke direct comparison of
compressiorwith JPEG and JPEG2000 is presented in Tél8elt is clearly shown that our
approach and JPEG20@an reachan equivalent compression ratio, while the JPEG technique
camot. It is important to streshat both our technique and JPEG dependDCT. The main
difference is thabur approachs based on DCT with DB and the coefficients are compressed
by the frequency minimization lgorithm.This rendersour technique far superior to JPEG as
shown inthe @mparative analysisfTable 6.6, where JPEG simply failed 3D reconstruction for
images compressed to the same size as our technique.
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Figure6.11: (a) and (b) showesies of 2D images used generat8D modes by 123D Catch.

In our method)CT with DST are appliedver theimage as one block. The used low frequency
block sizefor colour wasl50x4.50, the scalar quantization for DCT was 1, 5 and 5 for each layer
(Y,Cb and Cr) respectivelyrurthermorethe quantization matrix used after D®&rforms an
aggressive quantization, this medhat approximately 50%ef the coefficients are zero (i.¢he

left bottom of the image matrix contaitesge numbepf zeros after the quantization procegs
Eq.(6.5)).

(a) 3D model for series APPLEmMagesdecompressed lgur approaclt48 images, average 2D RMSE=8.33, total compressed
size=1.94MB). The compression ratio for the 3D mesh is 99.4% for connectivity and vertices
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(b) 3D model for series dFACE images decompressed byr approacli28 images, average 2D RMSE=5.68, total compressed
size=1.72MB). The compression ratio for the 3D mesh is 99.1% for connectivity and vertices

Figure6.12: (a) and(b) Successful 3Deconstructioraftercompression by our approach

Table 6.6: Comparisorwith JPEG and JPEG2000 techniques

Multiple Original size Comsprissed 2D RMSE
2D images (MB) NIITB
(MB) Our approach JPEG2000 | JPEG
APPLE 336 1.94 9.5 6.58 FAIL
FACE 200.7 1.72 5.1 3.39 FAIL

6.7. Conclusions

This Chapterhas presented and demonstratecheav method for image compression and
illustrated the quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE. Our
compression algorithm is based DIET appliedto each rowof an image, then followed by DST

which is appliedo each columrof the marix. After the transformatiostage, the minimization

of high frequencyalgorithm is usedo reducethe number ohigh-frequency coefficientsThe
compression stags thencompletedwith arithmetic coding. Inthe decoding stage¢he Fast
Matching-Search algorithm based dmnary searchs used torecoverthe original data. The

results show that our approach introdubetier image quality at higher compression ratiizs

JPEG and JPEG2000 aaxcanmore accurately reconstruct 3D surfates both techniquesA

slight disadvantage of the proposed method is that it is more complex than both JPEG2000 and
JPEG. This is because our approach uses two types of transforms, and that neither JPEG nor
JPEG2000 rely on a search methiad].

The most inportant aspects of the method and their role in providing high quality image with
high compression ratios are identified as follows:

1. The onedimensionalDCT can be applied tan image row (i.e.largaarraysizée §.
Equally, the onalimensional DST can bapplied to each column of the output from
DCT.

2. Theuse canignore the scalar quantizatiaa removehigher frequencyoefficients (i.e.
keepingmorecoefficients increases image quality).
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. Thetwo-dimensional quantizatiorci. Eq(6.5)) provides a mor@ggressive quantization
removingmost of matrix contestas aboub0% of the matrix entriesare zeroApplying
this over theDST can keep image quality at higher compression ratios.

. The final transformed matriis divided into: lowfrequency submatrix, and horizontal
and \ertical high-frequencymatrices.

. The minimization of high frequency algorithm produces a Minimigedy used to
replace each three values from the Higlyueny subbands by a single integer value.
This process reduces the coatntsby 2/3leading to increased compression ratios.

. Since the Minimized-Array for both verticaland horizontal higlirequenciescontins
large number of zeros, we applied a nesthod toeliminate zeros and keep nonzero
data. The process keeps significant information while reducing data up to 80%.

. At decompression stage, the Fi&tchingSearch algorithm is the engine for estimating
the original data from the minimized array and dependshe organized key values and
the availability of a set of unique data. The efficient C++ implementation allbiss
algorithm to recover the higlhequencymatrices very efficiently.

. The key values and unique data are used for coding and decodingg®) without this

information images cannot be recovered. This is an important point as a compressed
image is equivalent to an encrypted image that can only be reconstructed if the keys are

available. This has applications to secure transmission and estofagnages and video
data.

. Our proposed image compression algorithm was tested on true colour and YCbCr layered
images at high compression ratios. Additionally, the approach was tested on images

resulting in better 3D reconstruction than JPEG2000 and JPEG

10. The experiments indicate that the technique can be used faimeadpplications such as

3D datdfiles and video data streaming over the Internet.
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Chapter 7

DCT and Matrix Minimization based Image Compression with
Concurrent Fast-Matching-SearchDecompression

7.1. Introduction

As mentioned in previous ChapterbeDiscreteCosine Transform (DCT) is the basis of the
popular JPEG file formatand most video compression methods and mulkidia applications

are generally based otj117,119,12713§. In other words, the image is divided into segments
andthe DCT is then applied teachsegment creating a series of frequency components that
correspond with detail levels of the image. Several forms of coding are appstmte onlythe
mostrelevant coefficientdPEGis more evident on large data repositories such as YouTube and
cloud sbrage offered byseveralsuppliers. With the increasing growth of network traffic and
storage requirements, more efficient methods are needed for compressing image and video data
with high quality reconstruction and potential significant reduction in géos&ze.

In this Chapter a newmethod for 2D image compression and reconstruasproposed and
demonstratedmaking used of tB€TandMatrix Minimization algorithnidescribed inprevious
chaptes) at compression stage and a new concurrent binary search algorithm at decompression
stage. The proposéchagecompression methad this chapteconsists of five main steps:
(1) Divide the image into blocks and apply DCT to each block;
(2) Apply Matrix Minimization algorithm toAC-coefficients from each block &ncodesach
block size 1:3 producing Minimizedrray;
(3) Build a look up table of compressed probability data to enable recover original high
frequencies data at decompression stage;
(4) Apply a delta or differstial operator to the list of D€omponents; and
(5) Apply arithmetic encoding to the outputs of steps (2) and (4).

Using a look up table at decompression stageghe concurrent binary search algorithm
reconstructs all higifrequency ACcoefficients while the D&@omponents are decoded by
reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested
the technique by compressing asecompressing range oD imagesincluding images with
structured light patterns for 3D reconstruction. The technique is compared with JPEG and
JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression
method is perceptually parior to JPEG with equivalent quality to JPEG2000. Concerning 3D
surface reconstruction from images, it is demonstrated that the proposed setiuperioto

both JPEG and JPEG2(069].

lThis chapter was subject to a patent application[lplblished as PCT on 1 Sep 2016.
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Figure7.1:High level viewof the proposed image compression algorithm

7.2. The Discrete Cosine Transform (DCT)

ThisSection describe how the DCT is applied tothe original imageFirst, the 2D image is
divided into noroverlappngnxn blocks @ "e8) andthen transformed by DCT to produce -de
correlated coefficients. Each block time frequency domain consist adc DC-componentat the
first locationof each block which is the average value of the samples in the lalodkother
coefficients calledhe AC coeffidentsasdescribed in Eq3.1)[130,131,138]

The quantization ofach blockn x ncan be represented follows
(,)= (+) (7.1)

Where , =12,&, and the quantization factor is anteger > 1Each x block is
quantizel by Eq.(7.1) using dotdivision-matrix whichtruncates the results. This process removes
insignificant coefficients and increases the number of zeroes in eachThlegarameter is
used to increasordecrease the valued . Thus, image details areduced ofost as the value
of increasesThe range of is not limited a priori because it depends on the DCT coefficients
and image resolutiohhe nextstep isto split the DGcomponentsfrom eaclyuantizedlock

x by savinghose inta new array calledDC-Array. Therthe difference between two
adjacentvaluesin the DC-Array are computedcf. Eq. (3.9)). This differential process generates
coefficients that are correlated (generally the values are similar as the DC values of adjacent
blocks tend to be similar) so their differences are small and more data are repeated. This process
facilitates compressiopy arithmetic coding
Meanwhile, the remaining AC coefficients (ethhe 63 AC coefficientsrbm an 88 block) are
convertednto a one dimensional array by scanning coltbyrtolumn and saveohto a matrix
calledAC-Matrix. This matrix is subject ta process of eliminating all zeros followed Batrix
Minimization encodin@lgorithmdescribed next.
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7.3. High FrequencyMinimization Encoding Algorithm

In this Section we introducean algorithm to convert theAC-Matrix intoa compressea@rray
called MinimizedArraythrough @ EnhanceMlatrix Minimization algorithm The algorithm is
enhanced sliminating zeros and triplet encodimdhose output is then subjedtto arithmetic
coding(cf. Section 5.2.3Normally, the AC-Matrix containsa large numbeof zeraes with a few
nonzero dataHerenve propose a technique &iminate block of zerces and store blocks of
nonzero datanto aonedimensional arrayThe algorithmstarts to partition th&C-Matrix into
nonoverlappingplocks x where "e &nd thensearch for nonzerdata inside the blocKf
the block containmonzerodata,such datawill be storedinto areduced array .Otherwise the
block€s datavill be ignored, andhe algorithm continue$o searchfor nonzeraata in allblocks
[137]. Thealgorithm isillustratedin List 5.1. €f. Section 5.2.3)

Onceonly nonzero data are saved irtee reduceRarraythe minimization of high-frequency
encoding isapplied furthereducing its size byl/3.This process hinges on defining thre