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Abstract

Data compression techniques are widely used in the transmission and storage of 2D
image, video and 3D data structures. The thesis addresses two aspects of data
compression: 2D images and 3D structures by focusing research on solving the
problem of compressing structured light images for 3D reconstruction. It is useful then
to describe the research by separating the compression of 2D images from the
compression of 3D data. Concerning image compression, there are many types of
techniques and among the most popular are JPEG and JPEG2000. The thesis
addresses different types of discrete transformations (DWT, DCT and DST)
thatcombined in particular ways followed by Matrix Minimization algorithm,which is
achieved high compression ratio by converting groups of data into a single value. This
is an essential step to achieve higher compression ratios reaches to 99%. It is
demonstrated that the approach is superior to both JPEG and JPEG2000 for
compressing 2D images used in 3D reconstruction. The approach has also been tested
oncompressing natural or generic 2D images mainly through DCT followed by Matrix
Minimization and arithmetic coding.Results show that the method is superior to JPEG
in terms of compression ratios and image quality, and equivalent to JPEG2000 in
terms of image quality.

Concerning the compression of 3D data structures, the Matrix Minimization algorithm
is used to compress geometry and connectivity represented by a list of vertices and a
list of triangulated faces. It is demonstrated that the method can compress vertices
very efficiently compared with other 3D formats. Here the Matrix Minimization
algorithm converts each vertex (X, Y and Z) into a single value without the use of any
prior discrete transformation (as used in 2D images) and without using any coding
algorithm. Concerningconnectivity,the triangulated face data are also compressed with
the Matrix Minimizationalgorithm followed by arithmetic coding yielding a stream of
compressed data. Results show compression ratiosclose to 95% which are far superior
to compression with other 3D techniques.

The compression methods presented in this thesis are defined as per-file compression.
The methods to generate compression keys depend on the data to be compressed.
Thus, each file generates their own set of compression keys and their own set of
unique data. This feature enables application in the security domain for safe
transmission and storage of data. The generated keys together with the set of unique
data can be defined as an encryption key for the file as, without this information, the
file cannot be decompressed.
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Chapter 1
Introduction

1.1. Introduction
In the last decade, we have seena large expansion in the way we communicate
through digital media, and still the process is in progress. Theenablers include a
growing Internet infrastructure with increased bandwidth, storage space and user
base; the explosive development of mobile communications; and the increasing
importance of image andvideo data in communication. Data compression is one of the
technologies used to squeeze data size (i.e. image, video, and audio) to reduce
communication delay times. Websites are not restricted to images, they also contain
video and audio and for this reason data compression algorithms are required [1]. For
instance, smart phones would not be able to provide fast communication without data
compression. Digital TV cannot be realized without data compression. Data
compression is used in all domains, for example: make a long-distance call through
digital media requires data compression [2]. Other examples include fax, and listening
to music on your player or watch a DVD require data compression [3].

Data compressions algorithms are used to reduce the amount of data required to save
an image or a video or music. [3]. In brief, data compression is the art and science for
representing data in a compact form, the structures that exist in the data, the samples
of audio or image waveforms or numbers that are generated by processing [4].Data
compression encodes information used or generated in digital form (numbers
represented by bytes), and these numbers are used to represent multimedia files. For
example, to represent 1 second of movie without compression (using the CCIR 601
format) it is required approximately 20 MB, or 160 MB, for this reason we need to
compress each frame in the movie.To represent 2 minutes of uncompressed music
(44,100 samples per second, 16 bits per sample) requires approximately 84 Mb. To
downloading this uncompressed music from a website, or streaming the same file,
longtime spans arerequired [3].

As any human activity has an influence on the environment, there is an increasing
need for information about the environment to reduce harmful impacts. Various space
agencies from around the world, including the European Space Agency (ESA), the
National Aeronautics and Space Agency (NASA), the Canadian Space Agency
(CSA), and the Japanese Space Agency (STA), are co-operating on a program to
observe changes in the global environment that generate many terabytes of data per
day; compare this with 130 terabytes of data currently stored at the EROS data center
in South Dakota, which is the largest archive in the world [5].

According to growth of data that needs to be transmitted and saved, there is the
question of why there is not a more concerted effort on developing sophisticated
transmission and storage technologies? This is happening, but still it is not enough.
There have been significant developments that allow transmitting and storing large
amounts of information without using compression, including CD-ROMs, optical
fibres, Asymmetric Digital Subscriber Lines (ADSL), and cable modems [6].
However, as both storage and transmission capacities increase with new technological
innovations, as a outcome to Parkinson’s First Law: “Work expands so as to fill the
time available,” in Parkinson’s Law and Other Studies in Administration, by Cyril
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Northcote Parkinson, Ballantine Books, New York, 1957[7].It seems that the need for
mass storage and transmission increases at least twice as fast than storage and
transmission capacities. There are obvious physical limitations, such as the amount of
information we can transmit over the airwaves will always be influenced by the
characteristics of the atmosphere [5] and the limitations of bandwidth capacity.

The main motivation for the research stems from the large size of 3D face meshes
generated by the GMPR 3D scan technologies [69] (around 20MB for geometry and
connectivity plus 4MB for texture mapping) which limited their intended application
in a security context. The GMPR technologies were tried in an airport scenario in a
confidential trial with the main outcome being the realization that the size of the data
files made the system unworkable. The idea was that each passenger was to be
scanned at check-in and again at the gates before boarding the plane. All data were to
be sent to the Police who had exactly 24 hours to perform background checking. If
needed, the Police could apply for judicial order to keep the data for longer, otherwise
all data had to deleted within 24 hours. If the plane were say, from London to New
York, all data would be sent to the Police in New York before taking off. The law
enforcement abroad would have the same limitations of keeping the data as the UK
Police.

Around 70 million passengers per year go through London Heathrow Airport and a
simple multiplication of two 3D scans per passenger by the required disk storage
clearly indicates the need forhuge bandwidth requirements to transfer data. Having
identified the bottleneck, the solution would require data compression of at least 2
orders of magnitude, say a file of 24 MB be reduced to around 240 KB. From these
considerations, thefollowing research questionsare posed:

 Can a method be developed to efficiently compress geometry, connectivity and
texture by 2 orders of magnitude?

 Can the method be generic enough to be applied to any kind of data such as
text, video and audio?

To investigate the issue, the starting point must be 2D image compression as the
GMPR 3D technologies are based on generating 3D meshes from 2D images. Even if
3D data are not generated by structured light techniques, 2D images are used for
texture mapping of 3D models, thus, there is a clear requirement for 2D image
compression. In the following sections, emphasis is placed on two popular and
standard image representation techniques namely JPEG and JPEG2000 that keep the
data in compressed format. Many other representations exist such as BMP, PNG,
TIFF, GIF, and so on. Some are more efficient than others in terms of image size but
these will not be considered in this thesis for comparative analyses. The thesis focuses
on JPEG2000, which is the best and the standard method of image compression so
any proposed compression technique should stake its case against JPEG2000, and on
JPEG, which is a popular standard technique for image and video coding.

1.2. Compression Techniques
When we talk about compression techniques or compression algorithms [8] we are
actually referring to two algorithms. There is the compression algorithm that takes an
input X and generates a new stream of data xc that requires fewer bits, and the



11

decompression algorithm operates on xc to reconstruction Y. These operations are
shown in Figure 1.1.

Figure 1.1: Compression and Reconstruction

We will follow current understanding and refer to both the compression and
decompression algorithms to mean the compression algorithm based on the
requirements of reconstruction.Data compression programs can be divided into two
broad classes: lossless compression algorithms, in which Y is identical to X, and lossy
compression algorithms, which provide higher compression than lossless
compression, and the result Y is not strictly equal to X but not much different[6, 10].

1.2.1. Lossless Data Compression
Lossless compression techniquesimply no loss of information. If data have been
lossless compressed, the original data can be recovered exactly as the original data.
Lossless compression is generally used for applications like: texts, word documents,
executable files, and library documents used by computer programming languages
(i.e. C++, java or any machine languages)[11].

Text compression is an important area for lossless compression. It is very important
that the reconstruction is identical to the original text, even very small differences
between original and recovered data can result in a big change in meaning. Consider
the original text: “Do not send money” and received sentences: “Do now send money”.
If any kind of data are enhanced (after compression algorithm) they may yield
additional information [12].For example, assume we compressed a radiological image
as lossy type, and the difference between the decompressed image and the original
image was visually negligible. If this image were later enhanced, it may cause the
appearance of artifacts that could delude the radiologist. Because the cost could be a
human life, it is important to be very careful about using a compression method that,
after reconstruction, shows significant differences (large and small) from the original
image [13].

Data obtained from satellites are often processed later to obtain numerical indicators
about our environment. If the reconstructed data are not approximately identical to the
original data, the result is enhanced data. In this caseit may be impossible to recover
the original data. Therefore, in processing satellite data it is normally not allowed for
any differences or degradation to happen in the compression process [14, 15, 16].

#include <stdio.h>
main() { int x, y; x=12;

y=x*x+x/3;
cout<< y;

}
//-------------------------

//This C program Is
//just as text document

#include <stdio.h>
main() { int x, y; x=12;

y=x*x+x/3;
cout<< y;

}
//-------------------------

//This C program Is
//just as text document

Compression

X

xc Reconstruction

Y

@=#$%^
*&*=+!
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There are many applications that require data compression where the reconstructed
data must be identical to the original. However, there are also a myriad of applications
in which some data loss is acceptable and indeed, it is requirementtoobtain higher
compression ratios.

1.2.2. Lossy Data Compression
Lossy compression techniques lead to loss of some information, and data that have
been compressed generally cannot be recovered or reconstructed identically to the
original. By accepting lossy in the reconstructed image, we can generally obtain much
higher compression ratios than is possible with lossless compression [17].

In many applications, exact reconstruction is not necessary. For example, when
transmittingspeech or an image or video. Depending on the quality required of the
reconstructed data, some reduction in data accuracy can be tolerated [18]. However, if
the reconstructed data needs to be of high quality, the amount of information loss
must be controlled to low levels [19].

Once we have specified data compression requirements, we need to measure the data
compression-decompression performance. Performance is elusive as it can refer to the
perceived accuracy or some quantifiable parameter. This is sobecause in different
fields of application, different terms have been used to describe performance
measurements [20]. In this thesis we focus on the perceived quality, the compression
ratios, and the root mean square errors between reconstructed and original data.

1.3. 2D Image Compression
A digital image is a matrix of dots, arranged in n rows and m columns. The expression
[m n] represents the resolution of the image and the dots refer to pixels. The term
“resolution” is used to show the number of pixels per unit length of the image.
Therefore, dpi stands for dots per inch [21]. We can classify the images in the
following: [22, 23, 24]:

A. A monochromatic image. This simplest type of images contains two values
referring to black and white, each pixel represented by one bit.

B. A grayscale image. In this type of image pixel values are between 0 and 255,
and each pixel is represented by a byte.

C. Colour image/natural image. This type of image is similar to grayscale type,
but consist of three layers RGB (Red, Green and Blue), pixel values in each
layer between 0 and 255. A pixel in three layers can be represented by 24-bit
[25]. When adjacent pixels are slightly similar, it may be impossible for the
eye to recognize their colour. This type of image can obtained for example,
from digital cameras. Figures 1.2 shows a typical example of colour images
[3].

D. A graphical image. This type of image is normally an artificial image: cartoon
or a graph that contains texts (obtained from Photoshop programs, or any paint
programs). It may have a few colours (not natural), free from noise or blurring
as appears in a natural image.

It is axiomatic that each type of image has redundancy in colour, but they are
redundant in different ways. Therefore, image compression algorithms cannot
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perform well acrossall images and different algorithms are required to compress
different types of images [26]. There are also methods that break an image into parts,
to render compression easier [27].

Figure 1.2: (left) Lena and details, this image is part of the Play- Boy centerfold for November, 1972,
(right) Mandrill and details, used as sample in MATLAB language for image processing test

The idea of lossy compression becomes more agreeable with digital images; this is
because the images are created by the following: 1) an image may be scanned from a
photograph and digitized (i.e. converted to pixels); 2) An image may be captured by a
digital camera that creates pixels and save them directly in memory; 3) An image may
be painted on the screen (i.e. paint software) [28].In all these cases, some data is lost
when the image is digitized. Normally the viewer accepts this loss of information if
done properly. Digitizing an image can be defined in two steps: sampling and
quantization. Sampling an image is the process dividing the original image into small
regions of pixels. Quantization is the process of assigning an integer value to each
pixel (i.e. thresholding)[29], for example, if a pixel value is greater than a threshold,
the pixel value changes, otherwise no action.

We present a simple process that can be used as a measurement to determine the
amount of data loss in a compressed image. For example, an original image M is
compressed to T, and then decompress T to S, finally subtract V = S−M. if the image
S is identical to original image M, then V should be uniformly black (V=0).
Ifsomedetails are lost during compression,V would be approximately black [30] and
may be acceptable, depending on the application.

1.3.1. The JPEG Technique
The name JPEG is a shortcut that stands for Joint Photographic Experts Group. This
was a joint effort by the CCITT and the ISO (the International Standards
Organization) that started in 1987 and produced the first JPEG draft proposal in 1991.
The JPEG standard has proved successful and has become widely used for image
compression, especially in Web pages [21, 27,30].

JPEG is a lossy/lossless compression method for colour or grayscale still images. An
important feature of JPEG is its use ofparameters, allowing the user to adjust the
amount of data quality or compression ratio. Often, the eye cannot see any image
degradation even at compression ratio more than 80%.For this reason, most
implementations support JPEG method lossy mode [31,32,33].The main JPEG
compression steps are described as follows:

A- Colour images are transformed from RGB into a luminance and chrominance
colour space (YCbCr format). The eye is sensitive to small changes in
luminance (Y) but not in chrominance (CrCb),so the chrominance part can
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later be compressed at high compression ratio, without losing much visual
quality [31]. Figure 1.3 shows the RGB conversion, the main reason for this
conversion is to achievehigher compression ratios.

B- Each layer in an image (Y or Cb or Cr) is divided into non-interleaved blocks
(8x8) pixels, and each block is compressed separately. If the image size is not
compatible with 8×8 block, the bottom row and the rightmost column are
duplicated.To be compatible, the JPEG encoder holds all the blocks of the first
image layer, then the encoder operates on the second layer, and finally the
encoder is applied on the third layer. If the user chooses maximum
compression ratio, block artefacts appear in the decompressed image [31] as
shown in figure 1.4.

C- The Discrete Cosine Transform (DCT) is applied to each block to create new
8×8 datablock of frequency components. It contains low-frequency at the top
corner, while other values represent higher-frequency. The main advantage
ofDCT is de-correlate the data, and some data in the right bottom are
negligible. This process increases the compression ratio, while another
advantage the reconstructed data is approximately similar to original data as
the human eye cannot recognize these differences [29].

D- Each of the 64 frequency components in a block is divided by a separate
number called quantization coefficient (QC), and then keeping an integer part.
This is where original information becomes irretrievable. Large QCs values
cause more losses. The JPEG compression algorithm implements a QC table
for luminance and a different QC table for chrominance components [28].

E- The 64 quantized frequency coefficients (integer values) of each block are
scanned to one-dimensional array then encoded by a combination of RLE and
Huffman coding. An arithmetic coding different from Huffman coding known
as the QM coder [32, 33] can optionally be used instead of Huffman coding
[32]. Figure 1.5 shows JPEG steps to compress an image.

Figure 1.3: (Top) original image RGB, (bottom) RGB converted to three different layers YCbCr
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Figure 1.4: Lena's picture compressed at bitrate 0.25, the artifact block appeared on the decompressed
image (picture zoomed-in 3 times)

Figure 1.5: Layout JPEG compression steps for one layer or grayscale image

1.3.2. The JPEG 2000 Technique
The current JPEG standard provides excellent compression performance at rates
above 0.25 bits per pixel. However, at lower rates there is a sharp degradation in the
quality of the reconstructed image. To correct this and other shortcomings, the JPEG
committee initiated work on another standard, commonly known as JPEG2000. The
JPEG2000 is the standard based on wavelet decomposition [34].The main sources of
information on JPEG2000 are ISO/IEC (2000), International Standard IS 15444-1[34,
36] the final committee draft (FCD) released in March 2000. This document defines
the compressed stream (referred to as the bit stream) and the operations of the
decoder. It contains informative sections about the encoder, but any encoder that
produces a valid bit stream is considered a valid JPEG2000 encoder. Following is a
list of features JPEG2000 is expected to improve upon existing methods [35]:

A. High compression efficiency, bitrates less than 0.25 bpp are expected with
high quality images.

B. The ability of DWT being appliedto large blocks of images or over the
complete image (The JPEG maximum block size 8x8).

C. Progressive image transmission, the proposed standard can decompress an
image progressively.

D. The decoder can decompress part of an image inside a ROI (Region Of
Interest).
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To illustrate JPEG2000 encoding algorithm, assume a colourimagethatis divided into
three components by converting RGB into YCbCr format. Each component is
partitioned into rectangular, non-overlapping regions called tiles, and each are
compressed individually as illustrated in the following four steps[37]:

1- Compute a Digital Wavelet Transforms (DWT) the results issub-bands of
coefficients LL (low frequency sub-band), LH, HL and HH are high-
frequencies sub-bands.

2- The wavelet coefficients are quantized. This is done if the user specifies a
target bitrate. The lower the bitrate, most of high-frequencies becomezeros
(LH, HL and HH), roughly similar to quantizing the wavelet coefficients [39].

3- It uses arithmetic coding tocompress each sub-band coefficients individually
[37].

The EBCOT algorithm (Embedded Block Coding with Optimized Truncation) [38]
has been adopted for the encoding step. The principle of EBCOT is to divide each
sub-band into blocks (i.e. code-blocks) that are coded individually. The bits resulting
from coding several code-blocks become a packet and the packets are the components
of the bit stream. The packets are used later by the decoder to decode specified area
and skip other areas, thereby displaying the ROI. The packet bit stream is organized in
layers. Each layer contains image information; therefore, decoding the image layer by
layer is a natural way to achieve progressive data decompression [37, 40]. Figure 1.6
depicts the layout of the JPEG2000 compression technique.

In summary,current experiments indicate that JPEG2000 performs better than the
previous JPEG, in still images at higher compression ratios or whenvery high image
quality isrequired[41].On the other hand, a decompressed image by JPEG2000
contains blurring at higher compression ratios, this is because multi-level DWT is
applied [43].Figure 1.7 shows Lena's image compressed by JPEG2000.

Quantization apply on
each sub-band

Arithmetic coding,
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Figure1.6: Two levels DWT decomposition applied on each layer in acolour image to create
six high-frequency coefficients matrices and one low-frequency coefficient matrix, each sub-
band compress independently.

Figure 1.7: Lena's picture compressed at bitrates 0.25, the decompressed image zoomed-in 3 times.

1.4. 3D Surface Data
3D meshes may be the most popular discrete virtual surface and volume
representation. Its simplicity makes it so popular today that electronic chips, called
GPUs (Graphical Processing Units), partially specialized in the rendering of images
from 3D meshes are integrated in all personal computers, and some tablets. However,
their data representation takes a large amount of space [42].

3D meshes are used in many application areas including computational simulation,
entertainment, medical imaging, digital heritage, computer-aided design, e-commerce,
etc.The need for precision is unstoppable, this leads to the generation of meshes
composed of many elements, demanding processing, and complex visualization and
storage.3D mesh compression has been an active research topic since the mid 90’s.
Because 3D meshes are normally large data files, it is important that good
compression methods are available for efficient storage and transmission [44].

Two different methods exist for mesh compression: single-rate and progressive
approaches. The advantage of the single-rate methods is that generally they output
higher compression ratios. However, the reconstructed mesh is only available when
all data are decoded at the decompression stage [45,46]. The progressive approaches
are relevant; to cooperative visualization that requires fast data transmission, also a
progressive compression approach allows achieving high compression ratio and
produces different levels of detail. They provide the chance to obtain an unpolished
pattern (version of 3D mesh that needs some enhancement) of the original object and
to polish it progressively until the levels of details are the most suitable for the
terminal client [47, 48].
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A polygon mesh is defined by a set of vertices and by its triangle-face (incidence
graph). The vertex description involves three coordinates per vertex: x, y and z [49].
Incidence (sometimes referred to as “topology”) defines each triangle-face by three
integer values that refer to its vertices,as shown in figure 1.8[50,51]

Figure 1.8: (a) vertices (b) triangle faces, (c) surface topology

Some mesh connectivity is said to be "regular" because they are collected together of
the repetition of the same pattern. In case of few/some elements of the mesh do not
have a regular connectivity, then the mesh is called "semi-regular". When there is no
regular structure connectivity in the mesh, in this case it is called "irregular"[51, 52].

There are several 3D mesh structures, such as OBJ, VRML, X3D, COLLADA, etc.
These methods are based on an indexed data structure. The first part of this structure
consists of a list of all the vertices: X, Y and Z (coordinates) that also introduces an
ordering of the mesh vertices. The second part describes the connectivity of the mesh
consisting of a list of triangles faces. Each triangle is composed of three indices (i.e.
3-indices refer to 3 vertices in the 3D mesh file).Such data structure formats have the
advantage of being simple. Additionally, most 3D mesh compression algorithms
depend on this structure as input[53, 54]. Figure 1.9 shows the Wavefront’sobject file
structure as an example. In this section, we will divide 3D mesh surface compression
into two parts: (1) 3D mesh compression based on 3D data (2) 3D surface
compression based on 2D Bitmap image.

1.4.1. 3D Mesh Compression Based on 3D Data
3D mesh compression techniques are different from compression methods forother
multimedia (e.g. images, video). The common point between images and videos is
that their structure is known (pixels value in an image are limited) by the compression
and the decompression algorithm. While in 3D meshes the connectivity is completely
unknown to the encoder before compression. So, besides compressing the geometry
(vertex positions), a connectivity structure must also be encoded [55, 56].
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Figure 1.9:3D object triangle-face refers to indices in vertex

A. Geometry Compression:Mesh geometry compression represents
compression the vertex coordinates, in most cases it is larger than the
connectivity information (triangle faces). Usually the compression of the
geometry of a mesh begins with the Quantization of all the coordinates. Next,
in each compression algorithm iteration the position of anencoded vertex is
predicted.Ifthe prediction is accurate, the prediction error is small so, it can be
later efficiently coded by Huffman or Arithmetic coding [57, 58].

A vertex coordinates are represented by 96-bit floating-point numbers. This
accuracy is not important for most 3D applications, in this case the
quantization can significantly reduce the amount of data to encode without any
distinguishable quality loss[59].The number of quantization bits usually
ranges between {8 and 16 bits}, as accordingly, the mesh geometry softly
changed [60].

B. Connectivity Compression: The general principle for all connectivity
compression techniques is implementing a traversal to the mesh (vertices
connectivity) and output a table of symbols depending on the
configurations[61]. The main point in the traversal, defines a new set of
numberings for the mesh, different from the one used in the input indexed data
structure [62]. The generated symbols are encoded by Huffman coding or
Arithmetic coding [63].

3D mesh connectivity compression requires high computational capabilities.
The GPUs (Graphic Processor unit) can be usedto process a 3D mesh in
parallel[64]. An optimized method to transfer mesh data can significantly
decrease processing time such as the use of triangle strips.These strips are
transferred from main memory to GPU memory. Triangle strips can be defined
by a sequence of vertices, where a new vertex is added to atriangle strip
created with two previous vertices. This method is much more efficient than
the indexed representation that requires three vertices to encode each triangle
[65,66, 67].

Index
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1.4.2 3D Mesh Compression Based on 2D Image
Still high-quality cameras and imaging sensors are able to obtain good 2D images, but
these images do not contain full 3D object representation, because depth information
is absent. This restriction limits our ability to extrapolate from a 2D image to a 3D
surface. The last two decades characterized significant progress in research related to
3D surfaces through developed and commercialized 3D imaging techniques. This
encouraged 3D applications that, in turn, demand high resolution and high speed
electronic imaging systems [69].

3D images refer to techniques that are capable to obtaining 3D data (i.e. such as
distribution of density for 3D object).Surface imaging measures the coordinates of an
object’s surface (i.e. measurement points x,y,z). Since the surface is normally non-
planar the result of the measurement is a 3D surface image that can be described as a
three dimensional matrix (i.e. first layer contain coordinates: x,y. while second layer
contains depth z)

A general 3D surface imaging system based on structured lightor laser scanning
canestimate a scalar value representing the depth from surface reflectance. Each point
in the non-planar surface is represented as point cloud Pi (i.e. Pi= xi, yi, zi and
fi)wherefirepresents a colour at the i-th point in the surface as shown in Figure 1.10.

The GMPR group has developed and patented new 3D scanning methods at Sheffield
Hallam University [70, 71] based on structured light. The methods convert a single
image into a 3D surface by processing the light patterns in the image. The scanner
processes a pattern of projected stripes on the target object. The shape of the captured
pattern is combined with light source and the camera, to determine the 3D position of
the surface along the pattern [72] as showed in the Figure 1.11. The system can work
in real time enabling the concept of 3D CCTV to be implemented [73]. The issue is
the massive amount of generated data which is addressed in this thesis.
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Original object            2D image with structure-lights            3D data created

Figure 1.10: (Top) shows projector used spotlight on an object and camera used to capture 2D image
for an object with patterns lights (structured lights) as a 2D image, (bottom) shows an example the 2D
image converted to 3D object data.

Fig. 1.11: (left) 3D scanner convert any object to 2D bitmap pattern image, (middle) 2D image
captured by 2D camera on the top of the 3D scanner, (right) 3D mesh created by software developed by
GMPR[70].

1.5. Aims and Objectives
In this section, we will mention how our proposed method is used in 2D images, 3D
from structured light data and general data. Our proposed method focuses on reducing
the amount of data to 2 orders of magnitude compared to standard uncompressed data.

Because there are many kinds of data (images, text, audio, video, 3D, etc.), the steps
described by our approach differdepending on the type of data. For example, 2D
images need discrete transformationsbefore coding, while in 3D meshes we do not
necessarily apply discrete transformations to reduce the number of vertices. And for
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other types of the data the method depends on redundant data and the relationship
between data neighbours.

The purpose of the proposed method is to combine groups of data to a single value.
Before we apply our proposed method, we must analyse the data (i.e. image or 3D
data or text, or other type). Because some data cannot compressed without some pre-
processing, as an example an image must be transformed before applying our
proposed approach. In lossy compression, redundant vertices from 3D data are
reduced before applying our proposed approach. Lossy compression allows for more
flexibility on the number and type of transformations we can use before applying the
main steps of the proposed compression method.

In lossless text data compression, our approach can be applied directly to the
data.Inthat case, the compression ratio for a text file will not be very high, so it is not
possible to reduce this type of data by 2 orders of magnitude. For this reason we can
apply some lossless pre-process (i.e. RLE) [3]to reduce the amount of data followed
by our proposed method to increase the compression ratio.

The aims of this thesis are to investigate and improve compression ratios and image
quality in the context of 3D reconstruction placing in the context of current
technologies. The quantitative target is reduction in file size by 2 orders of magnitude
with acceptable quality parameters. The quality of decompressed image is computed
by the Root-Mean-Square-Error (RMSE) technique for both 2D images and 3D
surfaces. Also the Human Visual System (HVS) is used as a measure of image quality
(i.e. it depends on human visual perception, as pure arithmetic is not a sufficient
measure of quality between decompressed and original image data). The objectives of
PhD research are highlighted in the following steps:

A) Investigate discrete transformations and their combination for digital image
processing, assessing their combined effects on compression and
decompression. The principle of operation we are pursuing is that in data
compression, the discrete transformation should divide an image into low and high
frequency bands. In case the number of high frequencies is increased, the
compression ratio will increase. Additionally, some of the less significant high
frequency coefficients can be neglected by quantization. The aim of the
transformation is thus, to separate low frequencies from high frequencies.
Similarly, low frequencies are subject to a possibly different or same type of
transformation. By increasing the number of high frequency coefficients, higher
compression ratios are obtained. Thereafter, a single type of discrete
transformation is applied to the image and compared with a multi-level discrete
transformation applied to the same image. Moreover, it is an objective of the
dissertation to adapt the same transformations or sequence of operations to
directly compress 3D geometry data.

B) Investigate and develop novel ways to exploit wavelet decomposition to
various areas of an image for efficient compression. For example, by applying
a two-level DWT decomposition: LL2, LH2, HL2 and HH2 on a 2D image, and
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then using quantization process in LL2 to generate new low-frequency
coefficients (LL2quantized) sub-band. Furthermore, exploit the Matrix Minimization
algorithm applied to high frequency matrices. The advantage of the Matrix
Minimization algorithm method is that it decreases the matrix size to 1/3 of its
original size and increases the compression ratio. The main reason for using the
Matrix Minimization algorithm is because we have many matrices that must be
reduced before using a coding algorithm. Additionally, Matrix Minimization
algorithm applied to vertices in 3D geometry data to show the ability our method
to compress 3D mesh surface. Firstly, the differences computed between each two
vertices, and then our method applies to convert each 3 data to single value.

C) Develop novel methods and algorithms for accurate decompression of high
frequency matrices. For instance, the Limited-Sequential Search Algorithm (LSS
Algorithm) is used to decompress high frequency matrices. The LSS algorithm is
a searching method used to find the original data matrix through space search (i.e.
using a table that contains minimum and maximum values of the original matrix
before compression).The LSS algorithm searches for the original data sequentially
using the table (i.e. decode the original high-frequency matrix). So, this algorithm
represents the inverse of the Matrix Minimization algorithm. If no search
algorithm is used, it is not possible to decode the matrices and thus, not possible to
decompress the 2D image/3D surface. Furthermore, we propose to develop this
algorithm into a Block-Sequential-Search Algorithm, which represents two or
more LSS-Algorithm working together and synchronize their results to speed up
the searching method.

D) To perform a comparative analysis of performance with standard
compression algorithms for image and data structures.JPEG and JPEG2000
represent the most popular image and video compression techniques. These two
techniques will be compared with the proposed algorithms. The comparison will
be based on compression ratios and image quality through RMS error and HVS.

1.6. Contributions to Knowledge
The expected contributions to knowledge from this thesis can be summarized as
follows:

 A Matrix Minimization algorithm encoding/compressing each group of
data items into a single value.

 A method to generate a data-dependent set of compression keys. The keys
are used both for compression and decompression of data.

 A method to define the space domain of search (unique data) that is also
data dependent. The set of unique data can be seen as a compression-



24

encryption key. Without the set of unique data, the file cannot be
decompressed.

 An iterative method to recover the original data making use of the
compression keys and the unique data set. Iteration is required as there is
one equation for 3 variables in the demonstrated examples, which is a
mathematically underdetermined problem.

Concerning the compression step, the thesis is focused on the Matrix Minimization
algorithm. The algorithm is based on merging a group of data (normally three data
items used in this thesis) to a single value. The algorithm is used to reduce the number
of high-frequency components. In other words, as the high-frequency matrices' size
are reduced there is a corresponding increase in the compression ratio.

The Matrix Minimization algorithm is based on keys (three different keys are
suggested in this thesis). These keys are used for encoding/compression (See Section
1.7.2), and will be use later in the decompression algorithm. Furthermore, during
encoding by the Matrix Minimization algorithm, the space search is created to
determine the minimum and maximum boundaries of the coded data. Our proposed
decompression algorithm uses this space search for fast decoding (See Figure 1.15)

Concerning the decompression step, the thesis is focused on iterative decoding
algorithmsthat are applied to recover the original matrices. These are normally
matrices of high-frequency coefficients but the method is valid for any matrix or
vector that has been coded by the Matrix Minimization algorithm. Because the
decompression algorithms rely on iterative search, there are various optimization
techniques that can be used. Some are explored in this thesis, such as the Limited
Sequential Search algorithm (LSS-Algorithm), which is used to recover the original
data as illustrated in section 1.7.4.

1.7. General Research Methodology
This section describes the general methodological approach and main ideas to be
developed into a PhD dissertation in image and data compression with specific
examples. Many different algorithms were developed and are demonstrated in
Chapters 2—8 with the general methodology described here. The method depends on
the use of discrete transformations to generate two types of matrices namely a low and
a high frequency matrix. Subsequently, the Matrix Minimization algorithm codes the
high frequency matrix reducing it to 1/3 of its original size. This reduced matrix is
then subject to arithmetic coding. Also, the Limited-Sequential-Search algorithm is
illustrated as a search method for decoding high-frequency matrices. Figure 1.12
shows a dataflow of the proposed compression methods.

1.7.1. The Use of Digital Signal Transformations
The starting point in this research is the use of one or more types of transformations
(i.e. DCT/DWT/DFT). The main objective from the digital transformation is to
decompose the data into low and high frequency matrices. It is important to note that
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the digital transformation can also be applied to the previously obtained low-
frequency matrix, this will increase the number of high-frequencies that can be
subsequently eliminated. This process will be investigated by using two different
types of digital transformations. As discussed above, a DWT divides an image into
four sub-bands, three of them high-frequency sub-bands labelled "LH", "HL" and
"HH", and the last one is the low-frequency sub-band labelled "LL". In this stage the
"LL" sub-band data are quantized. The value of the quantization could be selected by
a user/programmer. The dimensions of "LL" and data size are not appropriate for
compression without excessive deterioration in quality. For this reason, another
transformation is used for reducing the size of "LL" and increase the number of high
frequencies that can then be safely quantized, compressed or discarded [42, 43].

The second type of transformation is applied to the low-frequency sub-band by
dividing it into blocks (i.e. block size 2x2 / 4x4 / 8x8…etc.), and then one of the
digital transformations are applied (i.e. DWT/DCT/DFT) on each block. Each block
consists of a DC component and high frequency coefficients. The DC component
from each block is stored in a new matrix called DC-Matrix. The dimensions of this
matrix are much smaller than "LL", while, high-frequency data are stored in a new
matrix called AC-Matrix. After this process, the AC-Matrix is ready for coding by the
Matrix Minimization algorithm. The DC-Matrix can be transformed again (i.e. apply
DWT/DCT/DFT) to increase the number of high-frequency coefficients. Following
the transformation, the DC-Matrix consist of: 1) high frequency coefficients, which
can be coded by the Matrix Minimization algorithm, and 2) all DC-values, which are
approximately similar, and thus the differences between DC-values are small and
amenable to compression by arithmetic coding [42].

1.7.2. The Matrix Minimization algorithm Applied to High Frequency
Matrices

Each high frequency matrix (i.e. LH, HL, HH, and AC-coefficients) are compressed
by our Matrix Minimization algorithm. This method converts three items of data or
more into a single value. This is achieved by using a random key. For example:

Original_data = [1 0 0 0 -2 0]

Key = [ 0.8147, 0.9058, 0.1270]

Which results in the minimized data illustrated as follows:

Data1=[1*0.8147 + 0*0.9058 + 0*0.1270] = 0.8147,

Data2=[0*0.8147 + (-2)*0.9058 + 0*0.1270]=-1.8116.
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Figure 1.12: Proposed steps for 2D image compression

The final result will be Minimized_array=[0.8147, -1.8116]. The advantage of this
method is that it eliminates some zeros and keeps the high-frequency data without the
need for additional quantization. The used key in this method is user defined [42].The
key values are generated randomly (i.e. random numbers in the range =[0…1]), which
are then multiplied by each row of matrix to produce the minimized array.

The Matrix Minimization algorithm is applied to each sub-band independently; this
means each minimized sub-band is independently compressed by arithmetic coding.
Figure 1.13 illustrates the Matrix Minimization algorithm applied to a matrix.
Likewise, for larger reductions in data size, it is possible to compress the resulting
minimized array by the Matrix Minimization algorithm. However, care must be taken
if this further compression is used, as the side effect is less reliable probability or
unique data[42, 43].

Figure 1.13:The original array size n is minimized to another array M.

Before applying the Matrix Minimization algorithm, our compression algorithm
computes the probability of the data for each high frequency matrix. These
probabilities are called Limited-Data or Unique data, which is used later in the
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decompression stage. The Limited-Data are stored as a header in the compressed file
and are not subject to compression. Figure 1.14 illustrates the probability of data in a
matrix [42].

Figure 1.14: The Limited-Data for anarray size 15 is illustrated as a list of unique data.

1.7.3. Coding Stage
After compression of high frequency coefficients by the Matrix Minimization
algorithm, the final compressed array contains a lot of zeros and nonzero-data. In this
case all nonzero-data will be stored in the new array followed by Arithmetic coding.
On the other hand, the number of zeros counted and stored in another new array. For
example: minimized-array=[1.7 0 00 -1.7 0 0  9.2 0 000], nonzero=[1.7, -1.7, 9.2],
zeroscount=[2,3,2,4]. The first number "2" at "zeroscount" refers to the position of
first zero, while the other numbers in array refer to the number of zeros between data,
which are then compressed by Arithmetic coding [42].

The main reason for using Arithmetic coding rather than Huffman coding is because
Huffman coding uses a binary tree to generate a stream of bits, and this needsa huge
amount of memory. For this reason, Huffman coding is useful for small matrices, for
example, in JPEG Huffman coding is implemented on each 8x8 block, this means
each block is compressed independently. On the other hand, arithmetic coding
generates just one table for an image. The table needs less memory space than a
binary tree.

1.7.4. Decompression Algorithm
The decompression algorithm reverses the compression steps. This proposal
introduces new algorithms for searching methods for decompressing the reduced
matrices. These algorithms will be tested on different types of 2D and 3D images. The
main parameters to judge the success of the searching methods are the efficiency and
accuracy of decompression. The following steps illustrate the proposed novel
methods:

A) The DC-Matrix together with nonzero and zerocount arrays (as defined above) are
decompressed by using Arithmetic Decoding. Moreover, the nonzero-array is
merged with the zerocount-array producing the minimized-array.
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B) As described above the minimized-array is obtained from the Matrix
Minimization algorithm. The Decompression algorithm uses a new method called
Limited-Sequential-Search Algorithm (LSS-Algorithm), the idea being to restore
the original data from the Limited-Data. This process depends on the random key.
Other algorithms than the LSS will be explored in subsequent chapters of this
thesis. Initially, the LSS-Algorithm assigns three pointers (P1,P2 and P3) where
each pointer is increment by one at each iteration loop. This process looks like a
digital clock [sec, min, hour]. For example: assume we have the following
information about the compressed data:

Limited_Data=[3 -1 0 1],Key=[0.8147, 0.9058, 0.1270].

The compressed data was: Minimized_array=[0.8147, -1.8116]. The
decompression by the LSS-Algorithm is illustrated in Table-1.

Table-1: TheLSS-Algorithm iterative search

C) P1, P2 and P3 refers to locations in Limited-Data, which represents the search
space. In the above Table-1, P1=1, P2=1 and P3=1 mean the first value: Limited-
Data(1)=3. If "Result" in the above table is matched with
Minimized_array(1)=[0.8147], this means P1,P2 and P3 found the data in
Limited-Data (i.e. P1=4, P2=3 and P3=3). Similarly, the second data picked from
minimized-array (2)=[-1.8116] for processing. In other words, the LSS-Algorithm
works until finding all the original high-frequency data [42].

D) Finally, the decoded AC-Matrix is combined with the DC-Matrix to obtain the
"LL" sub-band, and then applied inverse digital transformation (i.e.
DCT/DWT/DFT) on each block (i.e. block size 2x2/4x4/8x8) followed by inverse
second stage digital transformation for obtains 2D/3Ddecompressed image[42].

1.8. Overview of the Thesis
1. Chapter 1: general introduction about data and 2D image compression

methods, then discusses the way that 3D mesh data represented and
introduces the main ideas for data compression explored in subsequent
chapters.

P1 P2 P3 Computation with
key to find "0.8147"

1  [3] 1  [3] 1  [3] Result= 5.5425
2  [-1] 1  [3] 1  [3] Result=2.2837
3  [0] 1  [3] 1  [3] Result=3.0984
4  [1] 1  [3] 1  [3] Result=4.0697
1  [3] 2  [-1] 1  [3] Result=1.9193
2  [-1] 2  [-1] 1  [3] Result=-1.3395
3  [0] 2  [-1] 1  [3] Result=-0.5248
4  [1] 2  [-1] 1  [3] Result=0.2899

And so on…
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2. Chapter 2: introduces previous works for 3D mesh data compression.
3. Chapter 3: demonstrates compression of 2D structured light images used in

3D applications.These 2D images are transformed by using discrete DWT
and DCT then the final transformed image coded by using the Matrix
Minimization algorithm, which is used to reduce the number of high-
frequency coefficients.

4. Chapter 4: the DWT is combined with the JPEG technique and used to
reduce the number of transformation steps and increase the number of high-
frequency coefficients.Additionally a new search algorithm is designed to
speed up the decompression stage.

5. Chapter 5: the same Matrix Minimization algorithm used in the previous
chapter extended by a novel search algorithm called FMS-Fast Matching
Algorithm that is much faster than the previous decompression algorithm.
Additionally, we enhanced the compression method by deleting zeros from
each sub-band created by the DWT.

6. Chapter 6: in this chapter, we transformed a 2D image by DCT followed by
DST applied over the entire image with Matrix Minimization
algorithm.Results show the effectiveness of the method in compressing
images up to 99% with high accuracy.

7. Chapter 7: we applied DCT (uni-transformation) on each block of an image
followed by removing the number of zeros from the transformed matrix,
then applied the Matrix Minimization algorithm for coding.Impressive
results were obtained compared with JPEG and JPEG2000. The
decompression algorithm was based on a new Concurrent-Binary-Search
algorithm which is our fastest decoding algorithm to recover the original
data.

8. Chapter 8: we applied the methods developed in the thesis to 3D data for
coding both geometry and connectivity. Firstly, we convert the geometry
vertices (X, Y, Z) to integer values by a shift to the left. Thenthe differences
for all X’s, Y’s and Z’s respectively are computed. The
MatrixMinimization method is then appliedto convert each set of X, Y and
Z to a single value. Also, the same compression steps are applied to the
connectivity (triangle faces). Results of the comparison with other 3D
formats areimpressive, representing the state-of-the-art technology for 3D
data compression of geometry and connectivity. The algorithm yielded
compression ratios up to 97% with highly accurate 3D data reconstruction.

9. Chapter 9: presents the conclusion and future work.The chapter discusses
advantages and disadvantages of the proposed methodology. A number of
possible transformations to be use with our method have not been tried and
these are discussed as further work. Additionally, we propose further work
on applying the Matrix Minimization algorithm to more than three data
items to a single value and approaches to optimizing decoding speeds.
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Chapter 2
Overview of 3D Mesh Compression

2.1. Introduction
Graphics data are widelyused in several applicationssuch as video games,
CAD/CAM design, virtual reality and visualization among others. Within 3D
environments,triangular meshes represent the means to display and visualize 3D
models. Normally, the geometry (vertices) and connectivity (triangulated faces)
are used to create 3D polygonalmeshes and other properties such as illumination
are used in 3D design. Connectivity describes the geometry relationships with data
attributes such as colour, normal and texture coordinates (2D image
coordinates).3D triangle faces handlesvertices and attributes data in the same way.
Therefore, we concentrate on the geometry and connectivity compression methods
in this chapter.

To obtain a high definition 3D model, normally a large amount of data are
required. The dataareacquired from3D softwaremapping real world points to 3D
model representations (for example, a software that converts a series of 2D images
to a single 3D model) or a 3D scanner system that converts a single image to a 3D
object. 3D models require large space (memory/hard disk) and bandwidth
fortransmission as 1D-array. Thus, the expected level ofrealism from 3D
representations calls for storage space, parallel-CPUs, efficient computing
algorithms, and high speed bandwidths. Network bandwidth representsa
bottleneck to the use and transmission of 3D data. Thus, it is essentialthat methods
be develop to compress 3D data at higher ratios than currently available. Research
on this topichas received attention and there has beenprogress in this direction
over the last two decades.

3D mesh compression it has been stored in several standard formats. VRML is
one of standard formats used for transmitting 3D models through the Internet [75].
Initially, 3D mesh data were represented as ASCII without compressing it into
VRML format. Taubin[76] with his colleagues developed the topological surgery
algorithm, a compression method for VRML for efficient transmission. MPEG
(Moving Picture Experts Group) developed by multimedia standard ISO/IEC
included encoded algorithm for 3D mesh data, which is based on the topological
surgery algorithm, implementing a single-rate coder for manifold triangle faces
[65]. Subsequently, MPEG incorporated progressive 3D mesh compression for
non-manifold meshes.

In this chapter, we review different types of 3D mesh compression methods
focusing on vertices and triangular faces compression. Many surveyed papers
pointed out to this interesting subject. Rossignac [77] summarized a schema for
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vertex and triangle faces data compression.Taubin[54] reviewed progressive3D
mesh compression using topological surgery. Shikhare [78] classified 3D mesh
compression schemesbut this type of schema did not work with progressive
compression. Gotsman et al. [79] introduced a tutorial about 3D mesh
compression and 3D geometry compression. However, it is focused on single-rate
region-growing schemes. Alliez and Gotsman[45] reviewed single-rate and
progressive compression of 3D meshes. Their proposed algorithm is classified asa
high-level algorithm, however, it focuses on static 3D polygon compression.

2.2. Basic concepts of 3D mesh compression
3D mesh compression algorithms encode each of connectivity data and geometry
data individually.Earlierresearchconcentrate on connectivity compression with
geometry coding determined from theconnectivity coding. However, geometry
data required more bits than triangle faces, and several methods were developed to
compress geometry data.

2.2.1. Triangle faces (Connectivity) Compression
In this Section, we will describe previous work on connectivity compression
methods; these can be classified into different categories:

 Index Triangle Face Compression
The triangular mesh in the VRML format [75] represented with an index set,
which is consisting of: array locations (vertices locations) and triangle faces
location by its vertices. Figure 2.1 shows indexed face representation. To index
each vertex, it is required at least log2v bits approximately. For this reason, each
triangle face (connectivity information) needs log2v bits. This method provides
triangular mesh representation. In other words, in this method no compression is
involved. In this approach, each vertex is indexed multiple times. The repeated
vertex thus, degrades compression performance. To solve this problem, we should
reduce the number of repeated vertices reference.

Figure 2.1: Triangle face indexed representation

 Triangle Strips Compression
The 3D mesh can be divided into long triangle strips, and then encode each strip.
The main advantage ofthis method is to reduce the amount of data transmitted
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between the CPU and video graphic adapter (VGA). Although this method
requires less memory space and transmission bandwidth than the previous one
(indexed Triangle Face method), it still does not represent a very efficient
compression method.Figure2.2 shows a triangle strip, where each vertex is
combined with the previous two vertices in a vertex sequence to form a new
triangle [79].However, many vertices are repeated in the generalized triangle strip
of the mesh, which is a waste of storage. To addressthis type of problem, many
schemes weredeveloped.

Figure 2.2: (a) The triangle strip, (b) the generalized triangle strip[79]

The concept of triangle strip mesh was introduced by Deering [79]. Itis formed by
combining a vertex with groups of strips. Deering used FIFO (Fist-In-First-Out)
buffer to save indices of 16 visited vertices.The vertices are saved in the buffer
required fewerbits than a global vertices index.Each vertex is used once by the
FIFO index, and Taubin and Rossignac[67] showed the generalized triangle mesh
requires approximately 11bpv to encode connectivity data.

Chow [64]proposed a mesh compression method for real-time rendering as
showed in Figure 2.3. The methods start with finding the boundary edges, next
step searching for triangle fans around a vertex fallen on two successive boundary
edges. The triangles in this strip are marked as “discovered triangles”.
Undiscovered boundary triangles are similarly formed from new sets of boundary
edges. The vertices in the vertex buffer can be reused for the next triangle strip,
finally this process stop if all the triangles are visited in a mesh[80]. This method
is efficient if the mesh is decomposed into long triangle strips, but it is
achallenging computational mesh problem to obtain triangle strip decomposition
[81]. Many heuristic methods are suggested for the triangular decomposition
withaverage computational cost [82,83].

 Triangle Spanning Tree Compression
3D mesh can be represented as a graph, which means vertex nodes linked through
edges look like triangle form. This conversion from 3D mesh to graph representation
can be used in 3D mesh compression.Tutte[66] first proposed an algorithm to
enumerate triangulation, a technique that compressed approximately 3.25
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bpv.Thetechnique proved the feasibility of mesh connectivity coding[47].Turan
[84]showed thata3D mesh can be compressed with a fixed number of bits using
Spanning Tree for both geometry and connectivity as shown in Figure 2.4.

Figure 2.3: (a) Finding boundary edges, (b) and (c) shows trianglesat first strip and second strip. The
arrows show selected boundary edges, while bots lines show the triangles associated with each inner

boundary vertex[64].

Figure2.4: (A) 3D mesh, (left) its vertex spanning tree, (right) the cut and flattened mesh with its
triangle spanning tree shown by dashed lines[47].

The encoding theory based on the Taubin and Rossignac[85] approach (topological
surgery algorithm)together with the impact of graph encoding can be felt on
connectivity mesh compression technique, compressing about 2.5bpv to 6bpv (as we
know,connectivity data is twice as large as geometry data).The Hand-and-Glove
encoding algorithm from Diaz-Gutierrez etal. [68]compresses a mesh by using two
types of spanning tree (the Hand and Glove trees). These two trees are applied in
order on triangles strips loop traversing the entire mesh. The trees are encoded with
2bpv and an additional bit per triangle (allow to re-buildthe triangle strip), this means
the total number of bits needed to compress a vertexis 4bits.Li and Kuo[86] suggested
an algorithm to compress connectivity of a triangle with dual graph. Each node in this
graph refers to three edges. Breadth-First Traversal algorithm was applied to dual
graph produced a binary data for edges, if the edge was already visited or not.Triangle
spanning tree generates such a tree by using breadth first traversal algorithm, during
compression step some faces probably are visited while others not. This probably
makes one or more closed border edges. The advantage of the spanning tree simplicity
makes the algorithms appropriate to represent mesh data [87].
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The Cut-Border machine [88] technique is used to extend the border by adding a new
vertex to triangle iteratively. In case the border is separated or joined together, the
scheme is able to compress manifold triangle mesh about 4bpv.The method isonly
applied to regular meshes.

 Edge-Breaker Compression
The Edge-Breaker technique suggested by Rossignac[90, 91]generates a symbol for
each triangle, this guarantee 4bpv. While, in real-world (in practice) a mesh is coded
between 1.8 - 2.4bpv. The idea behind the algorithm is to encode a mesh by iteratively
nibbling its faces, and each time a new face is traversed. Figure 2.5 shows the
configuration for five patches [89 ,90, 91].

Figure2.5:(Top) Five encodes C, L, R, E, and S, while the gate g is the input to the triangle, and
(Bottom) shows traversal triangles to encode part of mesh [44].

In Figure2.5 (bottom) shows the encoding process, by using the edge-breaker
algorithm. The triangles are filled with op-code matching with op-code in
Figure2.5(top), in this case the encoded mesh is "CCRSRLLRSEERLRE"

The edge-breaker method can encode data of manifold meshes with multiple
boundary and the worst-case compression is approximately 4 bpv. However,the
method is not suitable for streaming applications, it takes O(v2)( i.e. execution time)
of decompression time. Additionally, for regular meshes and non-regular meshes the
same bitrate is required [87].

The original Edge-Breaker techniquewas optimized to encode 3D mesh with
maximum regularity, the worst case for this method for a large regular mesh is
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1.62bpv [92]. Coors and Rossignac[94]added connectivity prediction based on mesh
geometry[93]. The Edge-breaker configuration used forpredicting the distance
between position of parallelogram and the positions of active gate vertices, had an
average connectivity compression ratio approximately less than 0.7bpv. Gumhold in
2005[88] proposed an enhanced Markov model coding converging to arithmetic
coding. While Ying in 2010 [74]design an algorithm to select edge gate vertex
toreduce the number of "s" symbols. Additionally, it creates a table depending on
thenumber of traversed faces connected to gate vertices; this depends on a
connectivity prediction method.

Kingetet al. [90] introduced an algorithm of generalized edge-breaker to compress
quad triangle mesh connectivity. This algorithm based on splitting each quadrangle
into two triangles that are on the same traversal sequence, this leads to efficient
compression,because some combinations of edge-breaker cannot encode quadrangles
[91].

Lee in 2002[95]proposed angle-analyzer scheme to encode the connectivity for
manifold triangular at 1.5 bpv. The next face chosen to ensure the border between
regions of the mesh the most convex as possible, Lee et al. [95]in 2005 proposed
acompression ratio that can be reduced by using arithmetic coding.

 Valence Encoding
In valence encoding a manifold triangle mesh contains half the number of vertices
than triangles. For this reason, an algorithm focusing on inserting a new vertex into
the mesh and generating a symbol for the vertex, produces less symbols than a
triangle traversal algorithm. So, this method leads to better connectivity compression
performance [44].The valence approach is driven from Touma and Gotsman in
1998[46]. The algorithm detects the edge boundary formed by an initial triangle and
expands the boundary by adding adjacent vertices iteratively. Therefore, the generated
list of vertex valences can be efficiently compressed at 2.3bpv. This algorithm is still
one of most efficient connectivity compression methods.

The Face Fixer by Isenburg and Snoeyink[50] compresses connectivity of manifold
mesh with face degree by using face traversal. The algorithm generates symbols for
each edge and experimental results showed compression ratios between 1.7bpv and
2.9bpv.Thealgorithm is more efficient than Kronrod and Gotsman[96],however, their
encoder algorithm is easier to implement.

Isenburg and khodakovsky in 2002[97,98] worked independently onvalence
approaches toencode connectivity of manifold meshes. Their work is based on Touma
and Gotsman approach [46]. Khodakovskyet. al.[98]demonstratedschemes for entropy
matches through Tutte's entropy for planar graphs. For both methods,experimental
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results show compression ratio between 0.8bpv and 2.6bpv, improving over the face
fixer [50].

Table 2.1 summarizes the state-of-the-art technique for 3D mesh compression. The
bitrate of various connectivity coding methods reviewed was obtained theoretically
throughworst-case analysis.

Table 2.1:3D mesh compression techniques

Algorithm Proposed by
bitrate in worst-case

(bpv)
Deering Deering in 1995 11

Topological surgery Taubin and Rossignac in 1998 6
Cut border machine Gumhold and StraBer 1998 4.4

Valence coder Touma and Gotsman 1998 2.3

Edge-Breaker
Rossignac in 1999 and

Gumhold in 2000
4

Proved optimality
for Valence coder

Alliez and Desbrun 2001 2.1

Valence manifold
Khodakovsky et al. 2002 and

Isenburg 2002
2.6

2.2.2. Geometry Compression
Geometry compression is concerned with compressing vertex coordinates (x, y,z).
Normally the compression of geometry begins byquantizingthe coordinates of vertices
(i.e. geometry encoded in lossy mode). Subsequently, encode vertex through acoding
algorithm[44, 87].

 Quantization
Vertices in computer memory are often represented by 32-bit floating point number
for each coordinate (x, y, z). Such accuracy is not needed in some applications; for
this reason aquantization process isused to reduce the amountof data without
adversely affecting its quality. However, for some high-accurate 3D data the
degradation appears or it is noticeable on the 3D surface [99].One of the mostused
quantizationtechniquesin 3D mesh is called Scalar Quantization, whichconsists
oftransforming the floating-point number vertices into integer vertices. The
quantization is based on the maximum integer that can be coded with the number of
quantization bits.Generally,thegeometry compression methods that go along with
well-known connectivity compression schemes proposed by Deering, Rossignac,
Gotsmanet. al.[46, 63,67] use uniform scalar quantization.The number of bits range
between 8-bit to 16-bit, thus connectivity in 3D mesh softly conflicts with geometry.
Bajaj et. at. [61] and Lee et. at. [60]proposed to encode a vertex with three angles, by
using an angle-analyser encoder. The computation is based on two internal angles and
one dihedral angle by applying different quantization to these local angles. Lee and
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Park [62]proposed to locate vertices in 4 different range sizes; however, there are
some vertices located in bigger ranges. Thus, the vertex is encoded according to the
type of the range [100].

 Prediction
Prediction means encoding vertex positions predictively. The prediction uses
correlation between adjacent coordinates, and the most important aspect of prediction
is to reduce the amount of geometry, and then encoding with one of entropy coding
methods (Huffman or Arithmetic coding).There are different prediction methods that
have been proposed in theliterature: delta prediction [78], linear prediction [64, 65],
and parallelogramprediction [101]. Overall, the predictions schema is considered as
linear prediction and their coefficients are chosen carefully.

Delta Prediction means the differences between coordinates are usually small. For
this reason, adjacent vertices have slightly different coordinates. Deering and
Chowused delta coordinates rather than the original coordinates followed by encoding
with variable length codes. In each work quantized coordinates range between was
10—16bpv and 13—18bpv respectively[62,78].

Linear Predictionsuggested by Taubin and Rossignac[65] predicatesvertex position
from a group of positions of previous vertices in the vertex spanning tree. The number
of previous vertices are selected from the root to the current vertex in the spanning
tree. The estimated geometry bitrate is reported by Tuma and Gotsmanat around
13bpv[46].

Parallelogram prediction suggested by Touma and Gotsman[46] encodes new vertex
"r" within a triangle vertices "u and v" as show in in Figure 2.6, where the triangle "u,
v, w" is already encoded. Parallelogram predicted a new vertex "r" position by using
the form rp

1=v+u-w. The rule for this prediction is thatthe four verticesmust
beexactlycoplanar. The parallelogram improved the prediction accuracy by using the
angle between two adjacent trianglestoestimate vertex position rp

2 as shown in Figure
2.6 This type of prediction achieved 9bpv[46, 101].

Additionally, Isenburg and Alliez[102]used parallelogram prediction for geometry
compression of polygon meshes. The position of amissing vertex of a polygon is
predicted with weights computed from different degrees and computed from different
known vertices.
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Figure 2.6: Parallelogram prediction[102]

 Geometry-driven compression
In 2002 Kronrod and Gotsman[103]designed a geometry-driven compression scheme.
The approach covers the traversal tree that contains all vertices. The reasons for using
the tree is to minimize parallelogram prediction errors between vertex positions.
Geometry compression yielded ratios 50% more efficient than connectivity
compression. This approach is used for CAD models, which often have non-smooth
geometry.

Shikhare with his colleague in 2001 [104] developed a geometry-driven compression
method that tries to find repeated geometry patterns in the 3D mesh. There are many
options to recognize patterns, these can be in components or regions inside
components. The approach is useful for large 3D CAD models or digital heritage
models.Caiet al.in 2009 [105]added scaling and transformation for finding repeated
patterns, an approach that achievedslightly better performance.

Asconnectivity and geometry are compressed at same time in the above methods,
their data are interleaved in the compressed stream. Lewineretet al. [106]in 2006
proposed an alternative geometry-driven algorithm. This algorithm compresses
geometry independently from the connectivity encoding. Then the surface is
reconstructed iteratively and each new triangle connected to the border of the mesh is
built by selecting a new vertex among the candidates. This algorithm can compress
any type of triangulatedmesh. Additionally, Chaineet al.[107] in 2009 proposed a
mesh connectivity compression scheme that assumes that the geometry is already
decoded. While the connectivity between vertices are generated by the Delaunay
triangulation based on point set, in this method the mesh is encoded at low cost.
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 Compressing floating-point vertices
The methods described above are based on lossy mesh compression (i.e. the
compression algorithm quantized the vertices). But some application required
encodingthe exact floating point coordinates. Isenburg[108]in 2005 investigatedthat
the floating point can be broken to exponent and mantissa. Meanwhile, the predicted
error between decompressed and original mesh are negligible, this method is able to
compress geometry about 35bpv.

Siddeq and Rodrigues [109]in 2016suggested compressing 3D point cloud by
converting floating-point vertices to integer then encoding by the Matrix
Minimization algorithm. This algorithm is designed to encode-encrypt a vertex to a
single integer value, then the result can be subject to arithmetic coding. Compression
ratios about 3.7bpv were obtained, while the connectivity (triangle meshes) was
compressed independently by computing the differences between vertex references
(i.e. in OBJ and COLLADA formats the vertex references definetriangle faces). The
compression ratio for the connectivity in theapproach is about 0.69bit for each
triangle in the best case. However,the worst case reaches to 20 bitsfor each triangle. In
same year, they developed connectivity compression by applying the Matrix
Minimizationalgorithmon the stream of triangle faces to reduce from 20bit/triangle to
13bits /triangle inthe worst case.

2.3. 3D mesh Compression based on 2D images
In 2012 Siew and Rahman [110] pointed out that XML is a candidate to represents the
meaning of a 3D data structure, which is distributed in many applications. On
theotherhand, XML generates large files that, concatenated with geometry
information,renders the scheme impracticable. The issue lies on finding a way to
compress the semantic of data that represents calibration of geometry and
connectivity of a 3D surface.

Rodrigues and Robinson[73] earlier in 2008 reconstructed 3D data from BMP images
using structured light techniques.A projector and camera setting was
developedtogether with image processing functions to project, capture, and process
and image of an object with a projected pattern of stripes. The image processing
functions detected the projected patterns and reconstruct the object in 3D as shown in
Figure 2.7[73, 111,112, 113]. The captured BMP images with structured light
information can be saved for later use in many applications such as 3D face
recognition and sharing of 3Ddata.

Rodrigues and Osman[114] in 2010 proposed a polynomial interpolation method
tocompress 3D data files.The source data model uses vertices which are the standard
data in all 3D geometry models, such as 3D Wavefront OBJ, VRML and COLLADA
data files [55, 74, 115]. Only geometry data was compressed with compression
ratiosover97%. The method did not compress connectivity as this could be directly
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inferred from the projected patterns, so the solution was specific to a scanning
method, which limited its application. The result was only applicable to surface
patches and, if structured pattern information were not available, then Delaunay
triangulation could be applied to recover the surface from the point cloud[116].

(a) (Right) The projector spot a pattern of light on an object, (Left) A camera records the reflected
patterns with the object.

(b) The 3D surface generated from stripes available in the 2D image, compression and decompression
algorithm works just on 2D images.

Figure 2.7: (a) and (b) shows the high quality 2D images are used to reconstruct 3D surfaces model
[114].
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2.4. Summary
There are many 3D mesh compression techniques as reviewed in this Chapter, and
each of these techniques may be suitable to a particular application only such as
AutoCAD or a specific structured light scanner.Some compression techniques are
slow duringcompression, but fast duringdecompression; this is normally desired in 3D
graphics for games. The main disadvantage of some 3D compression techniques is
that they fail tocompress some 3D objects. While other techniques can onlycompress
the geometry but not the connectivity of the vertices.

For these reasons,the work in this thesis concerning 3D mesh compression is divided
into two parts:

1) Compress 2D imagesthat contain structured lightpatterns (such as stripes or
dots);this kind of image contains information enabling3D reconstruction of the
object. After compression, reconstruct the object and compare with other
compression methods namely JPEG and JPEG2000.

2) Compress 3D object data files which contain information on geometry and
connectivity – i.e. vertices and triangle faces. It is proposed to compress
vertices and triangle faces independently.

A comparative analysis will be performed between 2D image compression followed
by 3D reconstruction and direct 3D object compression. The analysis is based on
speed of compression and decompression, compression ratios, RMSE (image quality),
and perceptual assessment of the image and 3D model quality.

Recently, some applications were developed and are available to convert a series of
images to a 3D object, one of these applications is 123D AutoDesk. The big challenge
is to compress these 3D objects by our proposed algorithms and compare the results
with other 3D mesh compression techniques. Additionally, our proposed algorithm
will compress a stream of 2D images thatare used by the 123D Autodesk software. A
comparative analysis of results will be performed, i.e., of2D images and 3D object
which are described in the following Chapters.
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Chapter 3

DWT-DCT based Compression with Sequential Search
Decompression

3.1. Introduction

Despite recentfast progress in storage density and increased processor
performance,there is still demand for algorithms that work on images and these
algorithms continue to exceed the abilities of available technologies [117]. Recent
growth of multimedia based applications have encouraged the need for very efficient
ways to compress signals and images, the main reasons beingcompression for storage
and digital communication [118].Compressing an image is significantly different from
compressing a stream of data (i.e. lossless stream of data). It is certainly the case that
general purpose compression algorithms can be used to compress images, but the
result is non-optimal. This is because images have statistical properties that can be
used by encoders specifically designed for them [118, 119]. Also, some of the details
in the image can be omitted for saving bandwidth or storage space. Lossless
compression mean thata, when decompressed, the exact replica of the original image
is obtained [120]. On the other hand, lossy image compression does not need be
decoded exactly as the original. An approximation of the original image is acceptable
for most purposes (e.g. large images with high-resolution or video compression), as
much as the differences between the original and the compressed image is deemed
adequate [121].

In most cases, the pixels in an image are correlated (i.e. a pixel has mutual connection
with another neighbour pixel), therefore we use this idea for reducing the number of
redundant information. Furthermore, amajor task is to find out uncorrelated pixels
(i.e. the other pixels where there is no connection between them). The main task
inimage compression is to reduce the amount of redundant data to an acceptable level
without degrading the quality of the image [122].

We can divide image compression into: 1) redundancy reduction and 2) insignificance
reduction. The redundancy reduction aims to remove duplication from the signal
source image, while the insignificance reduction delete parts of the image that is not
noticed by the receiver (i.e. cannot discover the distortion by Human Visual System
(HVS), and this depends on image details and image size). Consequently, repeated
pixels are eliminated according to statistical properties and the HVS will not detect
the difference between original and reproduced images [117].

The standard JPEG for compression of still imagesuses theDiscrete Cosine Transform
(DCT), which represents an image as a superposition of cosine functions with
different discrete frequencies. The DCT can be regarded as a discrete time version of
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the Fourier Cosine series. It is a close relative of Discrete Fourier Transform (DFT), a
technique for converting a signal into elementary frequency components. Thus, DCT
can be computed with a Fast Fourier Transform (FFT) an algorithm of complexity
O(nlog2 n)[123]. More recently, the wavelet transform has emerged as a cutting-edge
technology within the field of image analysis. The wavelet transform has a wide
variety of different applications in computer graphics including radiosity, multi-
resolution painting, curve design, mesh optimization, volume visualization, image
searching and one of the first applications in computer graphics, image compression
[22]. The Discrete Wavelet Transform (DWT) provides adaptive spatial frequency
resolution (better spatial resolution at high frequencies and better frequency resolution
at low frequencies) that is well matched to the properties of a Human Visual System
(HVS)[118, 124].

Here a further requirement is introduced concerning the compression of 3D data. We
demonstrated that while geometry and connectivity of a 3D mesh can be tackled by
several techniques such as high degree polynomial interpolation [114] or partial
differential equations [125], the issue of efficient compression of 2D images both for
3D reconstruction and texture mapping for structured light 3D applications has not yet
been addressed. Moreover, in many applications, it is necessary to transmit 3D
models over the Internet to share CAD/-CAM models with e-commerce customers, to
update content for entertainment applications, or to support collaborative design,
analysis, and display of engineering, medical, and scientific datasets. Bandwidth
imposes hard limits on the amount of data transmission and, together with storage
costs, limit the complexity of the 3D models that can be transmitted over the Internet
and other networked environments [125].

In this Chapter,it isinvestigated that surface patches can be compressed as a 2D image
together with 3D calibration parameters( i.e. lossy compression ), transmitted over a
network and remotely reconstructed (geometry, connectivity and texture map) at the
receiving end with the same resolution as the original data.The widespread integration
of 3D models in different fields motivates the need to be able to store, index, classify,
and retrieve 3D objects automatically and efficiently. In the following sections, we
describe a novel algorithm that can robustly achieve the aims of efficient compression
and accurate 3D reconstruction.

3.2. The Proposed Compression Algorithm

The lossyimage compression method proposed here is based on DWT and DCT which
are used to increase the number of high-frequency sub-bands with few significant
data. The first stage DWT is applied to decompose an image into four sub-bands
(LL,LH,HL and HH). The LL is approximately similar to the original image (i.e.LL
represntes average value of the 2D images – For this reason all the values in this
subband are postive), while the other sub-bands represent image details and contain
few data with huge number of zeros (i.e. the main reason most of values are zeros,
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this is because neighbours in a part of original image are similar to each other).
Furthermore, the LL sub-band is divided into non-overlapped block of matrices (4 x 4
pixels). These blocks are transformed by DCT producing a DC value (i.e. this value is
positive coefficients with is represents average value of 4 x 4) and a set of AC
coefficients data (i.e. reprinted the approximation coefficients, these values are vary
from top-left to button-right, which is normally be around zero). Additionally, the
DC-values of each block are saved in a matrix called DC-Matrix whichrepresents a
new low frequency sub-band. Similarly, the AC coefficients are collected in a new
matrix called AC-Matrix which is equivalent to the high frequency sub-band. Finally,
the AC-Matrix with other high-frequency sub-bands are coded by the Matrix
Minimization algorithm, while the DC-Matrix transformed again by DWT to
increasethe number of high frequency sub-bands. Also, this chapter describes the
Limited-Sequential Search Algorithm (LSS-Algorithm) used to decode the DC-Matrix
and AC-Matrix to reconstructapproximately the originalimage [42]. Figure 3.1 shows
the main steps of the proposed compression method in a flowchart style.

Figure 3.1: proposed image compression method flowchart

3.2.1. The Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) used to transform an image into four sub-
bands from low to high frequency coefficients. The DWT is used for multi resolution
data analysis (i.e. it can be used in progressive transmission and image zooming
without requesting additional storage) [42,126]. Additionally, the inverse DWT has
thesame complexity,which means the forward and inverse transformation are
symmetric; this feature of DWT is suited for fast image compression and
decompression. Furthermore, it has very good energy compaction capabilities,
robustness under transmission and high compression ratios [127].
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The DWT is applied toimage compression by using a Daubechies (db3) filter that
decomposesthe original image. The output of the filter bank is down-sampled sub-
bands. The inverse DWT decodes by up-sampling and recomposes the original image
[37]. The DWT divide an image into four sub-bands (LL, LH, HL and HH). LL is
represented down-sampled original image (Low-frequency coefficient), which is
represented important information about original image. While other sub-bands
represent vertical, horizontal and diagonal details of an image (high-frequency
coefficients). In case these details are small,their values can be set to zero without
change in image details.For this reason,the high-frequency sub-bands can be
compressed to a few bits/bytes [128]. In this Chapter,we will use DWT twice
toincrease the number of high-frequency coefficients. This process will reduce image
size to a fraction of the original image size enabling high compression ratios [42].

3.2.2. The Discrete Cosine Transform (DCT)

After DWT applied on an image, the LL sub-band is transformed again by applying
DCT on each 4x4 sub-matrix (block) as shown in Figure 3.2.

Figure 3.2: LL1 sub-band transformed by DCT for each 4x4 block set.

The data available in the LL sub-band are still correlated. For this reason, DCT is
applied to transform LL to de-correlated coefficients. First, the LL sub-band is
divided into small blocks (4 x 4). Second, DCT is implemented on each block, the top
corner of the block of positive value represents peak of energy and the other
coefficients are called de-correlated (high-frequency domain) until thebottom right of
the block. The coefficients with small values can be discarded without affecting
image quality. The transformed block by DCT can compress more efficiently than a
correlated block. The following equations illustrated DCT and Inverse DCT functions
for two-dimensional matrices [42]:

( , ) = ( ) ( ) ( , ) (2 + 1)2 (2 + 1)2 (3.1)



46

ℎ \ ( ) = 1 , = 0
( ) = 2 , ≠ 0

( , ) = ( ) ( ) ( , ) (2 + 1)2 (2 + 1)2 (3.2)
Where f(x,y), C(u,v) are represented original and transformed image respectively, and
the main differences between DWT and DCT is that DCT is applied on small block or
rectangular regions of images, this is because DCT is progressively complex to
calculate on lager blocks, for this reason we used small blocks of 4x4 pixels.
Whereas, the DWT can be applied on an image as a large block, it works more
efficiently yielding better compression ratio [42, 122].

After DCT is applied on each 4x4 block of LL1, these blocks are ready for
quantization. The quantization processesdivides each value in the block by a factor Q
which removes trivial coefficients keeping fewer data from the block. The factor Q
can be computed as follows [42]:

= ×max( ) (3.3)( , ) = 10, , = 1+ + , , > 1 (3.4)

Note\i, j=1,2,3,4

The maximum value in LL1 sub-band is used to compute the parameter L in Eq. 3.4
(i.e. used as quantization value "L"). Additionally, the quality value is used to control
the maximum value, for example if maximum value is 51 and Quality=0.01, this
means all the values in a sub-band will be divided by 0.51. If this value is increased, it
leads to the removal of large number of coefficients (i.e. forced data to zero), and this
leads to lower image quality. The DC-Matrix is created by the DC values from each
block (4x4) of LL1, while other coefficients (4x4-1) are stored as column in a new
matrix called AC-Matrix. HL1,LH1 and HH1 sub-bands are quantized by Eq. 3.3
followed by coding by Matrix Minimization algorithm [42].

DWT is used again to transform the DC-Matrix yielding new sub-bands: LL2, LH2,
HL2 and HH2. The size of LL2 small can be encoded into a few Bytes/Kbytes
(according to image size). While other high-frequencies sub-bands LH2, HL2 and HH2

are quantized by dividing the coefficient matrices by "2", for normalization and
increase the number of zeros to be easier encoded by the Matrix Minimization
algorithm [42].

To compress the sub-band LL2, first transform each 4 data (one-dimensional array
size 4) of the LL2 by using one-dimensional DCT (i.e. using the same Eq. 3.1 with
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u=0 and v=0) and then truncate each value to integer value, in this stage we should
not use scalar quantization.The difference between two adjacent values in the same
column is computed and stored in the same position matrix LL2 this difference
computation is shown in Figure 3.3. This process assumes that neighbour's
coefficients are correlated. The correlated values are generally similar so the
differences will be small and more data are repeated. This process will increase the
compression ratio. Eq. (3.5) represents the difference for each column in LL2[42].
Third, apply an encoding method to convert the final transformed matrix into a stream
of bits.

)1()()(  iDiDiD (3.5)

Where\ i=1,2,3,…, m-1 and m is the column size of LL2.

Figure 3.3: (a) A matrix before DBV, (b) Apply DVB between two neighbours in each column.

3.2.3. Compress Data by Matrix Minimization Algorithm
This algorithm is designed to reduce high-frequency coefficients. This algorithm is
applied onthe AC-Matrix and other high-frequency sub-bands independently. The
main idea for the algorithm is to convert three adjacent coefficients to one encoded
value.The calculation depends on Random-Weight-Values and three adjacent
coefficients and the results restored in a new encoded array.The following List 3.1
describes the steps of the algorithm [42]:

List 3.1 Matrix Minimization Algorithm
Let K=3 %% take each three coefficients from a matrix
W=Generate-Ransom-Weights (K) %% generate three random weights values according

%% to the number of coefficients
Let p=1
Fori=1 to column size

For j=1 to row size
Intermediate [p]=Matrix[i,j] %% Scan row-by-row
p++

End
End

Let j=1; p=1
While (j<row size*column size)

Arr=Read_K_coefficients (Intermediate [j])
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j=j+k
p++

End

In the above List 3.1 weight values are generated by using a random function (random
number range ={0...1}). These weights are multiplied by Arr(i), Arr(i+1) and Arr(i+2)
representing three coefficients within the high-frequency domain to produce a
minimized array "M". Since the Matrix Minimization algorithm is applied to each
sub-band independently, each sub-band has its own encoded minimized array.  Figure
3.4 illustrates the Matrix Minimization algorithm implementation.

Figure 3.4: An nxm matrix is minimized into an array M.

Before applying the Matrix Minimization algorithm, we need to choose a
valuebetween duplicate numbers of high-frequency domain; these valuesare called
Limited-Data, this new stream of data is used at decompression stage. These data
limit the search space ofdecompression [42]. Figure 3.5 illustrates the computation of
the Limited-Data.

Figure 3.5: The Limited-Data for a 5x5 matrix is illustrated as a list of probabilities and the minimized array is
subject to arithmetic coding.

Arithmetic Coding is the final step in the compression algorithm describedthis
Chapter. This lossless coding algorithm applied to astream of data convertsthe stream
to a singlefloating point value; this output in the range between zero and one. When
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decoded, the exact original data are recovered. To summarize this lossless algorithm,
we need to compute the probability of all the data (before compression), to assign a
low and high values for each data (each coefficient).

3.3. The Decompression Algorithm

This section describes details thedecompression algorithm, which is the inverse of the
compression algorithm. The first stage uses arithmetic decoding for decoding the
minimized-array. Next, we have designed aLimited Sequential Search Algorithm
(LSS-Algorithm) to decode each sub-band. The LSS-Algorithm used Limited-Data
array with Random-Weights to reconstruct the original coefficients. If Limited-Data is
missed or destroyed, the image cannot be recovered. Figure 3.6 shows the
decompression method in a flowchart style [42].

Figure 3.6: A two-stage decompression algorithm is depicted in (a) and (b).

The main reason to design this decoding algorithm (LSS-Algorithm) is tosearchfor the
original coefficients inside the Limited-Data array; this operation is done by using
three pointers (S1, S2 and S3), which refer to positions in the Limited-Data
array.These pointers work in sequence like a clock: where S1, S2 and S3 represent
hour, minutes and seconds respectively. Initially these values are set to "1", (i.e.
S1=S2=S3=1). To illustrate theLSS-Algorithm assume that we have the following 2x3
matrix:

30 1 0
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19 1 1

First, the above matrix will be compressed by theMatrix Minimization algorithm to
produce a minimized array M={3.65, 2.973} with Limited-
Data={30,19,1,0}.Additionally, threerandom weight values or key={0.1, 0.65, and
0.423}. Second, the LSS-Algorithm is used to decode the minimized array returning
the original 2x3 matrix. The decoding algorithm startsbypicking up the first data item
from Limited-Data (S1=S2=S3=1) and then compute the estimated value by using the
following equation [42]:

)3()3()2()2()1()1( SLimitedWSLimitedWSLimitedWEst  (3.6)

Where "W" is Random-Weight-Values and "Limited" is the Limited-Data matrix. The
LSS-Algorithm computes "Est" at each iteration and compares with M(i). The
iteration means S3 will increment by 1 (i.e. it works like a second hand in a clock),
after all the positions in Limited-Data, the S2 start work (like a minute hand in a
clock) followed by S1 (like an hour hand in a clock). If M(i)=Est, this means the
original coefficients  data are in locations {S1, S2 and S3} according to Limited-Data.
Otherwise, the decoding algorithm will continue searching to find the original
coefficients. This process continues until the end of the minimize array M(i). The List
3.2 illustrates the LSS-Algorithm [42].

List 3.2LSS-Algorithm
LetLimited[1…m] %% represents Limited Data
LetM [1…p] %% represents minimized array with size p
LetK=3 %% number of estimated coefficients
Fori=1 to p

S1=1; S2=1; S3=1 %% initial location
I terations=1

Est=W(1)*Limited[S1] + W(2)*Limited[S2]+W(3)*Limited[S3]

While ( (M(i) – Est)  0) %% check if Error =0 or not
S3++ %% increment pointer represents "Seconds"
IF (S3>m) S2++; S3=1end; %% check if S3 is over the limit, return back to "1", and increment S2
IF (S2>m) S1++; S2=1end;
IF (S1>m) S1=1;end;
Est=W(1)*Limited[S1] + W(2)*Limited[S2]+W(3)*Limited[S3];%% compute Est after increments
Iterations++ %% compute number of iterations

End %% end of while
End

After the LSS-Algorithm has decompressed all high-frequencies matrices, the next
step is to reverse the difference operation of Eq. 3.5 by addition as defined in equation
3.7on the decoded LL2 to recover the original coefficient values. This is applied to
each column by taking the last value at position m, adding it to the position m-1, and
then the total adds to the next position m-2 and so on. The following Figure 3.7
illustrates the addition decoder[42].
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)()1()1( iDiDiD  (3.7)

Where \i= m, (m-1), (m-2), (m-3),…,2

Before the final steps, the inverse one-dimensional DCT is applied to each 4
coefficients for LL2, followed by the composition of all sub-bands (LL2, LH2, HL2

and HH2) by applying the inverse DWT resulting in the decoded DC-Matrix.Finally,
combine the DC-Matrix with AC-Matrix (same way they decomposed from LL1 see
section 3.2) to generate LL1, and then apply inverse DCT. The inverse DWT will
recompose all decoded LL1to recover the original 2D image [42].

Figure 3.7: A Matrix before Apply ABV, (b) Apply ABV between two neighbours in each column

3.4. Experimental Results in 2D and 3D

The algorithms described in this Chapter were tested with three types of 2D images
type RGB.Firstly, the RGB colour convert to YCbCr format (i.e. this format is useful
by any compression method, which is converts true colour to another formula, all the
image data will be available in single layer called “Y”. While other layers are contains
less information capable to compress at higher compression without affects on image
details) [131]. Second, the algorithmswere implemented in MATLAB running on a
Laptop AMD quad-core: 2.4GHz with SDRAM: 6GBytes. Also, the decompressed
2D images showed by 3D visualization software running on the same laptop. Figure
3.8 shows 2D images used for testing our approach, and Table 3.1 shows the
compressed size for each image.

The 3D visualization software read an image with structured light patterns on, and
determines the position of the 3D vertices in space from each stripe in the image. The
software was develop within the GMPR group [135]at Sheffield Hallam University.
The patterns of stripes are projected on the surface on an object and captured by a
high resolution camera. The GMPR 3D reconstruction software creates a 3D
representation of the object in a few milliseconds. The main advantages of the
developed 3D scannerare speed and accuracy [136].
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(a) 2D BMP “Wall”, dimension
1280x1024 pixels, size=3.75

Mbytes

(b) 2D BMP “Girl”, dimension
1392x1040 pixels,size=1.38 Mbytes

(c) 2D BMP “Woman”, 1392x1040
pixels, size=1.38 Mbytes

Figure 3.8: (a) 2D colour MP image, (b-c) 2D grey scale images

Table 3.1: Compressed image sizes using high frequencies on first level DWT

Image
name

Origina
l size

Compressed
size

Compression
Ratio

Quantization
Values

Low-frequency High-frequency

Wall 3.75MB 74 KB 98% 0.02 0.02
Wall 3.75MB 47.6 KB 98.7% 0.04 0.04
Wall 3.75MB 33.7 KB 99.1% 0.08 0.08
Girl 1.38MB 78 KB 94.4% 0.02 0.02
Girl 1.38MB 48 KB 96.6% 0.04 0.04
Girl 1.38MB 29.1 KB 97.9% 0.08 0.08

Woman 1.38MB 62.1 KB 95.6% 0.02 0.02
Woman 1.38MB 38.1 KB 97.3% 0.04 0.04
Woman 1.38MB 24.5 KB 98.2% 0.08 0.08

The quantization values: "0.02", "0.04" and "0.08" in above in Table 3.1 refer to
image quality: high, median and low respectively (i.e. the Quality value in Eq. 3.3
responsible for keeping 2D image details: LH1, HL1 and HH1 in DWT at first level).
For example: if Quality=0.02, this refers almost all coefficient data remain, otherwise,
if Quality value is greater than 0.02 this means partially the coefficient are set to zero
in a sub-band. The LL1 sub-band depends on the DCT coefficients. Additionally,
Table 3.2 shows that high frequencies are ignored from the first level of DWT
decomposition (i.e. all high-frequency coefficients are setto zero) [42].

Table 3.2:Compressed image size without using high-frequencies in first level DWT

Image
name

Original
size

Compressed
size

Compression
Ratio

Quantization Values

Low-
Frequency

High-
frequency

Wall 3.75MB 62 KB 98.3% 0.02 ignored
Wall 3.75MB 45 KB 98.8% 0.04 ignored
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Wall 3.75MB 33.5 KB 99.1% 0.08 ignored
Girl 1.38MB 61.2 KB 95.6% 0.02 ignored
Girl 1.38MB 42.6 KB 96.9% 0.04 ignored
Girl 1.38MB 28.3 KB 97.9% 0.08 ignored

Woman 1.38MB 53.4 KB 96.2% 0.02 ignored
Woman 1.38MB 35.4 KB 97.4% 0.04 ignored
Woman 1.38MB 24.3 KB 98.2% 0.08 ignored

The proposed image compression algorithm are applied by using a range of Quality
factors toeach image and the decompressed images are used by our GMPR software
to reconstructthe 3D mesh, which is then compared with original 3D mesh model.
Figures 3.9, 3.10 and 3.11 show the 3D reconstructed Wall, Girl and Woman
respectively. Table 3.3 shows the 2D RMSE and 3D RMSE for each 2D
decompressed image and 3D reconstructed surface. The Root-Mean Square Error
(RMSE) is used to calculate 2D/3D image quality mathematically. RMSE is a very
popular measure to compute the differences between decoded image and original
image [42,129].

(a) 3D Wall textured, Quality=0.02 3D Wall shaded, Quality = 0.02

(b) 3D Wall textured, Quality = 0.04 3D Wall shaded, Quality = 0.04
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(c) 3D Wall shaded (red) compared to original
(textured), Quality = 0.02

3D Wall shaded (red) compared to original (textured),
Quality = 0.04

(d) 3D Wall shaded (red) compared to original (textured), Quality = 0.08

Figure 3.9: (a) and (b) 3D decompressed image of Wall with different quality values, (c), (d) and (e) Differences
between original 3D Wall image and Decompressed 3D Wall image according to quality parameter. Red regions
represent the 3D Wall decompressed image matched with the background original 3D Wall image in three cases,
i.e., High, Median and Low quality parameters.

(a) 3D Girl image texture and shaded, Quality=0.02

(b) 3D Girl image shaded and texture, Quality=0.04
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(c) Quality=0.02         (d) Quality=0.04

(e) Quality=0.08

Figure 3.10: (a) and (b) 3D decompressed Girl image with different quality values, (c), (d) and (e) Differences
between original 3D Girl image and Decompressed 3D Girl image according to quality parameters.The pink model
represents the original background 3D image, while other colours represent the 3D decompressed image with
various quality parameters.

(a) 3D Woman image shaded and texture, Quality=0.02
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(b) 3D Woman image shaded and texture, Quality=0.04

(c) Quality=0.02 (d) Quality=0.04

(e) Quality=0.08

Figure 3.11: (a) and (b) 3D decompressed Woman image with different quality values, (c), (d) and (e) Differences
between original 3D Woman image and Decompressed 3D Woman image according to quality parameters. The
pink model is the original 3D Woman model while blue, green, and golden models refer to high, median and low
image quality respectively.
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Table 3.3:PSNR and MSE between original and decompressed 2D images

Image name RMSE 3D RMSE
Quantization Values

Low-frequency High-frequency
Wall 2.49 2.09 0.02 0.02
Wall 2.82 3.95 0.04 0.04
Wall 3.25 4.72 0.08 0.08
Girl 3.09 3.78 0.02 0.02
Girl 4.08 3.94 0.04 0.04
Girl 5.25 3.66 0.08 0.08

Woman 2.88 3.37 0.02 0.02
Woman 3.53 3.09 0.04 0.04
Woman 4.35 2.61 0.08 0.08

Image name RMSE 3D RMSE Low-frequency High-frequency
Wall 2.66 2.09 0.02 Ignored
Wall 2.86 3.95 0.04 Ignored
Wall 3.24 4.72 0.08 Ignored
Girl 4.39 3.41 0.02 Ignored
Girl 4.71 3.83 0.04 Ignored
Girl 5.34 3.74 0.08 Ignored

Woman 3.38 3.12 0.02 Ignored
Woman 3.73 3.07 0.04 Ignored
Woman 4.38 2.71 0.08 Ignored

3.5. Comparison with JPEG2000 and JPEG Compression
Techniques

The proposed compression algorithm iscompared with two techniques widely used in image,
video compression and image transmission: JPEG and JPEG2000. As mentioned din Chapter 1
(See section 1.2.1) the JPEG technique is based on two dimensional DCT applied toan image,
and previously the image is divided into 8x8 blocks. Additionally, each block is encoded
separately[42, 127]. While JPEG2000 is based on DWT, which is applied to a partitioned image
into non-overlapped blocks (i.e. block size variable specified by the use/programmer), then the
transformed blocked addressed t coding algorithm for compression (See section 1.2.2) [42]. Most
image compression applications allow the use/programmer to determine image quality by using
specific parameters for balance between image quality and compression ratio [22].  The
comparison between these two methods and our approach is based on Root-Mean-Square-Error
(RMSE).

Table 3.4: "High", "Median" and "Low" represent image quality used by each method.
Moreover, "FAIL" means that the method (JPEG or JPEG2000) cannot compress images when
the quality value is "Low" as reached by our approach and unable to reconstruct the 3D model.
Figures 3.12, 3.13 and 3.14 show the 3D reconstructed images by JPEG and JPEG2000.
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Table 3.4: Comparison between the proposed algorithm and JPEG2000 and JPEG techniques

Image
Name

Quality
Proposal Method JPEG2000 JPEG Compression

Ratio
RMSE

3D
RMSE

RMSE
3D

RMSE
RMSE

3D
RMSE

Wall High 2.49 2.09 1.92 4.28 3.14 2.8 98%
Median 2.82 3.95 2.14 5.01 3.87 4.5 98.7%

Low 3.25 4.72 2.42 3.52 5.34 6.9 99.1%
Girl High 3.09 3.78 2.14 3.94 3.28 3.94 94.4%

Median 4.08 3.94 2.88 4.02 4.72 3.72 96.6%
Low 5.25 3.66 4.1 1.51 FAIL FAIL 97.9%

Woman High 2.88 3.37 2.14 3.14 2.6 2.55 95.6%
Median 3.53 3.09 2.7 3.2 4.58 2.75 97.3%

Low 4.35 2.61 FAIL FAIL FAIL FAIL 98.2%

(a) Decompressed by JPEG2000 3D Flat image(b) Decompressed by JPEG2000 3D Flat image,
3D RMSE =4.283D RMSE=5.01

(c) 3D image decompressed by                                         (d) 3D image decompressed by
JPEG2000 3D RMSE=3.52                               JPEG Quality=56% (degraded 3D)

(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]
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(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]
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Figure 3.12: (a), (b) and (c) Decompressed 3D Wall image by JPEG2000, Decompressed image with quality=40% most of
regions are matched with the original image,similarly with quality=26% and quality=10%approximately matched with the
original image, (d,e) Decompressed 3D Flat image by JPEG (degraded) un-recognized with original image. Median quality
2D decompressed image by JPEG at quality=51%, quality=23% non-capable of generating 3D model.

(a) Decompressed 3D image by JPEG2000, 3D RMSE=3.94

(b) Decompressed 3D image by JPEG2000, 3D RMSE=4.02

(c) Decompressed 3D image by JPEG2000, 3D RMSE=1.51
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(d) Decompressed 3D image by JPEG, Quality=45%, 3D RMSE=3.94

(e) Decompressed 3D image by JPEG, Quality=17%, 3D RMSE=3.72

Figure 3.13: (a), (b) and (c) Decompressed 3D Girl image by JPEG2000, (d), (e) Decompressed 3D Girl image by JPEG.For
low quality, JPEG cannot compress to29.1 KB.

(a) Decompressed 3D image by JPEG2000, 3D RMSE=3.14
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(b) Decompressed 3D image by JPEG2000, 3D RMSE=3.2

(c) Decompressed 3D image by JPEG, Quality=56%, 3D RMSE=2.55,

(d) Decompressed 3D image by JPEG, Quality=13%, 3D RMSE=2.75

Figure 3.14: (a), (b) Decompressed Women image by JPEG2000, (c), (d) Decompressed 3D Women
image by JPEG. For low quality JPEG cannot compress to24.5 KB.
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3.6. Conclusion

In this Chapter, we demonstrated a new image compression methodwhich is used in 3D
applications. Our method is based on two different types of transformations: DWT and
DCT respectively followed by the Matrix Minimization algorithm which is proposed in
this thesis. The results show that our approach produced image quality at higher
compression ratios that are capable to reconstruct the3D object. Another advantage, our
approach has better image quality than JPEG and JPEG2000. On the otherhand, the steps
in the algorithm are more complex than JPEG and JPEG2000. The most important
feature ofthis method is its ability to provide high quality image athigh compression
ratios.The main features of the techniques proposed and demonstrated in this Chapter are
highlighted as follows [42].

1- The two transformations are proposed by the method to increase the high-frequency
coefficients, this is one of the reasons to achieve higher compression ratios,

2- The proposed Matrix Minimization algorithm is used to collect each three adjacent
coefficients from the high-frequency matrices converting to a single floating point
value. This is a lossless step that reduces the size of the data and at the same time
preserves image quality,

3- The main reason touse Daubechieswavelet (db3) is that it helps our approach to get
higher compression ratios, because the Daubechies (db3) DWT family can zoom-in
an image and all high-frequency sub-bands are set to zeroatthe first level: HL1, LH1
and HH1 (i.e. the high-frequency sub-matrices are ignored - See Table 3.3),

4- The new decoding algorithm is proposed in this chapter called LSS-Algorithm,
whichrepresents the core of the proposed decompression algorithm. This algorithm
retrieve a matrix from a one-dimensional array depending on RandomWeightValues
(i.e. which is themain key responsible for coding/decoding).In addition, the LSS-
Algorithm represents lossless decompression byrecovering the exact original
coefficients,

5- The RandomWeightValues with Limited-Data are the keys used for coding and
decoding an image, without these two keys an image cannot be recovered,

6- Another feature oftheproposed approach has better visual image quality at higher
compression ratios compared with JPEG and JPEG2000. This is becausetheapproach
removes most of the block artefacts caused by the 8x8 two-dimensional DCT of the
JPEG technique. Also, our approach removes some blurring caused by quantization
used in multi-level DWT of the JPEG2000 [22].

The disadvantages of the methods are illustrated as follows.

1- The compression/decompression steps are more complex than JPEG and JPEG2000,
leading to increased execution times compared with JPEG and JPEG2000.
Furthermore, the LSS-Algorithm iterative method is particularly complex.

2- Because theMatrix Minimization algorithm converts each integer coefficients to
floating-point number, thereby causing increasing header-compressed file size.
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Chapter 4

DWT-JPEGbased Compression with Block Sequential Search
Decompression

4.1. Introduction

The JPEG image compression method is based on the Discrete Cosine Transform (DCT) (See
section 1.2.1)[117]. The image is divided into segments and each segment is then a subject of
the transform, creating a series of frequency components that correspond with detail levels of
the image[127, 133]. A step beyond JPEG is the JPEG2000 technique that is based on DWT
(See section 1.2.2) which is one of the mathematical tools for hierarchically decomposing
functions. Image compression using Wavelet Transforms is a powerful method that is
preferred by scientists to get compressed images at higher compression ratios with higher
PSNR values [3][5]. Its superiority in achieving high compression ratio, error resilience, and
other features promotes it to become today's compression standard leading to the JPEG2000
ISO.

As referred to the JPEG abbreviation, which stands for Joint Photographic Expert Group,
JPEG2000 codec is more efficient than its predecessor JPEG and overcomes its drawbacks
[12]. It also offers higher flexibility compared to even many other codec such as region of
interest, high dynamic range of intensity values, multi component, lossy and lossless
compression, efficient computation, compression rate control, etc. The robustness of
JPEG2000 stems from its utilization of the Discrete Wavelet Transform (DWT) in encoding
the image data. DWT exhibits high effectiveness in image compression due to its support to
multi-resolution representation in both spatial and frequency domains. In addition, DWT
supports progressive image transmission and region of interest coding [118,119].

We described in the previous Chapter a two level DWT and two level DCT transforms
applied to 2D structured light images. The drawbacksof that method motivated us to reduce
the number of transformation steps and increase the search algorithm’s speed to reduce
coding and decoding time.In this Chapter, we introduce a new method of applying the JPEG
technique with the Discrete Wavelet Transform (DWT) for high-resolution compression. This
image compression algorithm starts with transforming an image by a single level
DWT,followed by the JPEG technique applied to the "LL" sub-band (Low-frequency
coefficients) this process is called here the JPEG Transform. Next, we separate the final
transformed matrix into a DC-Array and an AC-Matrix containing the DC values and the AC
coefficients respectively. Finally, the Matrix Minimization algorithm is applied to the AC-
Matrix followed by arithmetic coding[133].

The novel decompression algorithm proposed in this chapter is a Block Sequential Search
Algorithm, which is represents the inverse of theMatrix Minimization algorithm. This search
algorithm consist of pointers (P) searching as a block to find the original AC-coefficients.
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Thereafter, it combines all decoded DC-values with the decoded AC-coefficients in one
matrix followed by inverse JPEG transformed and inverse DWT. Thisnew technique is tested
by compression and reconstruction of 2D structured light images. Additionally, this technique
is compared with JPEG and JPEG2000 algorithm by using 2D and 3D RMSE[133].

4.2. Proposed 2D Image Compression Algorithm

The JPEG technique is one of the techniques used in image compression,an important feature
of the JPEG method is the "Quality" parameter, which allows the user to adjust the amount of
the data lost over a very wide range. In this Section, we explain in detail theJPEG
transformation applied on the outputs of a discrete wavelet transform. The JPEG
transformation consists of: 1) Apply DCT on each 8x8 block followed by a quantization
process. 2) Zigzag scan converting each block into 64 coefficients, and store the 64-
coefficients in two different matrices [130]. Figure 4.1 describes the proposed DWT-JPEG
algorithm steps.

Figure 4.1: Proposed DWT-JPEG Compression Techniques

4.2.1. The Discrete Wavelet Transform

DWT is the first phase in the proposed image compression algorithm, to produce four sub-
bands (See Section 3.2.1) [131]. Most values in the high-frequency domains (i.e HL, LH and
HH) are insignificant coefficients without affecting on the reconstructed image. For this
reason all the high frequency domains are discarded in this research (i.e. set all values to
zero), and this does not mean that the image will lose much information, this depends on the
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image dimensions. Figure 4.2 shows the decomposition image by Daubechies filter, and then
recomposes sub-bands without high-frequencies[134].

Figure 4.2: reconstructed image by using Daubechies single stage DWT

4.2.2. The JPEG Transform

The "LL" sub-band partitioned into non-overlapping 8x8 blocks, each block is transformed
by using a two-dimensional DCT to produce de-correlated coefficients. Each 8x8 frequency
domain consists of DC-value at the first location, while the other coefficients are called AC
coefficients (See Section 3.2.2)[5]. After applying the two-dimensional DCT on each 8x8
block, each block is quantized by the Quantization Matrix "QM" using dot-division-matrix
with truncates the results. This process removes insignificant coefficients and increases the
number of zeros in the each block. QM computes as follows[132, 133]:









evenjiQMifjiBlock

oddjiQMifjiBlock
jiQM

)),((1)(

)),((),(
),( (4.1)

Where \ Block: is represented block size i ,j=1,2,3…,Block( , ) = ( , ) (4.2)
In the above Eq. (4.2), the factor "Scale" is used to increase/decrease the values of the "QM".
Thus, image details are reduced in case factor Scale >1. There is no limit range for this factor,
because this depends on the DCT coefficients[133].

Each quantized 8x8 block is converted into one-dimensional array (i.e. the array contains 64
coefficients) by zigzag scan [118].Whereas, the first value transferred into new array called
DC-Array, while the other63 coefficients are stored into a new matrix "LLAC". Finally, the
DC-Array is compressed by Arithmetic coding. The Arithmetic coding is one of the
important methods used in data compression method, especially used in JPEG2000.
Arithmetic coding depends on "Low" and "High" equations to generate streams of bits [135].
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Figure 4.3:Operation and separation of DC-value from the 64 coefficients

4.2.3. The Matrix Minimization Algorithm

The LLAC matrix ready for coding by the Matrix Minimization algorithm, which is applied to
each three coefficients (See section 3.2.3), to produce a single data item.

In this Chapter we apply the Matrix Minimization algorithm to each three columns of an
image, this means reducing each three columns to a single coded column. However, the bit
size for each data in the minimized array is increased. Figure 4.4 illustrates the conversion of
three columns into one dimensional array [42,133].

Figure 4.4: MatrixMinimization Algorithm

In above Figure 4.4 (a) K1, K2 and K3 represent the conversion keys of the Matrix
Minimization algorithm. The following equation illustrates converting three data to a single
data item(See List 3.1)[42,133].

Di=(K1 Ai)+ (K2 Bi) + (K3 Ci) (4.3)

Where\ i=1, 2, 3,…n
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If the key values are lost, the data cannot be retrieved, because the keys are used for both
coding and decoding. The key values are generated through a random number generator. For
example, Key1= 0.8147, Key2=0.9058, and Key3=0.1270. The keys are generated once for
all matrix data and, after calculation, all coded data "Di" are arranged together into a one-
dimensional array[42,133].

Before applying the Matrix Minimization algorithm, the probability of the data for AC-matrix
is computed. These probabilities are called Limited-Data, which are used later in the
decompression stage (See Figure 3.5). The Limited-Data set is stored in the header file as
additional information of compressed data [42,133].

4.3. Proposed Decompression Algorithm

The decompression algorithm represents the reverse steps of the proposed image compression
method. First, apply arithmetic decoding to decompress the DC-array. Thereafter, decode
theminimized-array. Second, usethe novel Block Sequential Search Algorithm (BSS-
Algorithm), which is the inverse of the Matrix Minimization Algorithm to reconstruct theAC-
Matrix. The BSS-Algorithmestimates (Ai, Bi and Ci) by using "Di" with the compression
keys. Whereas, Ai, Bi and Ci representstimed columns of the AC-Matrix. The BSS-
Algorithm can be described by the following steps[133].

Step 1: BSS-Algorithm starts by picking the first block of data from the Limited-Data the
size of this block P. Each value of block relates to each other like a network as shown in
Figure 4.5, where "Column-1" is connected with "Column-2", which is connected with
"Column-3". In other words, the search algorithm computes all options in parallel. For
example: A=[1 -1 0] , B=[1 -2 0] and C=[3 -1 5], and P=3.According to Eq. (4.3), "A","B"
and "C" are computed 27 times. This means, all options are computed in parallel and one
option will be matched with "Di", and "Ai", "Bi" and "Ci" in "Column-1", "Column-2" and
"Column-3" represented the decompressed data[133].

Initially, the BSS algorithm starts with P=10 from "Limited-Data(1…10.)" which is used by
the algorithm to estimate three columns (A, B and C), as mentioned in Figure4.5(a).
Thereafter, the algorithm starts searching for the original data (Ai, Bi and Ci) which depends
on compressed column "Di" and the values of the keys. The first iteration starts with
matching the selected "Di" with 10 outputs. In other words,Eq.(4.3)is executed 1000 times in
parallel to find the original values for columns (A,B and C) as mentioned in Figure 4.5(b). If
the result is unmatched, in this case the second option will be taken form "Limited-
Data(11…20.)" (i.e. selecting another 10 data from Limited-Data transferred to Array1, while
"Array2" and "Array3" remain in same old options.If the processing still cannot find the
result, in this case"Array2=Array1" (i.e. transferred data from Array1 to Array2), then a new
processing starts.Through this explanation, "Array1", "Array2" and "Array3" are working
like a digital clock: sec, min. and hour respectively, this process will continue until find all
original columns (Ai, Bi and Ci) in the AC-Matrix[133].
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Step 2: In this step, the decompressed AC-Matrix is composed with each DC-value (i.e. DC-
values from the DC-array), then followed by inverse zigzag scan to convert each 64-
coefficients to 8x8 blocks. These blocks are combined with each other to build the LL sub-
bands. Subsequently, apply inverse quantization (i.e. dot-multiplication), followed by inverse
DCT on each 8x8 block. Finally, apply the inverse DWT for obtaining the 2D image. The
decompression algorithm steps are showed in Figure 4.6[133].

(a) copy P data from Limited-Data to temporary “Array1” for BSS-Algorithm

(b) data matched through BSS-Algorithm

Figure 4.5: (a, b) strategy for the BSS-Algorithm
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Figure 4.6: Flowchart of the proposed Decompression Algorithm

4.4. Experimental Results
The proposed compression method was applied on five types of images, as shown in Figure
4.7. The tests have been performed using Daubechies DWT (db3), the block sizes used by
DCT (4×4 and 8×8). The results described below used MATLABfor 2D image compression
in connection with a 3D visualization software (See Section 3.4) running on an AMD Quad-
Core microprocessor. Tables: 4.1, 4.2, 4.3, 4.4 and 4.5 show the compressed sizes for each
image.

(a) 2D BMP “Wall”, dimension1280x1024 pixels        (b) 2D BMP “Corner”, dimension1280x1024 pixels

(c) 2D BMP “Face1”, dimension 1392x1040 (d) 2D BMP “Face2”, dimension 1392x1040
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(e) 2D BMP “Face3”, dimension 1392x1040

Figure 4.7: (a, b) Colour 2D BMP image, size=3.75MB, (c,d,e) grayscale 2D BMP image, size=1.38 MB

Table 4.1: 2D image"Wall.bmp" of 3.75 MB compressed by the proposed image compression algorithm

Scale – parameter used by
quantization

Block size used
by

JPEG-
Transformation

Compressed
Size
(KB)

Compression
RatioLuminance

Y / single
layer

Chrominance
[Cb , Cr]

2 [2,2] 8x8 27.2 99.2%

2 [4,4] 8x8 21.7 99.4%

4 [4,4] 8x8 17.5 99.5%

4 [8,8] 8x8 13.5 99.6%

Table 4.2: 2D image"Corner.bmp" of 3.75 MBcompressed by the proposed image compression algorithm

Scale – parameter used by
quantization

Block size used
by

JPEG-
Transformation

Compressed
Size
(KB)

Compression
Ratio

Luminance
Y / single

layer

Chrominance
[Cb , Cr]

2 [2,2] 8x8 52.6 98.6%

2 [4,4] 8x8 39.9 98.9%

4 [4,4] 8x8 33.4 99.1%

4 [8,8] 8x8 25.1 99.3%

8 [8,8] 8x8 20.1 99.4%

Table 4.3: 2D image"FACE1.bmp" of 1.38 MB compressed by the proposed image compression algorithm
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Scale – parameter used by
quantization (single layer)

Block size used by
JPEG-Transformation

Compressed
Size
(KB)

Compression
Ratio

2 4x4 51.6 96.3%

2 8x8 28.4 97.9%

4 8x8 16.3 98.8%

5 8x8 13.5 99%

6 8x8 11.6 99.1%

8 8x8 9 99.3%

Table 4.4: 2D image"FACE2.bmp" of 1.38 MB compressed by the proposed image compression algorithm

Scale – parameter used by
quantization (single layer)

Block size used by
JPEG-Transformation

Compressed
Size
(KB)

Compression
Ratio

2 4x4 39 97.2%

2 8x8 20 98.5%

4 8x8 11.6 99.1%

5 8x8 8.4 99.4%

6 8x8 9.6 99.3%

8 8x8 6.7 99.5%

Table 4.5: 2D image"FACE3.bmp" of 1.38 MB compressed by the proposed image compression algorithm

Scale – parameter used by
quantization (single layer)

Block size used by
JPEG-Transformation

Compressed
Size
(KB)

Compression
Ratio

2 4x4 33 97.6%

2 8x8 16.8 98.8%

4 8x8 9.4 99.3%

5 8x8 7.7 99.4%

The proposed decompression algorithm was applied to each compressed image, as mentioned
before in section 4.2. The decompressed algorithm shows a range of image quality according
to "Scale" parameter and block size used in the JPEG-Transformation (See Eq.(2)). Figure
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4.8, Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12 showsequence of decompressed 3D
images: Wall, Corner, Face1, Face2 and Face3 respectively where the quality of the 3D
reconstruction can be assessed.

(a) Decompressed "Wall" 3D image Scale=[2,2,2], 3D shaded and texture, (b) Decompressed "Wall" 3D image Scale=[2,4,4]

(c) Decompressed "Wall" 3D image Scale=[4,4,4], (d) Decompressed "Wall" 3D image Scale=[4,8,8], 3D shaded and texture

Figure 4.8: (a) Decompressed 3D wall image shaded by using high quality parameters applied on each layer in
colour image "YCrCb". (b)Decompressed 3D wall image shaded by using normal quality parameters shows the
details of 3D surface. (c) and (d) shows decompressed 3D surface at low quality parameters, the degradation
starts appearing on the 3D wall image.

(a) Decompressed "Corner" 3D image Scale=[2,2,2], 3D shaded and texture
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(b) Decompressed "Corner" 3D image Scale=[2,4,4]   (c) Decompressed "Corner" 3D image Scale=[4,4,4]

(d) Decompressed "Corner" 3D image Scale=[4,8,8], 3D shaded and texture

(e) Decompressed "Corner" 3D image Scale=[8,8,8], 3D shaded and texture

Figure 4.9: (a) Decompressed 3D corner image shaded by using high quality parameters applied on each layer in
colour image "YCrCb". (b, c) Decompressed 3D Corner image shaded by using normal quality parameters
shows the details of 3D surface. (d) Decompressed 3D Corner image shaded by using low quality parameters
and the details of 3D surface still approximately same as the original. (e) Decompressed 3D Corner image
shaded by using very low quality parameters and small amount of the degradation starts appearing on the 3D
surface.

(a) Decompressed "Face1" 3D image Scale=2, block size =[4x4] 3D texture and shaded
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(b) Decompressed "Face1" 3D image (c) Decompressed "Face1" 3D image (d) Decompressed "Face1" 3D image
Scale=2, block size=[4x4] 3D shaded Scale=4, block size=[8x8] 3D shaded Scale=5, block size=[8x8] 3D shaded

(e) Decompressed "Face1" 3D image (f) Decompressed "Face1" 3D image Scale=8
Scale=6, block size=[8x8] 3D shaded block size=[8x8] 3D shaded and texture

Figure 4.10: (a) Decompressed 3D Face1 image shaded by using high quality parameters applied on the grey-
scale image. (b, c, d) Decompressed 3D Face1 image shaded by using normal quality parameters shows the
details of 3D surface. (e) Decompressed 3D Face1 image shaded by using low quality parameters and the details
of 3D surface still approximately the same as the original. (f) Decompressed 3D Face1 image shaded by using
very low quality parameters, and small amount of the degradation starts appearing on the 3D surface.

(a) Decompressed "Face2" 3D image Scale=2, block size =[4x4] 3D texture and shaded
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(b) Decompressed "Face2" 3D image (c) Decompressed "Face2" 3D image (d) Decompressed "Face2" 3D image
Scale=2, block size=[8x8] 3D shaded      Scale=4, block size=[8x8] 3D shaded Scale=5, block size=[8x8] 3D shaded

(e) Decompressed "Face2" 3D image     (f) Decompressed "Face2" 3D image Scale=8
Scale=6, block size=[8x8] 3D shaded               block size=[8x8] 3D shaded and texture

Figure 4.11: (a) and (b) Decompressed 3D Face2 image shaded by using high and normal quality parameters
respectively, applied on the grey-scale image the details of 3D surfaces near to original 3D surface. (c) and(d)
Decompressed 3D Face2 image shaded by using normal quality parameters and some details of 3D surface are
changed. (e) and (f) Decompressed 3D Face2 image shaded by using low quality parameters, and small amount
of the degradation appears on the 3D surface.

(a) Decompressed "Face3" 3D image Scale=2, block size =[4x4] 3D texture and shaded
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(b) Decompressed "Face3" (c) Decompressed "Face3" (d) Decompressed "Face3" 3D image
Scale=2, block size=[8x8] Scale=4, block size=[8x8] Scale=5, block size=[8x8] 3D shaded and texture

Figure 4.12: (a) Decompressed 3D Face3 image shaded by using high quality parameters applied on the grey-
scale image. (b, c) Decompressed 3D Face3 image shaded by using normal quality parameters shows the details
of the 3D surface is near to original 3D surface. (d) Decompressed 3D Face3 image shaded by using low quality
parameters, and small amount of the degradation appeared on the 3D surface.

The following Tables: 4.6, 4.7, 4.8, 4.9 and 4.10 show time execution for the BSS-algorithm
for each image using two types of pointers (P=5 and P=10). The pointer refers to number of
coefficients using in block for space search (i.e. searching in Limited-Data).

Table 4.6:BSS-Algorithm time execution for image: Wall.bmp

Parameters Time execution (sec.)  for
BSS-Algorithm, P=5

Time execution (sec.) for
BSS-Algorithm, P=10

Luminance
Y

Chrominance
[Cb , Cr]

Y Cb Cr
Total time

(s)
Y Cr Cb

Total time
(s)

2 [2, 2] 10.95 6 11.87 28.82 7.8 4.36 7.45
19.61

2 [4, 4] 10 3.55 4.27 17.82 7.97 2.24 2.43
12.64

4 [4, 4] 3.66 2.9 4.29 10.85 3.19 2.6 3.0
8.79

4 [8, 8] 3.25 2.91 2.72 8.87 3 2.6 2.15
7.75

Table 4.7:BSS-Algorithm time execution for image:Corner.bmp

Parameters Time execution (sec.)  for
BSS-Algorithm, P=5

Time execution (sec.) for
BSS-Algorithm, P=10

Luminance
Y

Chrominance
[Cb , Cr]

Y Cb Cr
Total time

(s)
Y Cr Cb

Total time
(s)

2 [2, 2] 36.61 9.28 21 66.89 27.51 9.42 14.25
51.18

2 [4, 4] 35.75 4.69 6.13 46.57 25.55 3.52 5.5 34.57

4 [4, 4] 5.44 4.58 6.48 16.50 6.22 3.57 5.99
15.78

4 [8, 8] 5.5 2.69 3 11.19 6.0 4.22 3.16
13.38

8 [8, 8] 2.94 2.93 3.32 9.19 2.93 4.46 3.41 10.8
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Table 4.8:BSS-Algorithm time execution for image:FACE1.bmp

Parameters BSS-Algorithm, P=5 BSS-Algorithm, P=10

Luminance
Y

Block size Total time(s)
Total time (s)

2 [4x4] 126.20
122.24

2 [8x8] 65.59 61.12

4 [8x8] 15.22
8.47

5 [8x8]
9.37

6.91

6 [8x8] 6.14 4.91

8 [8x8] 3.38 4.77

Table 4.9:BSS-Algorithm time execution for image:FACE2.bmp

Parameters BSS-Algorithm, P=5 BSS-Algorithm, P=10

Luminance
Y

Block size Total time(s)
Total time (s)

2 [4x4] 81.83 76.58

2 [8x8] 44.69
43.24

4 [8x8] 7.53
8.42

5 [8x8] 7.76 8.59

6 [8x8] 4.74 5.24

8 [8x8] 4.39 4.49

Table 4.10:BSS-Algorithm time execution for image:FACE3.bmp

Parameters BSS-Algorithm, P=5 BSS-Algorithm, P=10

Luminance
Y

Block size Total time(s)
Total time (s)

2 [4x4] 16.27 10.67

2 [8x8] 9.0
7.78

4 [8x8] 3.1
3.77

5 [8x8] 3.0 3.21

4.5. Comparison with JPEG and JPEG2000
Our approach is compared with JPEG and JPEG2000; these two techniques are used widely
in digital image compression, especially for image transmission and video compression. The
JPEG technique is based on the 2D DCT applied on the partitioned image into 8x8 blocks,
and then each block encoded by RLE and Huffman coding [129, 133]. The JPEG2000 is



78

based on the multi-level DWT 9/7-daubechies filter, applied on the partitioned image and
then each partition quantized and coded by Arithmetic coding. Most image compression
applications allow the user to specify a quality parameter for the compression. If the image
quality is increased the compression ratio is decreased and vice versa [131, 133]. The
comparison is based on the 2D image and 3D image quality for testing the quality by Root-
Mean-Square-Error (RMSE). Tables: 4.11, 4.12, 4.13, 4.14 and 4.15 show the comparison
between the three methods for Wall, Corner, Face1, Face2 and Face3 respectively.

Table 4.11:Sequence of"Wall.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

99.2% 2.8 6.44 2.6 0.26 9.4 0.33

99.4% 3.5 6.45 2.8 0.26 15.4 24.4

99.5% 3.7 0.49 3.1 0.55 FAIL FAIL

99.6% 4.9 0.47 3.3 0.58 FAIL FAIL

Table 4.12: Sequence of "Corner.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

98.6% 5.8 0.07 4.7 0.05 11.2 1.15

98.9% 6.8 1.14 5.6 0.25 13.7 1.18

99.1% 7.1 1.14 6.1 1.83 16.0 1.81

99.3% 9.4 1.15 6.6 0.25 20 56.8

99.4% 9.9 0.34 7.2 1.17 FAIL FAIL

Table 4.13: Sequence of "FACE1.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

96.3% 4.3 0.85 4.0 0.66 4.0 1.8

97.9% 4.7 0.82 3.7 1.43 7.6 1.97

98.8% 5.4 1.48 4.7 1.8 12.2 116.5
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99% 5.7 1.80 5.1 1.81 FAIL FAIL

99.1% 6.1 1.98 5.4 1.93 FAIL FAIL

99.3% 6.7 1.94 5.8 1.86 FAIL FAIL

Table 4.14: Sequence of "FACE2.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

97.2% 2.4 0.47 1.5 0.62 2.1 0.49

98.5% 2.8 0.66 1.8 0.5 2.6 15.0

99.1% 3.4 1.18 2.4 0.93 11.0 FAIL

99.4% 3.8 15.8 3.0 1.06 FAIL FAIL

99.3% 4.1 14.9 3.1 15.2 FAIL FAIL

99.5% 4.6 15.4 3.3 15.1 FAIL FAIL

Table 4.15:Sequence of "FACE3.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

97.6% 2.3 0.55 1.8 0.93 2.7 0.49

98.8% 2.6 0.55 2.4 0.97 9.7 FAIL

99.3% 3.3 0.59 2.9 0.67 FAIL FAIL

99.4% 3.6 0.70 3.2 0.77 FAIL FAIL

In the above tables: 4.11, 4.12, 4.13, 4.14 and 4.15 "FAIL" means that theJPEG algorithm
was unable to compress/decompress an image at high compression ratio, while the other two
methods (our proposed and JPEG2000) can compress/decompress successfully. In some
cases, the 3D RMSE vary, if we compare it with 2D RMSE, this is because the dimensions of
the original 3D image and 3D decompressed image are unmatched. In this case, the
unmatched regions are discarded.On the other hand, RMSE is not enough to show the real
comparison between these three methods.The following figures: 4.15, 4.16, 4.17, 4.18 and
4.19 shows the visual properties for the 3D decompressed images: Wall, Corner, FACE1,
FACE2 and FACE3 respectively by using JPEG and JPEG2000 so a perceptual assessment of
quality can be made.



80

(a) JPEG2000, 3D RMSE= 0.26(b) JPEG2000, 3D RMSE=0.26  (c) JPEG2000, 3D RMSE=0.55
Compress size=27.2 Kbytes Compress size=21.7 KbytesCompress size=17.5 Kbytes

(d) JPEG2000, 3D RMSE=0.58 (e) JPEG, 3D RMSE=0.33             (f) JPEG, 3D RMSE=24.4
Compress size=13.5 Kbytes     Compress size=27.2 Kbytes      Compress size=21.7 Kbytes

Figure 4.15:(a –d) Decompressed Wall image by using JPEG2000, (e,f) Decompressed Wall image by JPEG

(a) JPEG2000, 3D RMSE= 0.05   (b) JPEG2000, 3D RMSE=0.25      (c) JPEG2000, 3D RMSE=1.83
Compress size=52.2 Kbytes      Compress size=39.9 Kbytes   Compress size=33.4 Kbytes

(d) JPEG2000, 3D RMSE= 0.25   (e) JPEG2000, 3D RMSE=1.17     (f) JPEG, 3D RMSE=1.15
Compress size=25.1 Kbytes      Compress size=20.1 KbytesCompress size=52.2 Kbytes
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(g) JPEG, 3D RMSE= 1.18   (h) JPEG, 3D RMSE=1.81 (i) JPEG, 3D RMSE=56.8
Compress size=39.9 Kbytes      Compress size=33.4 KbytesCompress size=25.1 Kbytes

Figure 4.16: (a – e) Decompressed Corner image by JPEG2000, (f – i) Decompressed Corner image by JPEG.

(a) JPEG2000, 3D RMSE= 1.18   (b) JPEG2000, 3D RMSE=1.81  (c) JPEG2000, 3D RMSE=56.8   (d) JPEG2000, 3D
RMSE=56.8

Compress size=51.6 Kbytes    Compress size=28.4 Kbytes Compress size=16.3 KbytesCompress size=13.5Kbytes

(e) JPEG2000, 3D RMSE=1.18  (f) JPEG2000, 3D RMSE=1.81(g) JPEG, 3D RMSE=1.8(h) JPEG, 3D RMSE=1.97
Compress size=11.6 Kbytes    Compress size=9.0 KbytesCompress size=51.6 KbytesCompress size=28.4 Kbytes

(i) JPEG, 3D RMSE=116.5
Compress size=16.3 Kbytes

Figure 4.17: (a – f) Decompressed FACE1 image by JPEG2000, (g – i) Decompressed FACE1 image by JPEG.
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(a) JPEG2000, 3D RMSE=0.62 (b) JPEG2000, 3D RMSE=0.5(c) JPEG2000, 3D RMSE=0.93(d) JPEG2000, 3D
RMSE=1.06

Compress size=39 Kbytes    Compress size=20 Kbytes Compress size=11.6 KbytesCompress size=8.4 Kbytes

(e) JPEG2000, 3D RMSE=15.2  (f) JPEG2000, 3D RMSE=15.1(g) JPEG, 3D RMSE=0.49       (h) JPEG, 3D RMSE=15.0
Compress size=9.6 Kbytes    Compress size=6.7 KbytesCompress size=39 Kbytes    Compress size=20 Kbytes

Figure 4.18: (a – f) Decompressed FACE2 image by JPEG2000, (g, h) Decompressed FACE2 image by JPEG.

(a) JPEG2000, 3D RMSE=0.93  (b) JPEG2000, 3D RMSE=0.97   (c) JPEG2000, 3D RMSE=0.67(d) JPEG2000, 3D
RMSE=0.77
Compress size=33 Kbytes    Compress size=16.8 KbytesCompress size=9.4 Kbytes    Compress size=7.7 Kbytes

(e) JPEG, 3D RMSE=0.49
Compress size=33 Kbytes

Figure 4.19: (a – d) Decompressed FACE3 image by JPEG2000, (e) Decompressed FACE3 image by JPEG.
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4.6. Conclusion

In this Chapter we presented and demonstrated a new method of image compression used in 3D
applications. The method is based on DWT and JPEG transformation with the proposed Matrix
Minimization algorithm. The results showed that our approach introduced better image quality
at higher compression ratios than JPEG and JPEG2000 being capable of accurate 3D
reconstruction at higher compression ratios. On the other hand, it is more complex than
JPEG2000 and JPEG. The most important aspects of the method and their role in providing high
quality image with high compression ratios are discussed as follows [133]:

1- Using two transformations helped our compression algorithm to increase the number of
high-frequency coefficients, and reduce the low-frequency domains leading to increased
compression ratios.

2- The Matrix Minimization algorithm is used to collect each three coefficients from the AC-
matrix, to a single floating-point value. This process converts a matrix into an array, leading
to increased compression ratios and keeping the quality of the high-frequency coefficients.

3- The BSS-Algorithm represents the core of our decompression algorithm to reconstruct the
exact original data (i.e. decompression algorithm), converting a one-dimensional array (i.e.
the Minimized-Array) to the original matrix, and depends on the organized key-values and
Limited-Data.

4- The key-values and Limited-Data are used in coding and decoding an image, without these
information images cannot be reconstructed. This feature makes our approach useful in
image encryption.

5- Our approach provides a better visual image quality compared to JPEG and JPEG2000. This
is because our approach removes most of the block artefacts caused by the 8x8 two-
dimensional DCT of the JPEG technique and this is due to the Matrix Minimization
algorithm. Also, our approach uses a single level DWT rather than multi-level DWT of
JPEG2000, for this reason blurring is removed by our approach.

However, there are more steps in the proposed compression and decompression algorithm than
in the JPEG and JPEG2000 techniques.Also,the complexity of BSS-algorithm leads to increased
execution time for decompression, because the iterative nature of the method is particularly
complex.
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Chapter 5

Enhanced DWT-DCT based Image Compression with Fast-Matching-Search
Decompression

5.1. Introduction

We demonstrated in Chapters 3 and 4 that structured light images for 3D reconstruction can be
compressed bythe proposed techniques with high accuracy and high compression ratios. The
research addressed efficient compression of 2D images for 3D reconstruction and texture
mapping. The proposed algorithms by Siddeq and Rodrigues [42,133,136] areuseful tomany 3D
applications,scientific datasets, medical and engineering and so on.

In this Chapter,we describe a new method for image compression based on two separate
transformations; a two-levelDWT and a two-level DCT, leading to an increased number of high-
frequency matrices, which are then shrunk by the Enhanced Matrix Minimization algorithm. This
Chapter demonstrates that our compression algorithm can achieve efficient image compression
ratios up to 99.5% and superior accurate 3D reconstruction compared with standard JPEG and
JPEG2000[137].

5.2. The Proposed 2D Image Compression Algorithm

This section presents a novel lossy compression algorithm implemented via DWTand DCT. The
algorithm starts with a two-level DWT. While all high frequencies (HL1, LH1, HH1) of the first
level are discarded, all sub-bands of the second level are further encoded. We then apply DCTto
the low-frequency sub-band (LL2) of the second level; the main reason for using DCTis to split
into another low frequency and high-frequency matrices (DC and ACMatrix1).The Enhanced
Matrix Minimization algorithmis then applied to compress the AC-Matrix1 and high frequency
matrices (HL2, LH2, HH2). The DC-Matrix1 is subject to a second DCTwhose AC-Matrix2 is
quantized then subject to arithmetic coding together with DC-Matrix2 and the output of
EMMalgorithm as depicted inFigure5.1[137].
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Figure5.1: Layoutproposed by the two-level DWT-DCT compression technique.

5.2.1. Two-Level Discrete Wavelet Transform (DWT)

The Wavelet Transform divides the image into four sub-bands: LL (i.e. which represents an
approximation of the original image) and the other three represent details as described in
Chapters 3 and 4. Practically, the details can be compressed into a few bytes, this is because
these details do not affect significantly the image quality. Given this, we can set all detail
coefficients to zero [133,137]. The DWT uses filters for decomposing an image; these filters
helpto increase the number of zeros in the high frequency sub-bands. One common filter used in
decomposition and composition is the Daubechies Filter (db3)[132,141].

In the proposed algorithm, the high frequency sub-bandof first level are set to zero (i.e. discard
HL, LH and HH). These sub-bands do not affect image details. Additionally, only a small
number of non-zero values are present in these sub-bands. In contrast, high-frequency sub-bands
in the second level (HL2, LH2 and HH2) cannot be discarded, as this would significantly affect
image quality. For this reason, high-frequency values in this region are quantized. The
quantization process in this algorithm depends on the maximum value in each sub-band, as
shown by the following equation [137]:

= (5.1)
= max( ) (5.2)



86

Where, “H2” represents each high-frequency sub-band at second level in DWT (i.e. HL2, LH2
and HH2). While “H2m” represents maximum value in a sub-band, and the "Ratio" value is used
as a control for the maximum value, which is used to control image quality. For example, if the
maximum value in a sub-band is 60 and Ratio=0.1, the quantization value is H2m=6, this means
all values in a sub-band are divided by 6.

Each sub-band has different priority for keeping image details. The higher priorities are: LH2,
HL2 and then HH2. Most of information about image details are in HL2 and LH2. If most of
nonzero data in these sub-bands are retained, the image quality will be high even if some
information is lost in HH2.For this reason the Ratio value for HL2, LH2and HH2is defined in the
range ={0.1 … 0.5}.

5.2.2. Two Level Discrete Cosine Transform (DCT)

In this Section, we describe the two-levelDCT applied to low-frequency sub-band “LL2” (see
Figure5.1). A quantization is first applied to LL2 as follows. All values in LL2 are subtracted by
the minimum of LL2and then divided by 2 (i.e. a constant even number). Thereafter, a two-
dimensional DCTis applied to produce de-correlated coefficients. Each variable size block (e.g.
8x8)in the frequency-domain consists of: theDC-value at the first location, while all the other
coefficients are called AC coefficients. The following steps illustrate thetwo-levelDCT
implementation:

A- Organize LL2 into 8x8 non-overlapping blocks (other sizes can also be used such as
16x16), then applyDCTto each block followed byquantization. The following equations
represent theDCT and its inverse[130,131,138]

The quantization table is a matrix of the same block size that can be represented as
follows:

( , ) = + ( + ) (5.3)
( , ) = ( , ) (5.4)

Where\i, j=1,2,…Block , Scale=1,2,3,… Block

After applying the two-dimensional DCT on each 8x8 or 16x16block, each block is
quantized by the “Q” using dot-division-matrix, which truncates the results. This process
removes insignificant coefficients and increases the number of zeros in each block.
However, in the above Eq. (5.4), the factor "Scale" is used to increase/decrease the values
of "Q". Thus, image details are reduced in case of Scale>1. There is no limiting range for
this factor, because this depends on the DCT coefficients [137].
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B- Convert each block to 1D array, and then transfer the first value to a new matrix called
DC-Matrix. While the rest of data AC coefficients are saved into a new matrix called AC-
Matrix. Similarity, the DC-Matrix is transformed again by DCT into another two
different matrices: DCT-Matrix2 and AC-Matrix2. Figure5.2 illustrates the details of the
two-level DCT applied to the sub-band LL2.

Figure5.2:(a) and (b) two levels DCT applied to LL2

The result from DC-Matrix2 size is very small and can be represented by a few bytes. On the
other hand, the AC-Matrix2 contains lots of zeros with only a few nonzero data. All zeros can be
erased and just nonzero data are retained.

5.2.3 Enhanced Matrix Minimization Algorithm

Each high-frequency sub-band contains lots of zeros with a few nonzero data. We propose a
technique to eliminate block of zeros, and store blocks of nonzero data in an array. This
technique is useful for squeezing all high-frequency sub-bands, this process is labelled Eliminate
Zeros and Store Nonzero data (EZSN) in Figure 5.3, applied to each high frequency
independently.  The EZSN algorithm starts to partition the high-frequency sub-bands into non-
overlapping blocks [K x K], and then search for nonzero blocks (i.e. search for at least one
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nonzero inside a block). If a block contains any nonzero data, this block will be stored in the
array called Reduced-Array, with the position of that block.  Otherwise, the block will be
ignored, and the algorithm continues to search for other nonzero blocks. The EZSN algorithm is
illustrated in List 5.1 below[137].

Figure5.3;Layoutof the Enhanced Matrix Minimization Algorithm

List 5.1:EZSN Algorithm
K=8; %% block size = [KxK]
I=1; LOC=1
while (I< column size for high-frequency sub-band)
J=1;
while (J< row size for high-frequency sub-band)
Block[1..K*K]= Read_Block_from_Matrix(I,J) ; %%read 8x8 block from high-frequency sub-band
if(Check_Block(Block) = = 'nonzero') %%check the "Block" content,hasita nonzero?
POSITION [LOC] =I; POSITION [LOC+1] =J; %% Save original location for block contains

%%nonzero data in high-frequency sub-band
LOC=LOC+2;
Forn=1: Block_Size* Block_Size
Reduced_Array[P]= Block[n]; %%save nonzero data in new array
++P;
Endfor
Endif
J=J+K;
Endwhile% inner loop

I=I+K;
Endwhile% outer loop

After each sub-band is squeezed into an array, thereafter, the Matrix Minimizationalgorithmis
applied to each reduced array independently. This method reduces the array size by 66%, the
calculation depends on key values and coefficients of the reduced array, and the result is stored
in a new array called Minimized-Array. The following equation represents the Matrix
Minimizationalgorithm [133,134,137]:
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Minimzed-Array(P)=Key(1)RA(L) + Key(2)RA(L+1) + Key(3)RA(L+2) (5.5)

Note that “RA” represents Reduced-Array (HL2, LH2, HH2 and AC-Matrix1)
L=1, 2, 3,… N-3, “N” is the size of Reduced-Array

P=1,2,3…N/3

The Keyvaluesin the above Eq. (5.5) are generated by a key generator algorithm. Initially
compute the maximum value in reduced sub-band, and three keys are generated according to the
following equations [137]:= 1.5max( ) (5.6)≥ 1 (5.7)= + + (5.8)= ( + ) (5.9)

Key=[K1, K2, K3];% Final Key values for compression and decompression

Where M represents the maximum value in the high-frequency matrixH, Factor ≥ 1 and K ≥1are integer values. Each reduced sub-band (See Figure5.3) has its own key value. This depends
on the maximum value in each sub-band.The idea for the key is similar to weights used in a
Perceptron Neural Network:P=AW1+BW2+CW3, where Wiare the weight values generated
randomly and “A”,“B” and “C” are data. The output of this summation is “P” and there is only
one possible combination for the data values given Wi(See Section 3.2.3)[133,134,137].

The Matrix Minimization algorithmproducesa minimized-array that contains lots of zeros with a
few nonzero data. In this case,we separate zeros from nonzero data, as shown in Figure 5.4.The
zero-array can be computed easily by calculating the number of zeros between two nonzero data.
For example, assume the following Minimized-Array=[0.5, 0, 0, 0, 7.3, 0, 0, 0, 0, 0, -7],the zero-
array will be [0,3,0,5,0]where the zeros in red refer to nonzero data existing at these positions in
the original Minimized-Array and the numbers in black refer to the number of zeros between two
consecutive non-zero data. [137].
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Figure 5.4: SeparateMinimized-Array into zero-array and nonzero-array

Before applying the Enhanced Matrix Minimization algorithm, our compression algorithm
computes the probability of theReduced-Array (i.e. compute the probability for each HL2, LH2,
HH2 and AC-Martix1). These probabilities are called Limited-Data, which is used later in the
decompression stage (see Figure 3.5)

The final step of the compression algorithm is arithmetic coding, which is one of the important
methods used in data compression; it takes a stream of data and convert it toa single floating
point value. These values lie in the range less than one and greater than zero that, when
decoded,return the exact stream of data. The arithmetic coding needs to compute the probability
of all data and assign a range for each data (low and high) to generate streams of bits
[33,57,131].

5.3 The Fast-Matching-Search Decompression Algorithm (FMS-
Algorithm)

The proposed decompression algorithm is the inverse of compression and consists of three stages
[137]:

1) First level Inverse DCTto reconstruct the DC-Matrix1;
2) Apply the FMS-Algorithm to decode each sub-band independently (i.e. HL2, LH2, HH2,

AC-Matrix2);
3) Apply the second level inverse DCT with two levels inverse DWTto reconstruct the 2D

image.

Once the 2D image is reconstructed, we apply structured light 3D reconstruction algorithms to
obtain an approximation of the original 3D surface, from which errors can be computed for the
entire surface. Figure5.5 shows the layout of the main steps in the proposed decompression
algorithm.
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(a) First level inverse DCT

(b) FMS-Algorithm applied to reconstruct high-frequency matrices

(c) Two levels inverse DWT with two levels inverse DCT applied to decompress 2D image

Figure5.5: (a),(b) and (c)represents layout of the proposed Decompression algorithm

The FMS-Algorithm has been designed to recover the original high frequency data. The
compressed data contains information about the compression keys and probability data (Limited-
data) followed by streams of compressed high frequency data. Therefore, the FMS algorithm
picks up each compressed high frequency data and reads information (key values and Limited-
Data) from which the original high frequency data are recovered. TheFMS-Algorithm is
illustrated through the following steps A and B:
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A) Initially, Limited-Data are copied (in memory) three times into separated arrays. This is
because expanding the compressed data with the three keys resembles an interconnected
data, similar to a network as shown in Figure5.6

B) Pick up a data item from“D”, the compressed array (i.e. Coded-HL2 or Coded-LH2 or
Coded-HH2 or Coded-AC-Matrix1) and search for the combination of (A,B,C) with
respective keys that satisfy D. Return the triplet decompressed values (A,B,C).

Figure5.6: First stage FMS-Algorithm for reconstructing high frequency data from Limited-Data. A, B and C are the
uncompressed data which are determined by the unique combination of keys.

Since the three arrays of Limited-Data contain the same values, that is A1=B1=C1, A2=B2=C2,
and so on the searching algorithm computes all possible combinations of A with Key1, B with
Key2 and C with Key3 that yield a result D. As a means of an example consider that Limited-
Data1=[A1 A2 A3] , Limited-Data2=[B1 B2 B3] and Limited-Data3=[C1 C2 C3]. Then,
according to Eq.(10) these represent RA(L), RA(L+1) and RA(L+2) respectively, the equation is
executed 27 times (33=27) testing all indices and keys. One of these combinations will match the
data in (D) (i.e. the original high frequency Coded-LH2 or Coded-HL2 or Coded-HH2 or Coded-
AC-Matrix1) as described in Figure5.6. The match indicates that the unique combination of
A,B,C are the orgininal data we are after[137].

The searching algorithm used in our decompression method is called Binary Search Algorithm,
the algorithm finds the original data (A,B,C) for any inputfromarray “D”. For the binary search,
the array should be arranged in ascending order. In each step, the algorithm compares the input
value with the middle of element of the array “D”. If the value matches, then a matching element
has been found and its position is returned[139]. Otherwise, if the search is less than the middle
element of “D”, then the algorithm repeats its action on the sub-array to the left of the middle
element or, if the value is greater, on the sub-array to the right. There is no probability for “Not
Matched”, because the FMS-Algorithm computed all compression data possibilities previously.

After the Reduced-Arrays (LH2, LH2, HH2 and AC-Matrix1) are recovered, their full
corresponding high frequency matrices are re-build by placing nonzero-data in the exact
locations according to EZSN algorithm (see List 5.1). Then the sub-band LL2is reconstructed by
combining the DC-Matrix1and AC-Matrix1 followed bythe inverse DCT. Finally, a two-
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levelinverseDWTis applied to recover the original 2D BMP image (see Figure5.5(c)). Once the
2D image is decompressed, its3D geometric surface is reconstructed such that error analysis can
be performed in this dimension [137].

5.4 Experimental Results
The results described below use MATLAB-R2013a for performing2D image compression and
decompression, and 3D surface reconstruction was performed with our own software developed
within the GMPR group (See Section 3.4)running on an AMD quad-core microprocessor. The
justification for introducing 3D reconstruction is that we can make use of a new set of metrics in
terms of error measurements and perceived quality of the 3D visualization to assess the quality
of the compression/decompression algorithms [135, 136].

The results in this chapter are divided into two parts: first, we apply the proposed image
compression and decompression methods to 2D greyscale images of human faces. The original
and decompressed images are used to generate 3D surface models from which direct
comparisons are made in terms of perceived quality of the mesh and objective error measures
such as RMSE. Second, we repeat all procedures for 2Dcompression, 2D decompression, 3D
reconstruction but this time with colour images of objects other than faces. Additionally, the
computed 2D and 3D RMSEare used directly for comparison with JPEG and JPEG2000
techniques.

5.4.1 Compression, Decompression and 3D Reconstruction fromGreyscaleImages

As described above the proposed image compression started with DWT. The level of DWT
decomposition affects the image quality also the compression ratio, so we divided the results into
two parts to show the effects of each independently: single level DWTand two-level DWT.
Figure 5.7 shows the original 2Dhuman faces tested by the proposed algorithm. Table5.1,
Table5.2 and Table5.3 show the compressed size by using our algorithm with a single level and
two-levelDWTforFace1, Face2 and Face3 respectively.

(a)  Original 2D Face1dimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface
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(b)  Original 2D Face2dimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface

(c)  Original 2D Face3dimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface

Figure 5.7:(a), (b) and (c) original 2D images (left) with 3D surface reconstruction (right).

Table5.1:Compressed size for 2D image Face1
Applied single level DWT

Single level DWT
High-frequencies
(HL,LH and HH)

DCT parameters
Compressed size

(KB)
Compression

RatioBlock
size

Scale

Discarded 8×8 0.5 51.4 96.3%
Discarded 8×8 1 29.33 97.9%
Discarded 8×8 2 15.6 98.8%
Discarded 8×8 3 10.58 99.2%

Discarded 8×8 4 8 99.4%
Discarded 8×8 5 6.37 99.5%
Discarded 16×16 0.5 28.52 97.9%
Discarded 16×16 1 14.74 98.9%
Discarded 16×16 2 7.38 99.4%

Applied twolevelsDWT
Two levels
DWTHigh-
frequencies

Ratio value (
Eq.(5) )

DCT parameters

Compressed size
(KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2

0.3 0.3 0.3 29.93 0.5 29.93 97.8%
0.3 0.3 0.3 17.55 1 17.55 98.7%
0.3 0.3 0.3 9.7 2 9.7 99.3%
0.3 0.3 0.3 6.74 3 6.74 99.5%
0.3 0.3 0.3 21 0.5 21 98.5%
0.3 0.3 0.3 10.54 1 10.54 99.2%
0.3 0.3 0.3 5.19 2 5.19 99.6%
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Table 5.2: Compressed size for 2D image Face2
Applied single level DWT

Single level DWT
High-frequencies
(HL, LH and HH)

DCT parameters
Compressed size

(KB)
Compression

RatioBlock
size

Scale

Discarded 8×8 0.5 47 96.6%
Discarded 8×8 1 26.85 98%
Discarded 8×8 2 14.42 98.9%
Discarded 8×8 3 9.91 99.2%
Discarded 8×8 4 7.4 99.4%
Discarded 16×16 0.5 25.33 98.2%
Discarded 16×16 1 13.3 99%
Discarded 16×16 2 6.77 99.5%

Applied Two levels DWT
TwolevelsDWT

High-frequencies
Ratio value ( Eq.(5) )

DCT parameters Compressed
size

(KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2

0.3 0.3 0.3 8×8 0.5 35 97.5%
0.3 0.3 0.3 8×8 1 19.34 98.6%
0.3 0.3 0.3 8×8 2 9.9 99.2%
0.3 0.3 0.3 8×8 3 6.41 99.5%
0.3 0.3 0.3 8×8 4 4.66 99.6%
0.3 0.3 0.3 16×16 0.5 26.3 98.1%
0.3 0.3 0.3 16×16 1 12.96 99%
0.3 0.3 0.3 16×16 2 5.76 99.5%

Table 5.3:Compressed size for 2D image Face3
Applied single level DWT

Single level DWT
High-frequencies
(HL, LH and HH)

DCT
parameters Compressed

size
(KB)

Compression
Ratio

Block
size

Scale

Discarded 8×8 0.5 49.53 96.4%
Discarded 8×8 1 27.5 98%
Discarded 8×8 2 14.31 98.9%
Discarded 8×8 3 9.45 99.3%
Discarded 8×8 4 7.13 99.4%
Discarded 16×16 0.5 26.83 98.1%
Discarded 16×16 1 13.53 99%
Discarded 16×16 2 6.52 99.5%

Applied Two levels DWT
Two levels DWT
High-frequencies

Ratio value
Eq.(5)

DCT
parameters Compressed

size
(KB)

Compression
Ratio

Block
size

Scale
LH2 HL2 HH2

0.3 0.3 0.3 8×8 0.5 35.78 97.4%
0.3 0.3 0.3 8×8 1 19.6 98.6%
0.3 0.3 0.3 8×8 2 9.63 99.3%
0.3 0.3 0.3 8×8 3 6.2 99.5%
0.3 0.3 0.3 16×16 0.5 25.78 98.1%
0.3 0.3 0.3 16×16 1 12.4 99.1%
0.3 0.3 0.3 16×16 1.7 6.45 99.5%
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The proposed decompression algorithm (see Section 5.3) applied to the compressed image data
recovers the 2D images which are then used by the 3D reconstruction to generate the respective
3D surface. The following figures Figure5.9, Figure5.10 and Figure5.11 show high-quality,
median-quality and low-quality compressed images for; Face1, Face2 and Face3. Also, Table5.4,
Table5.5 and Table5.6 show the time execution for the FMS-Algorithm.

(a) Decompressed 2D BMP images at Single level DWT converted to 3D surface; 3D surface with scale=0.5 represents high quality
image comparable to the original image, and 3D surface with scale=2 represents median quality image approximately high quality

image. Also 3D surface with scale=5 is low quality image some parts of surface failing to reconstruct. Additionally, using a block size
of16×16 DCTfurther degrades the 3D surface.

(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface; 3D surface with scale=2, 3 and DCT 8x8 represent low quality
image surface with degradation.  Additionally, using a block size of 16x16 DCTfurther degrades the 3D surface.

Figure5.9: (a) and (b) decompressed 2D image Face1 by our proposed decompression method, and then converted to
a 3D surface.
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Table 5.4:FMS time execution for Decompressed image Face1
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE
3D

RMSE
AC-Matrix1 LH HL HH

Block Scale
8×8 0.5 4.42 1.9 4.25 Discarded Discarded Discarded
8×8 1 4.83 2.31 1.31 Discarded Discarded Discarded
8×8 2 5.58 2.07 0.23 Discarded Discarded Discarded
8×8 3 6.21 2.4 0.1 Discarded Discarded Discarded
8×8 4 6.87 3.34 0.046 Discarded Discarded Discarded
8×8 5 7.41 3.39 0.046 Discarded Discarded Discarded

16×16 0.5 6.0 3.96 2.24 Discarded Discarded Discarded
16×16 1 6.63 2.48 0.23 Discarded Discarded Discarded

Applied Two levels DWT with two levels DCT

DCT
Scale Used in DCT

and second level DWT

Decompressed RMSE FMS-Algorithm Time execution (s)

2D
RMSE

3D
RMSE

AC-Matrix1 LH2 HL2 HH2

Block Scale LH2 HL2 HH2

8×8 0.5 0.3 0.3 0.3 6.79 2.19 9.1 0.031 ≈ 0 ≈ 0
8×8 1 0.3 0.3 0.3 7.5 4.77 1.75 ≈ 0 0.031 ≈ 0
8×8 2 0.3 0.3 0.3 8.1 2.46 0.24 ≈ 0 ≈ 0 ≈ 0
8×8 3 0.3 0.3 0.3 8.46 3.95 0.1 ≈ 0 ≈ 0 ≈ 0

16×16 0.5 0.3 0.3 0.3 8.1 3.69 2.82 0.031 ≈ 0 ≈ 0
16×16 1 0.3 0.3 0.3 8.89 5.18 0.65 ≈ 0 ≈ 0 ≈ 0
16×16 2 0.3 0.3 0.3 9.62 5.1 0.18 ≈ 0 ≈ 0 ≈ 0

(a) Decompressed 2D BMP images at Single level DWT converted to 3D surface; 3D surface with scale=0.5 represents high quality
image like the original image, and 3D surface with scale=2 represents a median quality image. Also, 3D surface with scale=4 is low

quality withsurface slightlydegraded.  Additionally, a block size of 16x16 DCT used in our approach degrades some parts of 3D
surface.
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(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface; 3D surface with scale=2, 4 withDCT 8x8 represent low quality
image surface with degradation.  Similarly, a block size of 16x16 DCT used in our approach degrades the 3D surface.

Figure 5.10: (a) and (b) Decompressed 2D image of Face2 image by our proposed decompression method, and then
converted to 3D surface.

Table 5.5: FMS time execution for Decompressed image Face2
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE
3D

RMSE
AC-Matrix1 LH HL HH

Block Scale
8x8 0.5 4.88 1.24 7 .06 Discarded Discarded Discarded
8x8 1 5.22 2.19 1.09 Discarded Discarded Discarded
8x8 2 5.86 1.64 0.208 Discarded Discarded Discarded
8x8 3 6.46 2.55 0.109 Discarded Discarded Discarded
8x8 4 6.96 2.16 0.046 Discarded Discarded Discarded

16x16 0.5 5.57 1.7 3.4 Discarded Discarded Discarded
16x16 1 6.09 2.13 0.56 Discarded Discarded Discarded
16x16 2 6.94 1.63 0.093 Discarded Discarded Discarded

Applied Two levels DWT with two levels DCT

DCT
Scale Used in

DCTand second level
DWT

Decompressed RMSE FMS-Algorithm Time execution (s)

2D
RMSE

3D
RMSE

AC-Matrix1 LH2 HL2 HH2

Block Scale LH2 HL2 HH2

8x8 0.5 0.3 0.3 0.3 5.16 1.33 13.15 0.046 0.046 0.031
8x8 1 0.3 0.3 0.3 5.76 2.07 2.1 0.031 ≈ 0 ≈ 0
8x8 2 0.3 0.3 0.3 7.04 2.04 0.35 0.062 ≈ 0 ≈ 0
8x8 3 0.3 0.3 0.3 7.91 1.39 0.109 ≈ 0 ≈ 0 ≈ 0
8x8 4 0.3 0.3 0.3 8.43 1.48 0.062 ≈ 0 ≈ 0 0.031

16x16 0.5 0.3 0.3 0.3 5.73 2.08 2.96 0.093 0.031 0.031
16x16 1 0.3 0.3 0.3 6.44 2.39 0.59 0.031 0.031 ≈ 0
16x16 2 0.3 0.3 0.3 7.85 3.16 0.124 0.015 ≈ 0 ≈ 0
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(a) Decompressed 2D BMP images at Single level DWT converted to 3D surface; 3D surface with scale=0.5 represent high quality image like
the original image, and 3D surface with scale=2 represents median quality image, 3D surface with scale=3 and 4 are low quality image with

slightly degraded surface, while using 16x16 block size does not seem to degrade the 3D surface.

(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface; 3D surface with scale=3, 4 and DCT 8x8 represent low quality
image degraded surface.  However, the block size of 16x16 DCT used in our approach has a better quality 3D surface for higher compression

ratios.

Figure5.11: (a) and (b): Decompressed 2D of Face3 image by our proposed decompression method, and then
converted to a 3D surface.

Table 5.6:FMS time execution for Decompressed image Face3
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE
3D

RMSE
AC-Matrix1 LH HL HH

Block Scale
8x8 0.5 4,29 1.26 5.91 Discarded Discarded Discarded
8x8 1 4.7 1.32 1.1 Discarded Discarded Discarded
8x8 2 5.43 0.83 0.171 Discarded Discarded Discarded
8x8 3 6.09 1.68 0.093 Discarded Discarded Discarded
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Figure5.11: (a) and (b): Decompressed 2D of Face3 image by our proposed decompression method, and then
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Table 5.6:FMS time execution for Decompressed image Face3
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE
3D

RMSE
AC-Matrix1 LH HL HH

Block Scale
8x8 0.5 4,29 1.26 5.91 Discarded Discarded Discarded
8x8 1 4.7 1.32 1.1 Discarded Discarded Discarded
8x8 2 5.43 0.83 0.171 Discarded Discarded Discarded
8x8 3 6.09 1.68 0.093 Discarded Discarded Discarded
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8x8 4 6.67 1.67 0.046 Discarded Discarded Discarded
16x16 0.5 1.94 1.29 3.12 Discarded Discarded Discarded
16x16 1 1.52 1.5 0.59 Discarded Discarded Discarded
16x16 2 6.65 4.02 0.1 Discarded Discarded Discarded

Applied Two levels DWT with two levels DCT

DCT
Scale Used in DCT

and second level
DWT

Decompressed RMSE FMS-Algorithm Time execution (s)

2D
RMSE

3D
RMSE

AC-Matrix1 LH2 HL2 HH2

Block Scale LH2 HL2 HH2

8x8 0.5 0.3 0.3 0.3 4.81 1.13 12.00 0.078 0.046 ≈ 0
8x8 1 0.3 0.3 0.3 5.53 1.83 1.96 0.015 ≈ 0 ≈ 0
8x8 2 0.3 0.3 0.3 6.7 1.48 0.28 0.031 ≈ 0 ≈ 0
8x8 3 0.3 0.3 0.3 7.47 1.63 0.078 ≈ 0 0.031 ≈ 0

16x16 0.5 0.3 0.3 0.3 5.58 2.08 4.69 0.062 0.015 0.031
16x16 1 0.3 0.3 0.3 6.42 1.96 0.98 0.046 ≈ 0 ≈ 0
16x16 1.7 0.3 0.3 0.3 7.38 2.61 0.171 ≈ 0 ≈ 0 ≈ 0

It is shown through the pictures and tables above that the proposed compression algorithm is
successfully applied to greyscale images. Table 5.1, Table5.2 and Table 5.3 show a compression
of more than 99% of the original image size compressed and the reconstructed 3D surfaces still
preserve most of their quality. Some images are compressed by DCT with block size of 16x16
are also shown capable of generating high quality 3D surface. Also, there is not much difference
between block sizes of 8x8 and 16x16 for high quality reconstruction images with “Scale=0.5”.

5.4.2 Compression, Decompression and 3D Reconstruction from Colour Images

Colour images contain red, green and blue layers. In JPEG and JPEG2000 colour layers are
transformed to “YCbCr” layers before compression. This is because most of information about
images available in layer “Y” while other layers “CrCb” contain less information [118, 140]. The
proposed image compression was tested with YCbCr layers, and then applied on true colour
layers (Red, Green and Blue). Figure5.12 shows the original colour images tested by our
approach.

(a) Original 2D “Wall "dimensions 1280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface
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(b) Original 2D “Room”dimensions 1280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface

(c) Original 2D “Corner”dimensions 1280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface

Figure5.12: (a), (b) and (c) Original 2D images with 3D surface conversion

First theWall,Roomand Corner images as depicted in above Figure5.12 were transformed
toYcbCrbefore applying our proposed image compression– both using single level and two-level
DWT decomposition. Second, our approach was applied on the same colour images but this time
using true colour layers.Table5.7, 5.8 and 5.9 showsthecompressed size for the colour images by
the proposed compression algorithm.Figure5.14, 5.15 and 5.16 show decompressed colour
images (Wall, Room and Corner respectively) as 3D surface. Additionally, Table5.10, 5.11 and
5.12illustrate theexecution time for the FMS-Algorithmat single level DWT for the colour
images.Similarly, Table5.13, 5.14 and 5.15 show theFMS-Algorithm execution time forthe same
colour images by using two-level DWT.

Table5.7:Compressed sizes for 2D colour image Wall
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed

size (KB)

Compression
RatioBlock

size

Scale

Y Cb Cr

Ignored 8x8 0.5 1 1 26.3 99.3%
Ignored 8x8 1 2 2 14.23 99.6%
Ignored 8x8 2 4 4 7,53 99.8%
Ignored 16x16 0.5 1 1 12.3 99.6%
Ignored 16x16 1 2 2 6.55 99.8%

Single level DWT High-
Frequencies

Block
size

Red Green Blue
Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 24.42 99.3%
Ignored 8x8 3 3 3 8.47 99.7%
Ignored 8x8 5 5 5 5.46 99.8%
Ignored 16x16 1 1 1 11.47 99.7%
Ignored 16x16 2 2 2 5.9 99.8%
Ignored 16x16 2.5 2.5 2.5 4.85 99.8%
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Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size(KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 28.1 99.2%
0.3 0.3 0.3 8x8 1 2 2 11.8 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 21.8 99.4%
0.3 0.3 0.3 16x16 1 2 2 8.29 99.7%

Two levels DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

0.3 0.3 0.3 8x8 1 1 1 19.32 99.4%
0.3 0.3 0.3 8x8 2 2 2 8.4 99.7%
0.3 0.3 0.3 16x16 1 1 1 12.89 99.6%
0.3 0.3 0.3 16x16 2 2 2 5 99.8%

Table5.8:Compressed size for 2D colour image Room
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed

size (KB)
Compression

RatioBlock
size

Scale

Y Cb Cr

Ignored 8x8 0.5 1 1 58.21 98.4%
Ignored 8x8 1 2 2 34 99.1%
Ignored 8x8 2 4 4 18.92 99.5%
Ignored 16x16 0.5 1 1 29.86 99.2%
Ignored 16x16 1 2 2 16.19 99.5%
Ignored 16x16 2 4 4 8.07 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue
Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 53.25 98.6%
Ignored 8x8 3 3 3 17.66 99.5%
Ignored 8x8 5 5 5 10.73 99.7%
Ignored 8x8 9 9 9 6.28 99.8%
Ignored 16x16 1 1 1 23.83 99.3%
Ignored 16x16 3 3 3 7.91 99.7%
Ignored 16x16 5 5 5 4.65 99.8%
Ignored 16x16 7 7 7 3.38 99.9%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 47.25 98.7%
0.3 0.3 0.3 8x8 1 2 2 23.96 99.3%
0.3 0.3 0.3 8x8 2 4 4 11.85 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 35.94 99%
0.3 0.3 0.3 16x16 1 2 2 17.62 99.5%
0.3 0.3 0.3 16x16 2 4 4 7.94 99.7%

Two levels DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

0.3 0.3 0.3 8x8 1 1 1 49 98.7%
0.3 0.3 0.3 8x8 3 3 3 10.42 99.7%
0.3 0.3 0.3 8x8 5 5 5 5.12 99.8%
0.3 0.3 0.3 16x16 1 1 1 36.34 99%
0.3 0.3 0.3 16x16 3 3 3 6.61 99.8%
0.3 0.3 0.3 16x16 5 5 5 2.93 99.9%



103

Table5.9: Compressed size for 2D colour image Corner
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed

size (KB)
Compression

Ratio
Block
size

Scale
Y Cb Cr

Ignored 8x8 0.5 1 1 31.59 99.1%
Ignored 8x8 1 2 2 15.85 99.5%
Ignored 16x16 0.5 1 1 15.39 99.5%
Ignored 16x16 0.8 6 6 7.8 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue
Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 44.5 98.8%
Ignored 8x8 2 2 2 22 99.4%
Ignored 16x16 1 1 1 21.16 99.4%
Ignored 16x16 2 2 2 10 99.7%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 31.72 99.1%
0.3 0.3 0.3 8x8 1 2 2 13.11 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 23.14 99.3%

(a) Decompressed 2D BMP images at single level DWT converted to 3D surface; decompressed 3D surface by using RGB layer has better
quality than YCbCr layer.
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Table5.9: Compressed size for 2D colour image Corner
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed

size (KB)
Compression

Ratio
Block
size

Scale
Y Cb Cr

Ignored 8x8 0.5 1 1 31.59 99.1%
Ignored 8x8 1 2 2 15.85 99.5%
Ignored 16x16 0.5 1 1 15.39 99.5%
Ignored 16x16 0.8 6 6 7.8 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue
Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 44.5 98.8%
Ignored 8x8 2 2 2 22 99.4%
Ignored 16x16 1 1 1 21.16 99.4%
Ignored 16x16 2 2 2 10 99.7%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 31.72 99.1%
0.3 0.3 0.3 8x8 1 2 2 13.11 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 23.14 99.3%

(a) Decompressed 2D BMP images at single level DWT converted to 3D surface; decompressed 3D surface by using RGB layer has better
quality than YCbCr layer.
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Table5.9: Compressed size for 2D colour image Corner
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed

size (KB)
Compression

Ratio
Block
size

Scale
Y Cb Cr

Ignored 8x8 0.5 1 1 31.59 99.1%
Ignored 8x8 1 2 2 15.85 99.5%
Ignored 16x16 0.5 1 1 15.39 99.5%
Ignored 16x16 0.8 6 6 7.8 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue
Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 44.5 98.8%
Ignored 8x8 2 2 2 22 99.4%
Ignored 16x16 1 1 1 21.16 99.4%
Ignored 16x16 2 2 2 10 99.7%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 31.72 99.1%
0.3 0.3 0.3 8x8 1 2 2 13.11 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 23.14 99.3%

(a) Decompressed 2D BMP images at single level DWT converted to 3D surface; decompressed 3D surface by using RGB layer has better
quality than YCbCr layer.
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(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface, also decompressed 3D surface using RGB layer has better
quality than YCbCr layer at higher compression ratio.

Figure5.14: (a) and (b) Decompressed colour Wall image by our proposed decompression approach, and then
converted to 3D surface

(a) Decompressed 2D BMP images at Single level DWT results converted to 3D surface; decompressed 3D surface by using RGB layer has
better quality than YCbCr layer at higher compression ratio using both block sizes of 8x8 or 16x16 by DCT.
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(b) Decompressed 2D BMP images at two levelsDWTconverted to 3D surface; decompressed 3D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using block sizes of 8x8, also by using block 16x16 the surface is still approximately non-degraded.

Figure5.15: (a) and (b) Decompressed colour Roomimageby our proposed decompression method, and then
converted to 3D surface

Figure5.16: Decompressed colour “Corner”image by our proposed decompression method, and then converted to
3D surface. The decompressed 3D surface at single level DWT using YCbCr has better quality at higher

compression ratio than using RGBlayers, also at two levels DWT degradation appears and some parts from surface
fail to reconstruct.

105

(b) Decompressed 2D BMP images at two levelsDWTconverted to 3D surface; decompressed 3D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using block sizes of 8x8, also by using block 16x16 the surface is still approximately non-degraded.

Figure5.15: (a) and (b) Decompressed colour Roomimageby our proposed decompression method, and then
converted to 3D surface

Figure5.16: Decompressed colour “Corner”image by our proposed decompression method, and then converted to
3D surface. The decompressed 3D surface at single level DWT using YCbCr has better quality at higher

compression ratio than using RGBlayers, also at two levels DWT degradation appears and some parts from surface
fail to reconstruct.

105

(b) Decompressed 2D BMP images at two levelsDWTconverted to 3D surface; decompressed 3D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using block sizes of 8x8, also by using block 16x16 the surface is still approximately non-degraded.

Figure5.15: (a) and (b) Decompressed colour Roomimageby our proposed decompression method, and then
converted to 3D surface

Figure5.16: Decompressed colour “Corner”image by our proposed decompression method, and then converted to
3D surface. The decompressed 3D surface at single level DWT using YCbCr has better quality at higher

compression ratio than using RGBlayers, also at two levels DWT degradation appears and some parts from surface
fail to reconstruct.
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Table5.10:Estimatedexecution time for FMS-Algorithm at single level DWTforWall image

Compressed size
(KB)

Block size
Time execution (s)

Y Cb Cr
AC-Matrix1 AC-Matrix1 AC-Matrix1

26.3 8x8 1.77 0.093 0.187
14.23 8x8 0.202 0.031 0.078
7.53 8x8 0.062 ≈0 0.031
12.3 16x16 0.54 0.015 0.031
6.55 16x16 0.109 ≈0 0.031

Compressed size
(KB)

Block size
Red Green Blue

AC-Matrix1 AC-Matrix1 AC-Matrix1

24.42 8x8 0.12 1.27 0.12
8.47 8x8 ≈0 0.078 0.031
5.46 8x8 ≈0 0.046 ≈0

11.47 16x16 0.078 0.46 0.093
5.9 16x16 0.015 0.078 0.031
4.85 16x16 0.031 0.031 ≈0

Table 5.11:Estimatedexecution time for FMS-Algorithm at single level DWT for Roomimage

Compressed size
(KB)

Block size
Time execution (s)

Y Cb Cr
AC-Matrix AC-Matrix AC-Matrix

58.21 8x8 1.2 0.093 0.17
34 8x8 0.17 0.046 0.046

18.92 8x8 0.046 0.046 0.031
29.86 16x16 0.96 0.062 0.093
16.19 16x16 0.156 0.046 0.046
8.07 16x16 0.046 0.031 ≈0

Compressed size
(KB)

Block size
Red Green Blue

AC-Matrix AC-Matrix AC-Matrix
53.25 8x8 0.062 1.4 0.21
17.66 8x8 ≈0 0.124 0.015
10.73 8x8 ≈0 0.062 ≈0
6.28 8x8 ≈0 0.031 ≈0

23.83 16x16 0.046 0.68 0.078
7.91 16x16 ≈0 0.062 0.031
4.65 16x16 ≈0 0.046 ≈0
3.38 16x16 ≈0 0.031 ≈0

Table 5.12:Estimatedexecution time for FMS-Algorithm at single level DWT for Corner image

Compressed size
(KB)

Block size
Time execution (s)

Y Cb Cr
AC-Matrix AC-Matrix AC-Matrix

31.59 8x8 1.2 0.031 0.015
15.85 8x8 0.3 0.031 0.031
15.39 16x16 1.07 0.031 0.046
7.8 16x16 0.5 ≈0 ≈0

Compressed size
(KB)

Block size
Red Green Blue

AC-Matrix AC-Matrix AC-Matrix
44.5 8x8 0.34 0.48 0.34
22 8x8 0.06 0.09 0.09

21.16 16x16 0.46 0.48 0.37
10 16x16 0.1 0.14 0.1
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Table5.13: Estimated execution time for FMS-Algorithm at two levels DWT for Wall image
Compressed

size
(KB)

Block
size

Y Cb Cr
AC-

Matrix1
HL2 LH2 HH2

AC-
Matrix1

LH2 HL2 HH2
AC-

Matrix1

HL2 LH2 HH2

28.1 8x8 3.1 0.062 0.062 0.031 0.062 0.03 ≈0 ≈0 0.24 0.031 ≈0 ≈0
11.8 8x8 0.6 0.015 ≈0 ≈0 0.046 0.031 ≈0 ≈0 0.046 0.031 ≈0 ≈0
21.8 16x16 1.5 0.031 0.031 ≈0 0.046 0.03 0.031 ≈0 0.093 0.031 ≈0 ≈0
8.29 16x16 0.026 0.015 ≈0 0.031 0.031 0.03 ≈0 ≈0 0.062 0.015 ≈0 ≈0

Compressed
size (KB)

Block
size

Red Green Blue
AC-

Matrix1
HL2 LH2 HH2

AC-
Matrix1

HL2 LH2 HH2
AC-

Matrix1

HL2 LH2 HH2

19.32 8x8 0.23 0 ≈0 ≈0 1.5 0.031 0.031 ≈0 0.26 ≈0 ≈0 ≈0
8.4 8x8 0.062 0.031 ≈0 ≈0 0.24 ≈0 ≈0 ≈0 0.078 ≈0 0.031 ≈0

12.89 16x16 0.21 0.078 ≈0 0.031 0.081 ≈0 ≈0 ≈0 0.17 ≈0 0 ≈0
5 16x16 0.062 ≈0 ≈0 ≈0 0.093 0.031 0.031 ≈0 0.062 ≈0 ≈0 ≈0

Table5.14:Estimatedexecution time for FMS-Algorithm at two levels DWT for Room image
Compressed

size (KB)
Block
size

Y Cb Cr
AC-Matrix1 HL2 LH2 HH2 AC-Matrix1 HL2 LH2 HH2 AC-Matrix1 HL2 LH2 LH2

47.25 8x8 0.15 0.046 ≈0 ≈0 0.1 0.031 0.031 ≈0 2.19 0.078 0.062 0.062
23.96 8x8 0.046 0.015 ≈0 ≈0 0.015 0.031 ≈0 ≈0 0.43 0.078 0.031 0.031
11.85 8x8 ≈0 ≈0 ≈0 ≈0 ≈0 0.031 ≈0 ≈0 0.078 0.015 ≈0 ≈0
35.94 16x16 0.124 0.031 ≈0 ≈0 0.078 0.015 0.031 ≈0 1.21 0.062 0.015 0.015
17.62 16x16 0.015 0.031 ≈0 ≈0 0.031 0.031 ≈0 ≈0 0.28 0.031 0.031 0.031
7.94 16x16 0.015 0.031 ≈0 ≈0 0.031 0.031 0.031 ≈0 0.093 0.031 ≈0 ≈0

Compressed
size (KB)

Block
size

Red Green Blue
AC-Matrix1 HL2 LH2 LH2 AC-Matrix1 HL2 LH2 HH2 AC-Matrix1 HL2 LH2 LH2

49 8x8 0.35 0.046 0.031 0.031 1.76 0.015 ≈0 ≈0 0.062 ≈0 ≈0 ≈0
10.42 8x8 0.046 ≈0 ≈0 ≈0 0.124 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
5.12 8x8 0.031 ≈0 ≈0 ≈0 0.062 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

36.34 16x16 0.17 0.046 0.062 0.062 1.27 0.031 ≈0 ≈0 0.015 0.031 ≈0 ≈0
6.61 16x16 ≈0 ≈0 ≈0 ≈0 0.1 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
2.93 16x16 0.031 ≈0 ≈0 ≈0 0.062 ≈0 ≈0 ≈0 ≈0 0.031 ≈0 ≈0

Table5.15:Estimatedexecution time for FMS-Algorithm at two levels DWT for Corner image

Compressed
size (KB)

Block size
Y Cb Cr

AC-
Matrix1

LH2 HL2 HH2
AC-

Matrix1
LH2 HL2 HH2

AC-
Matrix1

LH2 HL2 HH2

31.72 8x8 4 0.016 0.031 ≈0 0.093 ≈0 0.015 ≈0 0.1 0.031 0.031 ≈0
13.11 8x8 0.85 ≈0 0.031 ≈0 0.031 ≈0 ≈0 ≈0 0.046 ≈0 0.031 ≈0
23.14 16x16 0.2.49 0.015 0.016 ≈0 0.062 0.031 ≈0 ≈0 0.1 0.031 0.031 ≈0

It can be seen from the above figures and tables that a single level DWTis applied successfully to
the colour images using both YCbCr and RGB layers. Also, the two-level DWT gives good
performance. However, the two-level DWT did not perform well on YCbCr layer at higher
compression ratios. Both colour images Wall and Room contain green stripe lines; this renders
RGB layers more appropriate to be used with the proposed approach. On the other hand, for the
image Corner, the YCbCr layer proved more appropriate.

Each layer from true colour RGB, compress independently without change in colcour format,
and this new feature added to our proposed algorithm to compress true colour images RGB
without needs to any kind of layer transformations. Additionally, same colour images are
transformed to different colour format (YcbCr) to show our compression algorithm ability to
compress the images.
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JPEG and JPEG2000 are tested with the same 2D images for comparison with our proposed
method based on similar compression ratios; we also tested imagequalitythroughRoot-Mean-
Square-Error (RMSE).We also show the visualization of 3D surfaces for decompressed 2D
images by JPEG and JPEG2000 as a means of comparison.

Table5.16: Comparison JPEG2000 and JPEG with our approach for Face1 image

Table5.17: Comparison JPEG2000 and JPEG with our approach for Face2 image
Our Proposed algorithm JPEG2000 JPEG

Compression Raio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
98% 5.22 2.19 4.1 1.51 8.57 1.67

98.9% 5.86 1.64 5.3 2.68 Not Applicable Not Applicable
99.4% 6.96 2.16 6.61 2.57 Not Applicable Not Applicable
99.6% 8.43 1.48 7.61 2.62 Not Applicable Not Applicable

Table5.18:Comparison JPEG2000 and JPEG with our approach for Face3 image
Proposed algorithm JPEG2000 JPEG

Compression Raio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
98% 4.7 1.32 3.83 1.25 7.64 1.78

98.9% 5.43 0.83 5.05 1.82 Not Applicable Not Applicable
99.5% 6.65 4.02 6.54 1.85 Not Applicable Not Applicable

Table5.19:ComparisonJPEG2000 and JPEG with our approach for Wall image
Proposed algorithm JPEG2000 JPEG

Compression Raio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
99.3% 4.37 1.96 2.63 0.31 9.66 0.66
99.7% 4.36 0.2 3.47 0.49 Not Applicable Not Applicable
99.8% 4.85 0.37 4.79 1.1 Not Applicable Not Applicable

Table 5.20:comparison JPEG2000 and JPEG with our approach for Room image
Proposed algorithm JPEG2000 JPEG

Compression Ratio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
99.5% 6.36 0.12 7.59 0.23 20 113.59 (not matched)
99.8% 9.0 1.65 11.33 1.35 Not Applicable Not Applicable
99.9% 9.22 2.21 13.59 94.67 (not matched) Not Applicable Not Applicable
99.9% 11.26 0.42 15.06 Not Applicable Not Applicable Not Applicable

Proposed algorithm JPEG2000 JPEG

Compression Ratio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
97.9% 4.83 2.31 3.48 3.31 12 2.73
99.2% 6.21 2.4 5.33 3.49 Not Applicable Not Applicable
99.5% 7.41 3.39 6.32 2.91 Not Applicable Not Applicable
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Table 5.21:comparison JPEG2000 and JPEG with our approach for Corner image
Proposed algorithm JPEG2000 JPEG

Compression
Ratio

2D
RMSE

3D
RMSE

2D RMSE 3D RMSE 2DRMSE 3DRMSE

99.1% 3.58 1.78 3.12 1.92 5.86 16.46
99.5% 4.59 0.42 3.86 74.64 (not matched) Not Applicable Not Applicable
99.7% 6.5 2.1 4.64 69.55 (not matched) Not Applicable Not Applicable

In Tables5.16,5.17, 5.18, 5.19, 5.20 and 5.21“not matching” means the relevant algorithm cannot
compress to the required size successfully.

Figure 5.17: Decompressed 2D Face1 image by using JPEG2000 and JPEG algorithm, JPEG algorithm can’t
compress the 2D Face1 image under 29 KB.

Figure 5.18: Decompressed 2D Face2 image by using JPEG2000 and JPEG algorithmdegradation appeared by JPEG
on the surface at 26 KB.
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Figure 5.19: Decompressed 2D Face3 image by using JPEG2000 and JPEG algorithm, parts of images failed to
reconstruct in 3D by JPEG2000 algorithm at 14 KB, degradation appears on the surface by JPEG2000 under 7 KB,

also JPEG algorithm degrades the surface at compressed size 27 KB(JPEG fails to compress under 27 KB).

Figure 5.20: Decompressed Wall image by using JPEG2000 and JPEG algorithm, degradation appears on surface by
JPEG2000 fewer than12 KB, also JPEG algorithm degrades the surface at compressed size 27 KB, JPEG fails to

compress under 27 KB.
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Figure 5.21: DecompressedRoom image by using JPEG2000 and JPEG algorithm, degradation appears on surface
by JPEG2000 fewer than 6 KB, also JPEG2000 cannot reconstruct 3D surface matches with original surface (grey
colour) at 4 KB, similarly, JPEG algorithm fails to reconstruct 3D surface matching with original surface at 27 KB
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Figure5.22: Decompressed Corner image by using JPEG2000 and JPEG algorithm, top-left surface decompressed
successfully by JPEG2000, in top-right decompressed surface by JPEG2000 not matched with original surface (grey

surface). Under 15KB, similarly, JPEG algorithm fails to compress successfully fewer than 31 KB.

5.5. Conclusion

This Chapter has presented and demonstrated a novel method for image compression and
comparedthequality of compression through 3D reconstruction, 3D RMSE and the perceived quality
of the 3D visualisation. The method is based on a two-levelDWT transform and two-level
DCTtransform in connection with the proposed Matrix Minimization algorithm. The results showed
that our approach introduced better image quality at higher compression ratios than JPEG and
JPEG2000 being capable of accurate 3D reconstructing at higher compression ratios. On the other
hand, it is more complex than JPEG2000 and JPEG. The most important aspects of the method and
their role in providing high quality image with high compression ratios are discussed as follows:

1- In a two-levelDCT, the first level separates the DC-values and AC-values into different
matrices; the second level DCTis then applied to the DC-valuesand this generates two new
matrices. The size of the two new matrices are only a few bytes long (because they contain
many zeros), this process increases the compression ratio.

2- Since most of the high-frequency matrices contain lot of zeros as above, in this chapter we used
the EZSN algorithm, to eliminate zeros and keep non-zero data. This process keeps significant
information while reducing matrix sizesup to 50% or more.

3- The Matrix Minimization algorithm is used to replace each three coefficients from the high-
frequencies matricesby a single floating-point value. This process converts each high-frequency
matrix into a one-dimensional array, leading to increased compression ratios while keeping the
quality of the high-frequency coefficients.

4- The FMS-Algorithm represents the core of our search algorithm for finding the exact original
data fromaone-dimensional array (i.e. Reduced-Array) converting toa matrix, and depends on
the organized key-values and Limited-Data.According to time execution tables, the FMS-
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Algorithm finds values in a few microseconds, for some high-frequencies needs just few
nanoseconds at higher compression ratios.

5- The key-values and Limited-Data are used in coding and decoding an image, without these
information images cannot be reconstructed.

6- Our proposed image compression algorithm was tested on true colour images (i.e. Red, Green
and Blue), obtained higher compression ratios and high image quality for images containing
green striped lines. This makes our proposed compression algorithm featured more than JPEG
and JPEG2000, because these methods can’t not compress 2D images without using YcbCr
format. Additionally, our approach has been tested on YCbCr layers with good quality at higher
compression ratios. This makes our algorithm run better no both colour formats ( RGB and
YcbCr).

7- Our approach gives better visual image quality compared to JPEG and JPEG2000. This is
because our approach removes most of the block artefacts caused by the 8x8 two-dimensional
DCT. Also,our approach uses asingle level DWTor two-levelDWT rather than multi-level
DWTas in JPEG2000; for this reason blurring typical of JPEG2000 is removed inourapproach.
JPEG and JPEG2000 failed to reconstruct a surface in 3D when compressed to higher
ratioswhileit is demonstrated that our approach can successfully reconstruct the surface and
thus, is superior to both on this aspect.

However, there isa larger number of steps in the proposed compression and decompression
algorithm than in JPEG and JPEG2000. Also, the complexity of FMS-algorithm leads to increased
execution time for decompression, because this algorithmis based on a binary search method.



114

Chapter 6

DCT and DST based Image Compression with Fast-Matching-
Search Decompression

6.1. Introduction
The two most widely used image compression transforms are the discrete cosine transform
(DCT) and the discrete wavelet transform (DWT) [119,151]. The DCT is usually applied to
small, regular blocks of image samples (e.g. 8x8 squares) and the DWT is usually applied to
larger image sections or to complete images. Many alternatives have been proposed, for example
3D transforms (dealing with spatial and temporal correlation), variable block size transforms,
fractal transforms, and Gabor analysis. The DCT has proved particularly useful and it is at the
core of most current generation of image and video coding standards, including JPEG, H.261,
H.263, H.263+, MPEG-l, MPEG-2 and MPEG-4 [22,152].

In line with previous chapters, we focus on compressing 2D image data appropriate for 3D
reconstruction. This includes 3D reconstruction from structured light images, and 3D
reconstruction from multiple viewpoint images. In previous publications, we have argued that
while geometry and connectivity of a 3D mesh can be tackled by several techniques such as high
degree polynomial interpolation [114] or partial differential equations [125,135], the issue of
efficient compression of 2D images both for 3D reconstruction and texture mapping has not yet
been addressed in a satisfactory manner. Using structured light techniques for 3D reconstruction,
surface patches can be compressed as a 2D image together with 3D calibration parameters,
transmitted over a network and remotely reconstructed (geometry, connectivity and texture map)
at the receiving end with the same resolution as the original data [133, 136].

In previous chapters we proposed a methodwhere a single level DWT is followed by a DCT on
the LL sub-band yielding the DC component and the AC-matrix. A second DWT is applied to
the DC components whose second level LL2 sub-band is transformed again by DCT. A matrix
minimization algorithm was applied to the AC-matrix and other sub-bands. Compression ratios
of up to 98% were achieved with a sequential search algorithm being used at decompression
stage.In Chapter 4 we proposed atechnique[42]where a DWT was applied to variant
arrangements of data blocks followed by arithmetic coding. The novel aspect of that paper is at
decompression stage, where a Block Sequential Search Algorithm was proposed and
demonstrated. Compression ratios of up to 98.8% were achieved. In Chapter 5[137]a two-level
DWT was applied followed by a DCT to generate a DC-component array and an MA-Matrix
(Multi-Array Matrix). The MA-Matrix was then partitioned into blocks and a minimization
algorithm coded each block followed by the removal of zero valued coefficients and arithmetic
coding. At decompression stage, a new algorithmcalled Fast-Match-Search decompression was
used to reconstruct the high-frequency matrices by computing data probabilities through a binary
search algorithm in association with a look up table. A comparative analysis of various
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combinations of DWT and DCT block sizes was performed, with compression ratios up to
99.5%.

This Chapter introduces a new method for 2D image compression whose quality is demonstrated
through accurate 3D reconstruction using structured light techniques and 3D reconstruction from
multiple viewpoints. The method is based on two discrete transforms: 1) A one-dimensional
Discrete Cosine Transform (DCT)is applied to each row of the image followed by quantization
of the high frequencies. 2) The output from the previous step is transformed again by a one-
dimensional Discrete Sine Transform (DST), which is applied to each column of data generating
new sets of high-frequency components. The output is then divided into two parts where the low-
frequency components are compressed by arithmetic coding and the high frequency ones by a
high frequency minimization algorithm[158].

At decompression stage,a binary search algorithm is used to recover the original high frequency
components. The technique is demonstrated by compressing 2D images up to 99% compression
ratio. The decompressed images, which include images with structured light patterns for 3D
reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D
reconstruction. Perceptual assessment and objective quality of compression are compared with
JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the proposed compression
method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with
equivalent perceptual quality to JPEG2000. The main steps in the compression algorithm are
depicted in Figure 6.1.

Figure 6.1:The main steps of the proposed compression algorithm.
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6.2. Using the One-Dimensional Discrete Cosine Transform (DCT)
The one-dimensional DCT is used to transform each row from an image (spatial domain) to
obtain the transformed data called "Tdct", as shown in the following [119,131,151, 158]:
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Where i=0, 1, 2, 3, …,n-1 is the image row index, and the output is a set of DCT coefficients
"Tdct". The first coefficient is called the DC coefficient, and the rest are referred to as the AC
coefficients. Notice that the coefficients are real numbers, and they are rounded off to integers.
The important feature of the DCT is that it is useful in image compression [134]. It takes
correlated input data and concentrates its energy in just the first few transform coefficients. If the
input data consists of correlated quantities,then most of the "n" transform coefficients produced
by the DCT are zeros or small numbers [153], and only a few are large (normally the first data).
The early coefficients contain the most important (low-frequency) image information and the
later coefficients contain the less-important (high-frequency) image information [154, 158]. This
feature allows good compression performance as a proportion of the less important coefficients
can be discarded without much degradation in image quality. Figure 6.2 shows the DCT applied
to each row of an8x8block without using scalar quantization.

Original data Tdct : DCT applied to each row
(Coefficients are rounded off to integers)

Figure 6.2: (Left) Original block of data, (right) Tdct produced by applying one-dimensional DCT to each row
independently.
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6.3. One Dimensional Discrete Sine Transform (DST)
Our research has indicated thata one dimensional DCT works together with a one-dimensional
DST yielding large amounts of high-frequency components. These high frequency components
are useful to obtain high compression ratios comparable to the JPEG technique. In this research,
we will apply one dimensional DST to each column of the transformed matrix "Tdct" from
previous section. The DST definition is represented as follows[153,155]:
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Eq. (6.3) is used to transform "n" values of "Tdct" matrix into "n" coefficients. These are the low
and high frequency coefficients containing important and less important image information. The
one-dimensional DST is applied to each column of "Tdct" to produce a new transformed matrix
"Tdst". The DST is equivalent to the imaginary part of the Discrete Fourier Transformation
(DFT), while in this chapter the results of the DST are real numbers [156,157, 158]. The main
advantage of using the DST for image compression in this context is that the DST preservers
theimage quality encoded by the low frequency components of "Tdct" and increases the number
of zeros, which can be discarded without loss of quality.

After the DST, we apply a quantization of the high frequency components of the transformed
matrix "Tdst". In this way, the quantization means losing only insignificant information from the
matrix. Each coefficient in the matrix is divided by the corresponding number from a
“Quantization table” and the result is rounded off to the nearest integer. The following equation
is proposed as a quantization table.

Q(i,j)=(i+j) F (6.5)

Where: F>0 and i,j=1,2,3,...,n x m (image dimensions)

In Eq. (6.5) "F" is a real number greater than zero. This value affects image quality asfor "F>1"
image quality is decreased. There is no limit for F, however, from our experiments we suggest F
from 0.1 to 10. Figure 6.3 shows the DST applied to each column and quantized by Eq.(6.5).
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Figure 6.3: DST applied to each Column of Tdct followed by quantization with F=2 (cf. Eq.(6.5))

In the above example, low and high frequency components are controlled by the user. The low-
frequency ones are not compressed any further, we just represent them in fewer bytes by
arithmetic coding. Meanwhile, the high-frequency components either horizontal or vertical are
compressed by the High-Frequency Minimization algorithm described in the next section.

6.4. High Frequency Minimization Algorithm
In this section, we describe an algorithm to convert the high-frequency coefficients (i.e. from
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recovered by estimating the H values(cf. Section 6.5) for the Minimized_Array. Following the
models above, the Minimized_Array for the example in Figure 6.3 can be illustrated by the
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Table 6.1: From the example of Figure 6.3: each high-frequency sub-matrix is compressed independently
Assume that:
M = 2 (Maximum value in high-frequency sub-matrix: Horizontal)
Keys K1=1, K2=5, K3=18 (for both high-frequency components: Horizontal and Vertical)
High-Frequency Sub-matrix Compressed Size CommentsMinimized_Array(Vertical)={-1,0,0, 0, ... 0} compressed size 16 48(original size)/3 =16 dataMinimized_Array(Horizontal)={2,0,0, 0,0,0} compressed size 6 16(original size)/3 = 5.3 (last zero is alone)

Our compression method creates a new array of header dataH, which is used later by the
decompression algorithm to estimate the original data values. This information is kept in the
header of the compressed file as a string (cf. Chapters3—5 )).Per above example in Figure 6.3,
the Limited-Data can be estimated from high-frequency sub-matrices (Horizontal and
Vertical).Limited-Data(Vertical)= {-1,0} and Limited-Data(Horizontal)={2,0}.

The encoded triplets in the Minimized_Arraymay contain large number of zeros which can be
further encoded through a process proposed algorithm in chapter 5 (cf. Figure 5.3) [137]. For
example, assume the following encoded Minimized_Array={125, 0, 0,0,73, 0, 0,0,0,0, -17}.The
zero array will be {0,3,0,5,0} where the zeros in red refer to nonzero data existing at these
positions and the numbers in black refer to the number of zeros between two consecutive non-
zero data. According to this method, theMinimized_Arrayboth Horizontal and Vertical can be
illustrated in Table 6.2.

Table 6.2: Each Minimized-Array is coded to zero-array and nonzero-array
High-Frequency Sub-matrix Zero-Array Nonzero-ArrayMinimized_Array(Vertical)={-1,0,0, 0 ... 0} Zero(Vertical)={0,5, 5, 5} Nonzero_Array(Vertical)={-1}Minimized_Array(Horizontal)={2,0,0, 0,0,
0}

Zero(Horizontal)={0, 5} Nonzero_Array(Horizontal)={2}

Note: the "0" refers to the nonzero data in Nonzero-Arrays

6.5. The Fast-Matching Search Decompression Algorithm
The decompression algorithm is the inverse of compression. First, decode the Minimized-Array
for both horizontal and vertical components by combining thezero-array with the non-zero-array.
Second, decode high-frequencies from the Minimized-Array using the fast matching search
(FMS) algorithm[137].Third, inverse the DST and DCT to reconstruct the original 2D image.The
images are then assessed on their perceptual quality and on their ability to reconstruct the 3D
structures compared with the original images. Figure 6.4 illustrates the decompression method.

The Fast Matching Search Algorithm (FMS) has been designed to recover the original high
frequency data. The compressed data contains information about the compression keys (K1,K2

and K3) and Limited-Data followed by streams of compressed high frequency data. Therefore,
the FMS algorithm picks up each compressed high frequency data and decodes it using the key
values and compares whether the result is expressed in the Limited-Data. Given 3 possible
values from Limited Data, there is only one possible correct result for each key combination, so
the data is uniquely decoded. FMS-Algorithm is described in Chapter 5 (cf.Section 5.3)[137].
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Figure 6.4: The steps in the decompression algorithm.

Once the horizontal and vertical high frequency components are recovered by the FMS-
Algorithm, they are combined to regenerate the 2D matrix. Then each data from the matrix is
multiplied by each data in Q (Eq. (6.5)) followed by the inverse DST (Eq. (6.4)) applied to each
column. Finally, we multiply each data by F followed by the inverse DCT (Eq. (6.2)) applied to
each row to recover the original 2D image as shown in Figure 6.4. If we compare the results in
Figure 6.4 with the original 8x8 matrix of Figure 6.2, we findthat there is not much difference,
and these differences do not affect image quality. This demonstrates that the proposedtechnique
is very attractive for image compression.

6.6. Experimental Results
The experimental results described here were implemented in MATLAB R2013a and Visual
C++ 2008 running on an AMD Quad-Core microprocessor. We describe the results in two parts:
first, we apply the compression and decompression algorithms to 2D images that contain
structured light patterns allowing 3D surface data to be generated from those patterns. The
rationale is that a high-quality image compression is required otherwise the resulting 3D
structure from the decompressed image will contain apparent dissimilarities when compared to
the 3D structure obtained from the original (uncompressed) data. We report on these differences

After inverse DCT After inverse DST
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in 3D through visualization and standard measures of RMSE-root mean square error. Second, we
apply the method to general 2D images (with no structured light patterns) of different sizes and
assess their perceived visual quality and RMSE. Additionally, we compare our compression
method with JPEG and JPEG2000 through the visualization of 2D images, 3D surface
reconstruction from multiple views and RMSE error measures.

6.6.1. Results for Structured Light Images and 3D Surfaces
3D surface reconstruction was performed with our own software developed within the GMPR
group[125, 135, 136]. The justification for introducing 3D reconstruction is that we can make
use of a new set of metrics in terms of error measures and perceived quality of the 3D
visualization to assess the quality of the compression/decompression algorithms(cf. Section 3.4).

Figure 6.5 shows several test images used to generate 3D surfaces both in grayscale and colour.
The top row shows two grayscale face images, FACE1 and FACE2 with size 1.37MB and
dimensions 1392 × 1040 pixels. The bottom row shows colour images CORNER and METAL
with size 3.75MB and dimension 1280 × 1024 pixels. We use the RMSE measure to compute
the differences between decompressed images and original ones. The RMSE however, cannot
give an absolute indication of which is the ‘best’ reconstructed image or 3D surface, as errors
may be concentrated in a region that may or may not be relevant to the perception of quality. To
get a better assessment of quality, we analyse 3D surface images at various compression ratios.

Table 6.3: Structured light images compressed by our approach

Image
Name

Original
Image
Size

(MB)

Original Image size Compressed
Size
(KB)

Compression
Ratio

2D
RMSE

3D
RMSEDCT DST

FACE1 1.37
1 2 18.75 98.6% 4.82 1.51
1 6 11.7 99.1% 6.22 1.54

FACE2 1.37
1 2 15.6 98.8% 1.89 2.25
1 6 7.8 99.4% 2.56 2.67

CORNER 3.75
{1, 5, 5} {2, 2, 2} 21.2 99.4% 5.56 1.36
{1, 5, 5} {2, 3, 3} 14.7 99.6% 7.0 0.5

METAL 3.75
{1, 5, 5} {1, 5, 5} 27.5 99.2% 5.25 1.87
{1, 5, 5} {2, 5, 5} 12.1 99.6% 5.62 1.98

Table 6.3 shows the compressed size for our approach using two different values of quantization.
First, the quantization scalar for FACE1 and FACE2 is 1. This means that after DCT each
coefficient is divided by 1, this means rounding off each floating-point value to integer.
Similarly, after DST the quantization equation is applied with F (cf. Eq. 6.5).
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Figure 6.5: Structured light images used to generate 3D surfaces. Top row grayscale images FACE1 and FACE2, and colour
images CORNER and METAL respectively.

The colour images are defined by using colour transformation [22, 118] into YCbCr format. We
then apply the proposed approach to each layer independently. For this reason, after DCT the
quantization scalar for colour images is {1, 5, 5} for each layer of Y, Cb and Cr respectively.

FACE1: Compressed size 18.75 KB (texture and shaded). Compressed Size=11.7KB (shaded)
3D reconstructed FACE1 from decompressed image by our approach
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FACE2: Compressed size 15.6 KB (texture and shaded) Compressed Size=7.8 KB (shaded)
3D reconstructed FACE2 from decompressed image by our approach

2D decompressed images zoomed-in, to show the details: FACE1 and FACE2 at higher compression ratio

Figure 6.6: Top: FACE1 shows decompressed 3D surface with texture and shaded at compressed size 18.7KB and 11.7KB.
Middle: FACE2 shows decompressed 3D surface with texture and shaded at compressed size 15.6KB and 7.8KB. Bottom: details

of 2D images FACE1 and FACE2 respectively at the higher (99%) compression ratio.

Figure 6.6 shows the visualization of the decompressed 2D images using different values for
quantization. These decompressed images are converted to 3D surfaces. FACE1 on top of Figure
6.6 from left to right are higher quality surface per 3D RMSE. In fact, some parts of 3D surface
have disappeared at higher compression ratio. But in FACE2 in the middle, the 3D reconstructed
image at higher compression ratio is approximately the sameasfor low compression ratio. This
means that 3D reconstruction depends on the structured light's quality in an image. Figure 6.6
(bottom) shows zoomed-in regions for the two images; the structure light patterns are clearly
present even at 99% compression ratio.

Figure 6.7 shows 3D reconstructed surfaces for CORNER and METAL images respectively. On
top, the quality of CORNER 3D surface at 99% compression ratio. But the 3D surface (top right)
has some artefacts; this type of artefacts does not show in the original and decompressed 2D
image at lower compression ratio. Artefacts appear when the structure light patterns are not
clearly defined in the image, or are degraded after compression and decompression. In Figure 6.7
middle, the decompressed METAL image is converted to a 3D surface. The reconstructed 3D
surface of middle right is degraded for all cases in which compression ratios exceed 99%. To
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analyse 2D colour image compression, we zoomed-in the decompressed 2D images. It is shown
that the structured light patterns are clearly visible at higher compression ratios of 99%.

CORNER: Compressed size 21.2 KB (texture and shaded) Compressed Size=14.7 KB (shaded)

METAL: Left and middle: compressed size 27.5 KB (texture and shaded) Right: compressed Size=12.1 KB (shaded)

2D decompressed images zoomed-in, to show the details: CORNER and METAL at higher compression
ratio

Figure 6.7: Top row:shows decompressed 3D surface of CORNER with texture and shaded at compressed sizes 21.2KBand
14.7KB. Middle row: shows decompressed 3D surface of METAL with texture and shaded at compressed sizes 27.5KB and
12.1KB. Bottom row: zoomed-in details for 2D images CORNER and METAL respectively at higher compression ratio.
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JPEG2000 - 18.75 KB JPEG2000 - 11.7 KB JPEG2000 - 15.6 KB JPEG2000 - 7.8 KB

JPEG2000 - 21.2 KB JPEG2000 - 14.7 KB

Figure 6.8: Top: 3D reconstructed surface for FACE1 and FACE2 respectively using JPEG2000. Bottom: CORNER image
successfully 3D reconstructed, while the METAL image failed 3D reconstruction.

Table 6.4: Compression and decompression of 3D images by JPEG2000 and JPEG at higher compression ratios

Image
name

Compression
Ratio

JPEG2000 JPEG
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
FACE1 99.1% 6.3 1.8 FAIL FAIL
FACE2 99.4% 3.2 2.66 FAIL FAIL

CORNER 99.6% 5.7 0.63 FAIL FAIL
METAL 99.6% 4.17 FAIL FAIL FAIL

For a comparative analysis, we compressed and decompressed the 2D images by JPEG2000 and
JPEG, then converted to a 3D surface.Figure 6.8 and Table 6.4describe the compressed and
decompressed results for JPEG2000 only, as JPEG compression at equivalent ratios failed 3D
reconstruction; that is, the images had so many artefacts that the 3D reconstruction algorithms
were unable to successfully reconstruct a 3D surface. The comparison is based on applying the
same compression ratios between JPEG2000 and our approach and show the visualization for the
two methods. While the JPEG algorithm simply failed to compress the images at the required
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ratio, it is important to stress that JPEG2000[37] cannot decompress some 2D images to
equivalent quality 3D reconstruction as our method.Or,if it does, the 3D surface contains
degradation. Figure 6.9 shows the compressed 2D images by JPEG2000 with zoomed in image
details.

Figure 6.9.Details of 2D decompressed images by JPEG2000: Top: FACE1on the left is clearly blurred leading to degraded
3D reconstruction. Bottom: METAL image on the right is blurred rendering it unable to reconstruct a 3D surface.

6.6.2. Results for 2D Images
In this Section,we apply the algorithms to generic 2D images, that is, images that do not contain
structured light patterns as described in the previous section. In this case, the quality of the
compression is performed by perceptual assessment and by the RMSE measure. We use
imageswith varying sizes from 2.25MB to 9MB. Also, we present a comparison with JPEG and
JPEG2000 highlighting the differences in compressed image sizes and the perceived quality of
the compression.

Figure 6.10(a) gives an indication of compression ratios achieved with our approach while in (b)
is shown details with comparative analysis with JPEG2000 and JPEG. First, the decoded 'baby'
image by JPEG2000 contains some blurring at places, while the same image decoded by our
approach and JPEG are of higher quality. Second, the decoded 'eyes' image by JPEG algorithm
had some block artefacts resulting in a lower quality compression. Also,the same image decoded
by our approach and JPEG2000 at equivalent compression ratios, has excellent image quality.
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Finally, the decoded 'girl' image by JPEG2000 is slightly degraded, while our approach and
JPEG show good image quality.

Compressed size: 107.7 KB
Original size: 2.25 MB

Compression ratio: 95%

Compressed size: 59.4 KB
Original size: 3 MB

Compression ratio: 98%

Compressed size: 59.9 KB
Original size: 9 MB

Compression ratio: 99%

(a) Compressed and decompressed 2D images by our approach

Our approach: RMSE=5.95 Our approach: RMSE=4.84 Our approach: RMSE=5.94

JPEG2000: RMSE=2.71 JPEG2000: RMSE=2.83

JPEG2000: RMSE=3.49

JPEG: RMSE=3.2 JPEG: RMSE=6.66

JPEG: RMSE=5.02
(b) Details of compression/decompression by our approach,JPEG2000 and JPEG respectively

Figure 6.10: Compressed images by JPEG and JPEG2000 at equivalent compressed file sizesas with our approach.
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Additionally, we applied our compression techniques to a series of 2D images and
usedAutodesk 123DCatch software to generate a 3D model from multiple images. The
objective is to perform a direct comparison between our approach and both JPEG and JPEG2000
on the ability to perform 3D reconstruction from multiple views. Images are uploaded to the
Autodesk server for processing which normally takes a few minutes. The 123D Catch software
uses photogrammetric techniques to measure distances between objects producing a 3D model
(i.e. image processing is performed by stitching a plain seam with correct sides together). The
application may ask the user to select common points on the seam that could not be determined
automatically [143, 144]. Compression sizes and RMSE for all images used are depicted in Table
6.5.

Table 6.5: Compressed sizes and 2D RMSE measures

Image
Name

Number
of

images

Original
image size

(MB)

Quantization
parameters
used in DST

Compressed
image size

(MB)

Compression
Ratio

Average
compressed size of

each image
(MB)

Average
2D

RMSE
Y Cb Cr

Baby 1 3 0.5 5 5 0.0594 98% 0.0594 5.95

Eyes 1 9 0.5 5 5 0.0599 99.3% 0.0599 4.84

Girl 1 2.25 0.5 5 5 0.1077 95.2% 0.1077 5.94

Apple 48 336 2 5 5 1.94 99.4% 0.0414 8.33

Face 28 200.7 1 5 5 1.72 99.1% 0.0629 5.68

Figure 6.11 shows two series of 2D images for objects “APPLE”, and “FACE” (all images
areavailable from 123D Catch website). We start by compressing each series of images whose
compressed sizes and 2D RMSE measures are shown in Table 6.5.A direct comparison of
compression with JPEG and JPEG2000 is presented in Table 6.6. It is clearly shown that our
approach and JPEG2000 can reach an equivalent compression ratio, while the JPEG technique
cannot. It is important to stress that both our technique and JPEG depend on DCT. The main
difference is that our approach is based on DCT with DST and the coefficients are compressed
by the frequency minimization algorithm.This renders our technique far superior to JPEG as
shown in the comparative analysis ofTable 6.6, where JPEG simply failed 3D reconstruction for
images compressed to the same size as our technique.
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Figure 6.11: (a) and (b) show series of 2D images used to generate 3D models by 123D Catch.

In our method,DCT with DST are applied over the image as one block. The used low frequency
block size for colour was 150x150, the scalar quantization for DCT was 1, 5 and 5 for each layer
(Y,Cb and Cr) respectively. Furthermore, the quantization matrix used after DST performs an
aggressive quantization, this means that approximately 50% of the coefficients are zero (i.e. the
left bottom of the image matrix contains large number of zeros after the quantization process cf.
Eq.(6.5)).

(a) 3D model for series of APPLEimages decompressed by our approach (48 images, average 2D RMSE=8.33, total compressed
size=1.94 MB). The compression ratio for the 3D mesh is 99.4% for connectivity and vertices
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(b) 3D model for series of FACE images decompressed by our approach (28 images, average 2D RMSE=5.68, total compressed
size=1.72 MB). The compression ratio for the 3D mesh is 99.1% for connectivity and vertices

Figure 6.12: (a) and (b) Successful 3D reconstruction after compression by our approach.

Table 6.6: Comparison with JPEG and JPEG2000 techniques

Multiple
2D images

Original size
(MB)

Compressed
size

(MB)

2D RMSE

Our approach JPEG2000 JPEG

APPLE 336 1.94 9.5 6.58 FAIL
FACE 200.7 1.72 5.1 3.39 FAIL

6.7. Conclusions
This Chapter has presented and demonstrated a new method for image compression and
illustrated the quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE. Our
compression algorithm is based on DCT applied to each row of an image, then followed by DST
which is applied to each column of the matrix.  After the transformation stage, the minimization
of high frequency algorithm is used to reduce the number of high-frequency coefficients. The
compression stage is then completed with arithmetic coding. In the decoding stage, the Fast-
Matching-Search algorithm based on binary search is used to recover the original data. The
results show that our approach introduces better image quality at higher compression ratios than
JPEG and JPEG2000 as it can more accurately reconstruct 3D surfaces than both techniques. A
slight disadvantage of the proposed method is that it is more complex than both JPEG2000 and
JPEG. This is because our approach uses two types of transforms, and that neither JPEG nor
JPEG2000 rely on a search method[158].

The most important aspects of the method and their role in providing high quality image with
high compression ratios are identified as follows:

1. The one-dimensional DCT can be applied to an image row (i.e. largerarraysize≥ 8).
Equally, the one-dimensional DST can be applied to each column of the output from
DCT.

2. Theuser can ignore the scalar quantization to remove higher frequency coefficients (i.e.
keeping more coefficients increases image quality).
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3. The two-dimensional quantization (cf. Eq.(6.5)) provides a more aggressive quantization
removing most of matrix contents as about 50% of the matrix entries are zero. Applying
this over the DST can keep image quality at higher compression ratios.

4. The final transformed matrix is divided into: low-frequency sub-matrix, and horizontal
and vertical high-frequency matrices.

5. The minimization of high frequency algorithm produces a Minimized-Array used to
replace each three values from the high-frequency sub-bands by a single integer value.
This process reduces the coefficients by 2/3 leading to increased compression ratios.

6. Since the Minimized-Array for both vertical and horizontal high-frequencies contains
large number of zeros, we applied a new method to eliminate zeros and keep nonzero
data. The process keeps significant information while reducing data up to 80%.

7. At decompression stage, the Fast-Matching-Search algorithm is the engine for estimating
the original data from the minimized array and depends on the organized key values and
the availability of a set of unique data. The efficient C++ implementation allows this
algorithm to recover the high-frequency matrices very efficiently.

8. The key values and unique data are used for coding and decoding an image, without this
information images cannot be recovered. This is an important point as a compressed
image is equivalent to an encrypted image that can only be reconstructed if the keys are
available. This has applications to secure transmission and storage of images and video
data.

9. Our proposed image compression algorithm was tested on true colour and YCbCr layered
images at high compression ratios. Additionally, the approach was tested on images
resulting in better 3D reconstruction than JPEG2000 and JPEG.

10. The experiments indicate that the technique can be used for real-time applications such as
3D data files and video data streaming over the Internet.
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Chapter 7

DCT and Matrix Minimization based Image Compression with
Concurrent Fast-Matching-Search Decompression1

7.1. Introduction
As mentioned in previous Chapters, the Discrete Cosine Transform (DCT) is the basis of the
popular JPEG file format, and most video compression methods and multi-media applications
are generally based on it[117,119,127,138]. In other words, the image is divided into segments
and the DCT is then applied to each segment creating a series of frequency components that
correspond with detail levels of the image. Several forms of coding are applied to store only the
most relevant coefficients.JPEG is more evident on large data repositories such as YouTube and
cloud storage offered by several suppliers. With the increasing growth of network traffic and
storage requirements, more efficient methods are needed for compressing image and video data
with high quality reconstruction and potential significant reduction in storage size.

In this Chapter a new method for 2D image compression and reconstruction isproposed and
demonstratedmaking used of the DCTandMatrix Minimization algorithm(described in previous
chapters) at compression stage and a new concurrent binary search algorithm at decompression
stage. The proposed image compression method in this chapter consists of five main steps:

(1) Divide the image into blocks and apply DCT to each block;
(2) Apply Matrix Minimization algorithm to AC-coefficients from each block to encode each

block size 1:3 producing Minimized-Array;
(3) Build a look up table of compressed probability data to enable recover original high-

frequencies data at decompression stage;
(4) Apply a delta or differential operator to the list of DC-components; and
(5) Apply arithmetic encoding to the outputs of steps (2) and (4).

Using a look up table at decompression stage, the concurrent binary search algorithm
reconstructs all high-frequency AC-coefficients while the DC-components are decoded by
reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested
the technique by compressing and decompressing a range of 2D images, including images with
structured light patterns for 3D reconstruction. The technique is compared with JPEG and
JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression
method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D
surface reconstruction from images, it is demonstrated that the proposed method is superiorto
both JPEG and JPEG2000[159].

1This chapter was subject to a patent application, published as PCT on 1 Sep 2016. [160].
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Figure 7.1:High level view of the proposed image compression algorithm

7.2. The Discrete Cosine Transform (DCT)
ThisSection describes how the DCT is applied tothe original image. First, the 2D image is
divided into non-overlappingnxn blocks (n ≥ 8) and then transformed by DCT to produce de-
correlated coefficients. Each block in the frequency domain consist of: a DC-component at the
first location of each block which is the average value of the samples in the block, and other
coefficients called the AC coefficients as described in Eq.(3.1)[130,131,138].

The quantization of each block n x n can be represented as follows:( , ) = ( + ) (7.1)
Where , = 1,2, … , and the quantization factor is an integer > 1 .Each × block is
quantized by Eq.(7.1) using dot-division-matrix whichtruncates the results. This process removes
insignificant coefficients and increases the number of zeroes in each block.The parameter is
used to increase or decrease the values of . Thus, image details are reduced or lost as the value
of increases. The range of is not limited a priori because it depends on the DCT coefficients
and image resolution.The next step isto split the DC-components from eachquantizedblock× by savingthose intoa new array called DC-Array. Thenthe differences between two
adjacent values in the DC-Array are computed (cf. Eq. (3.5)). This differential process generates
coefficients that are correlated (generally the values are similar as the DC values of adjacent
blocks tend to be similar) so their differences are small and more data are repeated. This process
facilitates compression by arithmetic coding.
Meanwhile, the remaining AC coefficients (e.g. the 63 AC coefficients from an 8x8 block) are
converted into a one dimensional array by scanning column-by-column and saved into a matrix
called AC-Matrix. This matrix is subject to a process of eliminating all zeros followed by Matrix
Minimization encodingalgorithm described next.
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On each block
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DC1 DC2 DC3 …                   DCp

Remove zero AC coefficnets and
keep nonzero data in an array, then

apply minimization encoding to
nonzero-data

Arithmetic Coding
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.

.
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7.3. High FrequencyMinimization Encoding Algorithm
In this Section we introduce an algorithm to convert the AC-Matrix intoa compressed array
called Minimized-Arraythrough an EnhancedMatrix Minimization algorithm. The algorithm is
enhanced byeliminating zeros and triplet encoding whose output is then subjected to arithmetic
coding (cf. Section 5.2.3).Normally, the AC-Matrix contains a large number of zeroes with a few
nonzero data. Herewe propose a technique to eliminate blocks of zeroes and store blocks of
nonzero data into a one-dimensional array. The algorithm starts to partition the AC-Matrix into
non-overlappingblocks × where ≥ 8and then search for nonzero data inside the block. If
the block contains nonzero data, such data will be stored into a reduced array .Otherwise, the
block’s data will be ignored, and the algorithm continues to search for nonzerodata in all blocks
[137]. The algorithm is illustrated in List 5.1. (cf. Section 5.2.3)

Once only nonzero data are saved into the reducedRarray,the minimization of high-frequency
encoding is applied furtherreducing its size by 1/3.This process hinges on defining three key
values and multiplying these by three adjacent entries in which are then summed over. Thus,
each set of three entries fromRare converted into a single value which are then stored in a new
coded minimizedarray[42,134,137]. Assuming that is the length of , = 1,2, … , − 3 is the
index of data in , and is the index of encodedMinimized-Array. The following
transformations definethe minimizationof highfrequency encoding:

_ ( ) = ( ) + ( + 1) + ( + 2) (7.2)
Where the K1, K2 and K3 are generated by a key generator (cf. Section 5.2.3)[137]. To map the
Limited-Data values to each summation, extra information is needed to recover the original data
as the problem is mathematically under-determined. This information is kept in the header of the
compressed file as a string of unique data appearing in (cf. Figure 3.5).The minimized array
may contain many zeros, and their removal is described in Chapter 5 (cf. Section 5.2.2) to
increase the compression ratio[131].

7.4. Decompression Algorithm: Concurrent Binary Search Algorithm
While the DC-Array can be recovered by a simple addition process, the issue here is how to
recover the reduced array that has been compressed into the minimized-array. For this purpose,
we have devised anew Concurrent Fast-Matching-Search Algorithm (CFMS-Algorithm) derived
from the single FMS-Algorithm described in Chapter 5 (cf. Section 5.3)

The reverse of the compression algorithm consists of three stages:

1) Decode the DC-components: the first step is to reverse the differential process of (cf.
Eq. 3.7) by addition such that the encoded values in the DC-Array return to their original
DC-components. This process takes the last value at position , and adds it to the
previous value, and then the total adds to the next previous value and so on.

2) Decodethe minimized-array using the CFMS-Algorithm: This novel algorithm has
been designed to recover the reduced array from theminimized-array.
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The compressed data contains information about the three compression keys defined in
Eq.(7.3 – 7.6)and the probability data (limited data) followed by compressed streams of
data. The CFMS-algorithm picks up in turn eachdata elementfrom the minimized-array
and reconstructs the three keys recovering the tripletR of data through a CFMS-
Algorithm illustrated by steps A and B:

A) Initially, the estimated values defined in Limited-Data arrayare set to the same value,
that is = = , = = , = = . The searching algorithm
computes all possible combinations of A with , B with and C with that yield a
result keeping in D-array. As a means of an example consider that Limited-
Data1=[ ] , Limited-Data2=[ ] and Limited-Data3=[ ]. Then,
according to Eq.(7.2) these represent the coded summation respectively, and the
equation is executed 27 times to build the array, as described in Figure7.2(a). The
match indicates that the unique combination of A,B and C are the original data (i.e.
decompressed data)[137].

B) A Binary Search algorithm[139]is used to recoverthe data and their keys.Our design
consists of binary search algorithmsworking in concurrent toreconstruct the triplets
of original data in the array, as shown in Figure 7.2(b).At each step, each binary
search algorithmtakes a single compressed data from minimized-arrayand compares
with the middle element of the D-Array.If the values match, then a matching element
has been found and its relevant (A,B and C) returned. Otherwise, if the search is less
than the middle element the algorithm is repeated to the left of the middle element or,
if the value is greater, to the right.Allbinarysearch algorithms aresynchronised[137].

3) Combine the DC-components with AC-coefficients: once the reduced array is
recovered in step 2, the corresponding high frequency AC-Matrix is re-built by placing
the nonzero data in the exact locations defined by the algorithm inList-5.1. The DC-
components and AC-coefficients are then followed by inverse quantization (dot-
multiplication with Eq.(7.2) and the inverse DCT is applied to each block n x n Eq.(3.2),
to recover approximately the original image.
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(a) Compute all possibilities for keys with Limited-Data to reconstruct the reduced array

(b) Binary Search algorithms work in parallel to find group of decompressed data.

Figure 7.2: The CBS-Algorithm to reconstruct the reduced array .

7.5. Experimental Results
The experimental results described here were implemented in MATLAB R2013a and Visual
C++ 2008 running on an AMD Quad-Core microprocessor. We describe the results in two parts:
first, we apply the compression and decompression algorithms to 2D images that contain
structured light patterns allowing 3D surface data to be generated from those patterns. The
rationale is that a high quality image compression is required otherwise the resulting 3D structure
from the decompressed image will contain apparent dissimilarities when compared to the 3D
structure obtained from the original (uncompressed) data. We report on these differences through
visualization and standard measures of RMSE-root mean square error. Second, we apply the
method to general 2D images (with no structured light patterns) of different sizes and assess their
perceived visual quality and RMSE. Additionally, we compare our compression method with
JPEG and JPEG2000 through visualization of 2D images and 3D surfaces and RMSE.
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7.5.1. Results for Structured Light Images and 3D Surfaces
In Figure7.3 shows a number of test images used to generate 3D surfaces both in greyscale and
colour. The top row shows two greyscale face images, FACE1 and FACE2 with size 1.37MB
and dimensions 1392 × 1040 pixels. The bottom row shows colour images CORNER, WALL,
METAL with size 3.75MB and dimension 1280 × 1024 pixels. As stated in previous Chapters,
the RMSE although useful, is a single measure of error and may not give a clear indication to
which reconstruction is `best'. This is so because errors could be concentrated in an area that we
perceive as less important in the image, and this is more clearly seen by analysing the 3D surface
images at various compression ratios.

Figure 7.3:Structured light images used to generate 3D surfaces. Top row greyscale images FACE1 and FACE2, and colour
images CORNER, WALL, METAL respectively.

Figure 7.4:Reconstructed 3D surfaces from images FACE1 and FACE2 at various compression ratios.
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Figure 7.4 shows a visualization of the decompressed images converted to 3D surfaces using
different DCT block sizes (from 16 × 16 to 64 × 64). FACE1 on the top row from the left, the
first and second 3D surfaces with RMSE of 1.45 and 2.48 are high quality surfaces comparable
to the original one. The 3D surface with 3D RMSE of 2.25 represents median quality image
while the 3D surface with 3D RMSE of 2.57 is low quality as some parts of surface are
degraded. Note that the RMSE of 2.25 (third image from left) is lower than 2.48 (second image)
but it's perceived quality is not higher, instead it is lower due to localised errors in less important
areas of the face. Figure 7.4bottom row shows the decompressed FACE2 images. The 3D
surfaces with 3D RMSE of 1.11 and 1.45 represent high quality surfaces comparable to the
original surface, while the other two represent median to low quality with varying degrees of
degradation. It is apparent here that because the RMSE algorithm only calculates the differences
between valid surfaces points in two surfaces (original and reconstructed from compressed data)
the dropping or disappearance of some areas on the surface will have a marked effect on the
mean error.

Table 7.1: Proposed image compression and decompression applied to greyscale images
(Original image size =1.37MB)

Image
Name

Block
size used
by DCT

Factor Compressed
image size

Compression
Ratio

2D
RMSE

3D
RMSE

FACE1
16 × 16 5 34.2 KB 97.5% 4.0 1.4516 × 16 10 18.3 KB 98.6% 5.12 2.4832 × 32 5 20.7 KB 98.5% 4.79 2.2532 × 32 10 11 KB 99.2% 5.83 2.3664 × 6410 6.4 KB 99.5% 6.65 2.57

FACE2
16 × 16 5 21.98 KB 98.4% 2.65 1.1116 × 16 10 12.25 KB 99.1% 3.32 1.4532 × 32 5 14.47 KB 98.9% 3.12 0.9832 × 32 10 7.94 KB 99.4% 3.8 4.0

Table 7.2: Proposed image compression and decompression applied to colour images
(Original image size =3.75 MB)

Image
Name

Block
size used
by DCT

Factor for each
layer

[Y, Cb, Cr]

Compressed
image size

(KB)

Compression
Ratio

2D
RMSE

3D
RMSE

WALL 64 × 64 [5,5,5] 14 99.6% 2.4 0.2564 × 64 [10, 10, 10] 7.62 99.8% 2.8 2.1164 × 64 [25, 25,25] 4.0 99.8% 3.5 0.59
CORNER 32 × 32 [10,10,10] 20 99.4% 5.34 0.1432 × 32 [20, 20, 20] 10 99.7% 6.7 0.6564 × 64 [30, 30,30] 5.1 99.8% 8.26 2.08
METAL 32 × 32 [2, 25, 25] 25.2 99.3% 4.19 1.8932 × 32 [5, 25, 25] 13.4 99.6% 4.48 2.0464 × 64 [5, 25, 25] 9.8 99.7% 4.73 2.00

Tables7.1 and 7.2 provide a quantitative view of compression concerning 2D structured light
images and corresponding 3D surface reconstruction for a number of different DCT block sizes
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and quantisation factors. The purpose is to analyse the sensitiveness of the algorithms to both
parameters.  In Table 7.1 there is only one value for quantization factor as these are grey scale
images and thus have only one colour channel to quantise. As expected, it is observed that by
doubling the factor, the size of the compressed image is halved. On the other hand, by doubling
the block size, the size of the compressed image is only reduced by about a third. It is also
observed that no relationship exists concerning block size, factor, and RMSE (both in 2D and
3D). An image that is compressed to double the size of an earlier compression does not mean
that its RMSE will be halved compared to the earlier RMSE. The reasons for this have been
pointed out above as localised errors in the image will give rise to localised errors in the 3D
structure and these do not necessarily correspond to our perception of better or worst.

Table 7.2depicts three parameters for quantization factor , one for each channel as these are
colour images. Here again by doubling the factor it is observed a halving of the compressed
image size. Normally, it would not make sense to have different factor values for different colour
channels, but this is a possibility that can be exploited especially in structured light applications
where we know that patterns can be projected using a single colour channel (red, green or blue).
The same comments above on RMSE also apply here.

Figure.7.5:Reconstructed 3D surfaces for images WALL, CORNER and METAL after compression and decompression.

Figure 7.5 depicts the 3D surface images from the decompressed WALL, CORNER and
METAL images. The first image on the left with texture mapping on is for information only. The
remaining 3 shaded images were compressed by varying the DCT block size and the colour
channels according to the data depicted in Table 7.2. Thus, the first rows of shaded images
correspond to the first 3 entries in Table 7.2 and so on. The perceived quality of all reconstructed
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3D surface images follows a similar pattern: as the quantisation factor is increased, the size of
the compressed file decreases with corresponding deterioration in quality and this is the expected
behaviour.

Table 7.3: Compression and decompression of 3D images by JPEG2000 and JPEG at higher compression ratios
Image
name

Compression
Ratio

JPEG2000 JPEG

2D
RMSE

3D RMSE 2D
RMSE

3D
RMSE

FACE1 99.5% 6.3 1.8 FAIL FAIL
FACE2 99.4% 3.2 2.66 FAIL FAIL
WALL 99.8% 3.8 2.3 FAIL FAIL

METAL 99.8% 11.6 1.35 FAIL FAIL
CORNER 99.6% 4.0 90 FAIL FAIL

Table 7.3 and Figure 7.6 describe the compressed and decompressed results for JPEG and
JPEG2000 with comparison with our approach. Here we compressed very aggressively and in
Table 7.3 the JPEG algorithm simply failed to compress images at the required ratio with
equivalent file sizes as our approach. This is indicated by “FAIL”. An important point to note is
that while JPEG2000 can compress to equivalent ratios or file sizes as our algorithm, the
decompressed image is not of equivalent quality for the purposes of 3D reconstruction.

(a) The 3D reconstructed FACE1 (3D RMSE=1.8) by JPEG2000 degraded compared with our approach, also some parts are
missing. FACE2 (3D RMSE=2.66) is compressed by JPEG2000 at higher compression ratio, but the top part of the surface is
missing.

Figure 7.6 provides a direct comparison between our approach and JPEG2000 for quality
assessment through visualisation of the reconstructed 3D surface. Each file containing structured
light patterns was compressed to the same size using our method and JPEG2000. The
visualisation clearly indicates that our method is superior to JPEG2000 concerning 3D
reconstruction in all cases considered both in terms of perceived quality of the reconstruction and
absolute RMSE.
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(b) Top, the 3D reconstructed CORNER (3D RMSE=1.35) by JPEG2000 is more degraded than our approach. Bottom, the 3D
reconstructed WALL (3D RMSE=2.3) by JPEG2000 has a higher compression ratio, but the top part of the surface is missing.

(c) The 3D reconstructed METAL (3D RMSE=90) by JPEG2000 is completely degraded compared with our approach.

Figure 7.6: (a), (b) and (c) Comparison of 3D reconstruction between our approach and JPEG2000

7.5.2. Results for 2D images
In this Section, we report on our approach applied to generic 2D images, that is, images that do
not contain structured light patterns as described in the previous section. Table 7.4 tabulates
compression results and comparison of our approach with the two compression algorithms
JPEG2000 and JPEG respectively using 5 publicly available images with sizes varying from
0.5MB to 9MB. For each image, we used different block sizes from 8x8 to 64x64 as depicted in
Table 7.4. Despite the RMSE limitations as an absolute measure of quality, the tabulated values
indicate that JPEG has a much higher error than both our technique and JPEG2000. For this
reason, it is the least desirable technique.
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Table7.4: Proposed image compression and decompression applied to 2D images

Image
Name

Original
image size

(MB)

Our approach
Our

Approach
2DRMSE

JPEG2000
2D RMSE

JPEG
2D

RMSE
Block size

used by
DCT

Compressed
image size

(KB)

Compression
Ratio

X-ray 0.588 8 × 8 10 98.3% 5.0 3.2 11.88
Eye 9 64 × 64 14.2 99.8% 4.89 4.1 15.3
Girl 2.25 16 × 16 21.2 99% 10.48 6.4 21.1
Cell 8.5 64 × 64 9.8 99.8% 4.2 2.5 16
Baby 3 32 × 32 18.3 99.4% 5.3 3.5 15.5

(a) X-ray Compressed size to 10KB

(b) Eye image compressed to 14.2KB

(c) Girl image compressed to 21.2KB
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(d) Cell image compressed to 9.8KB

(e) Baby image compressed to 18.3KB
Figure7.7: (a-e) Comparative perceptual quality between our approach, JPEG2000 and JPEG

Figure 7.7depicts decompressed images by our approach with a comparison with JPEG2000 and
JPEG. One can state that JPEG2000 seems to be the better technique for general 2D compression
as it has a high perceived quality with low RMSE. Our technique is at comparable level to
JPEG2000 concerning perceived quality, but with slightly higher RMSE. It is known that both
JPEG and JPEG2000 are widely used in 2D image and video compression. This research has
demonstrated that our proposed compression method can equally be used for the same purposes
with the added advantage that it is superior to both JPEG and JPEG2000 concerning 3D surface
reconstruction using structured light techniques.

7.5.3. 3D Modelling by using multiple images
Autodesk’s 123D Catch software generates a 3D model from multiple pictures taken atdifferent
angles (HD images recommended). These images are uploaded to the server for processing,
which normally takes a few minutes. The program uses photogrammetric technology to measure
distances between objects yielding a 3D model; in other words, image processing is performed
by stitching a plain seam with correct sides together. However, the software may ask the user to
select pointsfor connection that could not be automatically determined through online
processing[143, 144].
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(a) Apple images: a series of 48 images(336 MB) are used

(b) Face images: a series of 28 images(200 MB) are used

(c) Statute images: a series of 51 images (366 MB) are used

Figure 7.8(a, b and c): The selected series of images for 3D reconstruction from multiple points.

Table 7.5: shows our compression algorithm results

Multiple 2D
images

Total Original
BMP file size

(MB)

Total original size
as JPEG format at

100% High-
Quality
(MB)

Total
Compressed
size by our
Approach

(KB)

Compression
Ratio

Quantization factor
According to the

layers: [R, G, B] Block
size

2D RMSE

Apple 336 52.4 929 99.7% [40,40,40] 16x16 9.5
Statue 366 58.5 916 99.7% [20,30,30] 64x64 14.35
Face 200.7 45.5 784 99.6% [11,30,30] 16 x 16 5.1

Table 7.6: Comparison with JPEG and JPEG2000 techniques

Multiple
2D images

Compressed
size
(KB)

2D RMSE 3D RMSE

Our
Approach

JPEG2000 JPEG
Our

Approach
JPEG2000 JPEG

Apple 929 9.5 6.58 FAIL 13.93 12.61 FAIL
Statue 916 14.35 13.81 FAIL 13.67 12.0 FAIL
Face 784 5.1 3.39 FAIL 14.73 12.35 FAIL
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A comparative analysis is performed as follows. We compress a series of images using our
method, JPEG and JPEG2000 and upload to the 123D Catch server for 3D reconstruction. We
then analyse the quality of the returned 3D mesh obtained from the three compression methods.
Figure 7.8 shows an original series of 2D images and Tables 7.5 and 7.6 depicts the compressed
sizes by our approach compared with the other two techniques. Table 7.6 shows our approach
and JPEG2000 to a maximum compression ratio, while the JPEG technique failed to reach that
same compression ratio. Decompressed 2D images by our approach converted into a 3D surface
by 123D Catch are depicted in Figures 7.9, 7.10 and 7.11. The JPEG2000 images converted into
a 3D model are depicted in Figure 7.12.

(a) Autodesk 123D Catch converts48 Appleimagesintoa 3D model

(b) 3D surface details for Applemodel

Figure 7.9: (a, b) 3D model for series of 48 Apple images decompressed by our approach, average 2D RMSE for all
decompressed images=9.5, total compressed size=929 KB. Theoretically, the achieved compression ratio for 3D

mesh is 99.7% for connectivity and vertices.



146

(a) Autodesk 123D Catch converts 28 Face images intoa 3D model

(b) 3D surface details for Facemodel

Figure 7.10: (a, b) 3D model for series of 28 FACE images decompressed by our approach, average 2D RMSE for
all decompressed images=5.1, total compressed size=784 KB. Theoretically, the achieved compression ratio for 3D

mesh is 99.6% for connectivity and vertices.

(a) Autodesk’s 123D Catch converts 51 Statue images into a 3D model
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(b) 3D surface details for Statuemodel

Figure 7.11: (a, b) 3D model for series of 51 Statue images decompressed by our approach, average 2D RMSE for
all decompressed images=14.35, total compressed size=916 KB. Theoretically, the achieved compression ratio for

3D mesh is 99.7% for connectivity and vertices.

Figure 7.12: Results for JPEG2000: Left, the 3D Face model is degraded when coded by JPEG2000, (middle and
right) the 3D models for Statue and Apple are successfully reconstructed from JPEG2000 images.

7.6. Conclusions

This Chapter has presented and demonstrated a new method for image compression and
illustrated the quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE and
the perceived quality of the visualisation. The method is based on DCT together with the
proposed differential process, minimization of high-frequency encoding and concurrent binary
search algorithms. The results showed that our approach introduced better image quality at
higher compression ratios than JPEG and equivalent perceived quality as JPEG2000.
Furthermore, the proposed method can more accurately reconstructthe 3D surfaces at higher
compression ratios than both techniques, i.e. in this respect it is also superior to JPEG2000. On
the other hand, the methodis more complex than JPEG2000 and JPEG. The most important
aspects of the method and their role in providing high quality image with high compression
ratios are identified as follows[158]:
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1- The DCT can be applied to large block sizes ≥ 8, and the DC-components and AC-
coefficients are separated into different matrices by the proposed method and coded
separately.

2- Since the AC-coefficients contain a large number of zeros, we applied a new methodto
eliminate zeros and keep nonzero data. The process keeps significant information while
reducing data up to 75%.

3- The Matrix Minimization algorithm, used to reduce high-frequencycomponents produced a
Minimize-Arrayby replacing each three values from the AC-coefficients by a single floating-
point value. This process reduces the coefficients leading to increased compression ratioswith
faithful decoding.

4- The concurrent binary search algorithm represents the core of our search algorithm for
finding the exact original data from the minimized-arrayand depends on the organised key
values and the availability of the unique data. The efficient implementation of Visual C++
code allows the concurrent algorithms to recover the AC-coefficients in a few microseconds.

5- The key values and unique data are used for coding and decoding an image, without this
information images cannot be recovered. This is an important point as a compressed image is
equivalent to an encrypted image that can only be reconstructed if the keys are available. This
has applications into secure transmission and storage of images and video data.

6- Our proposed image compression algorithm was tested on true colour and YCbCr layered
images at high compression ratios. Additionally, the approach was tested on images resulting
in better 3D reconstruction than JPEG2000 and JPEG.

7- The experiments indicate that the technique can be used for real-time applications such as 3D
data objects and video data streaming over the Internet.
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Chapter 8
3D Geometry and Connectivity Compression with
Concurrent Fast Matching Search Decompression

8.1. Introduction

Polygonal meshes remain the primary representation for visualization of 3D data in a
wide range of industries including architecture, geographic information systems,
medical imaging, robotics, entertainment, and military applications among others.
Because of its common use, it is desirable to compress polygonal meshes and
exchanged over computer networks to reduce storage and reduce transmission time.
3D files encoded by Wavefront’s OBJ file format are commonly used to sharing
models due to its clear simple design. Normally, each OBJ file contains a large
amount of data (e.g. vertices and triangulated faces, face normal directions) describing
the mesh surface and other parameters such as illumination.

In Chapter 2 we briefly described previous work on mesh compression (geometry and
connectivity). First we introduced Deering’s work focused on geometry compression
for data communication between the CPU and a graphic adapter [63]. Also, Rossignac
and Taubin described the Topological Surgery (TS) method, which is a compression
scheme used for maintaining manifold triangular mesh [67]. TS has been extendedfor
use in compressed file format to encode VRML, and now it is also used in the MPEG-
4 standard compression[145].

MPEG-4 coding is based on Topological Surgery and Progressive Forest Split
Scheme (FPS)which is a new improved scheme for compression and transmission of
3D meshes in progressive form[146,147]. Many algorithms have beenproposed and
incorporated into the standard which now supports the encoding of any polygonal
mesh (also non-manifolds)[148,149].Additionally, there is no loss in the connectivity
of triangle faces, and no duplication of geometry and property data related with
vertices (x,y,z).The MPEG-4 standards are the state-of-the-art [150].

In this Chapter, we deal with direct compression of 3D data structures by Matrix
Minimization algorithm, which is called Geometry Minimization algorithm used to
compress mesh data (vertices and triangle faces). First, each vertex consisting of
(x,y,z) coordinates are encoded into a single value by the GM algorithm. Second,
triangle faces are encoded by computing the differences between two adjacent vertex
locations, and then coded by the GM algorithm followed by arithmetic coding. We
tested the method on large data sets achieving high compression ratios over 90%
while keeping the same number of vertices and triangle faces as the original mesh.
The decompression step is based on a Concurrent Fast Matching Search Algorithm
(CFMS) to recover the structure of the 3D mesh. A comparative analysis of
compression ratios is provided with several commonly used 3D file formats such as
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MATLAB, VRML, OpenCTM and STL showing the advantages and effectiveness of
our approach.

This Chapter is organized as follows: Section 8.2 introduces geometry coding and
describes the proposedGeometry Minimization applied to vertex data. Section 8.3
describes lossless coding of mesh connectivity bythe GM-Algorithm, while section
8.4describes theConcurrentFast Matching Search algorithm (CFMS) used to
reconstruct vertices and triangulated faces. Section 8.5 describes experimental results
with a comparative analysis followed by conclusions in Section 8.6.

8.2. TheGeometry Minimization Algorithm (GM-Algorithm)

The algorithm starts with a lossy quantization process to convert vertices to integer
values (because our approach works on integer numbers by truncating the vertices
coordinates that can be represented by limited number of bits).

Figure 8.1, The GM-Algorithm applied to each block of vertices

A scale parameter  is used by the quantization process,it is used to move numbers
from the exponent part to the mantissa part.In this way, the 3D structure can be
reconstructed in the same units and scale as the original. The lossy quantization by 
transforms each (x, y, z) coordinates into integers ranging from 0 to 2B–1, where B is
the maximum number of bits needed to represent the quantized coordinates.
Normally, 12bit – 16bit integers are sufficient to ensure geometric fidelity for most
applications and most models. Thus, this lossy quantization step reduces the storage
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cost of geometry from 96-bits to less than 36-bits. The quantization of vertices (x, y, z)
is defined as:

, , = ( , , ) (8.1)

Where ≤ 10,000.We reduced the number of bits for each vertex to less than 16-bit
by calculating the differences between two adjacent coordinates for increased
redundancy data and thus, making it more susceptible to compression. The differential
process defined in Eq. (3.5) is applied toaxes X, Y and Z independently (cf. Figure
3.3)[42].

Once the differential process is applied to the vertices, the list of vertices is divided
into blocks, and the GM-Algorithm is applied to each block of vertices (i.e. the vertex
matrix from 3D object file is divided into k non-overlapping blocks) as illustrated in
Figure8.1. The main reason for placing vertices into separate blocks is to speed up the
compression and decompression steps. Each k block is reduced to an encoded data
array. The GM-Algorithm is defined as taking three key values and multiplying these
by three geometry coordinates (x, y, z) from a block of vertices which is then summed
over to a single integer value (cf. Section 3.2.3). A compression key KC is generated
from vertex data (cf. Section 5.2.3 - key generator) as follows [137]. First, define M as
a function of the maximum value in the data:

= max( , , ) + ( , , )
(8.2)

Then define 3 compression keys as follows:= (0,1) (8.3)= ( + ) + (8.4)= ( ∗ + ∗ ) ∗ (8.5)

Where is a positive factor multiplier, each vertex is then encoded as:( ) = ( ) + ( ) + ( ) (8.6)

Figure 8.2(a) illustrates the GM-Algorithm applied asEq(8.6) to a sample of vertices.
After applying the GM-Algorithm, the likelihood for each block of vertices is selected
from which a Ku (i.e. Limited-Data –cf. Figure 3.5)is generated to be used in the
decompression stage as illustrated in Figure 8.2(b) with a numerical example.

8.3. Connectivity Compression

Several algorithms have been developed to address the problem of compactly
encoding the connectivity of polygonal meshes, both from theoretical and practical
viewpoints. The short encoding of embedded graphs has been tackled as a theoretical
problem, while compressing the incidence table of the triangle mesh in a 3D model as
a practical problem.
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(a) Floating point vertices

(b) Limited Data Kucomputed from vertices X,Y and Z

Figure 8.2: (a): Sample of vertices compressed by GM-Algorithm, (b) The set ofK valuesgenerated

from a block of vertices

Triangulated meshes represent geometric connectivity. In a 3D OBJ file, each triangle
is followed by reference numbers representing the location of the vertices in the 3D
file. These reference numbers arearranged in ascending order in most 3DOBJ files.
We refer to these as regular triangles. One of regular triangles’ advantages is that
they can be losslesscompressed ina few bits by applying a differential process (e.g.
the differential processed definedby Eq. (3.5) applied to all reference numbers). The
resulting 1D-array is divided into sub-arrays, and each sub-array encoded
independently by the GM-Algorithm followed by arithmetic coding as illustrated in
Figure 8.3.TheGM-Algorithm works in thesame way as applied to the vertices: three
key values are generated and multiplied by three adjacent values which are then
summed into singlevalue according to Eq. (8.6).

Sample of vertices (before coding)
-101.284 48.426 45.478
-100.916 48.399 45.468
-100.636 48.414 45.426
-100.396 48.449 45.341
-100.150 48.480 45.215
-99.900 48.510 45.053
-99.6262 48.529 44.863
-99.355 48.548 44.653

Quantized vertices
-1013 484 455
-1009 484 455
-1006 484 454
-1004 484 453
-1002 485 452
-999 485 451
-996 485 449
-994 485 447

Differential Eq (7.2) applied       GM-Algorithm applied
-4 0 0 -0.4
-3 0 1 42.9
-2 0 1 43
-2 -1 1 35.9
-3 0 1 42.9
-3 0 2 86.1
-2 0 2 86.2

-994 485 447 -994 485 447

Subtract each column by Eq(2); then apply the GM-Algorithm, maximum value
M=|4|, F=1:- Kc1=0.1, Kc2=7.1, Kc3=43.2

KU

Vertices after the differential process
X       Y        Z
1 1 3

1 2 - 2 -

2 3 3

. . .

1 1 2

GM-Algorithm
1, 3,-2, 2, 3, . . .

Encoded Data

KC
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(a) Triangle Face are scannedrow-by-row

(b), 1D-array divided into sub-arrays, each sub-array encoded independently (See Figure 3.4)

Figure 8.3: (a) and (b): Lossless Triangle Mesh Compression by GM-Algorithm and Arithmetic Coding

8.4. Decompression Algorithm: Concurrent Fast Matching Search
Algorithm (CFMS-Algorithm)

The decompression algorithm represents theinverseofcompression usingCFMS-
Algorithm (cf. Section 7.4)to reconstruct vertices and meshconnectivity. First,
theCFMS algorithm isapplied to encoded block of vertices to reconstruct the
originalvertices as a point cloud. Second, theCFMS algorithm isapplied to each
encoded sub-array resulting in the reconstructed triangle mesh sub-array.Thereafter,
all the sub-arrays arecombinedto recover theincidence table of triangulated facesof the
3D model.Figure 8.4 shows the layout of the decompression algorithm.

The CFMS algorithm provides the means for fast recovery of both vertices and
triangulated meshes, which has been compressed by three different keys ( ) for each
three entries. The header of the compressed file contains information about the
compressed data namely and followed by streams of compressed encoded data.
The CFMS algorithm uses a group of binary search algorithmworking concurrently
(as mentioned in previous Chapter 7) and is illustrated through the following:

Triangle faces in 3D
object file

Scan all vertices locations
to convert matrix to 1D-

array

f 1 2 3
f 4 5 6
f 7 8 9
f 10 5 11
… etc

1 23
456
789
10511

… etc

Face = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11,…etc]

Face= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6,..etc].

Face divided into sub-arrays for coding

Sub-Face = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6, -2, -3, -1, -1, -3, -8, -11, -5, -1, -1, -1, -1, ..etc].

Encoded data by GM-Algorithm

-50.4, -50.4, -50.4, -223.8, -55.7, -367, -79.8, -50.4…etc

KU : -1, 5, -6, -2, -3, -8, -11, -5, ... etc

…

GM-Algorithm
Each three data compressed to single integer data

KC :0.1, 7.1, 43.2

Arithmetic Coding
(Stream of compressed bits

are generated)
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A) Initially, KU is copied three times to separate arrays to estimates coordinates (x,
x,z), that is x1=y1=z1, x2=y2=z2, x3=y3=z3 the searching algorithm computes all
possible combinations of x with KU(1), y with KU(2) and z with KU(3) that
yield a result R-Array.As a means of an example consider that KU(1)=[x1x2x3] ,
KU(2)=[y1y2y3] and KU(3)=[z1z2z3]. Then, Eq.(8.6) is executed 27 times to
build R-Array, as described in Figure8.5(a). A match indicates that the unique
combination of (x y z)are the coordinates of theoriginal vertex we are after.

B) A Binary Search algorithm is used to recover an original axes X, Y and Z[139].
The CFMS algorithm consists of k-Binray Search algorithms working
concurrentlyto reconstruct k blocks of verticesin the list of vertices, as shown
in Figure8.5 ( in same way as triangle faces are decoded byk-Binary Search
algorithms) (See Section 7.4).

To decode triangle faces and vertices it is necessary to reverse the differential process
of Eq. (8.2) by addition such that the original values are recovered. This process takes
the last value at position m, and adds it to the previous value, and then the total adds
to the next previous value and so on. The following equation defines the addition
decoder [137].

)()1()1( iAiAiA  (8.7)

Where i= m, (m-1), (m-2), (m-3),…,2

(a) Vertices (x,y,z) reconstructed
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(b) Triangle mesh reconstructed

Figure 8.4: (a) and (b): Parallel-FMS Algorithm applied on encoded vertices and encoded

triangle mesh

Figure 8.5: All Binary Search Algorithms run in Parallel to recover the sample of vertices,
approximately at same time.

Encoded Data - sub-array (1)

Encoded Data - sub-array (2)
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1   23
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789
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-4   0 -3   1 -2 -1   2 -4   0 -3..... 2 -4 ....  2
-4 0 -3 1 -2 -1 2
-4 0 -3 1 -2 -1 2
-4 0 -3 1 -2 -1 2

Ku1

Ku2

Ku3

-201.6 -173.2 -158.4 -130 -115.2  ... -0.4    ...           100.8

Apply Eq.(3) on all possibilities (X,Y and Z)
to generate R-Array linked with the relevant

-4 -4 -4 -4 -4 -4 -4    0    0    0..... 0 -3.....  2
-4 -4 -4 -4 -4 -4 -4 -4 -4 -4.....-4 -4 ..... 2

-201.6 -28.8 -158.4   14.4 -115.2 -72   57.6 -173.2 -0.4 -130
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-0.4
42.9
43

35.9
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8.5. Experimental Results

Experimentsare implemented in MATLAB R2013a and Visual C++ 2008 running on
an AMD Quad-Core microprocessor. We applied the compression and decompression
algorithms to 3D data represented in OBJ file format. Data in OBJ file format can be
generated by any software or device such as 3dsmax, CAD/CAM, 3D scanneror other.
Table 8.1 shows our compression algorithm applied to each 3D OBJ file, and Figure
8.6 shows the visual properties of the decompressed 3D object data for 3D images
respectively. Additionally, 3D RMSE are used to compare 3D original fileswith the
recovered files.TheRoot Mean Square Error (RMSE) is used to refer to 3D mesh
quality mathematically[119, 131]and can be calculated very easily by computing the
differences between thegeometry of the decompressed and the original 3D OBJ files.

Table 8.1. 3D data compression results

3D
object
Name

Original
file size
(MB)

Quantization
value

Compressed
file size

(KB)

No. of Vertices
(Compressed Size)

No. of Triangle faces
(Compressed size)

3D RMSE
(x y z)

Face1 13.3 10 213
105819

(187 KB)
206376
(26 KB)

0.288

Face2 96 10 3,700
621693
(1.8MB)

1216249
(1.9MB)

0.289

Angel 23.5 20 1,750
307144

(1.055MB)
614288

(715 KB)
0.288

Robot 1.5 400 88.9
23597

(56.3KB)
45814

(32.6KB)
0.289

Cup 0.057 2 3.5
594

(2.13 KB)
572

(1.36KB)
0.263

Knot 0.178 2
7.94 1440

(7.4 KB)
2880

(553 B)
0.027
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(a) (Top left) original 3D FACE1 object, (Top Right) reconstructed 3D mesh FACE1 without texture,
compressed size: 213 KB, (middle) original 3D mesh zoomed by Autodesk
application(bottom)reconstructed 3D mesh zoomed by Meshlab application.
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(a) (Top left) original 3D FACE1 object, (Top Right) reconstructed 3D mesh FACE1 without texture,
compressed size: 213 KB, (middle) original 3D mesh zoomed by Autodesk
application(bottom)reconstructed 3D mesh zoomed by Meshlab application.
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(a) (Top left) original 3D FACE1 object, (Top Right) reconstructed 3D mesh FACE1 without texture,
compressed size: 213 KB, (middle) original 3D mesh zoomed by Autodesk
application(bottom)reconstructed 3D mesh zoomed by Meshlab application.
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(b) (Top left) original 3D FACE2 object, (Top Right) reconstructed 3D mesh FACE2 without texture,
compressed size: 3.7 MB, (middle), original 3D mesh zoomed by Autodesk application, (bottom)

reconstructed 3D mesh zoomed by Meshlab application.
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(b) (Top left) original 3D FACE2 object, (Top Right) reconstructed 3D mesh FACE2 without texture,
compressed size: 3.7 MB, (middle), original 3D mesh zoomed by Autodesk application, (bottom)

reconstructed 3D mesh zoomed by Meshlab application.
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(b) (Top left) original 3D FACE2 object, (Top Right) reconstructed 3D mesh FACE2 without texture,
compressed size: 3.7 MB, (middle), original 3D mesh zoomed by Autodesk application, (bottom)

reconstructed 3D mesh zoomed by Meshlab application.
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(c) (Top left) original 3D Angel object, (Right left) reconstructed 3D mesh Angel at compressed size: 1.75
MB, (middle) original 3D zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by

meshlab application.

159

(c) (Top left) original 3D Angel object, (Right left) reconstructed 3D mesh Angel at compressed size: 1.75
MB, (middle) original 3D zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by

meshlab application.
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(c) (Top left) original 3D Angel object, (Right left) reconstructed 3D mesh Angel at compressed size: 1.75
MB, (middle) original 3D zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by

meshlab application.
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(d) (Top) original 3D Robot object, (bottom) reconstructed 3D mesh Robot,at compressed size: 88.9KB

(e) (Top) original and reconstructed 3D mesh cup, at compressed size: 3.5 KB, (bottom)original and
reconstructed 3D mesh Knot, at compressed size: 7.94 KB

Figure 8.6: (a – e) shows decompressed 3D objects by the proposed algorithms

Tables8.2 and 8.3 show a comparisonofthe proposed method with the 3D file formats
VRML, OpenCTM and STL. Wealso used a new simple fileformat referred here as
MATLAB format. This format savesthegeometry, texture and triangle faces as
lossless data, in separated matrices and all the matrices are collected into a single file.
We investigate this format obtaining compression ratios over 50% for most of 3D
OBJ files. In comparison, our approach uses aunique format to compress 3D files up
to98%; this is mostly dependent on the triangle face details.
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Table 8.2. Our approach compared with other encoding 3D data format according to compressed size

3D object
Name

Original
file size

Proposed
Algorithm

MATLAB
format

VRML
format

OpenCTM STL

Angel 23.5 MB 1.75MB 5.31 MB 23.2 MB 1.92 MB 29.2 MB
Face1 13.3 MB 213 KB 4.04 MB 9.19 MB 808 KB 9.84 MB
Face2 96MB 3.7MB 23.3 MB 47.7MB 3.7MB 57.9MB
Robot 1.5 MB 88.9 KB 449 KB 1.7 MB 151 KB 2.18 MB
Cup 57 KB 3.5 KB 12 KB 25.2 KB 3.24 KB 28 KB
Knot 178 KB 7.94 KB 23.6KB 95.4KB 14.2KB 140 KB

Total
Compressed Size 5.75 MB 33.12 MB 81.9 MB 6.57 MB 99.28 MB

Mean
Compression Ratio

95.7 % 75.3 % 39.4% 95.1 % 26.2 %

Table 8. 3. Our approach compared with other encoding 3D data format according to 3D RMSE

3D object Proposed Method MATLAB VRML OpenCTM STL
Angel 0.288 0 0.0002 44.86 46.32
Face1 0.289 0 0.00021 64.79 42.05
Face2 0.288 0 0.000109 82.23 43.44
Robot 0.289 0 0 0.0587 0.137
Cup 0.263 0 0.00000075 37.7 39.2
Knot 0.027 0 0.000105 47.65 12.62

8.6. Conclusion

This research has presented and demonstrated a new method for 3D data compression
and compared the quality of compression through 3D reconstruction, 3D RMSE and
the perceived quality of the 3D visualisation. The method is based on minimization of
geometric values to a stream of new integer data by theGM-
Algorithm.Meshconnectivity is partitioned into groups of data,whereeach group
iscompressed by theGM-Algorithm followed byarithmetic coding. We note that some
of the existing 3D file formats do not efficiently encode geometry and connectivity,as
a simple format developed in MATLAB showedhighercompression ratios than STL
and VRML. The results show that our approach yields high quality encoding of 3D
geometryand connectivity with high compression ratios compared toseveral standard
3D data formats. The slight disadvantage is a larger number of steps for
decompression, leading to increased execution time at decoding stage, making our
approach slower than the compared compression methods. Further research includes
investigation of methods to speed up decoding, possibly by sorting theR-Arrayentries
by frequency, and a comparative analysis with a larger number of 3D file formats and
compression techniques.
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Chapter 9

Conclusion and Future Work

9.1. Outcome of the Thesis

This thesis has investigated and demonstrated novel methods of data compression. We have
focused on 2D images and 3D data structures, but the methods are generic to be applied to
any kind of data. The techniques are based on applying a transformation (DCT/DWT/DST)
and build matrices of low and high frequency components to which quantization can be
applied. A main step of the method is the Matrix Minimization algorithm which converts
groups of data to a single value through a set of data-dependent keys. A set of unique data is
kept in the header of the compressed file to allow recovery of the original data. The unique
data can be used as an encryption key as without this information, the file cannot be
decompressed. This opens many opportunities for applications in the security domain.

A survey of previous work on 3D mesh compression is presented in Chapter 2. Chapter 3
introduces the Matrix Minimization algorithmwhich isapplied to 2D BMP images and results
show that the algorithmis very efficient at compressing high-frequency data (from the
transformed matrices). The thesis demonstrates through many experiments that theDCT and
DWT can successfully work together to increase the number of high-frequency and decrease
correlated low-frequency data. On these lines, we have demonstrated techniques to increase
the number of high-frequency data which are more susceptible to compression without
significant deterioration in quality. For instance, theDWT is used as a first transformation
todivide an image into four sub-bands,followed byDCT applied to correlated low-frequency
domain resulting in a split of this domain into new low-frequency and high-frequency
domains. This double transformation increases high-frequency data (i.e. the matrices are
ready for reduction by the Matrix Minimization algorithm).Finally, our work successfully
compressed 2D images at high compression ratiosup to98% reducing the data to 2 orders of
magnitude.Furthermore,we demonstratedalgorithms capable to reconstruct 2D structured
light images used for 3D reconstruction with decompression based on a Sequential Search
methodto reconstruct the original data.

In chapter 4, the JPEG algorithm is combined with a single level DWTtoreduce the number
of transformation steps (i.e. the transformation steps used in Chapter 3 are more complex than
the onesused in Chapter 4).Also,the searching methodat decompression stage was upgraded
based on a multi sequential search algorithm to speed up the process. The drawback ofthis
method is the complexity of the LSSalgorithm, leading to increased execution time due to the
interactive nature of the method.

In chapter 5 we discussed anenhanced compression algorithm by replacing random key
values with organized key values that would be more helpful incompressing high frequency
data. Also, zero values were removed from the high-frequency domains leading to



163

increasedcompression ratios. Additionally, we designed a new searchalgorithm,Fast-
Matching-Search (FMS-algorithm)to be used atdecompression stage. The algorithm is
designed to reconstruct a large matrix in a few microseconds and depends on a binary search
algorithm.It is demonstrated that the algorithm ismuch faster than the previous search
algorithms presented in Chapters 3 and 4.

In Chapter 6 we investigated the use oftwo transformations: DST with DCT applied tothe
same image. The method applied a DCT to each row of an image followed by DST applied to
each column. The final transformed image is quantized to increase high-frequencies followed
by dividing it into three regions. Two of theregions withhigher frequency domains are subject
to the Matrix Minimization algorithm. The FMS-algorithm is used for decompression as
described in Chapter 5. Results demonstrate the effectiveness of the approach both in terms
of compression ratios and image quality. Additionally, there are fewer transformation steps
than the approaches described in previous chapters.Furthermore, natural pictures are
compressed up to 97% with high quality level of details. However, the complexity of
thealgorithm means that it is slowerthan both JPEG and JPEG2000.

In chapter 7 we applied a single DCT over the entire image for compression with concurrent
multi binary search algorithm for decompression. The advantage of this method at
decompression stage is that it isfaster than a single binary search algorithm (FMS-
algorithm).Another advantage is that it uses different sizes of blocks (8x8, 10x10 or 16x16 or
any size up to 64x64) during DCT transformation.This algorithm was subject of a UK patent
application which was accepted by the UK Patent Office and published as international PCT
in September 2016[160]. Patent protection is now in the process to be extended to Europeand
US.

3D object compression based on Geometry Minimization algorithm (i.e. Matrix Minimization
algorithm applied to geometry data)is demonstratedin Chapter 8. The compression algorithm
is applied tothe list of vertices (x, y and z) to convert them into a single value without any
transformation (i.e. without use DCT, DST or DWT). Similarly, thealgorithm is applied to the
list oftriangulated faces for compression. Consequently, the results showaccurate 3D
reconstruction at higher compression ratios up to 97% within the set target of reduction of
data by 2 orders of magnitude. On the other hand, the disadvantage is the longer compression
and decompression times; execution times for 3D meshes are longer than for 2D
imagesbecause a3D mesh containslargenumber of vertices and connectivity data.
Furthermore, all data are compressed by the Geometry Minimization algorithm whose
decompression step is computationally demanding.

Table 9.1 shows acomparative analysis for each method as described in separate Chapters of
the thesis. The algorithms run on a computer withmicroprocessor: Quad-core AMD -2.4GHz,
SDRAM: 6GBytes and Hard Disk: 640GBytes.
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Table 9.1: Acomparative analysis between the proposed and demonstrated methods

Chapter
Algorithm

C:Compression
D:Decompression

Complexity
(No. of
steps)

Number of
Discrete

Transforms

Average
Execution time

(MM and
Searching
Method)

Average
Compression

Ratio

3
C:
D:

DWT+DCT+MM
SS-Algorithm

10 2 3—5 min 95% - 97%

4 C:
D:

DWT+JPEG+MM
BSS-algorithm

9 2 10—122 s 96% - 99%

5
C:
D:

DWT+DCT+MM
FMS-Algorithm

13 2 0.062—10 s 96% - 99.5%

6
C:
D:

DCT+DST+MM
FMS-Algorithm

7 2 0.1—10 s 95% - 99.4%

7
C:
D:

DCT+MM
CFMS-Algorithm

7 1 0.062—10 s 95% -99.5%

8
C:
D:

MM
CFMS-Algorithm

5 0 3min – 2h 75% - 96%

9.2. Discussion of Results

It is demonstrated that the proposedcompression algorithms are very attractive for 2D image
compression used in3D reconstruction from structured light.Theyexecute fastand are able to
accurately compress 2D images at higher compression ratios than JPEG and JPEG2000up to
99%as shown inChapters4 and 5. Additionally, we used anenhanced Matrix Minimization
compression algorithm (Chapter 6 and7) to compress a series of 2D images used for 3D
reconstruction. The results show that thecompression and decompression algorithms worked
successfully onthe series of 2D images with an average compression ratio of 99%. Also, we
compared our approach with both JPEG and JPEG2000techniques. The comparative analysis
presented in the various chapters of the thesis show thatour proposed methodsis superior to
JPEG for all type of images,while the JPEG2000 method is approximately equivalent or
slightly better than our approach for2D natural images. On the otherhand, our approach is
shown to be superior to JPEG2000 concerning compression ratios and quality of
reconstructed 3D mesh when applied to structured light images used in 3D reconstruction.

While in 3D mesh compression (Chapter 8) our approach is slow, the quality of the
reconstructed mesh is high when applied in a lossy fashion and perfect, as expected, in a
lossless way.The proposed 3D mesh compression compares favourably with other techniques
related to 3D mesh compression (i.e. STL, VRML and OpenCTM) in terms of file sizes.
However, the execution time for 3D meshes compression is slower than the
comparedtechniques.
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It is important to emphasize that theMatrix Minimization algorithmcanbe used inlossless and
lossy compression. The algorithm itself is lossless, as it combines three data items into a
single value. After decompression, the exact data is recovered which is RMSE=0 between the
original and recovered data. In the experiments demonstrated in this thesis, the Matrix
Minimization algorithm is used to compress discrete transformeddata normally in a lossy
way. This means that the original image data aresubject toa lossy transformation followed by
Matrix Minimization (i.e. lossless compression) of some data matrices.

9.3 Contributions to Knowledge

The main contributions to knowledge are discussed as follows.

 In this thesis, we proposeda new coding method for data compressionwhich is to convert
three items of data into a single value. Thisnew algorithm called Matrix Minimization
algorithm is experimentally demonstrated to compress 2D image data and 3D structures.
Theoretically, after a discrete transformation step,a2Dimage contains large numbers of
zeros spread over the image. The discerning feature of our proposed approach is to reduce
the image size and to reduce the number of zeros. The experimental results in this thesis
showed that our proposed method can increase compression ratios for an image up to
99.7% without much degrading image details (as described in Chapter 3,4,5,6 and 7).

 An importantfeature of the Matrix Minimization algorithm is that the algorithm itself is
lossless and can be used tocompress 3D mesh data without the need for a prior discrete
transformation (either lossy or lossless). A 3D mesh surface consists of vertices and
triangle faces and our novel approach proved the ability to directly compress each of
vertices and triangles independently according to the results showed in Chapter 8.

 Once the Matrix Minimization algorithm is applied, it is not possible to directly recover
the original data items from mathematical expressions, as this is a mathematically under-
determined problem. Various types of lossless decoding search methods are suggested
and successfully worked torecover the compresseddata. In chapter 3, a Limited Sequential
Search algorithm (LSS-Algorithm) was the first iterative method proposed in this thesis
and it is shown that it can recover image data but it is not fast. Other novel methods were
proposed and demonstrated such as the Fast-Matching Search algorithm (FMS) designed
as a fastest decoding method (as described in Chapter 5). We verified that the FMS-
algorithm can decode large amounts of matrix data in a few micro-seconds. This
compares very favourably with the LSS-algorithm that requires approximately 5-
10minutes todecode the sameamount of data.

 The thesis demonstrates methods to generate compression keys that depend on the data to
be compressed; a different file would generate a different set of keys. These keys range
from 24—192 bits. Furthermore, to be able to recover the compressed data by the Matrix
Minimization algorithm, we proposed to keep in the file header the set of unique data
(also referred to as probability data, or space domain data in the thesis). The set of keys
together with unique data can be defined as an encryption key for the file, as without this
set of data, the file cannot be decompressed.
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 Finally, the methods presented in this thesis can be defined as a per-file compression-
encryption. Each file will generate their own set of compression keys and their own set of
unique data. This feature enables application in the security domain for safe transmission
and storage of data. This is especially relevant in a cloud environment.

9.4. Future Work

The work presented in this thesis is by no means completed. There are further
transformations and combinations thereof that have not been used in connection with the
Matrix Minimization algorithm. Furthermore,the lossless Matrix Minimization algorithm can
encode different types of data for example audio and general text files. The following points
refer to the future research.

A) Partition the image into different non-overlapped blocks and each block is transformed by
theDiscrete Fourier Transformation (DFT). This will generate two different matrices Real
data and imaginary data, each of these matrices has their own quantization and each of these
blocks are coded by the Matrix Minimization algorithm. The real differences will be
apparentwhen we compare this new work with thepublished work in this thesis.

B) Exploit the Set Partitioning in Hierarchical Tree (SPIHT), as this algorithm embedshigh
frequency and quantization depending ontheset number of bits and number of DWT levels.
For this reason, the final transformed matrix is suitable for coding by theMatrix Minimization
algorithm.

C)Future work on 3D mesh compression involves compressing vertices and using the Fast-
Matching-Search algorithm toestimate triangle connectivity between three vertices, this
approachdepends on minimum error between vertices.

D) Another approach to 3D mesh compression involvescompressing geometry alone(i.e. the
set of vertices) and usethe Delaunay Triangulation method toestimate the connectivity
between vertices.

E)The Matrix Minimization algorithm described in this thesis converts three data items to
one. In future work, we planto convert six data items to a single value. This type of
conversion needs two level keys, to convert three data items into one followed by converting
each two-coded data to another new coded data set.

F) The most immediate priority is to develop novel methodsfor3D mesh compression. These
compression algorithmswill consist of: 1) Compress each six vertices to one single number,
keepingminimum information about originaldata.2) Compress each six of triangle faces using
the same method.
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Appendix A: Chapter 3

%Apply two stage Minimize_Matrix_Size Algorithm with DCT
% on the DWT for Image Compression

%%%% This type of search depends on the Limited Sequential Search Algorithm
%%% By Mohammed Mustafa Siddeq.....'
%%% Finished Work 25/7/2011

%%% Input :- "X" input image
%  "Fact" :- image quality = 0.02, 0.04, 0.06, 0.08, 0.1

% from MATLAB tool box....  "rice.png", "board.tif", "moon.tif", "coins.png"
%X = imread('coins.png');
%%%% from file...

clc;
X=imread('D:\Lectures\Images\2.bmp'); 'Image name..';
X=double(X);

%%%% Save decoded image in a file....%%%
file_wr='E:\Temp\t.bmp'; %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Needs='No'; % this option make the algorithm work with or without high-
frequency
%Example Needs='Ye' or Needs='No'
%'No' :- without High-frequencies
%'Ye' :- with High-frequencies
C_Size=3; % (Row) -> Number of bytes to be compress by DCT  %%%%%%%%%%%%%

OrSize=size(X); % original image size;

W_L=3; % weights length =2,3,4.

Fact=0.1; % this variable responsable for the image quality

%Wavelet filter name used for transformation..CoifN, dbN, symN,
%BiorN.N.....
Wavelete_Name='db3';

Color_=3;
%% Set color to [1,2,3] for RGB / set color to [0] for gray level...
if (Color_~=0)
[Y,U,V]=YUV_RGB(X); % YUV layers  for color images..
end;
if (Color_==0) IT=round(X(:,:,1)); end;% Gray level
if (Color_==1) IT=round(Y(:,:)); end;% Color layer 1
if (Color_==2) IT=round(U(:,:)); end;% Color layer 2
if (Color_==3) IT=round(V(:,:)); end;% Color layer 3
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[LL,HL,LH,HH2]=dwt2(IT,Wavelete_Name);

LL=round(LL);

%------------- Quantization....
Time_exe=cputime;

QL=max(IT(:));
Q=QL.*Fact;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:C_Size for j=1:C_Size QL1(i,j)=Q+j+i; end; end;
QL1(1,1)=10;

if (Needs=='Ye')
% if (Fact<0.1)
%  QL2=(QL*0.1)*2;
%  QL3=(QL*0.1)*2;
%  QL4=(QL*0.1)*2;
% else

QL2=(QL*Fact)*2;
QL3=(QL*Fact)*2;
QL4=(QL*Fact)*2;

HL=round(HL./(QL2)); LH=round(LH./(QL3)); HH2=round(HH2./(QL4));

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (Needs=='Ye')
%[THL,ReducedLH,LH]=SS_Algorithm(LH,4);
%[TLH,ReducedHL,HL]=SS_Algorithm(HL,4);
%[THH2,ReducedHH2,HH2]=SS_Algorithm(HH2,4);

%%% call by Visual C++ . NET
[ReducedLH,LH]=LSSalgorithm_VCCNET(LH);
[ReducedHL,HL]=LSSalgorithm_VCCNET(HL);
[ReducedHH2,HH2]=LSSalgorithm_VCCNET(HH2);

%[nonzeroLH]=Store_non_Zero_data(LH,128);
%[nonzeroHL]=Store_non_Zero_data(HL,128);
%[nonzeroHH]=Store_non_Zero_data(HH2,128);
end;
%%%%% Check if the Image matrix is color or grayscale %%%%%%%%%%%%%%%%%%%%
IT=0; IT=LL;
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Size_=size(IT);
HH=Size_(1);
WW=Size_(2);
%%---------------------------- Pad zeros on each row and column
%Save(1:HH,WW:WW+Block2)=0;     %% Pad zeros on the Row...
%Save(HH:HH+Block1,1:WW)=0;     %% Pad zeros on the Column...
%-----------------------------------

IT(HH+1:HH+C_Size,WW+1:WW+C_Size)=0;

%%%%%%%%%%%%%% Transformation by one-Dimensinal DCT %%%%%%%%%%%%%%%%%%%%%
Save(1:HH,1:WW)=0; % Store AC values in new matrix called AC-Matrix;

PL=1; % pointer to store DC values
T(1:C_Size,1:C_Size)=0;
iH=1; PL1=1;
while(iH<=HH)

jW=1; PL2=1;
while (jW<=WW)

for k1=0:C_Size-1 for k2=0:C_Size-1  T(k1+1,k2+1)=IT(k1+iH,k2+jW); end; end;

T=round(dct2(T)./QL1);

for k1=0:C_Size-1 for k2=0:C_Size-1   Save(k1+iH,k2+jW)=T(k1+1,k2+1); end;
end;

DC_M(PL1,PL2)=Save(iH,jW); % store DC values in new matrix "DC-Matrix"
PL2=PL2+1;
Save(iH,jW)=0;
jW=jW+C_Size;

end; %While.....
iH=iH+C_Size; PL1=PL1+1;

end;% While...
%%%%%%%%%%

%%%----------- Take differences between values at each column for AC-
Matrix......
S_=size(Save);
% -- Call function --- %% Second stage SS-A and DCT %%%%%%%%%%%%%%%%%%%%%
[Su2,Su3,Su4,Su5,DC_M]=SS_A_with_One_DCT(DC_M,3,Wavelete_Name);

% -------- Apply our Estimater Sequential Search Algorithm
%[Table,Su,Reconst]=SS_Algorithm(Save,W_L);
[Su,Reconst]=LSSalgorithm_VCCNET(Save);
Save=0;
Save=Reconst; % Return original data to matrix "Save"

Time_exe=cputime-Time_exe;

% -------------------------Data Compression -- Part
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[Code2,Header3,Header4]=Arith_Code(Su); % Compress reduced data
%[Code3,Header5,Header6]=Arith_Code(Header3); % Compress reduced data
S_=size(Su2); CodeSu2(1:S_(1)*S_(2))=Su2(1:S_(1),1:S_(2));
[Code4,Header7,Header8]=Arith_Code(CodeSu2); % Compress reduced data

%[Code5,Header9,Header10]=Arith_Code(Header7); % Compress reduced data

[A1,H1,H2]=Arith_Code(Su3); % Compress reduced data
[A2,H3,H4]=Arith_Code(Su4); % Compress reduced data
[A3,H5,H6]=Arith_Code(Su5); % Compress reduced data

if (Needs=='Ye')
if (max(ReducedLH(:))==0 && min(ReducedLH(:))==0)

Code_LH=0;
else

[Code_LH,T1,T2]=Arith_Code(ReducedLH);
end;

if (max(ReducedHL(:))==0 && min(ReducedHL(:))==0)
Code_HL=0;
else

[Code_HL,T1,T2]=Arith_Code(ReducedHL);
end;
if (max(ReducedHH2(:))==0 && min(ReducedHH2(:))==0)
Code_HH2=0;
else

[Code_HH2,T1,T2]=Arith_Code(ReducedHH2);
end;

CompSize=size(Code2)+size(Code4)+size(Code_LH)+size(Code_HL)+size(Code_HH2);
else

CompSize=size(Code2)+size(Code4);
end;

'Final Compressed Size ='
CompSize=CompSize+size(A1)+size(A2)+size(A3)

%'Header Size '
HSize=(size(Header4)+size(Header8))*16/8/1024

'Time execution :-'
Time_exe

'----------------------- Apply Inverse DCT on each array form "Save"'
iH=1; L1=1;
while (iH<=HH)

jW=1; L2=1;
while (jW<=WW)

for k1=0:C_Size-1
for k2=0:C_Size-1
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T(k1+1,k2+1)=Save(k1+iH,k2+jW);
end;
end;

T(1,1)=DC_M(L1,L2);
L2=L2+1;

T=round(idct2(T.*QL1));

for k1=0:C_Size-1
for k2=0:C_Size-1

IT(k1+iH,k2+jW)=T(k1+1,k2+1);
end;
end;

jW=jW+C_Size;
end; %While.....

iH=iH+C_Size; L1=L1+1;
end;% For...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%----------------------------------------------------------

S_=size(HL);
A(1:S_(1),1:S_(2))=IT(1:S_(1),1:S_(2));
HL2(1:S_(1),1:S_(2))=0;

if (Needs=='Ye')

HL=round(HL.*(QL2)); LH=round(LH.*(QL3)); HH2=round(HH2.*(QL4));

IT2=idwt2(A,HL,LH,HH2,Wavelete_Name);
else
IT2=idwt2(A,HL2,HL2,HL2,Wavelete_Name);

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DeI(1:OrSize(1),1:OrSize(2))=IT2(1:OrSize(1),1:OrSize(2));
imshow(uint8(DeI)); % show images
imwrite(uint8(DeI),file_wr); % image write on the disk

Appendix B: Chapter 4
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% DWT and JPEG Block Seqeuntial Search Algorithm
% Enhanced Minimize-Matrix-Size Algorithm for High Resolution 3D Surface
Reconstruction for Gery/Colour

clear; clc;
O =imread('D:\Lectures\Images\imageg3.bmp');
Str_save='D:\Lectures\Images\t.bmp';

blocksize=8; %Block size...2,4,8,16. This means block size 2x2 or 4x4 or
8x8...
Quantization_L_F=2; %quantization luminance

% Time execution....
Total_time=cputime;

[IT,C1,H1,H2]=DWT_JPEG_MMS_2(O,Quantization_L_F,blocksize);
imshow(uint8(IT));
imwrite(uint8(IT),Str_save);

'Compress size in Kbytes = '
Compress=(C1)/1024

'Image Quality'
% compute the quality
[RMSE, SNR,P_SNR]=Peak_SNR(round(IT),O);

RMSE

'Total Time execution is :'
Total_time=cputime-Total_time

----------------------------------------------------------------

function [IT,Compress_Data,H1,H2]=DWT_JPEG_MMS(x,quant_multiple,blocksize)
% combined JPEG with DWT for image compression (DWT-JPEG)
% by Mohammed Mustafa Siddeq
% 1/7/2012

%-----------------------------------------------------------------------
% INPUTS :\ Variables
% x: input image matrix....
% quant_multiple  : used for quantization...
% High_freq_value : used for high-freqeuncy quantization....

%---------quality for increase quantization value.....
%quant_multiple =4; % set the multiplier to change size of quant. levels

%clc; % clear all variables from previous sessions
x=double(x);
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wavele_Name='db3';
%----------------------

% Apply Single stage DWT ....
[A,V,H,D]=dwt2(x,wavele_Name);
A=round(A);

V=0; D=0; H=0; % in case of High-freqeuncies are ignored ......

%DCT_quantizer = [ 16 11 10 16 24 40 51 61;
% 12 12 14 19 26 58 60 55;
%                 14 13 16 24 40 57 69 56;
%                 14 17 22 29 51 87 80 62;
%                 18 22 37 56 68 109 103 77;
%                 24 35 55 64 81 104 113 92;
%                 49 64 78 87 103 121 120 101;
%                 72 92 95 98 112 100 103 99 ];

for i=1:blocksize
for j=1:blocksize

DCT_quantizer(i,j)=blocksize+(i+j);
if (DCT_quantizer(i,j)./3 ~= floor(DCT_quantizer(i,j)./3))
DCT_quantizer(i,j)=DCT_quantizer(i,j)+1;
end;
end;
end;
%%%%%%%%%--------------------------------------------

sz = size(A);
rows = sz(1,1); % finds image's rows and columns
cols = sz(1,2);
colors = max(max(x)); % guess at the number of colors in the image
%x(1:sz(1),sz(2)+1:sz(2)+blocksize)=0;
A(sz(1)+1:sz(2)+blocksize,sz(2)+1:sz(2)+blocksize)=0;

% Prepare image for transform
% Level-shift the image (center intensity values around 0)
A =A - ceil(colors/2);
% Replicate edges of image to make its dimensions a multiple of blocksize
L=1;

i = 0;
for j = 0: blocksize - 1
DCT_trans(i+1, j + 1) = sqrt(1 / blocksize) * cos ((2 * j + 1) * i * pi / (2
* blocksize));
end
% Create DCT function
for i =1: blocksize - 1
for j = 0: blocksize - 1

DCT_trans(i + 1, j + 1) = sqrt(2 / blocksize) * cos ((2 * j + 1) * i * pi
/ (2 * blocksize));
end
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end

% Apply DCT on each block from image.....
jpeg_img = A - A;
for row = 1: blocksize: rows
for col = 1: blocksize: cols
% take a block of the image:
DCT_matrix = A(row: row + blocksize-1, col: col + blocksize-1);
DCT_matrix = DCT_trans * DCT_matrix * DCT_trans';
DCT_matrix = floor (DCT_matrix./ (DCT_quantizer(1:blocksize, 1:blocksize) *
quant_multiple)+0.5);

jpegimg(row: row + blocksize-1, col: col + blocksize-1) = DCT_matrix;

%---------------------------------------------------------------------

end
end

% Zigzag for each sub-image 8x8
XZzag=blkproc(jpegimg,[blocksize, blocksize],'zigzag(jpegimg)');

[DC_Values,H_F]=Separate_DC_High(XZzag,blocksize*blocksize); % Seplit matrix
into DC and high-frequency matrix

% Applied Minimize-Matrix-Size Algorithm and Block LSS-Algorithm
[Arr,H_F_Est,Table]=Parallel_SSA_and_MMS(H_F);

% Combine DC values with reconstructed High-frequency matrix
[XZzag]=Combine_DC_High(DC_Values,H_F_Est,blocksize*blocksize);

[nonzero,count_zeros,matrix_size]=Count_Zeros_bewteen_Values(Arr);

%%%%%%%%%%%%%%%%%%% for Test %%%%%%%%%%%% Apply Minimize-Matrix-size
Algorithm on  "count_zeros" array
Key1=[0.27849,0.91337,0.12698]; %Key1=Key_generater(1,20,1);
[EData,Table]=Encryption_Coding_Minimize_Array_Algorithm(Key1,count_zeros);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this function is new idea for lossless data compression
H2=0; H1=0; [C1]=lossless_data_compression(nonzero);
[C2,H3,H4]=Arith_Code(EData);
SDC_=size(DC_Values);
DD(1:SDC_(1)*SDC_(2))=DC_Values(1:SDC_(1),1:SDC_(2));
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[C3,H5,H6]=Arith_Code(DD);

Compress_Data=C1+size(C2)+size(C3);

%--------- Begin of the Decompression ---------------------
% Apply invese DCT on each block
% apply inverse Zigzag on each block
XdctQRR=blkproc(XZzag,[1 blocksize*blocksize],'zigzaginv(x)');

reconimg = A - A;
for row = 1: blocksize: rows
for col = 1: blocksize: cols

IDCTmatrix =XdctQRR(row: row + blocksize-1, col: col + blocksize-1);

IDCTmatrix = IDCTmatrix ...
.* (DCT_quantizer(1:blocksize, 1:blocksize) * quant_multiple);

IDCTmatrix = DCT_trans' * IDCTmatrix * DCT_trans;

reconimg(row: row + blocksize-1, col: col + blocksize-1) = IDCTmatrix;
end
end

A_A = reconimg(1:rows, 1:cols);
A_A =A_A + ceil(colors/2);

'Reconstruct 2D Image------------------';
IT=idwt2(A_A,[],[],[],wavele_Name);

End % end of function
--------------------------------------------------------------

function [Arr,SAVE_Est,Table]=Parallel_SSA_and_MMS(SAVE)
% This function is used to Estimate SAVE matrix
%Key=[0.1 ,2.6, 17.6]; % Key used for Decoding....

%m=max(abs(SAVE(:)));
%[Key]=Key_generater(0.1, m, 2);

Key=[0.27849,0.91337,0.12698];

% compression part.....................................................
'Apply Minimize-Matrix-Size Algorithm'
S_=size(SAVE);
SAVE(1:S_(1),S_(2)+1:S_(2)+3)=0;
j=1;L=1; ArrS=round((S_(2)/3))*S_(1);
Arr(1:ArrS)=0;
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while (j<S_(2))
for i=1:S_(1)

Arr(L)=SAVE(i,j).*Key(1) + SAVE(i,j+1).*Key(2) + SAVE(i,j+2).*Key(3);
L=L+1;

end;
j=j+3;

end;
'compute Limited Data for SS-Algorithm'
%------------------Compute Table of Symbols
Data(1:S_(1)*S_(2))=SAVE(1:S_(1),1:S_(2));

Table(1)=Data(1);
S_AC=size(Data);
for jAC=1:S_AC(2)

S_2AC=size(Table);Flag=0;
for kAC=1:S_2AC(2)
if (Table(kAC)==Data(jAC))

Flag=1;
end;
end;
if (Flag==0) Table(S_2AC(2)+1)=Data(jAC); end;
end;

Table_Size=size(Table);
C=0;
while (C==0)
if (Table_Size(2)/10 == int32(Table_Size(2)/10))

C=1;
else

Table=[Table,0];
Table_Size=size(Table);

end;
end;

timeexec=cputime; % initlize the cpu time...
% Decompression part......................................................
'Apply Parallel LSS-Algorithm.....'
SAVE_Est(1:S_(1),1:S_(2))=0;
j=1; L=1;
while (j<S_(2))
for i=1:S_(1)

[Flag]=Block_SS_Algorithm_Test(Arr(L),Table,Key);
SAVE_Est(i,j)=Flag(1); SAVE_Est(i,j+1)=Flag(2); SAVE_Est(i,j+2)=Flag(3);
L=L+1;

end;
j=j+3;

end;
'Total time execution : Parallel Search Algorithm'
cputime-timeexec % show cpu time execution.....
end

---------------------------------------------------------------

function [Flag]=Block_SS_Algorithm_Test(Value,Limited_Data,Key)
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%Block Sequential Search algorithm
% this algorithm is applied on each 3 data from matrix.

%Value=2.4; % the compressed value....
%Key=[423 ,7, 0.1]; % Key used for Decoding....
% probability data of the compressed matrix.
Num_Pointers=10;
Len=Num_Pointers; % pointers are worked together to find the result
Limited_Size=size(Limited_Data);
%--------------------------------------------------------------------
% Assign 10 pointers working together to find the solution .......
Seg_1=Limited_Data; P_S1=1:Num_Pointers; %P_S1=[1 2 3 4 5 6 7 8 9 10]; %first
segment with 10 pointers
Seg_2=Limited_Data; P_S2=1:Num_Pointers; %P_S2=[1 2 3 4 5 6 7 8 9 10]; %
second segment with 10 pointers
Seg_3=Limited_Data; P_S3=1:Num_Pointers; %P_S3=[1 2 3 4 5 6 7 8 9 10]; %
third segment with 10 pointers
Flag=[0 0 0]; % in case if no matchs

while (Flag(1)==0 && Flag(2)==0 && Flag(3)==0)

k3=1;
while (k3<=Len && (Flag(1)==0 && Flag(2)==0 && Flag(3)==0))

k2=1;
while (k2<=Len && (Flag(1)==0 && Flag(2)==0 && Flag(3)==0))

k1=1;
while (k1<=Len && (Flag(1)==0 && Flag(2)==0 && Flag(3)==0))
Str=Seg_1(P_S1(k1)).*Key(1) + Seg_2(P_S2(k2)).*Key(2) +
Seg_3(P_S3(k3)).*Key(3);
if (Str==Value) Flag=[P_S1(k1) P_S2(k2) P_S3(k3)]; end;

k1=k1+1;
end;

k2=k2+1;
end;

k3=k3+1;
end;

P_S1=P_S1+Len; % incremet all pointers.... at same time
if (P_S1(Len)>Limited_Size(2)) P_S1=1:Num_Pointers; P_S2=P_S2+Len; end;
if (P_S2(Len)>Limited_Size(2)) P_S2=1:Num_Pointers; P_S3=P_S3+Len; end;
if (P_S3(Len)>Limited_Size(2)) P_S3=1:Num_Pointers; end;

end; % End loop
% put the final result on the flage.......
Flag(1)=Limited_Data(Flag(1));
Flag(2)=Limited_Data(Flag(2));
Flag(3)=Limited_Data(Flag(3));

end
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Appendix C: Chapter 5
% Novel 2D image Compression Algorithm by two-levels DWT-DCT with
% Enhanced Minimize-Matrix-Size Algorithm for High Resolution 3D Surface
Reconstruction
% for 2D Images

% By
% Mohammed M. Siddeq
% Sheffield Hallam University - C3RI
% Art Computing Engineering Science
% Research_NO_3

%----------------------------------- the main program ------------
clear; clc;
O =imread('D:\Lectures\Images\image2.bmp');
Str_save='D:\Lectures\Images\t.bmp';

% using Color Transformation ....
Color_Transform=1; % if "Color_Transform=1" this parameter allow to user
converts original image [RGB to YCbCr]
% else "Color_Transform=0" this parameter keep original data
blocksize=8; %Block size... 2,4,8..etc This means block size 2x2
or 4x4 or 8x8,..etc
Point_Theshold=64; % point threshold.....
Quantization_L_F=[2,5,5]; % quantization Low frequency

% Time execution....
Total_time=cputime;

% Processing Begin ....
if (Color_Transform==1)
Ycc_data = rgb2ycbcr(O); % Convert original image [RGB to YCbCr]

else
Ycc_data=O;

end;

%Time_exe=cputime;% Time execution started .....

O=double(O); S_=size(O);
'----- Pre-Processor ------------'
[Y,U,V]=YUV_RGB(O);

one_O=O(:,:,1);
two_O=O(:,:,2);

three_O=O(:,:,3);

one_O=reshape(one_O,1,S_(1)*S_(2));
two_O=reshape(two_O,1,S_(1)*S_(2));
three_O=reshape(three_O,1,S_(1)*S_(2));
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Pixel_ValueY=0; Pixel_ValueU=0; Pixel_ValueV=0;
LOC=find(U>=Point_Theshold);

if (size(LOC,1)<=128) % this condtion stop saving RED postions... if number
of pixels > 1000
for i=1:size(LOC,1)

Pixel_ValueY=[Pixel_ValueY,one_O(LOC(i))];
Pixel_ValueU=[Pixel_ValueU,two_O(LOC(i))];
Pixel_ValueV=[Pixel_ValueV,three_O(LOC(i))];
end;
end;

%---------------------- Compression and De-Compression Process
[IT,C1,H1,H2]=DWT_MMS_2(Ycc_data(:,:,1),Quantization_L_F(1),blocksize);
Decoded_Ycc_data(:,:,1)=IT(:,:);

[IT,C2,H3,H4]=DWT_MMS_2(Ycc_data(:,:,2),Quantization_L_F(2),blocksize);
Decoded_Ycc_data(:,:,2)=IT(:,:);

[IT,C3,H5,H6]=DWT_MMS_2(Ycc_data(:,:,3),Quantization_L_F(3),blocksize);
Decoded_Ycc_data(:,:,3)=IT(:,:);

%'Time execution....'
%Time_exe=cputime-Time_exe

Decoded_Ycc_data=uint8(Decoded_Ycc_data);
if (Color_Transform==1)
re_O= ycbcr2rgb(Decoded_Ycc_data); % Convert Decompressed image [YCbCr to

RGB]
else
re_O=Decoded_Ycc_data;

end;
%--------------Put the Cross-Pointes in exact location ------------------
S_=size(re_O);
one_O=re_O(:,:,1);
two_O=re_O(:,:,2);
three_O=re_O(:,:,3);

one_O=reshape(one_O,1,S_(1)*S_(2));
two_O=reshape(two_O,1,S_(1)*S_(2));
three_O=reshape(three_O,1,S_(1)*S_(2));

if (size(LOC,1)<=128) % this condtion stop putting RED poits in exact
locations... if number of pixels > 1000
for i=1:size(LOC,1)

one_O(LOC(i))=Pixel_ValueY(i);
two_O(LOC(i))=Pixel_ValueU(i);
three_O(LOC(i))=Pixel_ValueV(i);

end;
end;
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one_O=reshape(one_O,S_(1),S_(2));
two_O=reshape(two_O,S_(1),S_(2));
three_O=reshape(three_O,S_(1),S_(2));

re_O(:,:,1)=one_O;
re_O(:,:,2)=two_O;
re_O(:,:,3)=three_O;

%%-----------------------------------------------------------------------
imshow(re_O);
imwrite(re_O,Str_save);

'Compress size in Kbytes = '
Compress=(C1+C2+C3)/1024

'Image Quality'
% compute the quality
[RMSE, SNR,P_SNR]=Peak_SNR(re_O,O);
RMSE
P_SNR

'Total Time execution is :'
Total_time=cputime-Total_time

----------------------------------------------------------------------------

function [IT,Compress_Data,H1,H2]=DWT_MMS_2(x,quant_multiple,blocksize)
% combined DCT with DWT for image compression (DWT-JPEG)
% by Mohammed Mustafa Siddeq
% 13/5/2014

%-----------------------------------------------------------------------
% INPUTS :\ Variables
% x: input image matrix....
% quant_multiple  : used for quantization...
% High_freq_value : used for high-freqeuncy quantization....

%---------quality for increase quantization value.....
%quant_multiple =4; % set the multiplier to change size of quant. levels

%clc; % clear all variables from previous sessions
x=double(x);
S_=size(x);
%x(S_(1)+1:S_(1)+blocksize,S_(2)+1:S_(2)+blocksize)=0;

wavele_Name='db3';

LEVEL_DWT=2; % choose "1" or "2" represents number of levels..

Ratio_VV2_choose_by_user=0.3; % this ratio is used to remove some data from
second level in hight freqeuncies8
Ratio_DD2_choose_by_user=0.3;
Ratio_HH2_choose_by_user=0.3;
%----------------------
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nonzero_VV2=0; ZData_VV2=0; % initialize arrays before use it...
nonzero_HH2=0; ZData_HH2=0;
nonzero_DD2=0; ZData_DD2=0;

% Apply  DWT ....
[A,V,H,D]=dwt2(x,wavele_Name);

if (LEVEL_DWT==2)
[A2,VV2,HH2,DD2]=dwt2(A,wavele_Name);

M_A=min(A2(:));
A2=A2-M_A;
A2=round(A2/2);

%%%%%%
A=A2;%

%%%%%%

% Secnd level High-Freqeuncies.... each sub-band qunatized by using
ratio.....
Q1=max(abs(VV2(:))); Q1=(Q1*Ratio_VV2_choose_by_user)*(quant_multiple);
Q2=max(abs(HH2(:))); Q2=(Q2*Ratio_HH2_choose_by_user)*(quant_multiple);
Q3=max(abs(DD2(:))); Q3=(Q3*Ratio_DD2_choose_by_user)*(quant_multiple);

VV2=round(VV2/Q1); HH2=round(HH2/Q2); DD2=round(DD2/Q3);

%%%%% Each Qunatized sub-band and then minimized by Minimzation process
[VV2_Est,nonzero_VV2,ZData_VV2]=Reduce_Matrix_Size(VV2);

[DD2_Est,nonzero_DD2,ZData_DD2]=Reduce_Matrix_Size(DD2);

[HH2_Est,nonzero_HH2,ZData_HH2]=Reduce_Matrix_Size(HH2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else

M_A=min(A(:));
A=A-M_A;

A=round(A/2);
end; %% end if statement....

V=0; D=0; H=0; % in case of High-freqeuncies are ignored in first stage
......

for i=1:blocksize
for j=1:blocksize

DCT_quantizer(i,j)=blocksize+(i+j);
end;
end;
%%%%%%%%%--------------------------------------------
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sz = size(A);
rows = sz(1,1); % finds image's rows and columns
cols = sz(1,2);
colors = max(max(x)); % guess at the number of colors in the image
%x(1:sz(1),sz(2)+1:sz(2)+blocksize)=0;
A(sz(1)+1:sz(1)+blocksize,sz(2)+1:sz(2)+blocksize)=0;

% Prepare image for transform
% Level-shift the image (center intensity values around 0)
A =A - ceil(colors/2);
% Replicate edges of image to make its dimensions a multiple of blocksize
L=1;

i = 0;
for j = 0: blocksize - 1
DCT_trans(i+1, j + 1) = sqrt(1 / blocksize) * cos ((2 * j + 1) * i * pi / (2
* blocksize));
end
% Create DCT function
for i =1: blocksize - 1
for j = 0: blocksize - 1

DCT_trans(i + 1, j + 1) = sqrt(2 / blocksize) * cos ((2 * j + 1) * i * pi
/ (2 * blocksize));
end
end

% Apply DCT on each block from image.....
jpeg_img = A - A;
for row = 1: blocksize: rows
for col = 1: blocksize: cols
% take a block of the image:
DCT_matrix = A(row: row + blocksize-1, col: col + blocksize-1);
DCT_matrix = DCT_trans * DCT_matrix * DCT_trans';
DCT_matrix = floor (DCT_matrix./ (DCT_quantizer(1:blocksize, 1:blocksize) .*
quant_multiple)+0.5);

jpegimg(row: row + blocksize-1, col: col + blocksize-1) = DCT_matrix;

%---------------------------------------------------------------------

end
end

% Zigzag for each sub-image 8x8
XZzag=blkproc(jpegimg,[blocksize, blocksize],'one_dim(jpegimg)');

[DC_Values,H_F]=Separate_DC_High(XZzag,blocksize*blocksize); % Seplit matrix
into DC and high-frequency matrix
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%%%%%%%%%%%  Transform DC-Values by 2D-DCT %%%%%%%%%%%%%%%%%%%%%%%%%
minV=min(DC_Values(:));
DC_Values=DC_Values+abs(minV);

DC2=blkproc(DC_Values,[blocksize blocksize],'dct2(DC_Values)');
DC2=round(DC2);

DC2_ZigZag=blkproc(DC2,[blocksize blocksize],'one_dim(DC2)');

% This function is used to separate DC values from AC values
[DC_Values2,H_F2]=Separate_DC_High(DC2_ZigZag,blocksize*blocksize);

%this function is used to separate zeros from non-zero data

[nonzero_Arry_H,ZeroArr_H,matrix_size]=Count_Zeros_bewteen_Values(H_F2);

%%%%%%%%%  Inverse 2D-DCT for reconstruct DC-Values %%%%%%%%%%%%%%%%
DC2=blkproc(DC2_ZigZag,[1 blocksize*blocksize],'inv_one_dim(DC2_ZigZag)');

DC_Values=blkproc(DC2,[blocksize blocksize],'idct2(DC_Values)');
DC_Values=round(DC_Values)-abs(minV);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Applied Minimize-Matrix-Size Algorithm and Fast Matching Search Algorithm
Key1=[0,0.91337,0.12698];
[H_F_Est, ZData, nonzero1]=FMS_Algorithm(H_F,Key1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%

% Combine DC values with reconstructed High-frequency matrix
[XZzag]=Combine_DC_High(DC_Values,H_F_Est,blocksize*blocksize);

%%%%%%%%%%%%%%%%%%%%%-------- Data Compression Part %%%%%%%%%%%%%%%%%
% this function is new idea for lossless data compression
H2=0; H1=0; C0=0;
[C0]=lossless_data_compression(nonzero1);

if (min(ZData(:))~=max(ZData(:)))
[C1,H_11,H_22]=Arith_Code(ZData);

else
C1=0; H_11=0; H_22=0;

end;
%[C0,H_11,H_22]=Arith_Code(nonzero1);

SDC_=size(DC_Values2);
DD(1:SDC_(1)*SDC_(2))=DC_Values2(1:SDC_(1),1:SDC_(2));

if (min(DD(:))~=max(DD(:)))
[C2,H5,H6]=Arith_Code(DD);

else
C2=0;
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end;

if (min(ZeroArr_H(:))~=max(ZeroArr_H(:)))
[C3,H7,H8]=Arith_Code(ZeroArr_H);

else
C3=0;

end;

if (min(nonzero_Arry_H(:))~=max(nonzero_Arry_H(:)))
[C4,H9,H10]=Arith_Code(nonzero_Arry_H);

else
C4=0;

end;

if (LEVEL_DWT==2)
%%%%% Compress the second level sub-bands...

[C_non_VV2]=lossless_data_compression(nonzero_VV2);

if (min(ZData_VV2(:))~=max(ZData_VV2(:)))
[C_Z_VV2,H_11,H_22]=Arith_Code(ZData_VV2);

else
C_Z_VV2=0;

end;

[C_non_HH2]=lossless_data_compression(nonzero_HH2);

if (min(ZData_HH2(:))~=max(ZData_HH2(:)))
[C_Z_HH2,H_11,H_22]=Arith_Code(ZData_HH2);

else
C_Z_HH2=0;

end;

[C_non_DD2]=lossless_data_compression(nonzero_DD2);

if (min(ZData_DD2(:))~=max(ZData_DD2(:)))
[C_Z_DD2,H_11,H_22]=Arith_Code(ZData_DD2);

else
C_Z_DD2=0;

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end;
Compress_Data=(C0)+size(C2)+size(C1)+size(C3)+size(C4);

if (LEVEL_DWT==2)
Compress_Data=Compress_Data+(C_non_VV2+C_non_HH2+C_non_DD2);
Compress_Data=Compress_Data+( size(C_Z_VV2)+size(C_Z_HH2)+size(C_Z_DD2));
end;
Compress_Data=Compress_Data(2);
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%--------- Begin of the Decompression ---------------------
% Apply invese DCT on each block

% apply inverse Zigzag on each block
XdctQRR=blkproc(XZzag,[1 blocksize*blocksize],'inv_one_dim(x)');

% aply inverse DCT ....
reconimg = A - A;
for row = 1: blocksize: rows
for col = 1: blocksize: cols

IDCTmatrix =XdctQRR(row: row + blocksize-1, col: col + blocksize-1);

IDCTmatrix = IDCTmatrix ...
.* (DCT_quantizer(1:blocksize, 1:blocksize) * quant_multiple);

IDCTmatrix = DCT_trans' * IDCTmatrix * DCT_trans;

reconimg(row: row + blocksize-1, col: col + blocksize-1) = IDCTmatrix;
end
end

A_A = reconimg(1:rows, 1:cols);
A_A =A_A + ceil(colors/2);

% Apply Inverse DWT for decode 2D image ...
'Reconstruct 2D Image------------------';
if (LEVEL_DWT==2)

%% Normalize sub-bands size before apply inverse DWT...
s_VHD=size(A_A); VV2(:,:)=0; HH2(:,:)=0; DD2(:,:)=0;
VV2(1:s_VHD(1),1:s_VHD(2))=VV2_Est(1:s_VHD(1),1:s_VHD(2));
HH2(1:s_VHD(1),1:s_VHD(2))=HH2_Est(1:s_VHD(1),1:s_VHD(2));
DD2(1:s_VHD(1),1:s_VHD(2))=DD2_Est(1:s_VHD(1),1:s_VHD(2));

A1=idwt2((A_A*2)+M_A,VV2*Q1,HH2*Q2,DD2*Q3,wavele_Name);
IT=idwt2(A1,[],[],[],wavele_Name);

else
IT=idwt2((A_A*2)+M_A,[],[],[],wavele_Name);

end;
IT=round(IT);

End% End of Function
--------------------------------------------------------------

function [Decode_H_F, ZeroArr, nonzero_Arry]=FMS_Algorithm(H_F,Key1)
% Designed by
% Mohammed M. Siddeq
% date :- 24 - MAY.- 2014
% e-mail :- mamadmmx76@yahoo.com
%-----------------------------------
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%load 'SAVE_Data';
% start to cmpute time execution .....
Execution_Time=cputime;
%----------------------------------- Coding / Decoding working........

% initilize variables beofre use it
Keep_data_one_picea=1; % this option allow for the use to keep data (not need
to split ): all data in "nonzero_Arry"
%%%%%%%%%%%%%%%%%%%%%%%% in case of "Keep_data_one_picea=0" this means
%%%%%%%%%%%%%%%%%%%%%%%% split data to : Zero and Nonzero
nonzero_Arry=0;
ZeroArr=0;
Data_Length=3;
S_=size(H_F);
H_F(1:S_(1),S_(2)+1:S_(2)+Data_Length)=0;
%S_=size(H_F);
%Key1=[0.278498218867048, 0.913375856139019,0.126986816293506]; % random
number generated....
%MAX_V=max(abs(H_F(:)));
%Key1=Key_generater(0.1,MAX_V,2);
%Key1=[0.1, 0.3,0.6];
% Key1=[0.278498,0.91337585,0.1269868];

' Apply Minimize-Matrix-Size Algorithm.....(Coding / Compression)'

% compute the probability of the matrix for P1, P2 and P3
Table1=[]; %Table2=[]; Table3=[];

for i=1:S_(1)
L=1; j=1;

while (j<=S_(2))
S=(Key1(1).*H_F(i,j))+(Key1(2).*H_F(i,j+1))+(Key1(3).*H_F(i,j+2));
[Table1] = Generate_Limted_Data(Table1, H_F(i,j));
[Table1] = Generate_Limted_Data(Table1, H_F(i,j+1));
[Table1] = Generate_Limted_Data(Table1, H_F(i,j+2));
j=j+Data_Length;
MMS_H_F(i,L)=S;
L=L+1;

end;

end;

% this function separate zeros and nonzeros data in separated arrays, to be
% easy for coding by arithmetic coding.......

if (Keep_data_one_picea==1)
S_=size(MMS_H_F); nonzero_Arry(1:S_(1)*S_(2))=MMS_H_F(1:S_(1),1:S_(2));

else
[nonzero_Arry,ZeroArr,matrix_size]=Count_Zeros_bewteen_Values(MMS_H_F);

end;

%%%%%%%  End of Compression  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% After result of coding is : "MMS_H_F", "Table1"
%%%%%% Final result of Compression is: "ZeroArr" and "nonzero_Arry"
%%%%%%%%%%%%%%%%%%%%%%% -------------------------------------------------
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%.
%.
%.
%.
%.
%.
%%%%%%%%%%%%%% Decompression Algorithm by Fast Matching Search algorithm
(FMS-Algorithm)

Execution_Time=cputime;

' FMS-Algorithm started ....'
%'1- compute all posibilites of P1, P2 and P3'
%1) Built Array contains compressed data for the all probaility (i.e.
Tabl1,Table2 and Table3)
L=1; %test_find_postion(1:100)=0;
Data(1:size(Table1,2)*size(Table1,2)*size(Table1,2),1:4)=0;

for i=1:size(Table1,2)
for j=1:size(Table1,2)
for k=1:size(Table1,2)

s=(Table1(k).*Key1(1))+(Table1(j).*Key1(2))+(Table1(i).*Key1(3));
Data(L,1)=s; Data(L,2)=Table1(k); Data(L,3)=Table1(j);

Data(L,4)=Table1(i);
L=L+1;

end;
end;
end;

%'2- starting for matching and decoding at same time...'
% 2) Start sorting according to summation .....
Data=sortrows(Data);
S_=size(Data); test_find_postion(1:S_(1))=Data(1:S_(1));
%3) using binary search for looking for original data
S_=size(MMS_H_F); Decode_H_F(1:S_(1),1:S_(2)*3)=0;
for i=1:S_(1)

L=1;
for j=1:S_(2)

LOC=binary_search(test_find_postion,MMS_H_F(i,j)); % matching result ,
and find the postion
% put the original data in exact postions

Decode_H_F(i,L)=Data(LOC,2);
Decode_H_F(i,L+1)=Data(LOC,3);
Decode_H_F(i,L+2)=Data(LOC,4);

L=L+3;
end;
end;
' Time execution:(Sec.)'
Execution_Time=cputime-Execution_Time

end% End of function .....
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Appendix D: Chapter 6

%New Compression image method used by Cosine and Sine Transformation
% for high resolution 3D surface reconstraction
% Designed By : Mohammed M. Siddeq,
% C3RI - Sheffeid Hallam University
%        Sheffield - United Kingdom

% This porogram for Colour images.....
%----------------------------------- the main program ------------

clear; clc;
O=imread('D:\Lectures\Images\ImageG\11.bmp'); % read original image...
Str_save1='D:\Lectures\Images\ImageG\t.bmp';% decompressed image saved in
different name...

% Time execution....
Total_time=cputime;
Quantization_DCT=2;
Quantization_DST=1;

% Choose one of these algorithms
% function is compression and decompression at same time to show
%1) This algorithm compress each 3 data to 1 value.

[Compressed_Size,xp]=Cosine_Sin(O,Quantization_DST,Quantization_DCT);

'Compress size in Kbytes = '
Compressed_Size=Compressed_Size/1024

imshow(uint8(xp));
imwrite(uint8(xp),Str_save1);
'Total Time execution is :'
Total_time=cputime-Total_time

'Image Quality'
% compute the quality
[RMSE, SNR,P_SNR]=Peak_SNR(xp,O);
RMSE

----------------------------------------------------------------

function [Compressed_Size,xp]=Cosine_Sin(Im,L_DST,Q)
'Algorithm for DST with DCT working...'
%'1D-Cosine Transform with Sin Transform for Image compression... ';
%                  'By Mohammed Mustafa Siddeq';
% Input:\ image data = "Im"
%          scale quantization used in DST = "L_DST", limit- {1-10}
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%          uniform quntization used in DCT = "Q"  ,  limit- {1-10}
% Output:\ Decompressed image = "xp"
%          Compressed data ="C_"
%          Header compressed data = "Tab"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Low_Freq_Data=150; % this vasriable is used to keeps low frequency data

p(:,:)=double(Im(:,:,1));
%'----------------apply DCT ------------------------------------'
S_=size(p);

for i=1:S_(1)
j=1;Three(1:S_(2))=0;

while(j<=S_(2)-1)
for k=0:S_(2)-1 Three(k+1)=p(i,j+k);end;

Three=round(dct(Three)./Q);
for k=0:S_(2)-1 Savep(i,j+k)=Three(k+1);end;

j=j+S_(2);
end; %End while...
end; %End for.......

% ----------------------Quantization matix
SizeX=size(Savep);

Div_(1:S_(1),1:S_(2))=1;
for i=1:S_(1)
for j=1:S_(2)

Div_(i,j)=(i+j)*L_DST;
end;
end;

%-------------Apply DST ---------------------------------------------------
Savep=round(dst(Savep)./Div_);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DC_Matrix(1:Low_Freq_Data,1:Low_Freq_Data)=Savep(1:Low_Freq_Data,1:Low_Freq_D
ata);
Savep(1:Low_Freq_Data,1:Low_Freq_Data)=0;

[nonzero1,ZeroArr1,array_size1,datasize1,LOCi1,LOCj1,Limited_Data1] =
Coding_Half_Matrix(Savep);
if (max(nonzero1(:))~=min(nonzero1(:)))

[Comp2,H2,H_2]=Arith_Code(nonzero1);
[Comp3,H3,H_3]=Arith_Code(ZeroArr1);

else
Comp2=0; Comp3=0;

end;

Data(1:Low_Freq_Data*Low_Freq_Data)=DC_Matrix(1:Low_Freq_Data,1:Low_Freq_Data
);
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[Comp1,H1,H_1]=Arith_Code(Data);

Compressed_Size=size(Comp1,2)+size(Comp2,2)+size(Comp3,2);
%----------------End of the Compression -------------------------------------

%------------------------ Beginning of the Decompression
[Savep]=Decoding_Half_Matrix(nonzero1,ZeroArr1,array_size1,datasize1,LOCi1,LO
Cj1,Limited_Data1);
Savep(1:Low_Freq_Data,1:Low_Freq_Data)=DC_Matrix(1:Low_Freq_Data,1:Low_Freq_D
ata);
%'---------Inverse DST -------------------------------'
Temp(1:SizeX(1),1:SizeX(2))=Savep(1:SizeX(1),1:SizeX(2));
Savep=(idst(Temp.*Div_));
clear Temp;

%'----Inverse DCT--------------------------------------'
for i=1:SizeX(1)

j=1;Three(1:S_(2))=0;
while(j<=SizeX(2)-1)
for k=0:S_(2)-1 Three(k+1)=Savep(i,j+k);end;

Three=round(idct(Three.*Q));
for k=0:S_(2)-1 xp(i,j+k)=Three(k+1);end;

j=j+S_(2);
end; %End while...
end; %End While.......

% normalization ....
% for make size for the decompressed image same orignal image size...

xp=round(xp); S_=size(Im);
Im=0; Im=xp(1:S_(1),1:S_(2));

clear xp; xp=Im; clear Im;

%%%%%%%% save decompressed image and show it %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%imwrite(uint8(xp),MSAVE); %% used for grayscale images, or color
%show images.....
%imshow(uint8(xp));

End % End of Function
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Appendix E: Chapter 7

%Novel Compression image method used by DCT with Enhanced Minimized-Matrix-
Size Algorithmfor high resolution Colour Images
% C3RI - Sheffeid Hallam University
%        Sheffield - United Kingdom

%----------------------------------- the main program ------------

Program_working=1; % this oprion makes the program working as
% [0]- means woking as function
% under "main_series_2D_images_Compression_1.m"
% [1]- means the program work alone as manin program

USING_Real_Program=0; % this option make the user to use just simulation for
% compression and decompression. if "0" this means
% use simulation, "1" use real compression and decompression

if (Program_working==1)
O =imread('D:\Lectures\Images\2D_image_to_3D_obj\Statue\1.jpg');
Str_save1='D:\Lectures\Images\ct.MMS';
Str_save2='D:\Lectures\Images\cd.bmp';

end;

% using Color Transformation ....
Color_Transform=1; % if "Color_Transform=1" this parameter allow to user
converts original image [RGB to YCbCr]
% else "Color_Transform=0" this parameter keep original data
blocksize=64;%Block size... 2,4,8. This means block size 2x2 or 4x4 or 8x8
Quantization_L_F=[20,30,30]; % quantization Low frequency

% Time execution....
Total_time=cputime;

% Processing Begin ....

if (Color_Transform==1)
Ycc_data = rgb2ycbcr(O); % Convert original image [RGB to YCbCr]

else
Ycc_data=O;

end;

O=double(O); S_=size(O);
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%---------------------- Compression and De-Compression Process
if (USING_Real_Program==0)
[C1,IT]=Enhanced_DCT_MMS(Ycc_data(:,:,1),blocksize,Quantization_L_F(1));
Decoded_Ycc_data(:,:,1)=IT(:,:);
[C2,IT]=Enhanced_DCT_MMS(Ycc_data(:,:,2),blocksize,Quantization_L_F(2));

Decoded_Ycc_data(:,:,2)=IT(:,:);

[C3,IT]=Enhanced_DCT_MMS(Ycc_data(:,:,3),blocksize,Quantization_L_F(3));
Decoded_Ycc_data(:,:,3)=IT(:,:);

end;
%---------------------- Complete compression program saved data on a file....
if (USING_Real_Program==1)

[Compressed_Package_R]=Compress_Enhanced_DCT_MMS(Ycc_data(:,:,1),blocksize,Qu
antization_L_F(1));

[Compressed_Package_G]=Compress_Enhanced_DCT_MMS(Ycc_data(:,:,2),blocksize,Qu
antization_L_F(2));

[Compressed_Package_B]=Compress_Enhanced_DCT_MMS(Ycc_data(:,:,3),blocksize,Qu
antization_L_F(3));

Compressed_Package.Compressed_Package_B=Compressed_Package_B;
Compressed_Package.Compressed_Package_G=Compressed_Package_G;
Compressed_Package.Compressed_Package_R=Compressed_Package_R;
Compressed_Package.Color_Transform=uint8(Color_Transform);

%
save(Str_save1,'Compressed_Package');

end;
%---------------------------------------- End of Compression--------------

%----------------Complete Decompression program read data from compressed
file---
clear Compressed_Package;
clear Compressed_Package_R;
clear Compressed_Package_G;
clear Compressed_Package_B;
clear Ycc_data; % Clear memory before start...

if (USING_Real_Program==1)
Header=load(Str_save1, '-mat');
Compressed_Package=Header.Compressed_Package;
clear Header; % delete header from memory

Compressed_Package_B=Compressed_Package.Compressed_Package_B;
Compressed_Package_G=Compressed_Package.Compressed_Package_G;
Compressed_Package_R=Compressed_Package.Compressed_Package_R;

Color_Transform=Compressed_Package.Color_Transform;
[IT]=Decompress_Enhanced_DCT_MMS(Compressed_Package_R);
Decoded_Ycc_data(:,:,1)=IT(:,:);
clear IT; % delete "IT" from memory

[IT]=Decompress_Enhanced_DCT_MMS(Compressed_Package_G);
Decoded_Ycc_data(:,:,2)=IT(:,:);

clear IT; % delete "IT" from memory
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[IT]=Decompress_Enhanced_DCT_MMS(Compressed_Package_B);
Decoded_Ycc_data(:,:,3)=IT(:,:);

clear IT; % delete "IT" from memory
end;
%----------------------------------------Reconstruct image ---------------
Decoded_Ycc_data=uint8(Decoded_Ycc_data);
if (Color_Transform==1)

re_O= ycbcr2rgb(Decoded_Ycc_data); % Convert Decompressed image [YCbCr to
RGB]
else

re_O=Decoded_Ycc_data;
end;
%--------------Put the Cross-Pointes in exact location ------------------
clear Decoded_Ycc_data;
clear Compressed_Package;

%---------------------------------------

if (USING_Real_Program==0)
'Compress size in Kbytes = '

Compressed_Size=(C1+C2+C3)/1024
end;

imshow(re_O);
if (Program_working==1)

imwrite(re_O,Str_save2);
end;
'Image Quality'
% compute the quality

[RMSE, SNR,P_SNR]=Peak_SNR(re_O,O);
RMSE

'Total Time execution is :'
Total_time=cputime-Total_time

----------------------------------------------------------------

function [Compressed_Package]=Compress_Enhanced_DCT_MMS(I,Block_Size,R)

Compress_Time=cputime;
Diff=I;
%---- Apply DCT on the low freqeuncies....
S_=size(Diff);

Q(1:Block_Size,1:Block_Size)=0;
for i=1:Block_Size
for j=1:Block_Size

Q(i,j)=(i+j)*R;
end;
end;
% Create new matrix for transformation...
SAVE_Data(1:floor((S_(1)*S_(2))/(Block_Size*Block_Size)),1:Block_Size*Block_S
ize)=0;
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Diff(S_(1):S_(1),S_(2):S_(2))=0;
L=1; i=1; %Data(1:Block_Size*Block_Size)=0;
while(i<S_(1)-Block_Size)

j=1;
while(j<S_(2)-Block_Size)

Data(1:Block_Size,1:Block_Size)=Diff(i:i+Block_Size-1,j:j+Block_Size-1);
Data=round(dct2(Data)./Q);
D=reshape(Data,1,Block_Size*Block_Size);
SAVE_Data(L,1:Block_Size*Block_Size)=D(1:Block_Size*Block_Size);
L=L+1;
j=j+Block_Size;

end;
i=i+Block_Size;

end;

% Eliminate half of matrix
SAVE_Data(1:size(SAVE_Data,1),floor(size(SAVE_Data,2)/2):size(SAVE_Data,2))=0
;

D1(1:size(SAVE_Data,1))=SAVE_Data(1:size(SAVE_Data,1),1);
SAVE_Data(1:size(SAVE_Data,1),1)=0;

% reduce matrix size to half.... by elimiate most insiginficat information..(
less information high freqeuncies)
SAVE_Half=SAVE_Data(1:size(SAVE_Data,1),1:floor(size(SAVE_Data,2)/2)-1); %
save half of transformed matrix before coding...

[nonzero1,ZeroArr,array_size,datasize,LOCi,LOCj,Limited_Data] =
Coding_Half_Matrix(SAVE_Half);

% Compress the DC-Values....
S_2=size(D1);
D1(1:S_2(2)-1)=D1(1:S_2(2)-1)-D1(2:S_2(2));
[Compressed_Data1,H1,H12]=Arith_Code(D1);
[Compressed_Data2,H2,H22]=Arith_Code(nonzero1);
[Compressed_Data3,H3,H32]=Arith_Code(ZeroArr);
[Compressed_Data4,H4,H42]=Arith_Code(LOCi);
[Compressed_Data5,H5,H52]=Arith_Code(LOCj);

Compressed_Package.Compressed_Data1=uint8(Compressed_Data1);
Compressed_Package.H12=int32(H12);
Compressed_Package.H1=uint16(H1);

Compressed_Package.Compressed_Data2=uint8(Compressed_Data2);
Compressed_Package.H22=int32(H22);
Compressed_Package.H2=uint16(H2);

Compressed_Package.Compressed_Data3=uint8(Compressed_Data3);
Compressed_Package.H3=uint32(H3); Compressed_Package.H32=int32(H32);
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Compressed_Package.Compressed_Data4=uint8(Compressed_Data4);
Compressed_Package.H4=uint16(H4); Compressed_Package.H42=int32(H42);

Compressed_Package.Compressed_Data5=uint8(Compressed_Data5);
Compressed_Package.H5=uint16(H5); Compressed_Package.H52=int32(H52);

%%% Split the Limited-Data to KEY and Limited-Data

Compressed_Package.KEY=int64([Limited_Data(1),Limited_Data(2),Limited_Data(3)
,Limited_Data(4),Limited_Data(5)]);

Compressed_Package.Limited_Data=[];
for L=6:size(Limited_Data,2)

Compressed_Package.Limited_Data=int16([Compressed_Package.Limited_Data,Limite
d_Data(L)]);
end;

Compressed_Package.array_size=uint32(array_size);
Compressed_Package.datasize=uint32(datasize);
Compressed_Package.SAVE_Size=uint32(size(SAVE_Data));
Compressed_Package.Diff_Size=uint32(size(Diff));
Compressed_Package.Block_Size=uint8(Block_Size);
Compressed_Package.R=uint8(R);

'show Compressed time (sec.) by Arithmetic Coding and Block Transformation'
Compress_Time=cputime-Compress_Time

%%%% ---------------- END of Compression --------------------
end

Appendix F: Chapter 8
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% 3DPointCloud Data and Mesh Connectivity Compression by a Novel Geometry
Minimization Algorithm
% This program to Compress 3D Triangle faces (mesh)
% by using Minimize-Matrix-Size Algorithm
% under test.......
% 04 - Aug - 2015
% by Mohammed M. Siddeq
%-------------------------------------------------------
clear;

Path_='D:\Lectures\Images\Image3D\shape_3D\';
write_='test.obj';
read_='face_1.obj';
matlab_='face_1.mat';

% read/write 3D object file .....
sp=size(Path_);
write_to_path=Path_; write_to_path(sp(2)+1:sp(2)+size(write_,2))=write_;
Read_from_path=Path_; Read_from_path(sp(2)+1:sp(2)+size(read_,2))=read_;
mat_Path=Path_; mat_Path(sp(2)+1:sp(2)+size(matlab_,2))=matlab_;

% use this function if you like to read 3D OBJ file data
%[H,v,vt,f1,f2,f3]=read_3D_obj_file(Read_from_path);

% use this function when you have all variables in MATLAB...

load(mat_Path);

Diff=1; % This variable used to compute the differences
%[1]- between two adjacent data compute differences,
%[2]- compute differenes for each column,

Shift=10; % Quanize the vertices by using shift data left
% this option is allow to you change to Automatic shift
% or manual chnage. [0] - Auto Change, [1,2,3,..]- Manual Change
% [1,5,10,20,30,..10000] is number of postions to shift.
% work as factor

v=v*Shift;  v1=round(v);
xyz(1:size(v,1),1)=v1(1:size(v,1),1);
xyz(1:size(v,1),2)=v1(1:size(v,1),2);
xyz(1:size(v,1),3)=v1(1:size(v,1),3);
clear v1;

xyz(1:size(v,1)-1,1)=xyz(1:size(v,1)-1,1)-xyz(2:size(v,1),1);
xyz(1:size(v,1)-1,2)=xyz(1:size(v,1)-1,2)-xyz(2:size(v,1),2);
xyz(1:size(v,1)-1,3)=xyz(1:size(v,1)-1,3)-xyz(2:size(v,1),3);

% Compress Vertcies... my using MMS-Algorithm
[Decoded_v,Compressed_v,v_Table]=MMS_3D_SS_Algorithm(xyz);

i=size(Decoded_v,1);
while (i>1)

Decoded_v(i-1,1)=Decoded_v(i-1,1)+Decoded_v(i,1);
Decoded_v(i-1,2)=Decoded_v(i-1,2)+Decoded_v(i,2);
Decoded_v(i-1,3)=Decoded_v(i-1,3)+Decoded_v(i,3);
i=i-1;

end;
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% saved compressed vertices data in different file...
save(strcat(Path_,'Compressed_v.mat'),'Compressed_v','-mat');
%------------------End part one-------------------------------------------

%-------------------- Compress 3D Trinagles by using MMS-Algorithm
[Decoded_f1,CF,count,CF2,CF4,count2,CF5]=MMS_3D_Triangle(f1,Diff);

save(strcat(Path_,'Compressed_3D_Data.mat'),'CF','CF2','CF4','CF5','count','c
ount2','-mat');

% saved compressed Triangle faces data in different file...

% Last part ---------------Save vertices and triangle faces (just 3D mesh)
write_3D_obj_to_file(H,Decoded_v,[],Decoded_f1,[],[],write_to_path);

%-------------------------------------------------------------------------
% 3D RMSE computed between original cloude data and estmated data.
'3D RMSE for x,y,z vertices'
[RMSE, SNR,P_SNR]=Peak_SNR(v,Decoded_v);
RMSE

----------------------------------------------------------------

function [Decoded_f1,CF,count,CF2,CF4,count2,CF5]=MMS_3D_Triangle(f1,Diff)
%-------------------- Compute the Difference between Trinagles

if (Diff==1)
% first option for compute differences...
f1=f1';
Data_f1(1:size(f1,1)*size(f1,2))=f1(1:size(f1,1),1:size(f1,2));
Data_f1(1:size(Data_f1,2)-1)=Data_f1(1:size(Data_f1,2)-1)-
Data_f1(2:size(Data_f1,2));
end;

if (Diff==2)
% second option for compute differences...
f1(1:size(f1,1)-1,1)=f1(1:size(f1,1)-1,1)-f1(2:size(f1,1),1);
f1(1:size(f1,1)-1,2)=f1(1:size(f1,1)-1,2)-f1(2:size(f1,1),2);
f1(1:size(f1,1)-1,3)=f1(1:size(f1,1)-1,3)-f1(2:size(f1,1),3);
Data_f1(1:size(f1,1)*size(f1,2))=f1(1:size(f1,1),1:size(f1,2));
end;

%-------------------------------------------------------------------------
L=1; Threshold_value=30000; % this veriable used to remove big values
% save small values...........

Big_Data=0;
for i=1:size(Data_f1,2)
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if (abs(Data_f1(i))>=Threshold_value) Big_Data(L)=Data_f1(i); L=L+1;
Data_f1(i)=Threshold_value; end;
end;

Data_f1=reshape(Data_f1,size(f1,1),size(f1,2));

% in case if option worked.... else nothing happen
if (Diff==1)  Data_f1=Data_f1'; end;

[Decoded_f1,Compressed_f1,f1_Table]=MMS_3D_SS_Algorithm(Data_f1);

if (Diff==1) Decoded_f1=Decoded_f1'; end;
f1_(1:size(Decoded_f1,1)*size(Decoded_f1,2))=Decoded_f1(1:size(Decoded_f1,1),
1:size(Decoded_f1,2));

L=1;
for i=1:size(f1_,2)
if (f1_(i)==Threshold_value)

f1_(i)=Big_Data(L); L=L+1;
end;
end;

if (Diff==1)
i=size(f1_,2);

while (i>1)
f1_(i-1)=f1_(i-1)+f1_(i);
i=i-1;

end;

Decoded_f1=reshape(f1_,size(f1,1),size(f1,2));
Decoded_f1=Decoded_f1';

end;

if (Diff==2)

Decoded_f1=reshape(f1_,size(Data_f1,1),size(Data_f1,2));

i=size(Decoded_f1,1);
while (i>1)

Decoded_f1(i-1,1)=Decoded_f1(i-1,1)+Decoded_f1(i,1);
Decoded_f1(i-1,2)=Decoded_f1(i-1,2)+Decoded_f1(i,2);
Decoded_f1(i-1,3)=Decoded_f1(i-1,3)+Decoded_f1(i,3);
i=i-1;

end;
end;

%------------------------------------------------------------------------
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% Apply Arithmetic Coding ....
S_=size(Compressed_f1); CF=[]; CF2=[]; CF3=[]; count=[];

% if array size bigger than 1000 choose block size 100, else block size 10
if (S_(2)>=1000)

Block=100; pad=100;
else

Block=S_(2); pad=0;
end;

i=1;
while (i<(S_(1)*S_(2))-pad)

Block_f1(1:Block)=Compressed_f1(i:i+Block-1);
i=i+Block;

if (max(Block_f1(:))==min(Block_f1(:)))
A1=max(Block_f1(:)); A2=0; A3=0;

else
[A1,A2,A3]=Arith_Code(Block_f1);

end;
CF=[CF, uint8(A1)];
count=[count,uint8(size(A1,2)),uint8(size(A3,2))];
CF2=[CF2,int32(A3)];
CF3=[CF3,uint32(A2)];

end;
%-----------------------------
%count2=uint8(0); CF5=uint8(0);
S_=size(Big_Data); CF4=[]; CF5=[]; CF6=[]; count2=[];

Block=100; i=1;
while (i<(S_(1)*S_(2))-Block)

Block_f1(1:Block)=Big_Data(i:i+Block-1);
i=i+Block;

if (max(Block_f1(:))==min(Block_f1(:)))
A1=max(Block_f1(:)); A2=0; A3=0;

else
[A1,A2,A3]=Arith_Code(Block_f1);

end;
CF4=[CF4, uint8(A1)];
count2=[count2,uint8(size(A1,2)),uint8(size(A3,2))];
CF5=[CF5,int32(A3)];
CF6=[CF6,uint32(A2)];

end;
% just check if Big_Data didn't compressed.....
if (S_(2)==1) CF4=0; CF5=0; CF6=0; count2=0; end;

end % End of function....


