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Abstract

Datacompression techniques are widely usedin the transmission and storage of2D
image, video and 3D datastructures. The thesis addresses two aspects of data
compression: 2D images and 3D structures by focusing research on solving the
problem of compressingstructuredlight images for3D reconstruction.It is useful then
to describe the research by separating the compression of 2D images from the
compression of 3D data.Concerning image compression, there are many types of
techniques and among the mostpopular are JPEG and JPEG2000. The thesis
addressesdifferent types of discrete transformations (DWT, DCT and DST)
thatcombinedin particular ways followed byMatrix Minimization algorithm,which is
achievedhigh compression ratio byconverting groups of data into asingle value. This
is an essential step to achieve higher compression ratiosreaches to 99%. It is
demonstratedthat the approach is superior to bothJPEG and JPEG2000 for
compressing 2D images used in 3Dreconstruction. Theapproachhas also been tested
oncompressing natural or generic 2D imagesmainly through DCT followed by Matrix
Minimization and arithmetic coding.Results showthat the method is superior toJPEG
in terms of compression ratios and image quality, and equivalent to JPEG2000 in
terms of image quality.

Concerning the compression of 3D data structures, theMatrix Minimizationalgorithm
is usedto compressgeometry and connectivity represented by a listof vertices anda
list of triangulated faces. It is demonstrated thatthe methodcan compress vertices
very efficiently compared with other 3D formats.Here the Matrix Minimization
algorithmconverts each vertex (X, Y and Z)into a singlevaluewithout theuseof any
prior discrete transformation (as used in2D images) and withoutusing any coding
algorithm.Concerningconnectivity,the triangulated face data are alsocompressed with
theMatrix Minimizationalgorithm followed byarithmetic coding yieldinga stream of
compressed data.Resultsshow compression ratioscloseto 95% which are far superior
to compressionwith other3D techniques.

The compression methods presented in this thesis are defined as per-file compression.
The methods to generate compression keys depend on the data to be compressed.
Thus, each file generates theirown set of compression keys and their own set of
unique data. This feature enables application in the security domain for safe
transmission and storage of data. Thegeneratedkeys together with theset ofunique
data can be definedasan encryption key for the fileas, without this information, the
file cannot be decompressed.
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Chapter 1
Introduction

1.1. Introduction
In the lastdecade,we have seena large expansionin the way we communicate
through digital media, and still the processis in progress. Theenablersinclude a
growing Internetinfrastructurewith increased bandwidth, storage spaceand user
base; the explosive development of mobile communications; andthe increasing
importance ofimageandvideodata incommunication. Datacompression is one of the
technologies used to squeeze data size (i.e.image, video, and audio) to reduce
communication delaytimes. Websitesarenot restricted to images, they also contain
video and audioandfor this reason data compression algorithmsare required[1]. For
instance, smart phoneswould not be able to provide fast communication without data
compression.Digital TV cannot be realizedwithout data compression. Data
compressionis used inall domains, for example: make along-distancecall through
digital media requiresdata compression[2]. Other examples includefax, andlistening
to music on your player or watch a DVDrequiredata compression[3].

Data compressions algorithms are used to reduce theamountof data required to save
an image or a video or music.[3]. In brief, data compression is the art and science for
representing data in a compact form, thestructures that exist in the data, thesamples
of audio or image waveforms or numbers that are generated byprocessing[4].Data
compressionencodesinformation usedor generated in digital form (numbers
represented by bytes), and these numbersare used to representmultimediafiles. For
example, to represent 1 second of movie without compression (using the CCIR 601
format) it is requiredapproximately 20MB, or 160MB, for this reason we need to
compress each frame inthe movie.To represent 2 minutes of uncompressed music
(44,100 samples per second, 16 bits per sample) requires approximately 84Mb. To
downloading thisuncompressedmusic from a website,or streaming the same file,
longtimespans arerequired[3].

As any human activity has an influence on the environment, there is an increasing
needfor information about theenvironment to reduce harmful impacts. Variousspace
agencies from around the world, including the European Space Agency (ESA), the
National Aeronautics and Space Agency (NASA), the Canadian Space Agency
(CSA), and the Japanese Space Agency (STA), are co-operating on a program to
observe changes inthe global environmentthat generatemanyterabytes of data per
day; comparethis with 130 terabytes of data currently stored at the EROS data center
in South Dakota, which is the largest archive intheworld [5].

According to growth of data that needs tobe transmitted and saved, there is the
question ofwhy there is not a more concerted efforton developingsophisticated
transmission and storage technologies? This is happening, but still it is not enough.
Therehave been significant developments that allow transmitting and storing large
amountsof information without using compression, including CD-ROMs, optical
fibres, Asymmetric Digital Subscriber Lines (ADSL), and cablemodems [6].
However,asboth storage and transmission capacities increase with new technological
innovations, as a outcome to Parkinson€s FirstLaw: •Work expands so as to fill the
time available,‚ in Parkinson€s Law and Other Studies in Administration, by Cyril
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Northcote Parkinson, Ballantine Books, New York, 1957[7].It seemsthat the need for
mass storage and transmission increases at least twice as fast than storage and
transmission capacities.There are obvious physical limitations, such asthe amount of
information we can transmit over the airwaves will always beinfluenced by the
characteristics of theatmosphere[5] and the limitations of bandwidth capacity.

The main motivation for the research stems from the large size of 3D face meshes
generated by the GMPR 3D scan technologies[69] (around 20MB for geometry and
connectivity plus 4MB for texture mapping)which limited their intended application
in a security context.The GMPR technologies were tried in an airport scenario in a
confidential trial with the main outcome being the realization that the size of the data
files made the system unworkable. The idea was that each passenger was to be
scanned at check-in and again at the gates before boarding the plane. All data were to
be sent to the Police who had exactly 24 hours to perform background checking. If
needed, the Police could apply for judicial order to keep the data for longer, otherwise
all data had to deleted within 24 hours.If the plane were say, from London to New
York, all data would be sent to the Police in New York before taking off. The law
enforcement abroad would have the same limitations of keeping the data as the UK
Police.

Around 70 million passengers per year go through London Heathrow Airportand a
simple multiplication of two 3D scans per passenger by the required disk storage
clearly indicatesthe need forhuge bandwidth requirements totransfer data. Having
identified the bottleneck,the solution wouldrequire data compression ofat least 2
orders of magnitude, say a file of 24 MB be reduced to around 240 KB. From these
considerations, thefollowing research questionsare posed:

· Can a method be developed to efficiently compress geometry, connectivity and
textureby 2 orders of magnitude?

· Can the method be generic enough to be applied to any kind of data such as
text, video and audio?

To investigate the issue,the starting point must be2D image compression as the
GMPR 3D technologies are based on generating 3D meshes from 2D images.Even if
3D data are not generated by structured lighttechniques,2D images are used for
texture mappingof 3D models, thus, there is a clear requirement for2D image
compression. In the following sections, emphasis is placed on two popular and
standard image representation techniques namely JPEG and JPEG2000 that keep the
data in compressed format.Many otherrepresentationsexist such as BMP, PNG,
TIFF, GIF,and so on. Some are more efficient than others in terms of image size but
these will not be considered in this thesis for comparative analyses.The thesis focuses
on JPEG2000, which is the best and the standard method of image compression so
any proposedcompression technique should stake its case against JPEG2000, and on
JPEG, which is a popular standard technique for image and video coding.

1.2. Compression Techniques
When we talk about compression techniques or compression algorithms[8] we are
actually referring to two algorithms. There is the compression algorithm that takes an
input X and generates anew stream of dataxc that requires fewer bits, andthe
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decompressionalgorithm operates on xc to reconstruction Y. These operations are
shown in Figure 1.1.

Figure 1.1: Compression and Reconstruction

We will follow current understandingand refer to both the compression and
decompression algorithms to mean the compression algorithm based on the
requirements of reconstruction.Data compression programs can be divided into two
broad classes: lossless compression algorithms, in which Y is identical to X, and lossy
compression algorithms, which provide higher compression than lossless
compression, and the result Yis not strictly equalto X butnot much different[6, 10].

1.2.1. Lossless Data Compression
Lossless compression techniquesimply no loss of information. If data have been
lossless compressed, the original data can be recovered exactly asthe original data.
Lossless compression isgenerally used for applications like: texts, word documents,
executable files, and library documents used by computer programming languages
(i.e. C++, java or any machine languages)[11].

Text compression is an important area for lossless compression. It is very important
that the reconstruction is identical to the original text,evenvery small differences
between original and recovered datacan result in abig change in meaning.Consider
theoriginal text: •Do not send money‚ and receivedsentences:•Do now sendmoney‚.
If any kind of data are enhanced (after compression algorithm)they may yield
additionalinformation [12].For example, assume we compressed a radiological image
as lossytype, and the difference between the decompressed image and the original
image was visually negligible. If this imagewere later enhanced,it may cause the
appearance of artifacts that could delude the radiologist. Because the costcould be a
human life, it is important to be very careful about using a compressionmethod that,
after reconstruction,shows significantdifferences(large and small)from the original
image[13].

Data obtained from satellites areoften processed later to obtain numerical indicators
about our environment.If the reconstructed data are not approximately identical to the
original data, the result is enhanced data. In this caseit may beimpossible torecover
theoriginal data. Therefore,in processing satellite datait is normallynot allowed for
any differences or degradation to happenin the compressionprocess[14, 15, 16].
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There are many applications that requiredatacompression where the reconstructed
datamustbe identical to the original.However, there are also amyriadof applications
in which some data loss is acceptable and indeed,it is requirementtoobtain higher
compression ratios.

1.2.2. Lossy Data Compression
Lossy compression techniques lead to lossof some information, and data that have
been compressed generally cannot be recovered or reconstructed identically tothe
original.By accepting lossy in the reconstructed image, we can generally obtain much
higher compression ratios than is possible with losslesscompression[17].

In many applications, exact reconstruction is not necessary. For example, when
transmittingspeech or an image orvideo. Dependingon the quality required of the
reconstructed data,some reduction indataaccuracycan betolerated[18]. However, if
the reconstructed data needs to be ofhigh quality, the amount of information loss
must be controlled to low levels[19].

Once we havespecifieddata compressionrequirements, we need to measurethedata
compression-decompressionperformance. Performance is elusive as it can refer to the
perceived accuracy or some quantifiable parameter. This is sobecausein different
fields of application, different terms havebeen used to describe performance
measurements [20]. In this thesis we focus on the perceived quality, the compression
ratios, and the root mean square errors between reconstructed and original data.

1.3. 2D Image Compression
A digital image is a matrix of dots, arranged inn rows andmcolumns. The expression
[m n] represents the resolution of the image and the dots refer to pixels. The term
•resolution‚ is used to show the number of pixels per unit length of the image.
Therefore, dpi stands for dots perinch [21]. We can classify the images in the
following: [22, 23, 24]:

A. A monochromatic image.This simplest type of imagescontains two values
referring to black and white, each pixel represented by one bit.

B. A grayscale image. In this type of image pixel values arebetween 0 and 255,
andeach pixel is representedby a byte.

C. Colour image/natural image. This type of imageis similar to grayscale type,
but consist of three layers RGB (Red, Green and Blue), pixel values in each
layer between 0 and 255. A pixel in three layers canbe represented by 24-bit
[25]. When adjacent pixelsare slightly similar, it may be impossible for the
eye to recognize theircolour. This type of image can obtainedfor example,
from digital cameras. Figures 1.2showsa typical example of colour images
[3].

D. A graphical image.This type of imageis normally an artificial image: cartoon
or a graphthatcontains texts (obtained from Photoshop programs, or any paint
programs). It may have a fewcolours (not natural), free from noise or blurring
as appears in a natural image.

It is axiomatic that each type of image has redundancy in colour, but they are
redundant in different ways.Therefore, image compression algorithms cannot



�1�3

perform well acrossall imagesand different algorithmsare required to compress
different types of images[26]. There are also methods that break an image into parts,
to rendercompression easier[27].

Figure 1.2: (left) Lenaand details, this image is part of the Play- Boy centerfold for November, 1972,
(right) Mandrill and details,used as sample in MATLAB language for image processing test

The idea of lossy compression becomes more agreeable with digital images; this is
because the images are created by the following: 1) an image may be scanned from a
photograph and digitized (i.e. converted to pixels); 2) An image may be captured by a
digital camera that creates pixels and save them directly in memory; 3) An image may
be painted on the screen (i.e. paint software)[28].In all these cases, some data is lost
when the image is digitized.Normally the viewer accepts this loss of information if
done properly. Digitizing an image can be defined in two steps: sampling and
quantization. Sampling an image is the process dividingthe original image into small
regionsof pixels. Quantization is the process of assigning an integer value to each
pixel (i.e. thresholding)[29], for example, ifa pixel valueis greater thana threshold,
the pixelvalue changes, otherwise no action.

We present a simple process that can be used as a measurement to determine the
amount of data loss in a compressed image.For example,an original image Mis
compressedto T, and then decompress T to S, finally subtract V = SƒM. if the image
S is identical to original image M, then V should be uniformly black (V=0).
Ifsomedetails arelost during compression,V would beapproximately black[30] and
may be acceptable, depending on the application.

1.3.1. The JPEG Technique
The name JPEG is a shortcut that stands forJoint Photographic Experts Group. This
was a joint effort by the CCITT and the ISO (the International Standards
Organization) that started in 1987 and produced the first JPEG draft proposal in 1991.
The JPEG standard has proved successful and has become widely used for image
compression, especially in Webpages[21, 27,30].

JPEG is a lossy/lossless compression method for colour or grayscale still images. An
important feature of JPEG is itsuse ofparameters, allowing the user to adjust the
amount of dataquality or compression ratio. Often, the eye cannot see any image
degradation even at compression ratio more than 80%.For this reason, most
implementations support JPEG methodlossy mode [31,32,33].The main JPEG
compression steps are describedas follows:

A- Colour images are transformed from RGB into a luminance and chrominance
colour space (YCbCr format). The eye is sensitive to small changes in
luminance (Y) but not in chrominance (CrCb),so the chrominance part can
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later be compressedat high compression ratio, without losing muchvisual
quality [31]. Figure 1.3 shows the RGB conversion,the main reason for this
conversionis to achievehigher compression ratios.

B- Each layer in an image (Y or Cb or Cr)is divided into non-interleaved blocks
(8x8) pixels, and each blockis compressed separately. Ifthe image sizeis not
compatible with8×8 block, the bottom row and the rightmost column are
duplicated.To be compatible, the JPEG encoder holds all the blocks of the first
image layer, then the encoder operates on the second layer, and finallythe
encoder is applied on the third layer. If the user chooses maximum
compression ratio, blockartefactsappear in the decompressed image[31] as
shown in figure 1.4.

C- The Discrete Cosine Transform (DCT)is applied to each block to create new
8×8 datablock of frequency components.It contains low-frequency at the top
corner, while other values represent higher-frequency. The main advantage
ofDCT is de-correlate the data, and some data inthe right bottom are
negligible. This process increasesthe compression ratio,while another
advantage the reconstructed datais approximately similar to original dataas
thehuman eye cannot recognize thesedifferences[29].

D- Each of the 64 frequency components in a block is divided by a separate
number called quantization coefficient (QC), and then keeping an integer part.
This is whereoriginal information becomes irretrievable. Large QCs values
cause more losses.The JPEG compression algorithm implements aQC table
for luminance andadifferent QC table for chrominance components[28].

E- The 64 quantized frequency coefficients (integer values) of each blockare
scanned to one-dimensional array then encoded by a combination of RLE and
Huffman coding. An arithmetic coding different from Huffman coding known
as the QM coder[32, 33] can optionally be used instead of Huffman coding
[32]. Figure 1.5 shows JPEG steps to compress an image.

Figure 1.3: (Top) original image RGB, (bottom) RGB converted to three different layers YCbCr
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Figure 1.4: Lena's picturecompressed at bitrate 0.25, the artifact block appeared on the decompressed
image (picture zoomed-in 3 times)

Figure 1.5: Layout JPEG compression steps for one layer or grayscale image

1.3.2. The JPEG 2000 Technique
The current JPEG standard provides excellent compression performance at rates
above 0.25 bits per pixel. However, at lower rates there is a sharp degradation in the
quality of the reconstructed image. To correct this and other shortcomings, the JPEG
committee initiated work on another standard, commonly known as JPEG2000. The
JPEG2000 is the standard based on waveletdecomposition[34].The mainsources of
information on JPEG2000 areISO/IEC (2000), International Standard IS 15444-1[34,
36] the final committeedraft (FCD) released in March 2000. This document defines
the compressed stream (referred to as thebit stream) and the operations of the
decoder. It contains informative sections about the encoder, but any encoder that
produces a validbit streamis considered a validJPEG2000encoder. Followingis a
list of features JPEG2000 is expected to improve upon existing methods[35]:

A. High compression efficiency,bitrates less than 0.25 bpp are expectedwith
highquality images.

B. The abilityof DWT being appliedto large blocks of images orover the
complete image (The JPEGmaximum block size 8x8).

C. Progressive image transmission, the proposed standard can decompress an
image progressively.

D. The decoder candecompress part of an imageinside aROI (Region Of
Interest).
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To illustrateJPEG2000encoding algorithm, assumea colourimagethatis divided into
three componentsby converting RGB into YCbCr format. Each component is
partitioned into rectangular, non-overlapping regions calledtiles, and each are
compressed individuallyas illustrated in the followingfour steps[37]:

1- Compute a Digital Wavelet Transforms(DWT) the results issub-bandsof
coefficients LL (low frequency sub-band), LH, HL and HH are high-
frequenciessub-bands.

2- The waveletcoefficientsare quantized. This is done if the userspecifiesa
target bitrate. The lower the bitrate, most of high-frequenciesbecomezeros
(LH, HL and HH), roughlysimilar to quantizingthe wavelet coefficients[39].

3- It uses arithmetic codingtocompresseachsub-band coefficientsindividually
[37].

The EBCOT algorithm(Embedded Block Coding with Optimized Truncation) [38]
has been adopted for the encodingstep. Theprinciple of EBCOT is to divide each
sub-band intoblocks (i.e. code-blocks) that are coded individually. The bits resulting
from coding several code-blocks become a packet and the packets are the components
of thebit stream. The packets are used later bythe decoder to decode specified area
and skip other areas, thereby displayingtheROI. The packetbit streamis organized in
layers. Each layer containsimage information; therefore, decoding the image layer by
layer is a natural way to achieve progressive datadecompression[37, 40]. Figure 1.6
depicts thelayout of the JPEG2000 compression technique.

In summary,current experiments indicate that JPEG2000 performs better than the
previous JPEG, in still images at higher compression ratios or whenvery high image
quality isrequired[41].On the other hand, a decompressed image by JPEG2000
contains blurring at higher compression ratios, this is because multi-level DWT is
applied[43].Figure 1.7 shows Lena's image compressedby JPEG2000.
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Figure1.6: Two levels DWTdecompositionapplied oneach layer in acolour imageto create
six high-frequency coefficients matrices and one low-frequency coefficient matrix, each sub-
band compress independently.

Figure 1.7: Lena's picture compressed atbitrates0.25, the decompressed image zoomed-in 3 times.

1.4. 3D Surface Data
3D meshes maybe the most popular discrete virtual surface and volume
representation. Its simplicity makes it so popular today that electronicchips, called
GPUs (Graphical Processing Units), partially specialized in the rendering of images
from 3D meshesare integrated in all personal computers,and sometablets. However,
their datarepresentation takesa large amount of space[42].

3D meshes are used in manyapplication areasincluding computational simulation,
entertainment, medical imaging, digital heritage, computer-aided design, e-commerce,
etc.The need for precision is unstoppable,this leads to the generation of meshes
composed ofmanyelements,demandingprocessing,and complexvisualization and
storage.3D mesh compression has been an active research topic since the mid 90€s.
Because 3D meshes are normally large data files, it is important that good
compression methods are available for efficient storage andtransmission[44].

Two different methods exist for mesh compression: single-rate and progressive
approaches. The advantage of the single-rate methodsis that generallythey output
higher compression ratios. However, the reconstructedmesh isonly available when
all data aredecoded at the decompression stage[45,46]. The progressive approaches
are relevant;to cooperative visualization that requires fast data transmission, alsoa
progressive compressionapproachallows achieving high compression ratio and
produces different levels of detail. They provide the chance to obtain an unpolished
pattern (version of 3D meshthatneeds some enhancement) of the original object and
to polish it progressively until thelevels of details are the most suitable for the
terminal client[47, 48].
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A polygon mesh is defined by a set of vertices and by its triangle-face (incidence
graph). The vertexdescription involvesthree coordinates pervertex:x, y and z[49].
Incidence (sometimes referred to as •topology‚) defines each triangle-face by three
integer values that refer to itsvertices,asshown in figure 1.8[50,51]

�F�i�g�u�r�e� �1�.�8�:� �(�a�)� �v�e�r�t�i�c�e�s�(�b�)� �t�r�i�a�n�g�l�e� �f�a�c�e�s�,�(�c�)� �s�u�r�f�a�c�e� �t�o�p�o�l�o�g�y

Some mesh connectivityis said to be "regular" because they are collected together of
the repetition of the same pattern. In case of few/some elements of the meshdo not
havea regular connectivity, then the meshis called "semi-regular". When there is no
regular structure connectivity in the mesh, in this caseit is called "irregular"[51, 52].

Thereareseveral3D mesh structures, such asOBJ, VRML, X3D, COLLADA, etc.
These methodsare based on an indexed data structure. The first part of this structure
consistsof a list of all the vertices: X, Y and Z (coordinates) that also introduces an
ordering of the mesh vertices. The second part describes the connectivity of the mesh
consisting of a list of trianglesfaces. Each triangleis composed of three indices (i.e.
3-indices refer to 3 verticesin the3D mesh file).Suchdata structureformats have the
advantage of being simple. Additionally, most 3D mesh compression algorithms
depend on this structure as input[53, 54]. Figure 1.9 showsthe Wavefront€sobject file
structure as an example.In this section,we will divide 3D mesh surface compression
into two parts: (1) 3D mesh compression based on 3D data(2) 3D surface
compression based on 2D Bitmap image.

1.4.1. 3D Mesh Compression Based on 3D Data
3D mesh compression techniques are differentfrom compression methods forother
multimedia (e.g. images, video).The common point between images and videos is
that their structure is known (pixels value in an image are limited) by the compression
and thedecompression algorithm. While in 3D meshesthe connectivity is completely
unknown to the encoder before compression. So, besides compressing the geometry
(vertex positions), a connectivity structure mustalsobe encoded[55, 56].
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Figure 1.9:3D object triangle-face refers to indicesin vertex

A. Geometry Compression:Mesh geometry compression represents
compression the vertex coordinates, in most cases it islarger than the
connectivity information (triangle faces). Usuallythe compressionof the
geometry of a mesh begins with theQuantization of all the coordinates. Next,
in each compressionalgorithm iteration the position of anencoded vertex is
predicted.If the prediction is accurate, the prediction error is small so, it can be
laterefficiently codedby Huffman or Arithmeticcoding[57, 58].

A vertex coordinates are represented by 96-bit floating-point numbers. This
accuracy is not importantfor most 3D applications, in this case the
quantization can significantly reduce the amount of data to encode without any
distinguishable quality loss[59].The number of quantization bits usually
ranges between {8 and 16bits}, as accordingly, the mesh geometry softly
changed[60].

B. Connectivity Compression: The general principle for all connectivity
compression techniques is implementing a traversal to the mesh (vertices
connectivity) and output a table of symbols depending on the
configurations[61]. The main point in the traversal, defines anew set of
numberingsfor the mesh, different from the one used in the input indexed data
structure[62]. The generated symbols are encoded by Huffman coding or
Arithmetic coding[63].

3D meshconnectivity compressionrequires high computational capabilities.
The GPUs (Graphic Processor unit) can be usedtoprocessa 3D mesh in
parallel[64]. An optimized method to transfer mesh data can significantly
decrease processing timesuch as the use oftriangle strips.Thesestrips are
transferred from main memory to GPU memory. Triangle strips can be defined
by a sequence of vertices, where a new vertexis addedto atriangle strip
created with two previous vertices. This methodis much more efficient than
the indexed representation that requires three vertices to encode eachtriangle
[65,66, 67].

Index
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1.4.2 3D Mesh Compression Based on 2D Image
Still high-qualitycameras and imaging sensors are ableto obtaingood2D images, but
these images do not contain full 3Dobject representation, because depth information
is absent. This restriction limits our ability toextrapolate from a 2D image to a3D
surface. The last two decades characterized significant progress in research related to
3D surfacesthrough developed and commercialized 3D imaging techniques. This
encouraged 3D applicationsthat, in turn,demand high resolution and high speed
electronic imaging systems[69].

3D images refer to techniques that are capable to obtaining 3D data (i.e. such as
distributionof density for 3D object).Surface imaging measures the coordinatesof an
object€ssurface (i.e. measurement points x,y,z).Sincethe surfaceis normallynon-
planar the result of the measurement isa 3D surface imagethatcan be described as a
three dimensional matrix (i.e. first layer contain coordinates: x,y. while second layer
contains depth z)

A general 3D surface imaging systembased on structured lightor laser scanning
canestimatea scalar valuerepresenting the depth fromsurface reflectance. Each point
in the non-planar surfaceis represented as point cloud Pi (i.e. Pi= xi, yi, zi and
f i)wherefirepresents a colour atthei-th pointin the surfaceas shown in Figure 1.10.

The GMPR group has developed and patented new 3D scanning methods at Sheffield
Hallam University[70, 71] based on structured light. The methods convert a single
image into a 3D surface by processing the light patterns in the image. The scanner
processes apattern of projected stripes on the target object. The shape of the captured
pattern is combined with light source and the camera, to determine the 3D position of
the surface along the pattern[72] as showed in the Figure 1.11. The system can work
in real time enabling the concept of 3D CCTV to be implemented[73]. The issue is
the massive amount of generated data which is addressed in this thesis.
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Original object            2D image with structure-lights            3D data created

Figure1.10: (Top) shows projector used spotlight on an objectandcameraused tocapture2D image
for anobject with patternslights (structured lights) as a 2D image, (bottom) shows an example the 2D
image converted to 3D object data.

Fig. 1.11: (left) 3D scannerconvert any object to 2D bitmappattern image, (middle) 2D image
captured by 2D camera on the top of the 3D scanner, (right) 3Dmeshcreated by software developed by
GMPR[70].

1.5. Aims and Objectives
In this section,we will mention how our proposed methodis used in 2D images, 3D
from structuredlight data and general data. Our proposed method focuses on reducing
the amount of datato 2 orders of magnitude compared to standard uncompressed data.

Becausethere aremanykinds of data(images, text, audio, video, 3D, etc.), the steps
described byour approach differdepending on the type of data. For example, 2D
images need discrete transformationsbefore coding, while in 3D mesheswe do not
necessarily apply discrete transformations to reducethe numberof vertices. Andfor
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other types of the datathe methoddepends on redundantdataand the relationship
between data neighbours.

The purpose ofthe proposedmethodis to combine groups of data toa single value.
Before we apply our proposed method, wemust analysethe data (i.e. image or 3D
data or text, or other type). Because some data cannotcompressed without somepre-
processing, as an example an image must be transformed before applying our
proposed approach.In lossy compression, redundant vertices from3D data are
reducedbeforeapplying our proposed approach.Lossy compression allows for more
flexibility on the number and type of transformations we can use before applying the
main steps of theproposed compression method.

In losslesstext data compression, our approach canbe applied directly to the
data.Inthatcase, the compression ratio for a text file will not bevery high, so it is not
possible to reduce this type of data by 2 orders of magnitude. For this reason we can
apply some lossless pre-process (i.e. RLE)[3]to reduce the amount of data followed
by our proposed method to increasethecompression ratio.

The aims of this thesis are toinvestigate andimprove compression ratios and image
quality in the context of 3D reconstructionplacing in the context of current
technologies. The quantitative target is reduction in file size by 2 orders of magnitude
with acceptable quality parameters.The quality ofdecompressed imageis computed
by the Root-Mean-Square-Error (RMSE) technique for both 2Dimages and 3D
surfaces. Also the Human Visual System (HVS) is used as a measure of image quality
(i.e. it depends onhuman visual perception, as pure arithmetic is not a sufficient
measure of quality between decompressed and original image data). The objectives of
PhD research are highlighted in the following steps:

A) Investigate discrete transformations and theircombination for digital image
processing, assessing their combined effects on compression and
decompression. The principle of operation we are pursuing is that in data
compression, the discrete transformation should divide an image into low and high
frequency bands. In case the number of high frequencies is increased, the
compression ratio will increase. Additionally, some of the less significant high
frequency coefficients can be neglected by quantization. The aim of the
transformation is thus, to separatelow frequencies from high frequencies.
Similarly, low frequencies are subject to a possibly different or same type of
transformation. By increasing the number of high frequency coefficients, higher
compression ratios are obtained. Thereafter, a single type of discrete
transformation is applied to the image and compared with a multi-level discrete
transformation appliedto the same image. Moreover, it is an objective of the
dissertation to adapt the same transformations or sequence of operations to
directlycompress 3D geometry data.

B) Investigate and develop novel ways to exploit wavelet decomposition to
various areas of an image for efficient compression. For example, by applying
a two-level DWT decomposition: LL2, LH2, HL2 and HH2 on a 2D image, and
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then using quantization processin LL2 to generate new low-frequency
coefficients (LL2quantized) sub-band. Furthermore, exploit the MatrixMinimization
algorithm applied to high frequency matrices. The advantage of theMatrix
Minimization algorithmmethod is that it decreases the matrix size to 1/3 of its
original size and increases the compression ratio. The main reason for using the
Matrix Minimization algorithmis because we have many matrices that must be
reduced before using a coding algorithm.Additionally, Matrix Minimization
algorithmapplied tovertices in3D geometry datato show the ability our method
to compress 3D mesh surface.Firstly, the differences computed between each two
vertices, and then our method applies to convert each 3 data to single value.

C) Develop novel methods and algorithms for accurate decompression of high
frequency matrices. For instance, the Limited-Sequential Search Algorithm (LSS
Algorithm) is used to decompress high frequency matrices. The LSS algorithm is
a searching method used to find the original data matrix through space search (i.e.
using a table that contains minimum and maximum values of the original matrix
before compression).The LSS algorithm searches for the original data sequentially
using the table (i.e. decode the original high-frequency matrix). So, this algorithm
represents the inverse of theMatrix Minimization algorithm. If no search
algorithm is used, it is not possible to decode the matrices and thus, not possible to
decompress the 2D image/3D surface. Furthermore, we propose to develop this
algorithm into aBlock-Sequential-Search Algorithm, which represents two or
more LSS-Algorithm working together and synchronize their results to speed up
the searching method.

D) To perform a comparative analysis of performance with standard
compression algorithms for image and data structures.JPEG and JPEG2000
represent the most popular image and video compression techniques. These two
techniques willbe compared with the proposed algorithms. The comparison will
bebased on compression ratios and image qualitythrough RMS error and HVS.

1.6. Contribution s to Knowledge
The expectedcontributions to knowledge from this thesis can be summarized as
follows:

· A Matrix Minimization algorithm encoding/compressing each group of
data items into a single value.

· A method to generate a data-dependent set of compression keys. The keys
are used both for compression and decompression of data.

· A method to define the space domain of search (unique data) that is also
data dependent. The set of unique data can beseenas a compression-
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encryption key. Without the set of unique data, the file cannot be
decompressed.

· An iterative method to recover the original datamaking use ofthe
compressionkeys and the unique data set. Iteration is required as there is
one equation for 3 variablesin the demonstrated examples, which is a
mathematically underdetermined problem.

Concerning the compression step, thethesis is focused on theMatrix Minimization
algorithm. The algorithmis based on merging a group of data (normally three data
itemsused in this thesis) toa single value. The algorithmis used to reduce thenumber
of high-frequency components. In other words, as the high-frequency matrices' size
are reduced there is a correspondingincreasein thecompression ratio.

The Matrix Minimization algorithm is based on keys (three different keys are
suggested in this thesis).Thesekeys are usedfor encoding/compression (See Section
1.7.2), and willbe use later in the decompression algorithm.Furthermore, during
encoding bythe Matrix Minimization algorithm, the spacesearch iscreatedto
determinethe minimum and maximum boundariesof the coded data. Our proposed
decompression algorithm uses this spacesearch for fast decoding (See Figure 1.15)

Concerning the decompression step, the thesis is focused oniterative decoding
algorithmsthat are applied to recover the original matrices.These are normally
matrices of high-frequency coefficients but the method is valid for any matrix or
vector that has been coded by the Matrix Minimization algorithm.Because the
decompressionalgorithms rely on iterative search, there are various optimization
techniques that can be used. Some are exploredin this thesis, suchas the Limited
Sequential Search algorithm (LSS-Algorithm), which is used torecoverthe original
data as illustrated in section 1.7.4.

1.7. General Research Methodology
This section describes thegeneralmethodological approach and main ideas to be
developed into a PhD dissertation in image and data compressionwith specific
examples. Many different algorithms were developed and are demonstrated in
Chapters 2„ 8 with the general methodology described here. The method depends on
the use of discrete transformations to generate two types of matrices namely a low and
a high frequency matrix. Subsequently, theMatrix Minimization algorithmcodes the
high frequency matrix reducing it to 1/3 of its original size. This reduced matrix is
then subject to arithmetic coding. Also, the Limited-Sequential-Search algorithm is
ill ustratedas a search method for decoding high-frequency matrices. Figure 1.12
shows a dataflow of the proposed compression methods.

1.7.1. The Use of Digital Signal Transformations
The starting point in thisresearchis the use of one or more types of transformations
(i.e. DCT/DWT/DFT). The main objective from the digital transformation is to
decompose the data into low and high frequency matrices. It is important to note that
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the digital transformation can also be applied to the previously obtained low-
frequency matrix, this willincrease the number of high-frequencies that can be
subsequently eliminated. This process will be investigated by using two different
types of digital transformations. As discussed above, a DWT divides an image into
four sub-bands, three of them high-frequency sub-bandslabelled "LH", "HL" and
"HH", and the last one is the low-frequency sub-bandlabelled"LL". In this stage the
"LL" sub-band data are quantized. The value of the quantization could be selected by
a user/programmer. The dimensions of "LL" and data size are not appropriate for
compression without excessive deterioration in quality. For this reason, another
transformation is used for reducing the size of "LL" and increase the number of high
frequencies that can then be safely quantized, compressed or discarded[42, 43].

The second type of transformation is applied to the low-frequency sub-band by
dividing it into blocks (i.e. block size 2x2 / 4x4 / 8x8…etc.), and then one of the
digital transformations are applied (i.e. DWT/DCT/DFT) on each block. Each block
consists of aDC component and high frequency coefficients. The DC component
from each block is stored in a new matrix calledDC-Matrix. The dimensions of this
matrix are much smaller than "LL", while, high-frequency data are stored in a new
matrix called AC-Matrix. After this process, theAC-Matrix is ready for coding by the
Matrix Minimization algorithm. The DC-Matrix can be transformed again (i.e. apply
DWT/DCT/DFT) to increase the number of high-frequency coefficients. Following
the transformation,the DC-Matrix consist of: 1) high frequency coefficients, which
can be coded by theMatrix Minimization algorithm, and 2) all DC-values, which are
approximately similar, and thus the differences between DC-values are small and
amenable to compression by arithmetic coding[42].

1.7.2. The Matrix Minimization algorithm Applied to High Frequency
Matrices

Each high frequency matrix (i.e. LH, HL, HH, and AC-coefficients) are compressed
by our Matrix Minimization algorithm. This method converts three items of data or
more into a single value. This is achieved by using a random key. For example:

Original_data = [1 0 0 0-2 0]

Key = [ 0.8147, 0.9058, 0.1270]

Which results in the minimized data illustrated as follows:

Data1=[1*0.8147 + 0*0.9058 + 0*0.1270] = 0.8147,

Data2=[0*0.8147 + (-2)*0.9058 + 0*0.1270]=-1.8116.
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Figure 1.12: Proposed steps for2D image compression

The final result will beMinimized_array=[0.8147, -1.8116]. The advantage of this
method is that it eliminates some zeros and keeps the high-frequency data without the
need for additional quantization. The used key in this method is user defined[42].The
key values are generated randomly (i.e. random numbers in the range =[0…1]), which
are then multiplied by each row of matrix to produce the minimized array.

The Matrix Minimization algorithm is applied to each sub-band independently; this
means each minimized sub-band is independently compressed by arithmetic coding.
Figure 1.13 illustrates theMatrix Minimization algorithm applied to a matrix.
Likewise, for larger reductions in data size, it is possible to compress the resulting
minimized array by theMatrix Minimization algorithm. However, care must be taken
if this further compression is used, as the side effect is less reliable probabilityor
uniquedata[42, 43].

Figure 1.13:The originalarray sizen is minimizedto another arrayM.

Before applying theMatrix Minimization algorithm, our compression algorithm
computes the probability of the data for each high frequency matrix. These
probabilities are calledLimited-Data or Unique data, which is used later in the
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decompression stage. The Limited-Data are stored as a header in the compressed file
and are notsubject to compression. Figure 1.14 illustrates the probability of data in a
matrix [42].

Figure 1.14: TheLimited-Data for anarray size 15is illustrated as a list ofunique data.

1.7.3. Coding Stage
After compression of high frequency coefficients by theMatrix Minimization
algorithm, the final compressed array contains a lot of zeros and nonzero-data. In this
case all nonzero-data will be stored in the new array followed by Arithmetic coding.
On the other hand, the number of zeros counted and stored in another new array. For
example: minimized-array=[1.7 0 00-1.7 0 0  9.2 0 000], nonzero=[1.7,-1.7, 9.2],
zeroscount=[2,3,2,4]. The first number "2" at "zeroscount" refers to the position of
first zero, while the other numbers in array refer to the number of zeros between data,
which are then compressed by Arithmeticcoding[42].

The main reason for using Arithmetic coding rather than Huffman coding is because
Huffman coding uses a binary tree to generate a stream of bits, and this needsa huge
amount of memory. For this reason, Huffman coding is useful for small matrices, for
example, in JPEG Huffman coding is implemented on each 8x8 block, this means
each block is compressed independently. On the other hand, arithmetic coding
generates just one table for an image. The table needs less memory space than a
binary tree.

1.7.4. Decompression Algorithm
The decompressionalgorithm reverses the compression steps. This proposal
introduces new algorithms for searching methods for decompressing the reduced
matrices. These algorithms will be tested on different types of 2D and 3D images. The
main parameters to judge the successof the searching methods are the efficiency and
accuracy of decompression. The following steps illustrate the proposed novel
methods:

A) The DC-Matrix together with nonzero and zerocountarrays (as defined above) are
decompressed by using Arithmetic Decoding. Moreover, the nonzero-array is
merged with the zerocount-array producing the minimized-array.
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B) As described above the minimized-array is obtained from theMatrix
Minimization algorithm. The Decompression algorithm uses a new method called
Limited-Sequential-Search Algorithm (LSS-Algorithm), the idea being to restore
the original data from the Limited-Data. This process depends on the random key.
Other algorithms than the LSS will be explored in subsequent chapters of this
thesis.Initially, the LSS-Algorithm assigns three pointers (P1,P2 and P3) where
each pointer is increment by one at each iteration loop. This process looks like a
digital clock [sec, min, hour]. For example: assume wehave the following
information about the compressed data:

Limited_Data=[3-1 0 1],Key=[0.8147, 0.9058, 0.1270].

The compressed data was:Minimized_array=[0.8147, -1.8116]. The
decompression by the LSS-Algorithm is illustrated in Table-1.

�T�a�b�l�e�-�1�:� �T�h�e�L�S�S�-�A�l�g�o�r�i�t�h�m� �i�t�e�r�a�t�i�v�e� �s�e�a�r�c�h

C) P1, P2 and P3 refers to locations in Limited-Data, whichrepresents the search
space. In the above Table-1, P1=1, P2=1 and P3=1 mean the first value: Limited-
Data(1)=3. If "Result" in the above table is matched with
Minimized_array(1)=[0.8147], this means P1,P2 and P3 found the data in
Limited-Data (i.e. P1=4, P2=3 and P3=3). Similarly, the second data picked from
minimized-array (2)=[-1.8116] for processing. In other words, the LSS-Algorithm
works until finding all the original high-frequency data[42].

D) Finally, the decoded AC-Matrix is combined with the DC-Matrix to obtain the
"LL" sub-band, and then applied inverse digital transformation (i.e.
DCT/DWT/DFT) on each block (i.e. block size 2x2/4x4/8x8) followed by inverse
second stage digital transformation for obtains 2D/3Ddecompressed image[42].

1.8. Overview of the Thesis
1. Chapter1: general introduction about data and 2Dimage compression

methods, thendiscusses the way that 3D mesh data represented and
introduces the mainideas for data compression explored in subsequent
chapters.
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2. Chapter2: introduces previous works for 3D mesh datacompression.
3. Chapter3: demonstratescompression of 2D structured lightimages used in

3D applications.These2D imagesare transformed by using discrete DWT
and DCT then the final transformed image coded by usingthe Matrix
Minimization algorithm, which is used to reducethe number of high-
frequency coefficients.

4. Chapter4: the DWT is combined withthe JPEG techniqueand usedto
reducethe numberof transformation steps and increasethenumber ofhigh-
frequency coefficients.Additionallya newsearch algorithmis designed to
speed upthedecompressionstage.

5. Chapter5: the sameMatrix Minimization algorithmused inthe previous
chapterextended bya novel search algorithm called FMS-Fast Matching
Algorithm that ismuch fasterthan the previous decompression algorithm.
Additionally, we enhanced the compression method by deleting zeros from
each sub-band created bytheDWT.

6. Chapter6: in this chapter, we transformed a 2D image by DCT followedby
DST applied over the entire image with Matrix Minimization
algorithm.Results showthe effectiveness of the method incompressing
images up to 99% with highaccuracy.

7. Chapter7: we applied DCT(uni-transformation) on each block of an image
followed by removingthe number of zeros fromthe transformed matrix,
then appliedthe Matrix Minimization algorithm for coding.Impressive
results were obtained compared with JPEG and JPEG2000. The
decompression algorithmwas based ona newConcurrent-Binary-Search
algorithm which isour fastest decoding algorithm to recoverthe original
data.

8. Chapter8: we appliedthe methods developed in the thesisto 3D datafor
coding both geometryand connectivity. Firstly, we convert thegeometry
vertices (X, Y, Z) to integer values byashift to theleft. Thenthe differences
for all X€s, Y€s and Z€s respectivelyare computed. The
MatrixMinimization methodis then appliedtoconvert eachset ofX, Y and
Z to a single value. Also,the same compression stepsare applied to the
connectivity (triangle faces).Results of thecomparisonwith other 3D
formats areimpressive, representing the state-of-the-art technology for 3D
data compression of geometry and connectivity. The algorithm yielded
compressionratios up to 97% with highly accurate 3D datareconstruction.

9. Chapter9: presents the conclusion andfuture work.The chapterdiscusses
advantagesand disadvantagesof the proposed methodology. A number of
possibletransformationsto be use with our method have not been tried and
these are discussed as further work. Additionally, we propose further work
on applying the Matrix Minimization algorithm tomore than three data
itemsto asingle valueand approaches to optimizing decoding speeds.
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Chapter 2
Overview of 3D Mesh Compression

2.1. Introduction
Graphics dataare widelyused in several applicationssuch asvideo games,
CAD/CAM design, virtual reality and visualizationamong others. Within 3D
environments,triangular meshes represent the meansto display and visualize3D
models. Normally, the geometry(vertices) and connectivity (triangulated faces)
areused tocreate 3Dpolygonalmeshesandotherpropertiessuch as illumination
are usedin 3D design. Connectivity describesthegeometry relationships with data
attributes such as colour, normal and texture coordinates (2D image
coordinates).3D trianglefaces handlesverticesand attributesdata inthe sameway.
Therefore, we concentrate on thegeometry and connectivitycompressionmethods
in this chapter.

To obtain ahigh definition 3D model, normally a large amount of data are
required. The dataareacquiredfrom3D softwaremappingreal worldpoints to 3D
modelrepresentations(for example, asoftwarethatconvertsaseries of 2D images
to a single 3D model) ora 3D scanner systemthatconverts asingle image to a 3D
object. 3D models require large space (memory/hard disk)and bandwidth
fortransmission as 1D-array. Thus, the expected level ofrealism from 3D
representations calls forstorage space, parallel-CPUs, efficient computing
algorithms, and high speed bandwidths. Network bandwidth representsa
bottleneck tothe use andtransmission of3D data. Thus, it isessentialthat methods
be develop to compress3D data at higher ratiosthan currently available. Research
on this topichas received attention and therehas beenprogress in this direction
over thelast two decades.

3D mesh compression it has been stored in several standard formats. VRMLis
one of standardformatsused for transmitting 3D models through theInternet[75].
Initially, 3D mesh datawere represented as ASCII without compressing it into
VRML format. Taubin[76] with his colleagues developedthe topological surgery
algorithm, a compression method for VRMLfor efficient transmission. MPEG
(Moving Picture Experts Group) developed by multimedia standard ISO/IEC
includedencoded algorithm for3D mesh data, which is based on the topological
surgery algorithm,implementing asingle-rate coder for manifold triangle faces
[65]. Subsequently, MPEG incorporated progressive 3D mesh compression for
non-manifold meshes.

In this chapter, we review different types of 3D mesh compressionmethods
focusing on vertices and triangular faces compression. Many surveyed papers
pointed out to this interesting subject. Rossignac[77] summarized a schema for
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vertex andtriangle facesdata compression.Taubin[54] reviewed progressive3D
mesh compression using topological surgery. Shikhare[78] classified 3D mesh
compression schemesbut this type of schema did not work with progressive
compression.Gotsman et al.[79] introduced a tutorialabout 3D mesh
compressionand3D geometry compression. However, itis focused on single-rate
region-growing schemes. Alliez and Gotsman[45] reviewed single-rate and
progressive compression of 3D meshes. Their proposedalgorithmis classifiedasa
high-level algorithm,however, it focusesonstatic 3D polygon compression.

2.2. Basicconcepts of3D mesh compression
3D mesh compression algorithms encode each of connectivity data and geometry
data individually.Earlierresearchconcentrate on connectivity compressionwith
geometry coding determinedfrom theconnectivity coding. However, geometry
data required more bits than triangle faces,andseveral methodswere developedto
compress geometry data.

2.2.1. Triangle faces (Connectivity) Compression
In this Section, we will describe previous workon connectivity compression
methods; thesecanbeclassified into different categories:

· Index Triangle FaceCompression
The triangular mesh in the VRMLformat [75] represented with an index set,
which is consisting of: array locations (vertices locations) and triangle faces
location by its vertices.Figure 2.1 showsindexed facerepresentation. Toindex
each vertex,it is requiredat least log2v bits approximately.For this reason, each
triangle face (connectivity information) needslog2v bits. This method provides
triangular mesh representation.In other words, in this method no compressionis
involved. In this approach, each vertexis indexed multiple times. The repeated
vertexthus,degrades compression performance. To solve this problem, weshould
reduce the number of repeated vertices reference.

Figure 2.1: Triangle face indexed representation

· Triangle Strips Compression
The 3D mesh can be divided into long triangle strips, and then encode each strip.
The main advantageofthis methodis to reducethe amount of data transmitted
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betweenthe CPU and video graphic adapter (VGA). Although this method
requires less memory spaceand transmission bandwidth thanthe previous one
(indexed Triangle Face method), it still does not representa very efficient
compression method.Figure2.2 shows a triangle strip, where each vertex is
combined with the previous two vertices in a vertex sequence to form a new
triangle[79].However, many vertices are repeated inthegeneralized triangle strip
of the mesh, which isa waste of storage. Toaddressthis type of problem, many
schemesweredeveloped.

Figure 2.2: (a)The triangle strip, (b)thegeneralized triangle strip[79]

The concept oftrianglestrip meshwasintroducedby Deering[79]. Itis formed by
combining avertex with groups of strips. Deeringused FIFO (Fist-In-First-Out)
buffer to saveindicesof 16 visited vertices.The vertices are saved in the buffer
requiredfewerbits thana global vertices index.Each vertexis used once by the
FIFO index,andTaubin and Rossignac[67] showedthegeneralized trianglemesh
requires approximately 11bpv to encode connectivitydata.

Chow [64]proposed a mesh compression method for real-time rendering as
showed in Figure2.3. The methods start with finding the boundary edges, next
step searching for triangle fans around a vertex fallen on two successive boundary
edges. The triangles inthis strip are marked as €discovered triangles•.
Undiscovered boundary trianglesaresimilarly formed from new sets of boundary
edges. The vertices in the vertex buffer can be reused forthe next triangle strip,
finally this process stop if all thetriangles are visited in a mesh[80]. This method
is efficient if the meshis decomposed into long triangle strips,but it is
achallenging computational mesh problemto obtaintriangle strip decomposition
[81]. Many heuristic methods are suggested for the triangular decomposition
withaverage computational cost[82,83].

· Triangle Spanning Tree Compression
3D mesh can be represented as a graph, which means vertex nodes linked through
edges look liketriangleform. This conversion from 3D mesh to graph representation
can be used in 3D mesh compression.Tutte[66] first proposedan algorithm to
enumerate triangulation,a technique that compressed approximately 3.25



�3�3

bpv.Thetechnique provedthe feasibility of mesh connectivity coding[47].Turan
[84]showedthata3D mesh can be compressed with a fixed number of bits using
Spanning Tree for bothgeometryand connectivity as shown in Figure 2.4.

Figure 2.3: (a) Findingboundary edges, (b) and (c)showstrianglesat first strip and secondstrip.The
arrows show selected boundary edges, while bots lines show the triangles associated with each inner

boundary vertex[64].

Figure2.4: (A) 3D mesh, (left) its vertex spanning tree, (right) the cut and flattened mesh withits
triangle spanning tree shown by dashed lines[47].

The encoding theory based onthe Taubin and Rossignac[85] approach (topological
surgery algorithm)together with the impact of graph encoding canbe felt on
connectivity mesh compression technique, compressing about 2.5bpv to 6bpv(as we
know,connectivity data is twice as large as geometry data).The Hand-and-Glove
encoding algorithm from Diaz-Gutierrezetal. [68]compresses amesh by using two
types of spanning tree (the Hand and Glove trees). These two trees are applied in
orderon trianglesstrips loop traversingthe entire mesh.The trees are encoded with
2bpv andanadditionalbit per triangle (allow to re-buildthetriangle strip), this means
the total number of bits neededto compressa vertexis 4bits.Li and Kuo[86] suggested
an algorithm to compress connectivity of a triangle with dual graph. Each node in this
graph refers to three edges. Breadth-First Traversal algorithmwas applied to dual
graph produceda binary datafor edges, if the edgewasalready visited ornot.Triangle
spanning tree generates such a tree by using breadth first traversal algorithm, during
compression step some faces probably are visited while others not.This probably
makes one or more closed border edges.Theadvantage of the spanning tree simplicity
makes the algorithmsappropriate to representmeshdata[87].
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The Cut-Border machine[88] technique is used to extend the border by adding a new
vertex to triangle iteratively.In case the borderis separatedor joined together, the
scheme is able to compressmanifold triangle mesh about 4bpv.The method isonly
applied to regular meshes.

· Edge-Breaker Compression
The Edge-Breaker technique suggested by Rossignac[90, 91]generates asymbol for
each triangle, this guarantee 4bpv. While, in real-world (in practice) a meshis coded
between 1.8- 2.4bpv. Theideabehind thealgorithmis toencodea mesh by iteratively
nibbling its faces, and each timea new face is traversed. Figure 2.5 shows the
configuration for fivepatches[89 ,90, 91].

Figure2.5:(Top) Five encodes C, L, R, E, and S, while the gate g is the input to the triangle, and
(Bottom) showstraversaltriangles toencode part of mesh[44].

In Figure2.5 (bottom) shows the encoding process, by usingthe edge-breaker
algorithm. The triangles are filled with op-code matching with op-code in
Figure2.5(top), in this case the encoded meshis "CCRSRLLRSEERLRE"

The edge-breaker method can encode data of manifold meshes with multiple
boundary andthe worst-case compressionis approximately 4 bpv.However,the
method is not suitable for streaming applications, it takes O(v2)( i.e. execution time)
of decompression time. Additionally, for regular meshes and non-regular meshesthe
same bitrateis required[87].

The original Edge-Breaker techniquewas optimized to encode 3D mesh with
maximum regularity, the worst case for this method fora large regular mesh is
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1.62bpv[92]. Coors and Rossignac[94]added connectivity prediction based on mesh
geometry[93]. The Edge-breaker configuration usedforpredicting the distance
between position of parallelogram and the positions of active gate vertices,had an
average connectivity compression ratio approximately less than 0.7bpv. Gumhold in
2005[88] proposed an enhanced Markov model coding converging to arithmetic
coding. While Ying in 2010 [74]design an algorithm to select edge gate vertex
toreducethe number of "s" symbols. Additionally,it creates a table depending on
thenumber of traversed faces connected to gate vertices; this depends ona
connectivity prediction method.

Kingetet al. [90] introducedan algorithm of generalized edge-breaker to compress
quad triangle mesh connectivity.This algorithm based on splitting each quadrangle
into two triangles that are on the same traversal sequence, this leads to efficient
compression,because some combinations of edge-breaker cannot encode quadrangles
[91].

Lee in 2002[95]proposed angle-analyzer scheme to encode the connectivity for
manifold triangular at 1.5 bpv. The next face chosen to ensure the border between
regions of the mesh the most convex as possible, Leeet al. [95]in 2005 proposed
acompression ratiothatcan be reduced by using arithmeticcoding.

· Valence Encoding
In valence encoding amanifold triangle mesh containshalf the number ofvertices
than triangles.For this reason,an algorithm focusing on inserting a new vertexinto
the mesh and generating a symbol for the vertex, produces less symbols thana
triangle traversal algorithm. So, this method leads to better connectivity compression
performance[44].The valence approachis driven from Touma and Gotsman in
1998[46]. The algorithmdetectsthe edge boundary formed by an initial triangle and
expands the boundary by adding adjacent vertices iteratively.Therefore,the generated
list of vertex valences can be efficiently compressedat 2.3bpv.This algorithmis still
one of mostefficient connectivity compressionmethods.

The Face Fixerby Isenburg and Snoeyink[50] compresses connectivity of manifold
mesh with face degree by using face traversal. The algorithm generatessymbols for
each edge and experimental results showed compression ratios between 1.7bpv and
2.9bpv.Thealgorithmis more efficient than Kronrod and Gotsman[96],however, their
encoder algorithmis easier to implement.

Isenburg and khodakovsky in 2002[97,98] worked independentlyonvalence
approachestoencode connectivity of manifold meshes. Their workis based on Touma
and Gotsman approach[46]. Khodakovskyet.al.[98]demonstratedschemesfor entropy
matchesthrough Tutte's entropy for planar graphs. For both methods,experimental
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resultsshowcompression ratio between 0.8bpv and 2.6bpv, improving over the face
fixer [50].

Table 2.1 summarizes thestate-of-the-art technique for 3D mesh compression. The
bitrate of various connectivity coding methods reviewed was obtained theoretically
throughworst-caseanalysis.

Table 2.1:3D mesh compression techniques

Algorithm Proposed by
bitrate in worst-case

(bpv)
Deering Deering in 1995 11

Topological surgery Taubin and Rossignac in 1998 6
Cut border machine Gumhold and StraBer 1998 4.4

Valence coder Touma and Gotsman 1998 2.3

Edge-Breaker Rossignac in 1999 and
Gumhold in 2000

4

Proved optimality
for Valence coder

Alliez and Desbrun 2001 2.1

Valencemanifold
Khodakovsky et al. 2002 and

Isenburg 2002
2.6

2.2.2. Geometry Compression
Geometry compression is concerned withcompressing vertex coordinates (x, y,z).
Normally the compression of geometry beginsbyquantizingthecoordinates of vertices
(i.e. geometry encoded in lossy mode). Subsequently, encode vertexthrough acoding
algorithm[44, 87].

· Quantization
Vertices in computer memoryareoften represented by 32-bit floating point number
for eachcoordinate (x, y, z). Suchaccuracyis not needed in some applications; for
this reasonaquantization processisused to reduce theamountof data without
adversely affecting its quality. However, for some high-accurate 3D data the
degradation appearsor it is noticeableon the 3D surface[99].One of the mostused
quantizationtechniquesin 3D mesh is called Scalar Quantization, whichconsists
oftransforming the floating-point number vertices into integer vertices. The
quantizationis based onthe maximuminteger that can be coded with the number of
quantization bits.Generally,thegeometry compression methods that go along with
well-known connectivity compression schemes proposed by Deering, Rossignac,
Gotsmanet. al.[46, 63,67]use uniform scalar quantization.The number of bits range
between 8-bit to 16-bit, thus connectivity in 3D mesh softly conflicts with geometry.
Bajaj et. at. [61] and Leeet. at. [60]proposedto encode a vertex with three angles, by
usinganangle-analyser encoder. The computationis based on two internal angles and
one dihedral angleby applying different quantization to these local angles. Lee and
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Park [62]proposed to locate vertices in 4 different range sizes; however, there are
some vertices located in bigger ranges. Thus, the vertex is encoded accordingto the
type of therange[100].

· Prediction
Prediction means encoding vertex positions predictively. The prediction uses
correlation between adjacent coordinates, and the most importantaspect ofprediction
is to reduce theamount of geometry, and then encoding with one of entropy coding
methods (Huffman or Arithmetic coding).Therearedifferent prediction methodsthat
havebeen proposed intheliterature: deltaprediction[78], linearprediction[64, 65],
and parallelogramprediction[101]. Overall, the predictions schemais considered as
linear prediction and their coefficients are chosencarefully.

Delta Predictionmeans the differences between coordinates are usually small. For
this reason, adjacent vertices haveslightly different coordinates.Deering and
Chowused delta coordinates rather thantheoriginal coordinates followed by encoding
with variable length codes. In each work quantized coordinates range between was
10‚ 16bpv and 13‚ 18bpv respectively[62,78].

Linear Predictionsuggestedby Taubin and Rossignac[65] predicatesvertex position
from a group of positions of previous vertices inthevertex spanning tree. The number
of previous verticesare selected from the root to the current vertex in the spanning
tree. The estimated geometry bitrate is reported by Tuma and Gotsmanat around
13bpv[46].

Parallelogram predictionsuggested by Touma and Gotsman[46] encodes new vertex
"r" within a triangle vertices "u and v" as show in in Figure2.6, where the triangle "u,
v, w" is already encoded. Parallelogram predicteda new vertex "r" position by using
the form rp1=v+u-w. The rule for this prediction is thatthe four verticesmust
beexactlycoplanar. Theparallelogram improved the prediction accuracy by usingthe
angle between twoadjacent trianglestoestimate vertex position rp

2 as shown in Figure
2.6This type ofprediction achieved9bpv[46, 101].

Additionally, Isenburg and Alliez[102]used parallelogram prediction for geometry
compression of polygon meshes.The position of amissing vertex of a polygonis
predicted with weights computedfrom different degrees and computedfrom different
known vertices.
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Figure 2.6: Parallelogram prediction[102]

· Geometry-driven compression
In 2002 Kronrod and Gotsman[103]designed a geometry-driven compression scheme.
The approach coversthe traversaltree that contains all vertices. The reasons for using
the tree is to minimize parallelogram prediction errors between vertex positions.
Geometry compressionyielded ratios 50% more efficient than connectivity
compression. This approachis used for CAD models, whichoften have non-smooth
geometry.

Shikhare with hiscolleaguein 2001 [104] developeda geometry-driven compression
methodthat tries to find repeated geometry patterns inthe3D mesh. Therearemany
options to recognize patterns,these can be in components or regions inside
components. The approachis useful for large 3DCAD models or digital heritage
models.Caiet al.in 2009[105]added scaling andtransformation for finding repeated
patterns, anapproachthatachievedslightly betterperformance.

Asconnectivity and geometry are compressed at same time inthe above methods,
their data are interleaved in the compressed stream. Lewineretet al. [106]in 2006
proposed an alternative geometry-driven algorithm. This algorithm compresses
geometry independently from the connectivity encoding. Thenthe surface is
reconstructed iterativelyand eachnew triangle connected to the border of the meshis
built by selecting a new vertex among the candidates. This algorithm can compress
any type of triangulatedmesh. Additionally, Chaineet al.[107] in 2009 proposed a
mesh connectivity compression schemethat assumes that the geometryis already
decoded. While the connectivity between vertices are generated bythe Delaunay
triangulationbased on point set, in this method the meshis encoded at low cost.
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· Compressing floating-point vertices
The methods described aboveare based on lossy mesh compression (i.e. the
compression algorithm quantized the vertices). But some application required
encodingtheexact floating point coordinates. Isenburg[108]in 2005 investigatedthat
the floating point can be broken toexponentandmantissa. Meanwhile, the predicted
error between decompressed and original mesh arenegligible, this methodis able to
compress geometry about 35bpv.

Siddeq and Rodrigues[109]in 2016suggested compressing 3Dpoint cloud by
converting floating-point vertices to integer then encoding by the Matrix
Minimization algorithm. This algorithmis designed to encode-encrypt a vertex toa
single integer value, thenthe resultcan be subjectto arithmetic coding.Compression
ratios about 3.7bpvwere obtained, while the connectivity (triangle meshes)was
compressed independently by computing the differences between vertex references
(i.e. in OBJ and COLLADAformatsthe vertex referencesdefinetriangle faces). The
compression ratio for the connectivity intheapproach is about 0.69bit for each
triangle inthebest case. However,theworst case reaches to 20bitsfor each triangle. In
same year, they developed connectivitycompression by applying the Matrix
Minimizationalgorithmon the streamof triangle facesto reducefrom 20bit/triangleto
13bits /triangleintheworst case.

2.3. 3D mesh Compression based on 2D images
In 2012 Siew and Rahman[110] pointed outthatXML is a candidate to represents the
meaning ofa 3D data structure, which is distributed in many applications.On
theotherhand, XML generates large files that, concatenated with geometry
information,rendersthe scheme impracticable. The issue lies on finding a way to
compress the semantic of data that represents calibration of geometry and
connectivityof a3D surface.

Rodriguesand Robinson[73] earlier in 2008 reconstructed 3D data from BMP images
using structured light techniques.Aprojector and camera setting was
developedtogether with image processing functions to project, capture, and process
and image of an object with a projected pattern of stripes. The image processing
functions detected the projected patterns and reconstruct the objectin 3D asshown in
Figure 2.7[73, 111,112, 113]. The capturedBMP images withstructured light
information can be saved for lateruse in many applicationssuch as3D face
recognition andsharing of 3Ddata.

Rodrigues and Osman[114] in 2010 proposeda polynomial interpolation method
tocompress 3D data files.The source data model uses vertices which are the standard
data in all 3D geometry models, such as 3D Wavefront OBJ, VRML and COLLADA
data files [55, 74, 115]. Only geometry data was compressed withcompression
ratiosover97%. The method did not compress connectivity as this could be directly
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inferred from the projected patterns, so the solution was specific to a scanning
method, which limited its application. The resultwas only applicable to surface
patches and, if structured pattern information were not available, thenDelaunay
triangulationcould be applied to recover the surface from the point cloud[116].

(a) (Right)The projector spota pattern of lighton an object, (Left) A camera records the reflected
patterns with the object.

(b) The 3D surface generated from stripes available in the 2D image, compression and decompression
algorithm works just on 2D images.

Figure 2.7: (a) and (b) shows the high quality 2D images are used to reconstruct3D surfacesmodel
[114].
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2.4. Summary
Thereare many 3D mesh compression techniquesas reviewed in this Chapter, and
each of these techniquesmay besuitable to a particularapplicationonly such as
AutoCAD or a specific structured light scanner.Some compression techniques are
slow duringcompression, but fastduringdecompression; this is normally desired in 3D
graphics for games.The main disadvantageof some 3D compression techniquesis
that they fail tocompress some 3D objects. While other techniquescan onlycompress
the geometry but not the connectivity of thevertices.

For thesereasons,the work in this thesisconcerning 3D mesh compressionis divided
into two parts:

1) Compress 2D imagesthat containstructured lightpatterns(such as stripes or
dots);this kind of image contains informationenabling3D reconstruction of the
object. After compression, reconstruct the object and compare with other
compression methods namely JPEG and JPEG2000.

2) Compress 3D object data files which contain informationon geometry and
connectivity ƒ i.e. verticesand triangle faces.It is proposed tocompress
vertices and triangle faces independently.

A comparativeanalysis will be performedbetween 2D image compressionfollowed
by 3D reconstructionand direct 3D object compression. The analysis is based on
speedof compression and decompression, compression ratios,RMSE (image quality),
and perceptual assessment ofthe image and 3D model quality.

Recently, some applicationswere developed and areavailableto converta series of
images toa 3D object, one of these applications is 123D AutoDesk. The big challenge
is to compress these 3D objects by our proposedalgorithms and compare the results
with other 3D mesh compression techniques. Additionally, our proposed algorithm
will compressa streamof 2D images thatareused bythe123D Autodesk software.A
comparative analysis of results will be performed,i.e., of2D images and 3Dobject
which are described in the following Chapters.
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Chapter 3

DWT-DCT based Compression with Sequential Search
Decompression

3.1. Introduction

Despite recentfast progress in storage density andincreased processor
performance,there isstill demand for algorithmsthat work on images and these
algorithms continue to exceed the abilities of available technologies[117]. Recent
growth of multimedia based applications have encouraged the need for very efficient
ways to compress signals and images, themain reasons beingcompression for storage
and digital communication[118].Compressing an image is significantly different from
compressinga streamof data(i.e. losslessstream ofdata).It is certainly the case that
general purpose compression algorithms can be used to compress images, but the
result is non-optimal. This is because images have statistical properties that can be
used by encoders specifically designed for them[118, 119]. Also, some of the details
in the image can beomitted for saving bandwidth or storage space. Lossless
compressionmean thata,when decompressed, the exact replica of the original image
is obtained[120]. On the other hand,lossy image compressiondoesnot needbe
decoded exactlyas the original. An approximation of the original image is acceptable
for most purposes (e.g. large images with high-resolution or video compression), as
much as the differences between the original and the compressed image isdeemed
adequate[121].

In most cases, the pixels in an image are correlated (i.e. a pixel has mutual connection
with anotherneighbourpixel), therefore we use this idea for reducing the number of
redundant information. Furthermore,amajor taskis to find out uncorrelated pixels
(i.e. the other pixelswhere there is no connection between them).The main task
inimage compressionis to reduce theamount of redundant data to an acceptable level
without degrading the quality of theimage[122].

We can divide image compression into: 1) redundancy reductionand2) insignificance
reduction. Theredundancy reduction aims to removeduplication from the signal
source image, while the insignificance reduction delete parts of the image that is not
noticed by the receiver (i.e. cannot discover the distortion by Human Visual System
(HVS), and this depends on image details and image size). Consequently, repeated
pixels are eliminated according to statisticalpropertiesand the HVS will not detect
the difference between original and reproduced images[117].

The standardJPEGfor compression of still imagesuses theDiscrete Cosine Transform
(DCT), which represents an image as a superposition of cosine functions with
different discrete frequencies. The DCT can be regarded as a discrete time version of
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the Fourier Cosine series. It is a close relative of Discrete Fourier Transform (DFT), a
technique for converting a signal into elementary frequency components. Thus, DCT
can be computed with a Fast Fourier Transform (FFT)an algorithm of complexity
O(nlog2 n)[123]. More recently, the wavelet transform has emerged as acutting-edge
technology within the field of image analysis.The wavelet transformhas a wide
variety of different applications in computer graphics including radiosity, multi-
resolution painting, curve design, mesh optimization, volume visualization, image
searching and one of the first applications in computer graphics, image compression
[22]. The Discrete Wavelet Transform (DWT) provides adaptive spatial frequency
resolution (better spatial resolution at high frequencies and better frequency resolution
at low frequencies) that is well matched to the properties of a Human Visual System
(HVS)[118, 124].

Here a further requirement is introduced concerning the compression of 3D data. We
demonstrated that while geometry and connectivity of a 3D mesh can be tackled by
several techniques such as high degree polynomial interpolation[114] or partial
differential equations[125], the issue of efficient compression of 2D images both for
3D reconstruction and texture mapping for structured light 3D applications has notyet
been addressed. Moreover, in many applications, it is necessary to transmit 3D
models over the Internet to share CAD/-CAM models with e-commerce customers, to
update content for entertainment applications, or to support collaborative design,
analysis, anddisplay of engineering, medical, and scientific datasets. Bandwidth
imposes hard limits on the amount of data transmission and, together with storage
costs, limit the complexity of the 3D models that can be transmitted over the Internet
and other networked environments[125].

In this Chapter,it isinvestigatedthat surface patches can be compressed as a 2D image
together with 3D calibration parameters( i.e. lossy compression ), transmitted over a
network and remotely reconstructed (geometry, connectivity and texture map) at the
receiving end with the same resolution as the original data.The widespread integration
of 3D models in different fields motivates the need to be able to store, index, classify,
and retrieve 3D objects automatically and efficiently. Inthe following sections,we
describe a novel algorithm that can robustly achieve the aims of efficient compression
and accurate 3D reconstruction.

3.2. The Proposed Compression Algorithm

Thelossyimage compression methodproposed here isbased on DWT and DCTwhich
are used to increasethe number of high-frequency sub-bands with few significant
data. Thefirst stage DWTis applied to decompose an image into four sub-bands
(LL,LH,HL and HH). The LL is approximatelysimilar to the original image(i.e.LL
represntes average value of the 2D images€ For this reason all the values in this
subband are postive), while the other sub-bands represent image detailsand contain
few data with huge number of zeros(i.e. the main reason most of valuesare zeros,
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this is becauseneighboursin a part of original image are similar to each other).
Furthermore, theLL sub-band is divided intonon-overlappedblock ofmatrices(4 x 4
pixels). These blocks are transformed by DCT producinga DC value(i.e. this value is
positive coefficients with is represents average value of 4 x 4)and a set ofAC
coefficientsdata(i.e. reprintedthe approximationcoefficients, these values arevary
from top-left to button-right, which isnormally be around zero). Additionally, the
DC-valuesof each blockare saved in a matrix called DC-Matrix whichrepresents a
new low frequency sub-band. Similarly, theAC coefficientsare collected ina new
matrix called AC-Matrix which isequivalentto thehigh frequencysub-band.Finally,
the AC-Matrix with other high-frequency sub-bands arecoded by the Matrix
Minimization algorithm, while the DC-Matrix transformed again by DWTto
increasethe number of highfrequencysub-bands. Also, this chapter describesthe
Limited-Sequential Search Algorithm (LSS-Algorithm) used to decode the DC-Matrix
and AC-Matrix to reconstructapproximatelytheoriginalimage [42]. Figure 3.1shows
the main steps of the proposed compression method in a flowchart style.

Figure3.1: proposed image compression method flowchart

3.2.1. The Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) used to transform an image into four sub-
bandsfrom low to high frequency coefficients.TheDWT is used for multi resolution
data analysis (i.e. it can be used in progressive transmission and image zooming
without requestingadditionalstorage)[42,126]. Additionally, theinverseDWT has
thesame complexity,which means the forward and inverse transformationare
symmetric; this feature of DWT is suited for fast image compression and
decompression. Furthermore, it has very good energy compaction capabilities,
robustness under transmission and high compression ratios[127].
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The DWT is applied toimage compression by usinga Daubechies (db3)filter that
decomposesthe original image. The output of the filter bank is down-sampled sub-
bands. The inverse DWT decodes by up-sampling and recomposestheoriginal image
[37]. The DWT divide an image into four sub-bands (LL, LH, HL andHH). LL is
represented down-sampled original image (Low-frequency coefficient), which is
represented important information about original image. While other sub-bands
represent vertical, horizontal and diagonal details of an image (high-frequency
coefficients). In case these details are small,their values can be set to zero without
change in image details.For this reason,the high-frequency sub-bands can be
compressed toa few bits/bytes [128]. In thisChapter,we will use DWT twice
toincreasethenumber ofhigh-frequency coefficients. This process will reduce image
size toa fraction of the originalimage size enabling high compressionratios [42].

3.2.2. The Discrete Cosine Transform (DCT)

After DWT applied on an image,the LL sub-bandis transformed again byapplying
DCT on each 4x4 sub-matrix (block) as shown in Figure 3.2.

Figure3.2: LL1 sub-band transformed by DCT for each 4x4 block set.

The data available inthe LL sub-band are still correlated.For this reason, DCT is
applied to transform LL to de-correlated coefficients. First, the LL sub-band is
divided into small blocks (4 x 4). Second, DCTis implemented on each block, the top
corner of the blockof positive value represents peak of energy andthe other
coefficients are called de-correlated (high-frequency domain)until thebottom right of
the block. The coefficients with small values canbe discarded without affecting
image quality. The transformed block by DCT can compress more efficiently than a
correlated block. The following equations illustrated DCT and Inverse DCT functions
for two-dimensional matrices[42]:
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Wheref(x,y), C(u,v)are represented original and transformed image respectively, and
the main differences between DWT and DCT is that DCTis applied on small block or
rectangularregions of images, this is because DCTis progressivelycomplex to
calculate on lager blocks, for this reason we used small blocksof 4x4 pixels.
Whereas,the DWT can be applied on an image as a large block, it works more
efficiently yielding better compression ratio [42, 122].

After DCT is applied on each4x4 block of LL1, these blocks are ready for
quantization. Thequantizationprocessesdivides each value in the block bya factor Q
which removes trivial coefficients keeping fewer data fromthe block. The factor Q
can be computed as follows[42]:

�= �×�m�a�x�( �) �(�3�.�3�)
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Note\i, j=1,2,3,4

The maximum value in LL1 sub-band is used to computethe parameter L in Eq. 3.4
(i.e. used as quantization value "L"). Additionally, the quality valueis used to control
the maximum value, for example if maximum valueis 51 and Quality=0.01, this
means all the values in a sub-bandwill be divided by 0.51.If this value isincreased, it
leads tothe removal oflarge number of coefficients (i.e. forced data to zero), and this
leads tolower image quality. The DC-Matrix is created bythe DC values from each
block (4x4) of LL1, while other coefficients (4x4-1) are stored ascolumn in a new
matrix called AC-Matrix. HL1,LH1 and HH1 sub-bands are quantized by Eq. 3.3
followedby coding byMatrix Minimizationalgorithm[42].

DWT is used again to transformthe DC-Matrix yielding new sub-bands: LL2, LH2,
HL2 and HH2. The size of LL2 small can beencodedinto a few Bytes/Kbytes
(according to image size). While other high-frequencies sub-bands LH2, HL2 and HH2

are quantized by dividing the coefficient matrices by "2", for normalization and
increasethe number of zeros tobe easier encoded by the Matrix Minimization
algorithm[42].

To compressthe sub-band LL2, first transform each 4 data(one-dimensional array
size 4)of the LL2 by using one-dimensional DCT (i.e. usingthe same Eq. 3.1 with
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u=0 and v=0) and thentruncate each valueto integer value, in this stagewe should
not use scalar quantization.The difference between two adjacent values inthe same
column is computed andstored in the sameposition matrix LL2 this difference
computation is shown in Figure 3.3. This processassumesthat neighbour's
coefficients are correlated. The correlated values are generally similar so the
differences will be small and more data are repeated. This process will increasethe
compression ratio. Eq. (3.5) representsthe difference foreach column in LL2[42].
Third, applyanencoding method to convert the final transformed matrixinto a stream
of bits.

)1()()( ð+ð-ð= iDiDiD (3.5)

Where\ i=1,2,3,€, m-1 and m is the column size of LL2.

Figure3.3: (a) A matrix before DBV, (b) Apply DVB between twoneighboursin each column.

3.2.3. Compress Data byMatrix Minimization Algorithm
This algorithmis designed to reduce high-frequency coefficients. This algorithmis
applied onthe AC-Matrix and other high-frequency sub-bands independently. The
main idea for the algorithm is to convert three adjacent coefficients to one encoded
value.The calculation depends on Random-Weight-Values and three adjacent
coefficients andthe results restoredin a new encoded array.The following List 3.1
describes the steps of the algorithm[42]:

List 3.1 Matrix MinimizationAlgorithm
Let K=3 %% take each three coefficientsfrom a matrix
W=Generate-Ransom-Weights (K) %% generate three random weights values according

%% to the number of coefficients
Let p=1
Fori=1 to column size

For j=1 to row size
Intermediate [p]=Matrix[i,j] %% Scan row-by-row
p++

End
End

Let j=1; p=1
While (j<row size*column size)

Arr=Read_K_coefficients (Intermediate [j])
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End

In the above List 3.1 weight valuesaregenerated by usinga random function (random
number range ={0...1}). These weights are multipliedby Arr(i), Arr(i+1) and Arr(i+2)
representing three coefficientswithin the high-frequency domain to producea
minimized array "M".Since theMatrix Minimization algorithm is applied to each
sub-band independently, each sub-band has its own encoded minimizedarray.  Figure
3.4 illustrates theMatrix Minimizationalgorithm implementation.

Figure3.4: An nxmmatrix is minimized into an arrayM.

Before applying theMatrix Minimization algorithm, we need to choose a
valuebetween duplicate numbers of high-frequency domain; thesevaluesare called
Limited-Data, this new stream of datais used at decompressionstage. These data
limit the search spaceofdecompression[42]. Figure 3.5 illustratesthecomputation of
the Limited-Data.

Figure3.5: The Limited-Data for a 5x5 matrix is illustrated as a list of probabilities and the minimized array is
subject to arithmetic coding.

Arithmetic Coding is the final step in the compression algorithmdescribedthis
Chapter. This lossless coding algorithm appliedto astream of data convertsthe stream
to a singlefloating point value; this output in the range between zero and one.When
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decoded, theexact original dataarerecovered. To summarize this lossless algorithm,
we need to compute the probability of all the data (before compression), to assign a
low and high values for each data (each coefficient).

3.3. The Decompression Algorithm

This sectiondescribesdetailsthedecompression algorithm, which isthe inverse of the
compression algorithm. The first stage uses arithmetic decoding for decoding the
minimized-array. Next,we have designed aLimited Sequential Search Algorithm
(LSS-Algorithm) to decode each sub-band. The LSS-Algorithm used Limited-Data
array with Random-Weights to reconstructtheoriginal coefficients.If Limited-Data is
missed or destroyed, the image cannot be recovered. Figure 3.6 shows the
decompression method in a flowchart style[42].

Figure 3.6: A two-stage decompression algorithm is depictedin (a) and (b).

Themain reason to design this decoding algorithm (LSS-Algorithm) is tosearchfor the
original coefficients insidethe Limited-Data array; this operation is done by using
three pointers (S1, S2 and S3), whichrefer to positions in the Limited-Data
array.These pointers work in sequencelike a clock: where S1, S2 and S3 represent
hour, minutes and seconds respectively.Initially these values are set to "1", (i.e.
S1=S2=S3=1).To illustratetheLSS-Algorithm assume that we have the following 2x3
matrix:

�3�0 �1 �0
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First, the above matrix willbe compressed by theMatrix Minimization algorithm to
produce a minimized array M={3.65, 2.973} with Limited-
Data={30,19,1,0}.Additionally, threerandomweight values or key={0.1, 0.65, and
0.423}. Second,the LSS-Algorithm is usedto decodethe minimized arrayreturning
theoriginal 2x3 matrix. The decoding algorithmstartsbypicking up thefirst dataitem
from Limited-Data (S1=S2=S3=1) and then computetheestimated value byusing the
following equation [42]:

)3()3()2()2()1()1( SLimitedWSLimitedWSLimitedWEst ð+ð+ð= (3.6)

Where "W" is Random-Weight-Values and "Limited" is the Limited-Data matrix. The
LSS-Algorithm computes "Est" at each iteration and compares with M(i). The
iteration means S3 will increment by 1 (i.e.it works like a secondhandin a clock),
after all the positions in Limited-Data, the S2 start work (likea minute hand in a
clock) followed by S1 (like an hourhand in a clock). If M(i)=Est, this means the
original coefficients  data are in locations {S1, S2 and S3} according to Limited-Data.
Otherwise, the decoding algorithm will continue searching to findthe original
coefficients. This process continues until the end oftheminimize array M(i). The List
3.2 illustrates the LSS-Algorithm [42].
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�I�t�e�r�a�t�i�o�n�s�+�+�%�%� �c�o�m�p�u�t�e� �n�u�m�b�e�r� �o�f� �i�t�e�r�a�t�i�o�n�s

�E�n�d �%�%�e�n�d� �o�f�w�h�i�l�e
�E�n�d

After the LSS-Algorithm has decompressed all high-frequencies matrices, the next
stepis to reverse the difference operation of Eq. 3.5 by additionas defined in equation
3.7on the decoded LL2 to recover the original coefficient values. This is appliedto
eachcolumn by taking the last value at position m,addingit to the position m-1, and
then the total adds to the next position m-2 and so on. The following Figure 3.7
illustrates theadditiondecoder[42].
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)()1()1( iDiDiD ð+ð-ð=ð- (3.7)

Where\i= m, (m-1), (m-2), (m-3),€,2

Before the final steps,the inverse one-dimensional DCTis applied to each 4
coefficients for LL2, followed by thecomposition of all sub-bands (LL2, LH2, HL2

and HH2) by applyingthe inverse DWTresulting in thedecoded DC-Matrix.Finally,
combinethe DC-Matrix with AC-Matrix (same way they decomposed from LL1 see
section 3.2) to generate LL1, and then apply inverse DCT.The inverse DWT will
recomposeall decoded LL1to recover the original2D image[42].

Figure 3.7: A Matrix before Apply ABV, (b) Apply ABV between two neighbours in each column

3.4. Experimental Results in 2D and 3D

The algorithms describedin this Chapterwere tested with three types of 2D images
type RGB.Firstly, the RGB colour convert to YCbCr format(i.e. this format is useful
by any compression method, which is converts true colour to anotherformula, all the
image data will be available in single layercalled •Y‚. While other layers are contains
lessinformationcapable to compress at higher compression without affects on image
details) [131]. Second,the algorithmswereimplementedin MATLAB running on a
Laptop AMD quad-core: 2.4GHz with SDRAM: 6GBytes.Also, the decompressed
2D images showed by3D visualization software running on the same laptop. Figure
3.8 shows 2D images used for testing our approach, and Table 3.1 shows the
compressed size for each image.

The 3D visualization software readan image with structured lightpatternson, and
determines the position of the 3D vertices in space from each stripe in the image. The
software was develop within theGMPR group[135]at Sheffield Hallam University.
The patternsof stripes are projected onthe surface on an object and captured by a
high resolution camera. The GMPR 3D reconstruction software creates a 3D
representation of the object in a fewmilliseconds. The main advantages of the
developed 3D scannerarespeed and accuracy[136].



�5�2

(a) 2D BMP •Wall‚, dimension
1280x1024 pixels, size=3.75

Mbytes

(b) 2D BMP •Girl‚, dimension
1392x1040 pixels,size=1.38Mbytes

(c) 2D BMP •Woman‚, 1392x1040
pixels, size=1.38Mbytes

Figure3.8: (a) 2Dcolour MPimage, (b-c) 2D grey scale images

Table 3.1: Compressedimagesizes usinghigh frequencieson first level DWT

Image
name

Origina
l size

Compressed
size

Compression
Ratio

Quantization
Values

Low-frequency High-frequency

Wall 3.75MB 74 KB 98% 0.02 0.02
Wall 3.75MB 47.6 KB 98.7% 0.04 0.04
Wall 3.75MB 33.7 KB 99.1% 0.08 0.08
Girl 1.38MB 78 KB 94.4% 0.02 0.02
Girl 1.38MB 48 KB 96.6% 0.04 0.04
Girl 1.38MB 29.1 KB 97.9% 0.08 0.08

Woman 1.38MB 62.1 KB 95.6% 0.02 0.02
Woman 1.38MB 38.1 KB 97.3% 0.04 0.04
Woman 1.38MB 24.5 KB 98.2% 0.08 0.08

The quantization values: "0.02", "0.04" and "0.08" in abovein Table 3.1refer to
image quality: high, median and low respectively (i.e. the Quality value in Eq. 3.3
responsiblefor keeping 2D image details: LH1, HL1 and HH1 in DWT at first level).
For example: if Quality=0.02, this refers almost all coefficient data remain, otherwise,
if Quality valueis greater than 0.02 this means partially the coefficient are set to zero
in a sub-band. The LL1 sub-band depends onthe DCT coefficients. Additionally,
Table 3.2 showsthat high frequenciesare ignored from the first level of DWT
decomposition (i.e. all high-frequency coefficients aresetto zero) [42].

Table 3.2:Compressedimage size without using high-frequencies in first level DWT

Image
name

Original
size

Compressed
size

Compression
Ratio

Quantization Values

Low-
Frequency

High-
frequency

Wall 3.75MB 62 KB 98.3% 0.02 ignored
Wall 3.75MB 45 KB 98.8% 0.04 ignored
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Wall 3.75MB 33.5 KB 99.1% 0.08 ignored
Girl 1.38MB 61.2 KB 95.6% 0.02 ignored
Girl 1.38MB 42.6 KB 96.9% 0.04 ignored
Girl 1.38MB 28.3 KB 97.9% 0.08 ignored

Woman 1.38MB 53.4 KB 96.2% 0.02 ignored
Woman 1.38MB 35.4 KB 97.4% 0.04 ignored
Woman 1.38MB 24.3 KB 98.2% 0.08 ignored

The proposed image compression algorithmareapplied by usinga range of Quality
factorstoeach image and the decompressed images are used by our GMPR software
to reconstructthe 3D mesh,which is then compared with original 3D mesh model.
Figures 3.9, 3.10 and 3.11 show the 3D reconstructed Wall, Girl and Woman
respectively. Table 3.3 shows the 2D RMSE and 3D RMSE for each 2D
decompressed image and 3D reconstructed surface.The Root-Mean Square Error
(RMSE) isused to calculate 2D/3D image quality mathematically. RMSE is a very
popular measure to compute the differences between decoded image and original
image[42,129].

�(�a�)� �3�D� �W�a�l�l� �t�e�x�t�u�r�e�d�,� �Q�u�a�l�i�t�y�=�0�.�0�2 �3�D� �W�a�l�l� �s�h�a�d�e�d�,� �Q�u�a�l�i�t�y� �=� �0�.�0�2

�(�b�)� �3�D�W�a�l�l� �t�e�x�t�u�r�e�d�,� �Q�u�a�l�i�t�y� �=� �0�.�0�4 �3�D� �W�a�l�l� �s�h�a�d�e�d�,� �Q�u�a�l�i�t�y� �=� �0�.�0�4
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�(�c�)� �3�D� �W�a�l�l� �s�h�a�d�e�d� �(�r�e�d�)� �c�o�m�p�a�r�e�d� �t�o� �o�r�i�g�i�n�a�l
�(�t�e�x�t�u�r�e�d�)�,� �Q�u�a�l�i�t�y� �=� �0�.�0�2

�3�D� �W�a�l�l� �s�h�a�d�e�d� �(�r�e�d�)� �c�o�m�p�a�r�e�d� �t�o� �o�r�i�g�i�n�a�l� �(�t�e�x�t�u�r�e�d�)�,
�Q�u�a�l�i�t�y� �=� �0�.�0�4

�(�d�)� �3�D� �W�a�l�l� �s�h�a�d�e�d� �(�r�e�d�)� �c�o�m�p�a�r�e�d� �t�o�o�r�i�g�i�n�a�l� �(�t�e�x�t�u�r�e�d�)�,� �Q�u�a�l�i�t�y� �=� �0�.�0�8

Figure 3.9: (a) and (b) 3D decompressed image of Wall with different quality values, (c), (d) and (e) Differences
between original 3D Wall image and Decompressed 3D Wall image according to quality parameter. Redregions
representthe 3D Wall decompressed image matched with the background original 3D Wall image in three cases,
i.e., High, Median and Low quality parameters.

(a) 3D Girl image texture and shaded, Quality=0.02

(b) 3D Girl image shaded andtexture, Quality=0.04
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(c) Quality=0.02         (d) Quality=0.04

(e) Quality=0.08

Figure 3.10: (a) and (b) 3D decompressed Girl image with different quality values, (c), (d) and (e) Differences
between original 3D Girl image and Decompressed 3D Girl image according to quality parameters.The pink model
represents the original background 3D image, while other colours represent the 3D decompressed image with
various quality parameters.

(a) 3D Woman image shaded and texture, Quality=0.02
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(b) 3D Woman image shaded and texture, Quality=0.04

(c) Quality=0.02 (d) Quality=0.04

(e) Quality=0.08

Figure 3.11: (a) and (b) 3D decompressed Woman image with different quality values, (c), (d) and (e) Differences
between original 3D Woman image and Decompressed 3D Woman image according to quality parameters. The
pink model is the original 3D Woman model while blue,green, and goldenmodelsrefer to high, median and low
image quality respectively.
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Table 3.3:PSNR and MSE between original and decompressed 2D images

Image name RMSE 3D RMSE
Quantization Values

Low-frequency High-frequency
Wall 2.49 2.09 0.02 0.02
Wall 2.82 3.95 0.04 0.04
Wall 3.25 4.72 0.08 0.08
Girl 3.09 3.78 0.02 0.02
Girl 4.08 3.94 0.04 0.04
Girl 5.25 3.66 0.08 0.08

Woman 2.88 3.37 0.02 0.02
Woman 3.53 3.09 0.04 0.04
Woman 4.35 2.61 0.08 0.08

Image name RMSE 3D RMSE Low-frequency High-frequency
Wall 2.66 2.09 0.02 Ignored
Wall 2.86 3.95 0.04 Ignored
Wall 3.24 4.72 0.08 Ignored
Girl 4.39 3.41 0.02 Ignored
Girl 4.71 3.83 0.04 Ignored
Girl 5.34 3.74 0.08 Ignored

Woman 3.38 3.12 0.02 Ignored
Woman 3.73 3.07 0.04 Ignored
Woman 4.38 2.71 0.08 Ignored

3.5. Comparison with JPEG2000 and JPEG Compression
Techniques

The proposed compressionalgorithm iscompared with two techniques widely used in image,
video compression and image transmission: JPEG andJPEG2000. As mentioned din Chapter 1
(See section 1.2.1) the JPEGtechniqueis based on two dimensional DCT appliedtoan image,
and previously the imageis divided into 8x8 blocks. Additionally, each blockis encoded
separately[42, 127]. While JPEG2000is based on DWT, which is appliedto apartitioned image
into non-overlappedblocks (i.e. block size variable specified by the use/programmer), then the
transformed blocked addressed t coding algorithm for compression (See section 1.2.2)[42]. Most
image compression applications allow the use/programmer to determine image quality by using
specific parameters for balance between image quality and compression ratio[22].  The
comparison between these two methods and our approachis basedon Root-Mean-Square-Error
(RMSE).

Table 3.4: "High", "Median" and "Low" represent image quality used by each method.
Moreover, "FAIL" means that the method (JPEG or JPEG2000) cannot compress images when
the quality value is "Low" as reached by our approach and unable to reconstruct the 3D model.
Figures 3.12, 3.13 and 3.14 show the 3D reconstructed images by JPEG and JPEG2000.
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Table 3.4: Comparison between the proposed algorithm and JPEG2000 and JPEG techniques

Image
Name

Quality
Proposal Method JPEG2000 JPEG Compression

Ratio
RMSE

3D
RMSE

RMSE
3D

RMSE
RMSE

3D
RMSE

Wall High 2.49 2.09 1.92 4.28 3.14 2.8 98%
Median 2.82 3.95 2.14 5.01 3.87 4.5 98.7%

Low 3.25 4.72 2.42 3.52 5.34 6.9 99.1%
Girl High 3.09 3.78 2.14 3.94 3.28 3.94 94.4%

Median 4.08 3.94 2.88 4.02 4.72 3.72 96.6%
Low 5.25 3.66 4.1 1.51 FAIL FAIL 97.9%

Woman High 2.88 3.37 2.14 3.14 2.6 2.55 95.6%
Median 3.53 3.09 2.7 3.2 4.58 2.75 97.3%

Low 4.35 2.61 FAIL FAIL FAIL FAIL 98.2%

(a) Decompressed by JPEG2000 3D Flatimage(b) Decompressed by JPEG2000 3D Flat image,
3D RMSE =4.283D RMSE=5.01

(c) 3D image decompressed by                                         (d) 3D image decompressed by
JPEG2000 3D RMSE=3.52                               JPEG Quality=56% (degraded3D)

(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]

�5�8

Table 3.4: Comparison between the proposed algorithm and JPEG2000 and JPEG techniques

Image
Name

Quality
Proposal Method JPEG2000 JPEG Compression

Ratio
RMSE

3D
RMSE

RMSE
3D

RMSE
RMSE

3D
RMSE

Wall High 2.49 2.09 1.92 4.28 3.14 2.8 98%
Median 2.82 3.95 2.14 5.01 3.87 4.5 98.7%

Low 3.25 4.72 2.42 3.52 5.34 6.9 99.1%
Girl High 3.09 3.78 2.14 3.94 3.28 3.94 94.4%

Median 4.08 3.94 2.88 4.02 4.72 3.72 96.6%
Low 5.25 3.66 4.1 1.51 FAIL FAIL 97.9%

Woman High 2.88 3.37 2.14 3.14 2.6 2.55 95.6%
Median 3.53 3.09 2.7 3.2 4.58 2.75 97.3%

Low 4.35 2.61 FAIL FAIL FAIL FAIL 98.2%

(a) Decompressed by JPEG2000 3D Flatimage(b) Decompressed by JPEG2000 3D Flat image,
3D RMSE =4.283D RMSE=5.01

(c) 3D image decompressed by                                         (d) 3D image decompressed by
JPEG2000 3D RMSE=3.52                               JPEG Quality=56% (degraded3D)

(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]

�5�8

Table 3.4: Comparison between the proposed algorithm and JPEG2000 and JPEG techniques

Image
Name

Quality
Proposal Method JPEG2000 JPEG Compression

Ratio
RMSE

3D
RMSE

RMSE
3D

RMSE
RMSE

3D
RMSE

Wall High 2.49 2.09 1.92 4.28 3.14 2.8 98%
Median 2.82 3.95 2.14 5.01 3.87 4.5 98.7%

Low 3.25 4.72 2.42 3.52 5.34 6.9 99.1%
Girl High 3.09 3.78 2.14 3.94 3.28 3.94 94.4%

Median 4.08 3.94 2.88 4.02 4.72 3.72 96.6%
Low 5.25 3.66 4.1 1.51 FAIL FAIL 97.9%

Woman High 2.88 3.37 2.14 3.14 2.6 2.55 95.6%
Median 3.53 3.09 2.7 3.2 4.58 2.75 97.3%

Low 4.35 2.61 FAIL FAIL FAIL FAIL 98.2%

(a) Decompressed by JPEG2000 3D Flatimage(b) Decompressed by JPEG2000 3D Flat image,
3D RMSE =4.283D RMSE=5.01

(c) 3D image decompressed by                                         (d) 3D image decompressed by
JPEG2000 3D RMSE=3.52                               JPEG Quality=56% (degraded3D)

(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]



�5�9

Figure3.12: (a), (b) and (c) Decompressed 3D Wall image by JPEG2000, Decompressed image with quality=40% most of
regions are matched with the original image,similarly with quality=26% and quality=10%approximately matched with the
original image, (d,e) Decompressed 3D Flat image by JPEG (degraded) un-recognized with original image. Median quality
2D decompressed image by JPEG at quality=51%, quality=23% non-capable of generating 3D model.

(a) Decompressed 3D image by JPEG2000, 3D RMSE=3.94

(b) Decompressed 3D image by JPEG2000, 3D RMSE=4.02

(c) Decompressed 3D image by JPEG2000, 3D RMSE=1.51
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(d) Decompressed 3D image by JPEG, Quality=45%, 3DRMSE=3.94

(e) Decompressed 3D image by JPEG, Quality=17%, 3D RMSE=3.72

Figure3.13: (a), (b)and (c)Decompressed 3D Girl image by JPEG2000, (d), (e) Decompressed 3D Girl image by JPEG.For
low quality, JPEG cannot compressto29.1KB.

(a) Decompressed 3D image by JPEG2000, 3D RMSE=3.14
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(b) Decompressed 3D image by JPEG2000, 3D RMSE=3.2

(c) Decompressed 3D image by JPEG, Quality=56%, 3D RMSE=2.55,

(d) Decompressed 3D image by JPEG, Quality=13%, 3D RMSE=2.75

Figure 3.14: (a), (b) Decompressed Women image by JPEG2000, (c), (d) Decompressed 3D Women
image by JPEG. For low quality JPEG cannot compressto24.5KB.
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3.6. Conclusion

In this Chapter, we demonstrated a new image compressionmethodwhich is used in 3D
applications. Our methodis based on two different types of transformations: DWT and
DCT respectivelyfollowed by theMatrix Minimization algorithm which is proposed in
this thesis. The results showthat our approach produced image quality at higher
compression ratios thatarecapable to reconstructthe3D object. Another advantage, our
approach has better image quality than JPEG and JPEG2000. Onthe otherhand, thesteps
in the algorithm are more complex than JPEG and JPEG2000. The most important
featureofthis methodis its ability to provide high quality imageathigh compression
ratios.Themain features of thetechniques proposed and demonstrated in this Chapterare
highlighted asfollows [42].

1- The two transformations areproposed by the methodto increasethe high-frequency
coefficients, this is one ofthereasons toachievehigher compression ratios,

2- The proposed MatrixMinimization algorithm is used to collect each three adjacent
coefficients from the high-frequency matrices converting toa single floating point
value. This is a lossless step that reduces the size of the data and at the same time
preservesimage quality,

3- The main reasontouse Daubechieswavelet(db3) is that it helps our approach to get
higher compression ratios, becausethe Daubechies(db3) DWT family canzoom-in
an image andall high-frequency sub-bands areset to zeroatthe first level: HL1, LH1
and HH1 (i.e.thehigh-frequency sub-matrices are ignored- See Table 3.3),

4- The new decoding algorithm is proposed in this chapter called LSS-Algorithm,
whichrepresents the coreof the proposeddecompression algorithm. This algorithm
retrieve a matrix from a one-dimensional array depending on RandomWeightValues
(i.e. which is themain key responsible for coding/decoding).In addition, the LSS-
Algorithm represents lossless decompressionbyrecovering the exact original
coefficients,

5- The RandomWeightValues with Limited-Data are the keys used for coding and
decoding an image,without these two keys an imagecannot be recovered,

6- Another featureoftheproposedapproach has better visual image quality at higher
compression ratios compared with JPEG and JPEG2000. This isbecausetheapproach
removes most of the blockartefactscausedby the 8x8 two-dimensional DCT of the
JPEG technique.Also, our approach removes some blurring caused by quantization
used in multi-level DWT of the JPEG2000[22].

Thedisadvantagesof the methods areillustrated as follows.

1- The compression/decompressionstepsaremore complex than JPEG and JPEG2000,
leading to increased execution times compared with JPEG and JPEG2000.
Furthermore,the LSS-Algorithm iterative method is particularly complex.

2- BecausetheMatrix Minimization algorithm converts each integer coefficients to
floating-point number, thereby causing increasing header-compressed file size.
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Chapter 4

DWT-JPEGbasedCompression with Block Sequential Search
Decompression

4.1. Introduction

The JPEG image compression method is based on the Discrete Cosine Transform(DCT) (See
section 1.2.1)[117]. The image is divided into segments and each segmentis then a subject of
the transform, creating a series of frequency components that correspond with detail levels of
the image[127,133]. A step beyond JPEG is the JPEG2000techniquethat is based onDWT
(See section 1.2.2)which is one of the mathematicaltools for hierarchically decomposing
functions. Image compression using Wavelet Transforms is a powerful method that is
preferred by scientists to get compressed images at higher compression ratios with higher
PSNR values[3][5]. Its superiority in achieving high compression ratio, error resilience, and
other features promotes it to becometoday'scompression standard leading to the JPEG2000
ISO.

As referred to the JPEG abbreviation, which stands for Joint Photographic Expert Group,
JPEG2000 codec is more efficient than its predecessor JPEG and overcomes its drawbacks
[12]. It also offers higher flexibility compared to even many other codec such as region of
interest, high dynamic range of intensity values, multi component, lossy and lossless
compression, efficient computation, compression rate control, etc. The robustness of
JPEG2000 stems from its utilizationof the Discrete Wavelet Transform (DWT) in encoding
the image data. DWT exhibits high effectiveness in image compression due to its support to
multi-resolution representation in both spatial and frequency domains. In addition, DWT
supports progressive image transmission and region of interest coding[118,119].

We describedin the previousChaptera two level DWT and two levelDCT transforms
appliedto 2D structured lightimages. Thedrawbacksof that method motivated us to reduce
the number of transformation steps and increasethe search algorithm€s speedto reduce
coding and decoding time.In this Chapter, we introduce a newmethod ofapplying the JPEG
technique withtheDiscrete Wavelet Transform (DWT) for high-resolutioncompression. This
image compression algorithmstarts with transforming an image by a single level
DWT,followed by the JPEG technique applied to the "LL" sub-band (Low-frequency
coefficients) this process is calledhere theJPEG Transform. Next, we separate the final
transformed matrix intoa DC-Array andanAC-Matrix containing theDC values andtheAC
coefficients respectively. Finally, theMatrix Minimization algorithm is appliedto theAC-
Matrix followed by arithmetic coding[133].

The novel decompression algorithmproposedin this chapteris a Block Sequential Search
Algorithm, which is represents theinverseof theMatrix Minimization algorithm. Thissearch
algorithm consist ofpointers(P) searchingas a blockto find the original AC-coefficients.
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Thereafter,it combines all decoded DC-values with the decoded AC-coefficients in one
matrix followed by inverse JPEG transformed and inverse DWT.Thisnewtechnique is tested
by compression and reconstruction of 2Dstructured lightimages. Additionally, this technique
is compared with JPEG and JPEG2000 algorithm byusing 2D and 3D RMSE[133].

4.2. Proposed 2D Image Compression Algorithm

TheJPEG technique is one of thetechniques used in image compression,an important feature
of the JPEGmethodis the "Quality" parameter, which allows the user to adjust the amount of
the data lost over a very wide range. In thisSection, we explain in detail theJPEG
transformation applied on the outputs of a discrete wavelet transform. The JPEG
transformation consists of: 1) Apply DCT on each 8x8 block followed bya quantization
process. 2) Zigzag scan converting each block into 64 coefficients, and storethe 64-
coefficients in two different matrices[130]. Figure 4.1 describes the proposed DWT-JPEG
algorithm steps.

Figure 4.1: ProposedDWT-JPEG Compression Techniques

4.2.1. The Discrete Wavelet Transform

DWT is the first phase in the proposed image compression algorithm, to produce foursub-
bands (See Section 3.2.1) [131]. Most values in the high-frequency domains (i.e HL, LH and
HH) are insignificant coefficients without affecting on the reconstructed image. For this
reason all the high frequency domains are discarded in this research (i.e. set all values to
zero), and this does not meanthat the image will lose much information, this depends on the
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image dimensions. Figure 4.2 shows the decomposition image by Daubechies filter, andthen
recomposes sub-bands without high-frequencies[134].

Figure 4.2: reconstructed image by using Daubechies single stage DWT

4.2.2. The JPEG Transform

The "LL" sub-band partitioned into non-overlapping 8x8 blocks, each block is transformed
by usinga two-dimensional DCT to produce de-correlated coefficients. Each 8x8 frequency
domain consists of DC-value at the first location, whilethe other coefficients are called AC
coefficients(See Section 3.2.2)[5]. After applying the two-dimensional DCT on each8x8
block, each blockis quantized by the Quantization Matrix "QM" using dot-division-matrix
with truncates the results. This process removes insignificant coefficients and increases the
number of zeros in the each block. QM computes as follows[132,133]:

ðî
ðí
ðì

ð=ð+ð+ð+

ð=ð+ð+
ð=

evenjiQMifjiBlock

oddjiQMifjiBlock
jiQM

)),((1)(

)),((),(
),( (4.1)

Where\ Block: is represented block size i ,j=1,2,3•,Block

�( �, �) �= �( �, �) �(�4�.�2�)

In the above Eq.(4.2), the factor "Scale" is used to increase/decrease the values of the "QM".
Thus, image detailsarereduced in case factor Scale >1. There is no limit range for this factor,
because this depends on the DCT coefficients[133].

Each quantized 8x8 block is converted into one-dimensional array (i.e. the array contains 64
coefficients) by zigzag scan[118].Whereas, the first value transferred into new array called
DC-Array, while the other63 coefficients are storedinto a new matrix "LLAC". Finally, the
DC-Array is compressed by Arithmetic coding. The Arithmetic coding is one of the
important methods used in data compression method, especially used in JPEG2000.
Arithmetic coding depends on "Low" and "High" equations to generate streams of bits[135].
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Figure 4.3:Operation and separation of DC-value fromthe64 coefficients

4.2.3. The Matrix Minimization Algorithm

TheLLAC matrix ready for coding bytheMatrix Minimization algorithm, which isappliedto
each three coefficients(See section 3.2.3), to produceasingle dataitem.

In this Chapter we applythe Matrix Minimization algorithm to each three columns of an
image, this means reducing each three columnsto a single codedcolumn. However, the bit
size for each data in theminimized array is increased. Figure 4.4 illustrates the conversion of
three columns into one dimensional array[42,133].

Figure 4.4: MatrixMinimization Algorithm

In above Figure4.4 (a) K1, K2 and K3 representthe conversionkeys of the Matrix
Minimization algorithm. The following equation illustrates converting three datato a single
data item(SeeList 3.1)[42,133].

Di=(K1 Ai)+ (K2 Bi) + (K3 Ci) (4.3)

Where\ i=1, 2, 3,•n
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If the keyvalues arelost, the data cannot be retrieved, because the keys are usedfor both
coding and decoding. The key valuesaregeneratedthrough arandom number generator. For
example, Key1= 0.8147, Key2=0.9058, and Key3=0.1270. The keys aregenerated once for
all matrix dataand,after calculation, all coded data "Di"are arranged togetherinto a one-
dimensional array[42,133].

Before applying theMatrix Minimizationalgorithm, the probability of the data for AC-matrix
is computed. These probabilities are called Limited-Data, which are used later in the
decompression stage (See Figure 3.5). The Limited-Data set isstoredin the header fileas
additional information of compressed data[42,133].

4.3. Proposed Decompression Algorithm

The decompression algorithm representsthereverse stepsof the proposed image compression
method. First, apply arithmetic decodingto decompressthe DC-array. Thereafter,decode
theminimized-array. Second, usethe novel Block Sequential Search Algorithm (BSS-
Algorithm), which istheinverseof theMatrix MinimizationAlgorithm to reconstruct theAC-
Matrix. The BSS-Algorithmestimates (Ai, Bi and Ci) by using "Di" withthe compression
keys. Whereas, Ai, Bi and Cirepresentstimedcolumns of the AC-Matrix. The BSS-
Algorithm can bedescribedby the following steps[133].

Step 1: BSS-Algorithm startsby picking thefirst block of data from the Limited-Data the
size of this block P. Each value ofblock relatesto each other like a network as shown in
Figure 4.5, where"Column-1" is connected with "Column-2", which is connectedwith
"Column-3". In other words, the search algorithm computes all options in parallel. For
example: A=[1-1 0] , B=[1 -2 0] and C=[3-1 5], and P=3.According to Eq. (4.3), "A","B"
and "C" are computed 27 times. This means, all optionsare computed in parallel and one
option will be matched with "Di", and "Ai", "Bi" and "Ci" in "Column-1", "Column-2" and
"Column-3" representedthedecompressed data[133].

Initially, the BSS algorithm starts with P=10 from "Limited-Data(1•10.)" which isused by
the algorithm to estimate three columns (A, Band C), as mentioned in Figure4.5(a).
Thereafter, the algorithm starts searching fortheoriginal data (Ai, Bi and Ci) which depends
on compressed column "Di" andthe values of the keys. The first iteration starts with
matchingtheselected "Di" with 10 outputs. In other words,Eq.(4.3)is executed 1000 times in
parallelto find theoriginal values for columns (A,Band C) as mentioned in Figure 4.5(b). If
the result is unmatched, in this case the second option will be taken form "Limited-
Data(11•20.)" (i.e. selecting another 10 data from Limited-Data transferred to Array1, while
"Array2" and "Array3" remain in same old options.If the processing stillcannot find the
result, in this case"Array2=Array1" (i.e. transferred data from Array1 to Array2), thena new
processing starts.Through this explanation, "Array1", "Array2" and "Array3" are working
like a digital clock: sec, min. and hour respectively, this process will continue untilfind all
original columns (Ai, Bi and Ci) intheAC-Matrix[133].
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Step 2: In this step, thedecompressed AC-Matrix is composed with each DC-value (i.e. DC-
values fromthe DC-array), then followed byinverse zigzag scan to convert each 64-
coefficients to 8x8 blocks. These blocksarecombined with each other to buildthe LL sub-
bands. Subsequently, apply inverse quantization (i.e. dot-multiplication), followed by inverse
DCT on each 8x8 block. Finally, apply the inverse DWT for obtainingthe 2D image. The
decompression algorithm steps are showed in Figure4.6[133].

(a) copyP data from Limited-Data to temporary ‚Array1ƒ for BSS-Algorithm

(b) data matched throughBSS-Algorithm

Figure 4.5: (a, b) strategy fortheBSS-Algorithm
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Figure 4.6: Flowchartof the proposed Decompression Algorithm

4.4. Experimental Results
The proposed compressionmethod wasapplied on five typesof images, as shown in Figure
4.7. The tests have been performed using Daubechies DWT (db3), the block sizes used by
DCT (4×4 and 8×8). The results described below usedMATLAB for 2D image compression
in connection with a 3Dvisualization software(See Section 3.4)running on an AMD Quad-
Core microprocessor. Tables: 4.1, 4.2, 4.3, 4.4 and 4.5 show the compressed sizes for each
image.

(a) 2D BMP ‚Wallƒ, dimension1280x1024 pixels        (b) 2D BMP ‚Cornerƒ,dimension1280x1024 pixels

(c) 2D BMP ‚Face1ƒ, dimension 1392x1040 (d) 2D BMP ‚Face2ƒ, dimension 1392x1040

�6�9

Figure 4.6: Flowchartof the proposed Decompression Algorithm

4.4. Experimental Results
The proposed compressionmethod wasapplied on five typesof images, as shown in Figure
4.7. The tests have been performed using Daubechies DWT (db3), the block sizes used by
DCT (4×4 and 8×8). The results described below usedMATLAB for 2D image compression
in connection with a 3Dvisualization software(See Section 3.4)running on an AMD Quad-
Core microprocessor. Tables: 4.1, 4.2, 4.3, 4.4 and 4.5 show the compressed sizes for each
image.

(a) 2D BMP ‚Wallƒ, dimension1280x1024 pixels        (b) 2D BMP ‚Cornerƒ,dimension1280x1024 pixels

(c) 2D BMP ‚Face1ƒ, dimension 1392x1040 (d) 2D BMP ‚Face2ƒ, dimension 1392x1040

�6�9

Figure 4.6: Flowchartof the proposed Decompression Algorithm

4.4. Experimental Results
The proposed compressionmethod wasapplied on five typesof images, as shown in Figure
4.7. The tests have been performed using Daubechies DWT (db3), the block sizes used by
DCT (4×4 and 8×8). The results described below usedMATLAB for 2D image compression
in connection with a 3Dvisualization software(See Section 3.4)running on an AMD Quad-
Core microprocessor. Tables: 4.1, 4.2, 4.3, 4.4 and 4.5 show the compressed sizes for each
image.

(a) 2D BMP ‚Wallƒ, dimension1280x1024 pixels        (b) 2D BMP ‚Cornerƒ,dimension1280x1024 pixels

(c) 2D BMP ‚Face1ƒ, dimension 1392x1040 (d) 2D BMP ‚Face2ƒ, dimension 1392x1040



�7�0

(e) 2D BMP ‚Face3ƒ, dimension 1392x1040

Figure4.7: (a, b) Colour 2D BMP image, size=3.75MB, (c,d,e)grayscale2D BMP image, size=1.38MB

Table 4.1: 2D image"Wall.bmp"of 3.75 MBcompressed by the proposed image compression algorithm
Scale€ parameter used by

quantization
Block size used

by
JPEG-

Transformation

Compressed
Size
(KB)

Compression
RatioLuminance

Y / single
layer

Chrominance
[Cb , Cr]

2 [2,2] 8x8 27.2 99.2%

2 [4,4] 8x8 21.7 99.4%

4 [4,4] 8x8 17.5 99.5%

4 [8,8] 8x8 13.5 99.6%

Table 4.2: 2D image"Corner.bmp"of 3.75 MBcompressed by the proposed image compression algorithm
Scale€ parameter used by

quantization
Block size used

by
JPEG-

Transformation

Compressed
Size
(KB)

Compression
Ratio

Luminance
Y / single

layer

Chrominance
[Cb , Cr]

2 [2,2] �8�x�8 52.6 98.6%

2 [4,4] �8�x�8 39.9 98.9%

4 [4,4] �8�x�8 33.4 99.1%

4 [8,8] �8�x�8 25.1 99.3%

8 [8,8] �8�x�8 20.1 99.4%

Table 4.3: 2D image"FACE1.bmp"of 1.38 MBcompressed by the proposed image compression algorithm
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Scale€ parameter used by
quantization (single layer)

Block size used by
JPEG-Transformation

Compressed
Size
(KB)

Compression
Ratio

2 �4�x�4 51.6 96.3%

2 �8�x�8 28.4 97.9%

4 �8�x�8 16.3 98.8%

5 �8�x�8 13.5 99%

6 �8�x�8 11.6 99.1%

8 �8�x�8 9 99.3%

Table 4.4: 2D image"FACE2.bmp"of 1.38 MBcompressed by the proposed image compression algorithm

Scale€ parameter used by
quantization (single layer)

Block size used by
JPEG-Transformation

Compressed
Size
(KB)

Compression
Ratio

2 �4�x�4 39 97.2%

2 �8�x�8 20 98.5%

4 �8�x�8 11.6 99.1%

5 �8�x�8 8.4 99.4%

6 �8�x�8 9.6 99.3%

8 �8�x�8 6.7 99.5%

Table 4.5: 2D image"FACE3.bmp"of 1.38 MBcompressed by the proposed image compression algorithm

Scale€ parameter used by
quantization (single layer)

Block size used by
JPEG-Transformation

Compressed
Size
(KB)

Compression
Ratio

2 �4�x�4 33 97.6%

2 �8�x�8 16.8 98.8%

4 �8�x�8 9.4 99.3%

5 �8�x�8 7.7 99.4%

The proposed decompression algorithmwasappliedto each compressedimage, as mentioned
before in section 4.2. The decompressed algorithm showsa range of imagequality according
to "Scale" parameter and block size usedin the JPEG-Transformation (See Eq.(2)). Figure
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4.8, Figure 4.9, Figure 4.10, Figure 4.11and Figure 4.12showsequence of decompressed 3D
images: Wall, Corner, Face1, Face2 and Face3 respectivelywhere the quality of the 3D
reconstruction can be assessed.

�(�a�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�W�a�l�l�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�2�,�2�,�2�]�,� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e�, �(�b�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�W�a�l�l�"� �3�D�i�m�a�g�e� �S�c�a�l�e�=�[�2�,�4�,�4�]

�(�c�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�W�a�l�l�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�4�,�4�,�4�]�,�(�d�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�W�a�l�l�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�4�,�8�,�8�]�,� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e

Figure4.8: (a) Decompressed3D wall image shaded by using high quality parameters applied on each layer in
colour image "YCrCb". (b)Decompressed 3D wall image shaded by using normal quality parameters shows the
details of 3D surface. (c) and(d) shows decompressed 3D surface at low quality parameters, the degradation
starts appearing on the 3D wall image.

�(�a�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�C�o�r�n�e�r�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�2�,�2�,�2�]�,� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e
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�(�b�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�C�o�r�n�e�r�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�2�,�4�,�4�]� � � �(�c�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�C�o�r�n�e�r�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�4�,�4�,�4�]

�(�d�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�C�o�r�n�e�r�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�4�,�8�,�8�]�,� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e

�(�e�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�C�o�r�n�e�r�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�[�8�,�8�,�8�]�,� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e

Figure4.9: (a) Decompressed 3D corner image shaded by using high quality parameters applied on each layer in
colour image "YCrCb". (b, c) Decompressed 3D Corner image shaded by using normal quality parameters
shows the details of 3D surface. (d) Decompressed 3D Corner image shaded by using low quality parameters
and the details of 3D surface still approximately sameas the original. (e) Decompressed 3D Corner image
shaded by using very low qualityparametersand small amount of the degradation starts appearing on the3D
surface.

�(�a�) �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�1�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�2�,� �b�l�o�c�k� �s�i�z�e� �=�[�4�x�4�]� �3�D� �t�e�x�t�u�r�e� �a�n�d� �s�h�a�d�e�d
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�(�b�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�1�"� �3�D� �i�m�a�g�e�(�c�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�1�"� �3�D� �i�m�a�g�e�(�d�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�1�"� �3�D�i�m�a�g�e
�S�c�a�l�e�=�2�,� �b�l�o�c�k� �s�i�z�e�=�[�4�x�4�]� �3�D� �s�h�a�d�e�d�S�c�a�l�e�=�4�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d�S�c�a�l�e�=�5�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D�s�h�a�d�e�d

�(�e�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�1�"� �3�D� �i�m�a�g�e�(�f�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�1�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�8
�S�c�a�l�e�=�6�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D�s�h�a�d�e�d�b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e

Figure4.10: (a) Decompressed 3D Face1 image shaded by using high quality parameters applied on the grey-
scale image. (b, c, d) Decompressed 3D Face1 image shaded by using normal quality parameters shows the
details of 3D surface. (e) Decompressed 3D Face1 image shaded by using low quality parameters and the details
of 3D surface still approximatelythe sameas the original. (f) Decompressed 3D Face1 image shaded by using
very low quality parameters, and small amount of the degradation starts appearing on the 3D surface.

�(�a�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�2�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�2�,� �b�l�o�c�k� �s�i�z�e� �=�[�4�x�4�]� �3�D� �t�e�x�t�u�r�e� �a�n�d� �s�h�a�d�e�d
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�(�b�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�2�"� �3�D� �i�m�a�g�e�(�c�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�2�"� �3�D� �i�m�a�g�e�(�d�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�2�"� �3�D�i�m�a�g�e
�S�c�a�l�e�=�2�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d� � � � � � �S�c�a�l�e�=�4�,�b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d�S�c�a�l�e�=�5�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d

�(�e�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�2�"� �3�D� �i�m�a�g�e� � � � � �(�f�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�2�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�8
�S�c�a�l�e�=�6�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d� � � � � � � � � � � � � � � �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d� �a�n�d� �t�e�x�t�u�r�e

Figure4.11: (a) and (b) Decompressed 3D Face2 image shaded by using high and normal quality parameters
respectively, applied on the grey-scaleimage thedetails of 3D surfaces near to original 3D surface. (c) and(d)
Decompressed 3D Face2 image shaded by using normal quality parameters and some details of 3D surface are
changed. (e) and (f) Decompressed 3D Face2 image shaded by using low quality parameters, and small amount
of the degradation appears on the 3D surface.

�(�a�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�3�"� �3�D� �i�m�a�g�e� �S�c�a�l�e�=�2�,� �b�l�o�c�k� �s�i�z�e� �=�[�4�x�4�]� �3�D� �t�e�x�t�u�r�e� �a�n�d� �s�h�a�d�e�d
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�(�b�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�3�"�(�c�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�3�"�(�d�)� �D�e�c�o�m�p�r�e�s�s�e�d� �"�F�a�c�e�3�"� �3�D� �i�m�a�g�e
�S�c�a�l�e�=�2�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]�S�c�a�l�e�=�4�,� �b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]�S�c�a�l�e�=�5�,�b�l�o�c�k� �s�i�z�e�=�[�8�x�8�]� �3�D� �s�h�a�d�e�d� �a�n�d�t�e�x�t�u�r�e

Figure4.12: (a) Decompressed 3D Face3 image shaded by using high quality parameters applied on the grey-
scale image. (b, c) Decompressed 3D Face3 image shaded by using normal quality parameters shows the details
of the3D surface is near to original 3D surface. (d) Decompressed 3D Face3 image shaded by using low quality
parameters, and small amount of the degradation appeared on the 3D surface.

The following Tables:4.6, 4.7, 4.8, 4.9 and4.10 show time execution fortheBSS-algorithm
for each image using two types of pointers (P=5 andP=10). The pointer refers to number of
coefficients using inblock for space search (i.e. searching in Limited-Data).

Table 4.6:BSS-Algorithm time execution for image: Wall.bmp
Parameters Time execution (sec.)  for

BSS-Algorithm, P=5
Time execution (sec.) for

BSS-Algorithm, P=10

Luminance
Y

Chrominance
[Cb , Cr]

Y Cb Cr
Total time

(s)
Y Cr Cb

Total time
(s)

2 [2, 2] 10.95 6 11.87 28.82 7.8 4.36 7.45 19.61

2 [4, 4] 10 3.55 4.27 17.82 7.97 2.24 2.43 12.64

4 [4, 4] 3.66 2.9 4.29 10.85 3.19 2.6 3.0 8.79

4 [8, 8] 3.25 2.91 2.72 8.87 3 2.6 2.15 7.75

Table 4.7:BSS-Algorithmtime execution for image:Corner.bmp
Parameters Time execution (sec.)  for

BSS-Algorithm, P=5
Time execution (sec.) for

BSS-Algorithm, P=10

Luminance
Y

Chrominance
[Cb , Cr]

Y Cb Cr
Total time

(s)
Y Cr Cb

Total time
(s)

2 [2, 2] 36.61 9.28 21 66.89 27.51 9.42 14.25 51.18

2 [4, 4] 35.75 4.69 6.13 46.57 25.55 3.52 5.5 34.57

4 [4, 4] 5.44 4.58 6.48 16.50 6.22 3.57 5.99 15.78

4 [8, 8] 5.5 2.69 3 11.19 6.0 4.22 3.16 13.38

8 [8, 8] 2.94 2.93 3.32 9.19 2.93 4.46 3.41 10.8
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Table 4.8:BSS-Algorithmtime execution for image:FACE1.bmp
Parameters BSS-Algorithm, P=5 BSS-Algorithm, P=10

Luminance
Y

Block size Total time(s) Total time (s)

2 [4x4] 126.20 122.24

2 [8x8] 65.59 61.12

4 [8x8] 15.22 8.47

5 [8x8] 9.37 6.91

6 [8x8] 6.14 4.91

8 [8x8] 3.38 4.77

Table 4.9:BSS-Algorithmtime execution for image:FACE2.bmp
Parameters BSS-Algorithm, P=5 BSS-Algorithm, P=10

Luminance
Y

Block size Total time(s) Total time (s)

2 [4x4] 81.83 76.58

2 [8x8] 44.69 43.24

4 [8x8] 7.53 8.42

5 [8x8] 7.76 8.59

6 [8x8] 4.74 5.24

8 [8x8] 4.39 4.49

Table 4.10:BSS-Algorithmtime execution for image:FACE3.bmp
Parameters BSS-Algorithm, P=5 BSS-Algorithm, P=10

Luminance
Y

Block size Total time(s) Total time (s)

2 [4x4] 16.27 10.67

2 [8x8] 9.0 7.78

4 [8x8] 3.1 3.77

5 [8x8] 3.0 3.21

4.5. Comparison with JPEGand JPEG2000
Our approach is compared with JPEG and JPEG2000; these two techniques are used widely
in digital image compression,especially forimage transmission and video compression. The
JPEG technique is based on the 2D DCT applied on the partitioned image into 8x8 blocks,
and then each block encoded by RLE and Huffmancoding [129, 133]. The JPEG2000 is
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based on the multi-level DWT 9/7-daubechies filter, applied on the partitioned image and
then each partition quantized and coded by Arithmetic coding. Most image compression
applications allow the user to specify a quality parameter for the compression. If the image
quality is increased the compression ratio is decreased and viceversa [131, 133]. The
comparison is based on the 2D image and 3D image quality for testing the quality by Root-
Mean-Square-Error (RMSE). Tables:4.11, 4.12, 4.13, 4.14 and4.15 show the comparison
between the three methods for Wall, Corner, Face1, Face2 and Face3 respectively.

Table 4.11:Sequence of"Wall.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

�9�9�.�2�% 2.8 6.44 2.6 0.26 9.4 0.33

�9�9�.�4�% 3.5 6.45 2.8 0.26 15.4 24.4

�9�9�.�5�% 3.7 0.49 3.1 0.55 FAIL FAIL

�9�9�.�6�% 4.9 0.47 3.3 0.58 FAIL FAIL

Table 4.12: Sequenceof "Corner.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

�9�8�.�6�% 5.8 0.07 4.7 0.05 11.2 1.15

�9�8�.�9�% 6.8 1.14 5.6 0.25 13.7 1.18

�9�9�.�1�% 7.1 1.14 6.1 1.83 16.0 1.81

�9�9�.�3�% 9.4 1.15 6.6 0.25 20 56.8

�9�9�.�4�% 9.9 0.34 7.2 1.17 FAIL FAIL

Table 4.13: Sequence of "FACE1.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

�9�6�.�3�% 4.3 0.85 4.0 0.66 4.0 1.8

�9�7�.�9�% 4.7 0.82 3.7 1.43 7.6 1.97

�9�8�.�8�% 5.4 1.48 4.7 1.8 12.2 116.5



�7�9

�9�9�% 5.7 1.80 5.1 1.81 FAIL FAIL

�9�9�.�1�% 6.1 1.98 5.4 1.93 FAIL FAIL

�9�9�.�3�% 6.7 1.94 5.8 1.86 FAIL FAIL

Table 4.14: Sequenceof "FACE2.bmp" 2D and 3D decompressed image by three methods,according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

�9�7�.�2�% 2.4 0.47 1.5 0.62 2.1 0.49

�9�8�.�5�% 2.8 0.66 1.8 0.5 2.6 15.0

�9�9�.�1�% 3.4 1.18 2.4 0.93 11.0 FAIL

�9�9�.�4�% 3.8 15.8 3.0 1.06 FAIL FAIL

�9�9�.�3�% 4.1 14.9 3.1 15.2 FAIL FAIL

�9�9�.�5�% 4.6 15.4 3.3 15.1 FAIL FAIL

Table 4.15:Sequenceof "FACE3.bmp" 2D and 3D decompressed image by three methods, according to
compressed size

Compression
Ratio

Proposed Method JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE 2D RMSE 3D RMSE

�9�7�.�6�% 2.3 0.55 1.8 0.93 2.7 0.49

�9�8�.�8�% 2.6 0.55 2.4 0.97 9.7 FAIL

�9�9�.�3�% 3.3 0.59 2.9 0.67 FAIL FAIL

�9�9�.�4�% 3.6 0.70 3.2 0.77 FAIL FAIL

In the above tables:4.11, 4.12, 4.13, 4.14 and4.15 "FAIL " means that theJPEG algorithm
wasunable to compress/decompress an image at high compression ratio, whiletheother two
methods (our proposedand JPEG2000)can compress/decompress successfully. In some
cases, the 3D RMSE vary, if we compare it with 2D RMSE, this is because the dimensions of
the original 3D image and 3D decompressed imageare unmatched. In this case, the
unmatched regions are discarded.On the other hand, RMSE is not enough to show the real
comparison between these three methods.The following figures:4.15, 4.16, 4.17, 4.18 and
4.19 shows the visual properties for the 3D decompressed images: Wall, Corner, FACE1,
FACE2 and FACE3 respectively by using JPEG and JPEG2000so a perceptual assessment of
quality can be made.
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(a) JPEG2000, 3D RMSE= 0.26(b) JPEG2000, 3D RMSE=0.26  (c) JPEG2000, 3D RMSE=0.55
Compress size=27.2 Kbytes Compress size=21.7KbytesCompress size=17.5 Kbytes

(d) JPEG2000, 3D RMSE=0.58 (e) JPEG, 3D RMSE=0.33             (f) JPEG, 3D RMSE=24.4
Compress size=13.5 Kbytes     Compress size=27.2 Kbytes      Compress size=21.7 Kbytes

Figure4.15:(a „ d) Decompressed Wall image byusing JPEG2000, (e,f) Decompressed Wall image byJPEG

(a) JPEG2000, 3D RMSE= 0.05   (b) JPEG2000, 3D RMSE=0.25      (c) JPEG2000, 3D RMSE=1.83
Compress size=52.2 Kbytes      Compress size=39.9 Kbytes   Compress size=33.4 Kbytes

(d) JPEG2000, 3D RMSE= 0.25   (e) JPEG2000, 3D RMSE=1.17     (f) JPEG, 3D RMSE=1.15
Compress size=25.1 Kbytes      Compress size=20.1 KbytesCompress size=52.2 Kbytes
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(g) JPEG, 3D RMSE= 1.18   (h) JPEG, 3D RMSE=1.81 (i) JPEG, 3D RMSE=56.8
Compresssize=39.9 Kbytes      Compress size=33.4 KbytesCompress size=25.1 Kbytes

Figure 4.16: (a „ e) Decompressed Corner image by JPEG2000, (f„ i) Decompressed Corner image by JPEG.

(a) JPEG2000, 3D RMSE= 1.18   (b) JPEG2000, 3D RMSE=1.81  (c) JPEG2000, 3D RMSE=56.8   (d)JPEG2000, 3D
RMSE=56.8

Compress size=51.6 Kbytes    Compress size=28.4 Kbytes Compress size=16.3 KbytesCompress size=13.5Kbytes

(e) JPEG2000, 3D RMSE=1.18  (f) JPEG2000, 3D RMSE=1.81(g) JPEG, 3D RMSE=1.8(h) JPEG, 3D RMSE=1.97
Compress size=11.6 Kbytes    Compress size=9.0 KbytesCompress size=51.6 KbytesCompress size=28.4 Kbytes

(i) JPEG, 3D RMSE=116.5
Compress size=16.3 Kbytes

Figure4.17: (a „ f) Decompressed FACE1 image by JPEG2000, (g„ i) Decompressed FACE1 image by JPEG.
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(a) JPEG2000, 3D RMSE=0.62 (b) JPEG2000, 3D RMSE=0.5(c) JPEG2000, 3D RMSE=0.93(d) JPEG2000, 3D
RMSE=1.06

Compress size=39 Kbytes    Compress size=20 Kbytes Compress size=11.6 KbytesCompress size=8.4 Kbytes

(e) JPEG2000, 3D RMSE=15.2  (f)JPEG2000, 3D RMSE=15.1(g) JPEG, 3D RMSE=0.49       (h) JPEG, 3D RMSE=15.0
Compress size=9.6 Kbytes    Compress size=6.7 KbytesCompress size=39 Kbytes    Compress size=20 Kbytes

Figure4.18: (a „ f) Decompressed FACE2 image by JPEG2000, (g, h) Decompressed FACE2 image by JPEG.

(a) JPEG2000, 3D RMSE=0.93  (b) JPEG2000, 3D RMSE=0.97   (c) JPEG2000, 3D RMSE=0.67(d) JPEG2000, 3D
RMSE=0.77
Compress size=33 Kbytes    Compress size=16.8 KbytesCompress size=9.4 Kbytes    Compress size=7.7 Kbytes

(e) JPEG, 3D RMSE=0.49
Compress size=33 Kbytes

Figure4.19: (a „ d) Decompressed FACE3 image by JPEG2000, (e) Decompressed FACE3 image by JPEG.
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4.6. Conclusion

In this Chapterwe presentedand demonstrated a new methodof imagecompression used in 3D
applications. The method is based onDWT and JPEG transformation with the proposedMatrix
Minimization algorithm. The results showed that our approach introduced better image quality
at higher compression ratios than JPEG and JPEG2000 being capable of accurate 3D
reconstruction at higher compression ratios. On the other hand, it is more complex than
JPEG2000 and JPEG. The most important aspects of the method and their role in providing high
quality image with high compression ratios are discussed asfollows [133]:

1- Using two transformations helpedour compression algorithm to increase the number of
high-frequency coefficients, and reduce the low-frequency domains leading to increased
compression ratios.

2- The Matrix Minimization algorithm is used to collect each three coefficients from the AC-
matrix, toa singlefloating-point value. This process converts a matrix into an array, leading
to increased compression ratios and keeping the quality of the high-frequency coefficients.

3- The BSS-Algorithm represents the core of ourdecompressionalgorithm toreconstructthe
exact original data (i.e. decompression algorithm),convertinga one-dimensional array (i.e.
the Minimized-Array) to the originalmatrix, and depends on the organized key-values and
Limited-Data.

4- The key-valuesand Limited-Data are used in coding and decoding an image, without these
information imagescannot be reconstructed.This feature makes ourapproachuseful in
image encryption.

5- Our approachprovidesa bettervisual image quality compared to JPEG and JPEG2000. This
is because our approach removes most of the blockartefactscaused by the 8x8 two-
dimensional DCT of the JPEG technique and this isdue to the Matrix Minimization
algorithm. Also, our approach usesa single level DWT rather than multi-level DWT of
JPEG2000, for this reason blurringis removedby ourapproach.

However, there are morestepsin the proposed compression and decompression algorithm than
in the JPEG and JPEG2000techniques.Also,the complexity ofBSS-algorithm leads to increased
execution time fordecompression, because theiterative nature of themethod is particularly
complex.
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Chapter 5

Enhanced DWT-DCT based Image Compression withFast-Matching-Search
Decompression

5.1. Introduction

We demonstratedin Chapters 3 and 4that structured light images for 3Dreconstruction can be
compressed bythe proposed techniques with high accuracy and high compression ratios. The
research addressedefficient compression of 2D images for 3D reconstruction and texture
mapping. The proposedalgorithmsby Siddeq andRodrigues[42,133,136] areuseful tomany3D
applications,scientific datasets, medicaland engineeringand so on.

In this Chapter,we describe a new method for image compression based on two separate
transformations;a two-levelDWT anda two-level DCT, leading to an increased number of high-
frequency matrices, which are then shrunkby the EnhancedMatrix Minimizationalgorithm. This
Chapterdemonstrates that our compression algorithmcan achieveefficient image compression
ratios up to 99.5% and superior accurate 3D reconstruction compared with standard JPEG and
JPEG2000[137].

5.2. The Proposed 2D Image Compression Algorithm

This section presents a novel lossy compression algorithm implemented viaDWTand DCT. The
algorithm starts witha two-level DWT. While all high frequencies (HL1, LH1, HH1) of the first
level are discarded, all sub-bands of the second level are furtherencoded. Wethenapply DCTto
the low-frequency sub-band(LL2) of the second level; the main reason for using DCTis to split
into another lowfrequency and high-frequency matrices(DC and ACMatrix1).The Enhanced
Matrix Minimization algorithmis then applied tocompressthe AC-Matrix1 andhigh frequency
matrices (HL2, LH2, HH2). The DC-Matrix1 is subject to a second DCTwhoseAC-Matrix2 is
quantized then subject to arithmetic coding together with DC-Matrix2 and the output of
EMMalgorithm as depicted inFigure5.1[137].



�8�5

Figure5.1: Layoutproposed bythetwo-level DWT-DCT compressiontechnique.

5.2.1.Two-Level DiscreteWavelet Transform (DWT)

The Wavelet Transform divides the image into four sub-bands: LL (i.e. whichrepresents an
approximation ofthe original image) andthe other three represent details asdescribedin
Chapters 3 and 4. Practically, the details canbe compressed into a few bytes, this is because
these detailsdo not affect significantlythe image quality.Given this, we can setall detail
coefficientsto zero[133,137]. The DWT uses filters for decomposingan image; these filters
helptoincrease the number of zeros inthehigh frequency sub-bands. One common filterused in
decomposition and composition istheDaubechies Filter(db3)[132,141].

In theproposedalgorithm,the high frequencysub-bandof first level are set to zero(i.e. discard
HL, LH and HH). These sub-bandsdo not affectimage details. Additionally, only a small
number ofnon-zero valuesarepresentin these sub-bands. In contrast,high-frequencysub-bands
in the second level (HL2, LH2 and HH2) cannot bediscarded, as this would significantly affect
image quality. For this reason, high-frequency values in this regionare quantized. The
quantization process in thisalgorithm depends on the maximum value in each sub-band, as
shownby thefollowing equation[137]:

�= �(�5�.�1�)

�= �m�a�x�( �) �(�5�.�2)
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Where, €H2• represents each high-frequency sub-band at second level in DWT(i.e. HL2, LH2
and HH2). While€H2m• represents maximum value in a sub-band, andthe"Ratio" valueis used
as a control forthe maximum value, which isused to control image quality. For example, if the
maximumvalue in a sub-band is 60 andRatio=0.1, the quantization value isH2m=6, this means
all values in a sub-bandare divided by 6.

Each sub-band has different priorityfor keepingimage details. The higher priorities are: LH2,
HL2 and then HH2. Most of information about image detailsare in HL2 and LH2. If most of
nonzero data in these sub-bandsare retained, the image quality will behigh even if some
informationis lost in HH2.For this reasontheRatio value for HL2, LH2andHH2is definedin the
range ={0.1 ‚ 0.5} .

5.2.2. Two Level Discrete Cosine Transform (DCT)

In this Section,we describethe two-levelDCT appliedto low-frequencysub-band €LL2• (see
Figure5.1). A quantizationis first applied to LL2 as follows.All values in LL2 are subtracted by
the minimum of LL2and then dividedby 2 (i.e. a constant even number). Thereafter,a two-
dimensional DCTis applied to produce de-correlated coefficients. Eachvariable size block (e.g.
8x8)in the frequency-domain consistsof: theDC-value at the first location, whileall the other
coefficients are called AC coefficients. The followingsteps illustrate thetwo-levelDCT
implementation:

A- Organize LL2 into 8x8 non-overlapping blocks (other sizes can also be used such as
16x16), then applyDCTto eachblock followed byquantization. The following equations
represent theDCT andits inverse[130,131,138]

The quantization tableis a matrixof the same block sizethat can be represented as
follows:

�( �, �) �= �+ �( �+ �) �(�5�.�3�)

�( �, �) �= �( �, �) �(�5�.�4)

Where\i, j=1,2,€Block , Scale=1,2,3,€ Block

After applying the two-dimensional DCT on each 8x8or 16x16block, each blockis
quantized by the €Q• using dot-division-matrix, which truncates the results. This process
removes insignificant coefficients and increases the number of zeros in each block.
However,in the above Eq. (5.4), the factor "Scale" is used to increase/decrease the values
of "Q". Thus, image details arereduced in case ofScale>1. There is no limiting range for
this factor, because this depends on the DCTcoefficients[137].
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B- Converteach block to 1D array,and thentransfer the first valueto a new matrix called
DC-Matrix. While the rest of data AC coefficientsare saved into anew matrix called AC-
Matrix. Similarity, the DC-Matrix is transformed again by DCT intoanother two
different matrices:DCT-Matrix2 and AC-Matrix2. Figure5.2 illustrates the details of the
two-level DCT applied to the sub-band LL2.

Figure5.2:(a) and (b)two levelsDCT appliedto LL2

The result from DC-Matrix2 size is very small and can be representedby a few bytes. On the
other hand, the AC-Matrix2 contains lots of zeros with only a few nonzero data. All zeros can be
erased and just nonzero data are retained.

5.2.3EnhancedMatrix Minimization Algorithm

Each high-frequency sub-band contains lots of zeros with a few nonzero data. We propose a
technique to eliminate block of zeros, and store blocks of nonzero data in an array. This
technique is useful for squeezing all high-frequency sub-bands, this process islabelledEliminate
Zeros and Store Nonzero data (EZSN)in Figure 5.3, applied to eachhigh frequency
independently.  The EZSN algorithm starts to partition the high-frequency sub-bands into non-
overlapping blocks [K x K], and then search for nonzero blocks (i.e. search for at least one
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nonzero inside a block). If a block contains any nonzero data, this block will be stored in the
array calledReduced-Array, with the position of that block.  Otherwise, the block will be
ignored, and the algorithm continues to search for other nonzero blocks. The EZSN algorithm is
illustrated in List 5.1 below[137].

Figure5.3;Layoutof theEnhancedMatrix Minimization Algorithm

List 5.1:EZSN Algorithm
K=8; %% block size = [KxK]
I=1; LOC=1
while (I< column size for high-frequency sub-band)
J=1;
while (J<row size for high-frequency sub-band)
Block[1..K*K]= Read_Block_from_Matrix(I,J) ; %%read 8x8block from high-frequency sub-band
if (Check_Block(Block) = = 'nonzero') %%check the "Block" content,hasita nonzero?
POSITION [LOC] =I; POSITION [LOC+1] =J; %% Save original location for block contains

%%nonzero data in high-frequency sub-band
LOC=LOC+2;
Forn=1: Block_Size* Block_Size
Reduced_Array[P]= Block[n]; %%save nonzero data in new array
++P;
Endfor
Endif
J=J+K;
Endwhile% inner loop

I=I+ K;
Endwhile% outer loop

After each sub-bandis squeezedinto an array, thereafter,the Matrix Minimizationalgorithmis
appliedto each reduced array independently. Thismethod reduces the array sizeby 66%, the
calculation depends on keyvalues andcoefficients of the reduced array, andthe resultis stored
in a new array calledMinimized-Array. The following equation representsthe Matrix
Minimizationalgorithm[133,134,137]:
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Minimzed-Array(P)=Key(1)RA(L) + Key(2)RA(L+1) + Key(3)RA(L+2) (5.5)

Note that€RA• representsReduced-Array (HL2, LH2, HH2 and AC-Matrix1)
L=1, 2, 3,€ N-3, •N• is thesize of Reduced-Array
P=1,2,3€N/3

The Keyvaluesin the aboveEq. (5.5) are generated bya key generator algorithm. Initially
computethemaximum value inreduced sub-band, andthree keysaregenerated according tothe
following equations[137]:

�= �1�.�5�m�a�x�( �) �(�5�.�6�)

"e �1 �(�5�.�7�)

�= �+ �+ �(�5�.�8�)

�= �( �+ �) �(�5�.�9�)

Key=[K1, K2, K3];% Final Key valuesfor compression and decompression

WhereM representsthe maximum value inthe high-frequency matrixH, �F�a�c�t�o�r"e �1and �K "e
�1are integer values.Each reduced sub-band(SeeFigure5.3) has its own key value. Thisdepends
on the maximumvalue in each sub-band.The idea for the key issimilar to weights used ina
Perceptron Neural Network:P=AW1+BW2+CW3, where Wiare the weight values generated
randomlyand€A•,€B• and€C• aredata. The output of this summation is€P• and there is only
one possible combination for the data values givenWi(See Section 3.2.3)[133,134,137].

TheMatrix Minimization algorithmproducesa minimized-arraythat contains lots of zeros with a
few nonzero data. In this case,we separate zeros from nonzero data, as shown in Figure 5.4.The
zero-array can be computed easily by calculating the number of zeros between two nonzero data.
For example, assume the followingMinimized-Array=[0.5, 0, 0, 0, 7.3, 0, 0, 0, 0, 0,-7],the zero-
array will be [0,3,0,5,0]where the zeros in red refer to nonzero data existing at these positions in
the originalMinimized-Array and the numbers in black refer to the number of zeros between two
consecutive non-zero data.[137].
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Figure 5.4: SeparateMinimized-Array into zero-array and nonzero-array

Before applying the EnhancedMatrix Minimization algorithm, our compression algorithm
computes the probability of theReduced-Array (i.e. computethe probability for each HL2, LH2,
HH2 and AC-Martix1). These probabilities are calledLimited-Data, which is used later inthe
decompressionstage (see Figure 3.5)

The final step of the compression algorithm is arithmetic coding,which isone of the important
methods used in datacompression; it takesa stream of data and convert ittoa single floating
point value. These valueslie in the range lessthan one and greater than zero that,when
decoded,returntheexact stream of data. The arithmetic coding needs to compute the probability
of all data and assigna range for each data(low and high) to generate streams of bits
[33,57,131].

5.3 The Fast-Matching-Search Decompression Algorithm (FMS -
Algorithm )

Theproposeddecompression algorithm is theinverseof compression andconsists of threestages
[137]:

1) First levelInverseDCTto reconstructtheDC-Matrix1;
2) Apply the FMS-Algorithm to decode each sub-band independently (i.e. HL2, LH2, HH2,

AC-Matrix2);
3) Apply thesecond levelinverseDCT with two levelsinverseDWTto reconstructthe 2D

image.

Once the 2D image is reconstructed, we applystructured light3D reconstruction algorithms to
obtain an approximation of the original 3D surface, from which errors can be computedfor the
entire surface. Figure5.5 showsthe layout of the main steps in theproposed decompression
algorithm.
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(a) First level inverse DCT

(b) FMS-Algorithm applied to reconstruct high-frequency matrices

(c) Two levels inverse DWT with two levels inverse DCT applied to decompress 2D image

Figure5.5: (a),(b) and (c)represents layout of the proposed Decompression algorithm

The FMS-Algorithm has beendesignedto recover the original high frequency data. The
compressed datacontains information aboutthe compressionkeys and probability data (Limited-
data) followed by streams of compressed highfrequency data. Therefore,the FMS algorithm
picks up each compressed high frequencydata and reads information (key values and Limited-
Data) from which the original high frequencydata arerecovered. TheFMS-Algorithm is
illustratedthrough the following steps A and B:
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A) Initially, Limited-Dataarecopied(in memory)three times into separated arrays. This is
becauseexpanding the compressed data with the three keys resembles aninterconnected
data, similar to a networkasshown inFigure5.6

B) Pick up a data itemfrom€D•, the compressed array (i.e. Coded-HL2 or Coded-LH2 or
Coded-HH2 or Coded-AC-Matrix1) and searchfor the combination of (A,B,C)with
respective keysthat satisfyD. Returnthe tripletdecompressed values(A,B,C).

Figure5.6: Firststage FMS-Algorithm for reconstructing high frequencydatafrom Limited-Data. A, B and C arethe
uncompressed data which aredeterminedby the unique combination of keys.

Since the three arraysof Limited-Datacontain the same values, that is A1=B1=C1, A2=B2=C2,
and so on the searching algorithm computes all possible combinations of A with Key1, B with
Key2 and C with Key3 that yield a result D. As a means of an exampleconsider that Limited-
Data1=[A1 A2 A3] , Limited-Data2=[B1 B2 B3] and Limited-Data3=[C1 C2 C3]. Then,
according to Eq.(10) these represent RA(L), RA(L+1) and RA(L+2) respectively, the equation is
executed 27 times (33=27) testing all indices and keys. Oneof these combinations will match the
data in (D) (i.e. the original high frequency Coded-LH2 or Coded-HL2 or Coded-HH2 or Coded-
AC-Matrix1) as described inFigure5.6. The match indicates that the unique combination of
A,B,C are the orgininal data we are after[137].

The searching algorithm used in our decompression methodis calledBinary Search Algorithm,
thealgorithmfinds theoriginal data (A,B,C) for any inputfromarray€D•. For thebinary search,
the array should be arranged in ascending order. In each step, the algorithm compares theinput
valuewith the middle of element of the array€D•. If the valuematches, then a matching element
has been found and its position is returned[139]. Otherwise, if thesearchis less than the middle
element of€D•, then the algorithm repeats its action on the sub-array to the left of the middle
element or, ifthe valueis greater, on the sub-array to the right.There is noprobability for €Not
Matched•, because the FMS-Algorithm computed all compression datapossibilities previously.

After the Reduced-Arrays (LH2, LH2, HH2 and AC-Matrix1) are recovered, their full
corresponding high frequencymatrices are re-build by placing nonzero-data in the exact
locations according toEZSN algorithm (seeList 5.1). Then the sub-bandLL2is reconstructedby
combining the DC-Matrix1and AC-Matrix1 followed bythe inverse DCT. Finally, a two-
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levelinverseDWTis applied to recover the original2D BMP image (seeFigure5.5(c)). Once the
2D image is decompressed, its3D geometric surfaceis reconstructedsuch that error analysis can
be performed in thisdimension[137].

5.4Experimental Results
The results described below useMATLAB -R2013afor performing2D imagecompression and
decompression, and3D surfacereconstruction was performed with ourown softwaredeveloped
within the GMPR group(SeeSection3.4)running on an AMD quad-core microprocessor. The
justification for introducing 3D reconstruction is that we canmakeuseof a new set of metrics in
terms of error measurementsand perceived quality of the 3D visualization to assess the quality
of the compression/decompressionalgorithms[135, 136].

The results in thischapter aredivided into two parts: first, we apply the proposed image
compression and decompression methods to 2D greyscale imagesof human faces. The original
and decompressed images are used to generate 3D surface models from which direct
comparisons are made in terms of perceived quality of the mesh and objective error measures
such as RMSE.Second, werepeat all proceduresfor 2Dcompression, 2D decompression, 3D
reconstruction but this time with colour images of objects other than faces.Additionally, the
computed 2D and 3D RMSEare used directlyfor comparison with JPEG and JPEG2000
techniques.

5.4.1Compression, Decompression and3D ReconstructionfromGreyscaleImages

As described above theproposed image compression started with DWT. The level of DWT
decompositionaffectsthe image qualityalso thecompression ratio, sowe divided the results into
two parts to showthe effects of each independently:single level DWTand two-level DWT.
Figure 5.7 shows the original 2Dhuman faces tested bythe proposed algorithm. Table5.1,
Table5.2 and Table5.3 showthe compressed sizeby usingour algorithm with asingle leveland
two-levelDWTforFace1, Face2 andFace3respectively.

(a)  Original 2DFace1dimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface
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(b)  Original 2DFace2dimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface

(c)  Original 2DFace3dimensions 1392 x 1040, Image size: 1.38 Mbytes, converted to 3D surface

Figure 5.7:(a), (b) and (c)original 2D images(left) with 3D surfacereconstruction (right).

Table5.1:Compressed size for 2D imageFace1
Applied single levelDWT

Single level DWT
High-frequencies
(HL,LH and HH)

DCT parameters
Compressed size

(KB)
Compression

RatioBlock
size Scale

Discarded 8�×8 0.5 51.4 96.3%
Discarded 8�×8 1 29.33 97.9%
Discarded 8�×8 2 15.6 98.8%
Discarded 8�×8 3 10.58 99.2%

Discarded 8�×8 4 8 99.4%
Discarded 8�×8 5 6.37 99.5%
Discarded 16�×16 0.5 28.52 97.9%
Discarded 16�×16 1 14.74 98.9%
Discarded 16�×16 2 7.38 99.4%

Applied twolevelsDWT
Two levels
DWTHigh-
frequencies

Ratio value (
Eq.(5) )

DCT parameters

Compressed size
(KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2

0.3 0.3 0.3 29.93 0.5 29.93 97.8%
0.3 0.3 0.3 17.55 1 17.55 98.7%
0.3 0.3 0.3 9.7 2 9.7 99.3%
0.3 0.3 0.3 6.74 3 6.74 99.5%
0.3 0.3 0.3 21 0.5 21 98.5%
0.3 0.3 0.3 10.54 1 10.54 99.2%
0.3 0.3 0.3 5.19 2 5.19 99.6%
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Table 5.2: Compressed sizefor 2D imageFace2
Applied single level DWT

Single level DWT
High-frequencies
(HL, LH and HH)

DCT parameters
Compressed size

(KB)
Compression

RatioBlock
size Scale

Discarded 8�×8 0.5 47 96.6%
Discarded 8�×8 1 26.85 98%
Discarded 8�×8 2 14.42 98.9%
Discarded 8�×8 3 9.91 99.2%
Discarded 8�×8 4 7.4 99.4%
Discarded 16�×16 0.5 25.33 98.2%
Discarded 16�×16 1 13.3 99%
Discarded 16�×16 2 6.77 99.5%

Applied Two levels DWT
TwolevelsDWT
High-frequencies

Ratio value ( Eq.(5) )

DCT parameters Compressed
size
(KB)

Compression
RatioBlock

size Scale
LH2 HL2 HH2

0.3 0.3 0.3 8�×8 0.5 35 97.5%
0.3 0.3 0.3 8�×8 1 19.34 98.6%
0.3 0.3 0.3 8�×8 2 9.9 99.2%
0.3 0.3 0.3 8�×8 3 6.41 99.5%
0.3 0.3 0.3 8�×8 4 4.66 99.6%
0.3 0.3 0.3 16�×16 0.5 26.3 98.1%
0.3 0.3 0.3 16�×16 1 12.96 99%
0.3 0.3 0.3 16�×16 2 5.76 99.5%

Table5.3:Compressed size for 2D imageFace3
Applied single level DWT

Single level DWT
High-frequencies
(HL, LH and HH)

DCT
parameters Compressed

size
(KB)

Compression
Ratio

Block
size Scale

Discarded 8�×8 0.5 49.53 96.4%
Discarded 8�×8 1 27.5 98%
Discarded 8�×8 2 14.31 98.9%
Discarded 8�×8 3 9.45 99.3%
Discarded 8�×8 4 7.13 99.4%
Discarded 16�×16 0.5 26.83 98.1%
Discarded 16�×16 1 13.53 99%
Discarded 16�×16 2 6.52 99.5%

Applied Two levels DWT
Two levels DWT
High-frequencies

Ratio value
Eq.(5)

DCT
parameters Compressed

size
(KB)

Compression
Ratio

Block
size

Scale
LH2 HL2 HH2

0.3 0.3 0.3 8�×8 0.5 35.78 97.4%
0.3 0.3 0.3 8�×8 1 19.6 98.6%
0.3 0.3 0.3 8�×8 2 9.63 99.3%
0.3 0.3 0.3 8�×8 3 6.2 99.5%
0.3 0.3 0.3 16�×16 0.5 25.78 98.1%
0.3 0.3 0.3 16�×16 1 12.4 99.1%
0.3 0.3 0.3 16�×16 1.7 6.45 99.5%
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The proposed decompression algorithm (see Section5.3) appliedto the compressed imagedata
recoversthe2D imageswhich are then used by the3D reconstruction to generate the respective
3D surface. The following figuresFigure5.9, Figure5.10 and Figure5.11 show high-quality,
median-quality and low-qualitycompressed images for; Face1, Face2 and Face3. Also, Table5.4,
Table5.5 and Table5.6 show thetime execution fortheFMS-Algorithm.

(a) Decompressed 2D BMP imagesatSingle level DWT converted to 3D surface; 3D surface with scale=0.5 represents high quality
imagecomparable to theoriginal image, and 3D surface with scale=2 represents median quality image approximately high quality

image.Also 3D surface with scale=5 is low quality image some partsof surface failing to reconstruct. Additionally, using ablock size
of16�×16 DCTfurther degrades the3D surface.

(b) Decompressed 2D BMP imagesat twolevels DWT converted to 3D surface; 3D surface with scale=2, 3and DCT 8x8 representlow quality
imagesurfacewith degradation.  Additionally,using ablock sizeof 16x16 DCTfurther degrades the3D surface.

Figure5.9: (a) and (b) decompressed2D image Face1 by our proposed decompression method, and then converted to
a 3D surface.
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Table 5.4:FMS time execution forDecompressed imageFace1
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE 3D
RMSE AC-Matrix1 LH HL HH

Block Scale
8�×8 0.5 4.42 1.9 4.25 Discarded Discarded Discarded
8�×8 1 4.83 2.31 1.31 Discarded Discarded Discarded
8�×8 2 5.58 2.07 0.23 Discarded Discarded Discarded
8�×8 3 6.21 2.4 0.1 Discarded Discarded Discarded
8�×8 4 6.87 3.34 0.046 Discarded Discarded Discarded
8�×8 5 7.41 3.39 0.046 Discarded Discarded Discarded

16�×16 0.5 6.0 3.96 2.24 Discarded Discarded Discarded
16�×16 1 6.63 2.48 0.23 Discarded Discarded Discarded

Applied Two levels DWT with two levels DCT

DCT Scale Used in DCT
and second level DWT

Decompressed RMSE FMS-Algorithm Time execution (s)

2D
RMSE

3D
RMSE AC-Matrix1 LH2 HL2 HH2

Block Scale LH2 HL2 HH2

8�×8 0.5 0.3 0.3 0.3 6.79 2.19 9.1 0.031 "H�0 "H�0
8�×8 1 0.3 0.3 0.3 7.5 4.77 1.75 "H�0 0.031 "H�0
8�×8 2 0.3 0.3 0.3 8.1 2.46 0.24 "H�0 "H�0 "H�0
8�×8 3 0.3 0.3 0.3 8.46 3.95 0.1 "H�0 "H�0 "H�0

16�×16 0.5 0.3 0.3 0.3 8.1 3.69 2.82 0.031 "H�0 "H�0
16�×16 1 0.3 0.3 0.3 8.89 5.18 0.65 "H�0 "H�0 "H�0
16�×16 2 0.3 0.3 0.3 9.62 5.1 0.18 "H�0 "H�0 "H�0

(a) Decompressed 2D BMP images at Single level DWT converted to 3D surface; 3D surface with scale=0.5 represents high quality
imagelike theoriginal image, and 3D surface with scale=2 representsa median quality image.Also, 3D surface with scale=4 is low

quality withsurface slightlydegraded.  Additionally,a block sizeof 16x16 DCT used in our approachdegrades someparts of3D
surface.
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(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface; 3D surface with scale=2, 4 withDCT 8x8 represent low quality
image surface with degradation.  Similarly,a block size of 16x16 DCT used in our approach degrades the 3D surface.

Figure 5.10: (a) and (b)Decompressed 2D imageof Face2imageby our proposed decompression method, and then
converted to 3D surface.

Table 5.5: FMS time execution for Decompressed imageFace2
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE 3D
RMSE AC-Matrix1 LH HL HH

Block Scale
8x8 0.5 4.88 1.24 7 .06 Discarded Discarded Discarded
8x8 1 5.22 2.19 1.09 Discarded Discarded Discarded
8x8 2 5.86 1.64 0.208 Discarded Discarded Discarded
8x8 3 6.46 2.55 0.109 Discarded Discarded Discarded
8x8 4 6.96 2.16 0.046 Discarded Discarded Discarded

16x16 0.5 5.57 1.7 3.4 Discarded Discarded Discarded
16x16 1 6.09 2.13 0.56 Discarded Discarded Discarded
16x16 2 6.94 1.63 0.093 Discarded Discarded Discarded

Applied Two levels DWT with two levels DCT

DCT
Scale Used in

DCTand second level
DWT

Decompressed RMSE FMS-Algorithm Time execution (s)

2D
RMSE

3D
RMSE AC-Matrix1 LH2 HL2 HH2

Block Scale LH2 HL2 HH2

8x8 0.5 0.3 0.3 0.3 5.16 1.33 13.15 0.046 0.046 0.031
8x8 1 0.3 0.3 0.3 5.76 2.07 2.1 0.031 "H�0 "H�0
8x8 2 0.3 0.3 0.3 7.04 2.04 0.35 0.062 "H�0 "H�0
8x8 3 0.3 0.3 0.3 7.91 1.39 0.109 "H�0 "H�0 "H�0
8x8 4 0.3 0.3 0.3 8.43 1.48 0.062 "H�0 "H�0 0.031

16x16 0.5 0.3 0.3 0.3 5.73 2.08 2.96 0.093 0.031 0.031
16x16 1 0.3 0.3 0.3 6.44 2.39 0.59 0.031 0.031 "H�0
16x16 2 0.3 0.3 0.3 7.85 3.16 0.124 0.015 "H�0 "H�0
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(a) Decompressed 2D BMP images at Single level DWTconverted to 3D surface; 3D surface with scale=0.5 representhigh quality imagelike
theoriginal image, and 3D surface with scale=2 represents median quality image,3D surface withscale=3 and 4 arelow quality imagewith

slightly degradedsurface, while using16x16 blocksize doesnot seem to degrade the 3D surface.

(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface; 3D surface with scale=3, 4 and DCT8x8 representlow quality
imagedegraded surface.  However, theblock sizeof 16x16 DCT used in our approach hasabetter quality3D surfacefor higher compression

ratios.

Figure5.11: (a) and (b): Decompressed 2Dof Face3image byour proposed decompression method, and then
converted toa 3D surface.

Table 5.6:FMS time execution for Decompressed imageFace3
Applied single level DWT with two levels DCT

DCT
Decompressed RMSE FMS-Algorithm Time execution (s)

2D RMSE 3D
RMSE

AC-Matrix1 LH HL HH
Block Scale
8x8 0.5 4,29 1.26 5.91 Discarded Discarded Discarded
8x8 1 4.7 1.32 1.1 Discarded Discarded Discarded
8x8 2 5.43 0.83 0.171 Discarded Discarded Discarded
8x8 3 6.09 1.68 0.093 Discarded Discarded Discarded
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DCT
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2D RMSE 3D
RMSE

AC-Matrix1 LH HL HH
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8x8 4 6.67 1.67 0.046 Discarded Discarded Discarded
16x16 0.5 1.94 1.29 3.12 Discarded Discarded Discarded
16x16 1 1.52 1.5 0.59 Discarded Discarded Discarded
16x16 2 6.65 4.02 0.1 Discarded Discarded Discarded

Applied Two levels DWT with two levels DCT

DCT
Scale Used inDCT
and second level

DWT

Decompressed RMSE FMS-Algorithm Time execution (s)

2D
RMSE

3D
RMSE

AC-Matrix1 LH2 HL2 HH2

Block Scale LH2 HL2 HH2

8x8 0.5 0.3 0.3 0.3 4.81 1.13 12.00 0.078 0.046 "H�0
8x8 1 0.3 0.3 0.3 5.53 1.83 1.96 0.015 "H�0 "H�0
8x8 2 0.3 0.3 0.3 6.7 1.48 0.28 0.031 "H�0 "H�0
8x8 3 0.3 0.3 0.3 7.47 1.63 0.078 "H�0 0.031 "H�0

16x16 0.5 0.3 0.3 0.3 5.58 2.08 4.69 0.062 0.015 0.031
16x16 1 0.3 0.3 0.3 6.42 1.96 0.98 0.046 "H�0 "H�0
16x16 1.7 0.3 0.3 0.3 7.38 2.61 0.171 "H�0 "H�0 "H�0

It is shown through the pictures and tables above that the proposedcompression algorithmis
successfullyappliedto greyscale images.Table 5.1, Table5.2 andTable5.3 show a compression
of more than 99% ofthe original image size compressed andthe reconstructed 3D surfacesstill
preserve most of theirquality. Some imagesarecompressed by DCT with block sizeof 16x16
are also shown capable of generatinghigh quality3D surface.Also, there is not much difference
between block sizes of8x8 and 16x16 forhigh quality reconstructionimages with€Scale=0.5•.

5.4.2Compression, Decompression and3D Reconstructionfrom Colour Images

Colour imagescontain red, green and blue layers. In JPEG and JPEG2000 colour layersare
transformed to €YCbCr• layers beforecompression. This is because most of information about
images available in layer €Y• while other layers €CrCb• contain lessinformation[118, 140]. The
proposed imagecompression wastested with YCbCr layers, and then applied on true colour
layers (Red, Green and Blue). Figure5.12 shows the original colour images tested by our
approach.

(a) Original 2D€Wall "dimensions1280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface
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(b) Original 2D€Room•dimensions 1280 x 1024, Image size: 3.75 Mbytes,converted to 3D surface

(c) Original 2D €Corner•dimensions 1280 x 1024, Image size: 3.75 Mbytes, converted to 3D surface

Figure5.12: (a), (b) and (c) Original 2D images with 3D surface conversion

First theWall,Roomand Cornerimages as depicted inabove Figure5.12 were transformed
toYcbCrbefore applyingour proposed image compressionƒ both using single level andtwo-level
DWT decomposition. Second, our approachwasapplied on thesame colour images but this time
usingtrue colour layers.Table5.7, 5.8 and5.9 showsthecompressed size for the colour images by
the proposedcompressionalgorithm.Figure5.14, 5.15 and 5.16 show decompressed colour
images(Wall, RoomandCornerrespectively)as 3D surface. Additionally, Table5.10, 5.11 and
5.12illustrate theexecution timefor the FMS-Algorithmat single level DWTfor the colour
images.Similarly, Table5.13, 5.14 and5.15 show theFMS-Algorithm executiontime forthe same
colourimages byusingtwo-level DWT.

Table5.7:Compressed sizesfor 2D colourimageWall
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed
size (KB)

Compression
RatioBlock

size

Scale

Y Cb Cr

Ignored 8x8 0.5 1 1 26.3 99.3%
Ignored 8x8 1 2 2 14.23 99.6%
Ignored 8x8 2 4 4 7,53 99.8%
Ignored 16x16 0.5 1 1 12.3 99.6%
Ignored 16x16 1 2 2 6.55 99.8%

Single level DWT High-
Frequencies

Block
size Red Green Blue

Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 24.42 99.3%
Ignored 8x8 3 3 3 8.47 99.7%
Ignored 8x8 5 5 5 5.46 99.8%
Ignored 16x16 1 1 1 11.47 99.7%
Ignored 16x16 2 2 2 5.9 99.8%
Ignored 16x16 2.5 2.5 2.5 4.85 99.8%



�1�0�2

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5)) for all

colour layers

DCT parameters

Compressed
size(KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 28.1 99.2%
0.3 0.3 0.3 8x8 1 2 2 11.8 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 21.8 99.4%
0.3 0.3 0.3 16x16 1 2 2 8.29 99.7%

Two levels DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

0.3 0.3 0.3 8x8 1 1 1 19.32 99.4%
0.3 0.3 0.3 8x8 2 2 2 8.4 99.7%
0.3 0.3 0.3 16x16 1 1 1 12.89 99.6%
0.3 0.3 0.3 16x16 2 2 2 5 99.8%

Table5.8:Compressed size for 2D colour imageRoom
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed
size (KB)

Compression
RatioBlock

size

Scale

Y Cb Cr

Ignored 8x8 0.5 1 1 58.21 98.4%
Ignored 8x8 1 2 2 34 99.1%
Ignored 8x8 2 4 4 18.92 99.5%
Ignored 16x16 0.5 1 1 29.86 99.2%
Ignored 16x16 1 2 2 16.19 99.5%
Ignored 16x16 2 4 4 8.07 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 53.25 98.6%
Ignored 8x8 3 3 3 17.66 99.5%
Ignored 8x8 5 5 5 10.73 99.7%
Ignored 8x8 9 9 9 6.28 99.8%
Ignored 16x16 1 1 1 23.83 99.3%
Ignored 16x16 3 3 3 7.91 99.7%
Ignored 16x16 5 5 5 4.65 99.8%
Ignored 16x16 7 7 7 3.38 99.9%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 47.25 98.7%
0.3 0.3 0.3 8x8 1 2 2 23.96 99.3%
0.3 0.3 0.3 8x8 2 4 4 11.85 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 35.94 99%
0.3 0.3 0.3 16x16 1 2 2 17.62 99.5%
0.3 0.3 0.3 16x16 2 4 4 7.94 99.7%

Two levels DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

0.3 0.3 0.3 8x8 1 1 1 49 98.7%
0.3 0.3 0.3 8x8 3 3 3 10.42 99.7%
0.3 0.3 0.3 8x8 5 5 5 5.12 99.8%
0.3 0.3 0.3 16x16 1 1 1 36.34 99%
0.3 0.3 0.3 16x16 3 3 3 6.61 99.8%
0.3 0.3 0.3 16x16 5 5 5 2.93 99.9%
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Table5.9: Compressedsize for 2D colour imageCorner
Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed
size (KB)

Compression
Ratio

Block
size

Scale
Y Cb Cr

Ignored 8x8 0.5 1 1 31.59 99.1%
Ignored 8x8 1 2 2 15.85 99.5%
Ignored 16x16 0.5 1 1 15.39 99.5%
Ignored 16x16 0.8 6 6 7.8 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 44.5 98.8%
Ignored 8x8 2 2 2 22 99.4%
Ignored 16x16 1 1 1 21.16 99.4%
Ignored 16x16 2 2 2 10 99.7%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 31.72 99.1%
0.3 0.3 0.3 8x8 1 2 2 13.11 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 23.14 99.3%

(a) Decompressed 2D BMP images at single level DWT converted to 3D surface; decompressed3D surface by using RGB layer has better
quality than YCbCr layer.
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Applied single level DWT with two levels DCT

Single level DWT
High-frequencies(HL, LH and

HH)
For all colour layer

DCT parameters
Compressed
size (KB)

Compression
Ratio

Block
size

Scale
Y Cb Cr

Ignored 8x8 0.5 1 1 31.59 99.1%
Ignored 8x8 1 2 2 15.85 99.5%
Ignored 16x16 0.5 1 1 15.39 99.5%
Ignored 16x16 0.8 6 6 7.8 99.7%

Single level DWT High-
Frequencies

Block
size

Red Green Blue Compressed
Size (KB)

Compression
Ratio

Ignored 8x8 1 1 1 44.5 98.8%
Ignored 8x8 2 2 2 22 99.4%
Ignored 16x16 1 1 1 21.16 99.4%
Ignored 16x16 2 2 2 10 99.7%

Applied Two levels DWT with two levels DCT
Two levels DWT High-

frequencies
Ratio value ( Eq.(5) ) for all

colour layers

DCT parameters

Compressed
size (KB)

Compression
RatioBlock

size
Scale

LH2 HL2 HH2 Y Cb Cr
0.3 0.3 0.3 8x8 0.5 1 1 31.72 99.1%
0.3 0.3 0.3 8x8 1 2 2 13.11 99.6%
0.3 0.3 0.3 16x16 0.5 1 1 23.14 99.3%

(a) Decompressed 2D BMP images at single level DWT converted to 3D surface; decompressed3D surface by using RGB layer has better
quality than YCbCr layer.
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(b) Decompressed 2D BMP images at two levels DWT converted to 3D surface, alsodecompressed 3D surfaceusing RGB layer has better
quality than YCbCr layer at higher compression ratio.

Figure5.14: (a) and (b) Decompressed colourWall image byour proposed decompressionapproach, and then
converted to 3D surface

(a) Decompressed 2D BMP images atSingle level DWT results converted to 3D surface; decompressed3D surface by using RGB layer has
better quality than YCbCr layer at higher compression ratio using both block sizes of 8x8or 16x16by DCT.
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(b) Decompressed 2D BMP images at two levelsDWTconverted to 3D surface; decompressed3D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using block sizes of8x8,alsoby using block 16x16thesurfaceis still approximately non-degraded.

Figure5.15: (a) and (b)Decompressed colourRoomimageby our proposed decompression method, and then
converted to 3D surface

Figure5.16: Decompressed colour€Corner• image byour proposed decompression method, and then converted to
3D surface. The decompressed 3D surface at single level DWT using YCbCr has better quality at higher

compression ratio than using RGBlayers, also at two levels DWTdegradation appears and some parts from surface
fail to reconstruct.
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(b) Decompressed 2D BMP images at two levelsDWTconverted to 3D surface; decompressed3D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using block sizes of8x8,alsoby using block 16x16thesurfaceis still approximately non-degraded.
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(b) Decompressed 2D BMP images at two levelsDWTconverted to 3D surface; decompressed3D surface by using RGB layer has better quality
than YCbCr layer at higher compression ratio using block sizes of8x8,alsoby using block 16x16thesurfaceis still approximately non-degraded.

Figure5.15: (a) and (b)Decompressed colourRoomimageby our proposed decompression method, and then
converted to 3D surface

Figure5.16: Decompressed colour€Corner• image byour proposed decompression method, and then converted to
3D surface. The decompressed 3D surface at single level DWT using YCbCr has better quality at higher

compression ratio than using RGBlayers, also at two levels DWTdegradation appears and some parts from surface
fail to reconstruct.
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Table5.10:Estimatedexecution time forFMS-Algorithm at single level DWTforWall image

Compressed size
(KB)

Block size
Time execution (s)

Y Cb Cr
AC-Matrix1 AC-Matrix1 AC-Matrix1

26.3 8x8 1.77 0.093 0.187
14.23 8x8 0.202 0.031 0.078
7.53 8x8 0.062 "H0 0.031
12.3 16x16 0.54 0.015 0.031
6.55 16x16 0.109 "H0 0.031

Compressed size
(KB) Block size

Red Green Blue
AC-Matrix1 AC-Matrix1 AC-Matrix1

24.42 8x8 0.12 1.27 0.12
8.47 8x8 "H0 0.078 0.031
5.46 8x8 "H0 0.046 "H0
11.47 16x16 0.078 0.46 0.093
5.9 16x16 0.015 0.078 0.031
4.85 16x16 0.031 0.031 "H0

Table 5.11:Estimatedexecution time for FMS-Algorithm at single level DWT forRoomimage

Compressed size
(KB) Block size

Time execution (s)
Y Cb Cr

AC-Matrix AC-Matrix AC-Matrix
58.21 8x8 1.2 0.093 0.17

34 8x8 0.17 0.046 0.046
18.92 8x8 0.046 0.046 0.031
29.86 16x16 0.96 0.062 0.093
16.19 16x16 0.156 0.046 0.046
8.07 16x16 0.046 0.031 "H0

Compressed size
(KB) Block size

Red Green Blue
AC-Matrix AC-Matrix AC-Matrix

53.25 8x8 0.062 1.4 0.21
17.66 8x8 "H0 0.124 0.015
10.73 8x8 "H0 0.062 "H0
6.28 8x8 "H0 0.031 "H0
23.83 16x16 0.046 0.68 0.078
7.91 16x16 "H0 0.062 0.031
4.65 16x16 "H0 0.046 "H0
3.38 16x16 "H0 0.031 "H0

Table 5.12:Estimatedexecution time for FMS-Algorithm at single level DWT forCornerimage

Compressed size
(KB) Block size

Time execution (s)
Y Cb Cr

AC-Matrix AC-Matrix AC-Matrix
31.59 8x8 1.2 0.031 0.015
15.85 8x8 0.3 0.031 0.031
15.39 16x16 1.07 0.031 0.046
7.8 16x16 0.5 "H0 "H0

Compressed size
(KB)

Block size
Red Green Blue

AC-Matrix AC-Matrix AC-Matrix
44.5 8x8 0.34 0.48 0.34
22 8x8 0.06 0.09 0.09

21.16 16x16 0.46 0.48 0.37
10 16x16 0.1 0.14 0.1
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Table5.13: Estimated executiontime for FMS-Algorithm at two levels DWT forWall image
Compressed

size
(KB)

Block
size

Y Cb Cr
AC-

Matrix1
HL2 LH2 HH2

AC-
Matrix1

LH2 HL2 HH2
AC-

Matrix1

HL2 LH2 HH2

28.1 8x8 3.1 0.062 0.062 0.031 0.062 0.03 "H0 "H0 0.24 0.031 "H0 "H0
11.8 8x8 0.6 0.015 "H0 "H0 0.046 0.031 "H0 "H0 0.046 0.031 "H0 "H0
21.8 16x16 1.5 0.031 0.031 "H0 0.046 0.03 0.031 "H0 0.093 0.031 "H0 "H0
8.29 16x16 0.026 0.015 "H0 0.031 0.031 0.03 "H0 "H0 0.062 0.015 "H0 "H0

Compressed
size(KB)

Block
size

Red Green Blue
AC-

Matrix1
HL2 LH2 HH2

AC-
Matrix1

HL2 LH2 HH2
AC-

Matrix1

HL2 LH2 HH2

19.32 8x8 0.23 0 "H0 "H0 1.5 0.031 0.031 "H0 0.26 "H0 "H0 "H0
8.4 8x8 0.062 0.031 "H0 "H0 0.24 "H0 "H0 "H0 0.078 "H0 0.031 "H0

12.89 16x16 0.21 0.078 "H0 0.031 0.081 "H0 "H0 "H0 0.17 "H0 0 "H0
5 16x16 0.062 "H0 "H0 "H0 0.093 0.031 0.031 "H0 0.062 "H0 "H0 "H0

Table5.14:Estimatedexecution time for FMS-Algorithm at two levels DWT forRoomimage
Compressed
size(KB)

Block
size

Y Cb Cr
AC-Matrix1 HL2 LH2 HH2 AC-Matrix1 HL2 LH2 HH2 AC-Matrix1 HL2 LH2 LH2

47.25 8x8 0.15 0.046 "H0 "H0 0.1 0.031 0.031 "H0 2.19 0.078 0.062 0.062
23.96 8x8 0.046 0.015 "H0 "H0 0.015 0.031 "H0 "H0 0.43 0.078 0.031 0.031
11.85 8x8 "H0 "H0 "H0 "H0 "H0 0.031 "H0 "H0 0.078 0.015 "H0 "H0
35.94 16x16 0.124 0.031 "H0 "H0 0.078 0.015 0.031 "H0 1.21 0.062 0.015 0.015
17.62 16x16 0.015 0.031 "H0 "H0 0.031 0.031 "H0 "H0 0.28 0.031 0.031 0.031
7.94 16x16 0.015 0.031 "H0 "H0 0.031 0.031 0.031 "H0 0.093 0.031 "H0 "H0

Compressed
size(KB)

Block
size

Red Green Blue
AC-Matrix1 HL2 LH2 LH2 AC-Matrix1 HL2 LH2 HH2 AC-Matrix1 HL2 LH2 LH2

49 8x8 0.35 0.046 0.031 0.031 1.76 0.015 "H0 "H0 0.062 "H0 "H0 "H0
10.42 8x8 0.046 "H0 "H0 "H0 0.124 "H0 "H0 "H0 "H0 "H0 "H0 "H0
5.12 8x8 0.031 "H0 "H0 "H0 0.062 "H0 "H0 "H0 "H0 "H0 "H0 "H0
36.34 16x16 0.17 0.046 0.062 0.062 1.27 0.031 "H0 "H0 0.015 0.031 "H0 "H0
6.61 16x16 "H0 "H0 "H0 "H0 0.1 "H0 "H0 "H0 "H0 "H0 "H0 "H0
2.93 16x16 0.031 "H0 "H0 "H0 0.062 "H0 "H0 "H0 "H0 0.031 "H0 "H0

Table5.15:Estimatedexecution time for FMS-Algorithm at two levels DWT forCornerimage

Compressed
size(KB)

Block size
Y Cb Cr

AC-
Matrix1

LH2 HL2 HH2
AC-

Matrix1
LH2 HL2 HH2

AC-
Matrix1

LH2 HL2 HH2

31.72 8x8 4 0.016 0.031 "H0 0.093 "H0 0.015 "H0 0.1 0.031 0.031 "H0
13.11 8x8 0.85 "H0 0.031 "H0 0.031 "H0 "H0 "H0 0.046 "H0 0.031 "H0
23.14 16x16 0.2.49 0.015 0.016 "H0 0.062 0.031 "H0 "H0 0.1 0.031 0.031 "H0

It can be seen from the above figures and tables that asingle level DWTis applied successfullyto
the colour images using bothYCbCr and RGB layers. Also, the two-level DWT gives good
performance. However, the two-level DWT did not perform well on YCbCr layerat higher
compression ratios. Both colour imagesWall andRoomcontain greenstripe lines; this renders
RGB layersmore appropriateto be used with the proposed approach.On the other hand, for the
image Corner,the YCbCrlayer proved more appropriate.

Eachlayer from true colour RGB, compressindependentlywithout change in colcour format,
and thisnew feature added to our proposed algorithm to compress true colour images RGB
without needs to any kind of layer transformations.Additionally, same colour imagesare
transformed to different colour format (YcbCr) to show our compression algorithm ability to
compress the images.
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JPEG and JPEG2000 are tested with the same 2D images for comparisonwith our proposed
method basedon similar compressionratios; wealso tested imagequalitythroughRoot-Mean-
Square-Error (RMSE).We alsoshow the visualization of 3D surfaces for decompressed2D
images by JPEG and JPEG2000 as a means of comparison.

Table5.16: ComparisonJPEG2000 and JPEG with ourapproach forFace1image

Table5.17: ComparisonJPEG2000 and JPEG with ourapproach forFace2image
OurProposed algorithm JPEG2000 JPEG

Compression Raio 2D
RMSE

3D
RMSE

2D
RMSE

3D
RMSE

2D
RMSE

3D
RMSE

98% 5.22 2.19 4.1 1.51 8.57 1.67
98.9% 5.86 1.64 5.3 2.68 Not Applicable Not Applicable
99.4% 6.96 2.16 6.61 2.57 Not Applicable Not Applicable
99.6% 8.43 1.48 7.61 2.62 Not Applicable Not Applicable

Table5.18:Comparison JPEG2000 and JPEG with ourapproach forFace3 image
Proposed algorithm JPEG2000 JPEG

Compression Raio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
98% 4.7 1.32 3.83 1.25 7.64 1.78

98.9% 5.43 0.83 5.05 1.82 Not Applicable Not Applicable
99.5% 6.65 4.02 6.54 1.85 Not Applicable Not Applicable

Table5.19:ComparisonJPEG2000 and JPEG with ourapproach forWall image
Proposed algorithm JPEG2000 JPEG

Compression Raio 2D
RMSE

3D
RMSE

2D
RMSE

3D
RMSE

2D
RMSE

3D
RMSE

99.3% 4.37 1.96 2.63 0.31 9.66 0.66
99.7% 4.36 0.2 3.47 0.49 Not Applicable Not Applicable
99.8% 4.85 0.37 4.79 1.1 Not Applicable Not Applicable

Table 5.20:comparison JPEG2000 and JPEG with ourapproach forRoomimage
Proposed algorithm JPEG2000 JPEG

Compression Ratio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
99.5% 6.36 0.12 7.59 0.23 20 113.59 (not matched)
99.8% 9.0 1.65 11.33 1.35 Not Applicable Not Applicable
99.9% 9.22 2.21 13.59 94.67 (not matched) Not Applicable Not Applicable
99.9% 11.26 0.42 15.06 Not Applicable Not Applicable Not Applicable

Proposed algorithm JPEG2000 JPEG

Compression Ratio
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
97.9% 4.83 2.31 3.48 3.31 12 2.73
99.2% 6.21 2.4 5.33 3.49 Not Applicable Not Applicable
99.5% 7.41 3.39 6.32 2.91 Not Applicable Not Applicable
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Table 5.21:comparison JPEG2000 and JPEG with ourapproach forCornerimage
Proposed algorithm JPEG2000 JPEG

Compression
Ratio

2D
RMSE

3D
RMSE

2D RMSE 3D RMSE 2DRMSE 3DRMSE

99.1% 3.58 1.78 3.12 1.92 5.86 16.46
99.5% 4.59 0.42 3.86 74.64 (not matched) Not Applicable Not Applicable
99.7% 6.5 2.1 4.64 69.55 (not matched) Not Applicable Not Applicable

In Tables5.16,5.17, 5.18, 5.19, 5.20 and5.21€not matching• meansthe relevant algorithm cannot
compressto the requiredsize successfully.

Figure 5.17: Decompressed 2DFace1image by using JPEG2000 and JPEG algorithm, JPEG algorithm can„t
compressthe2D Face1 image under 29KB.

Figure 5.18: Decompressed 2D Face2 image by using JPEG2000 and JPEGalgorithmdegradation appeared byJPEG
on thesurfaceat 26 KB.
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Figure 5.19: Decompressed 2D Face3 image by using JPEG2000 and JPEG algorithm, parts of imagesfailed to
reconstructin 3D by JPEG2000 algorithm at 14KB, degradation appears onthesurface by JPEG2000 under 7KB,

also JPEG algorithmdegrades thesurface at compressedsize 27KB(JPEGfails to compress under 27KB).

Figure 5.20: DecompressedWall image by using JPEG2000 and JPEG algorithm, degradation appears on surface by
JPEG2000fewer than12KB, also JPEG algorithmdegrades thesurface at compressed size 27KB, JPEGfails to

compress under 27KB.
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Figure5.21: DecompressedRoomimage by using JPEG2000 and JPEG algorithm, degradation appears on surface
by JPEG2000 fewer than 6KB, also JPEG2000 cannot reconstruct 3Dsurface matches with original surface (grey
colour) at 4KB, similarly,JPEG algorithmfails to reconstruct 3D surface matchingwith original surface at 27KB
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Figure5.22: DecompressedCornerimage by using JPEG2000 and JPEG algorithm, top-left surface decompressed
successfully by JPEG2000, in top-right decompressed surface by JPEG2000not matched with original surface (grey

surface). Under 15KB, similarly, JPEGalgorithm fails tocompress successfully fewer than 31KB.

5.5. Conclusion

This Chapter has presented and demonstrated anovel method for image compressionand
comparedthequality of compression through3D reconstruction, 3D RMSE and the perceived quality
of the 3D visualisation. The method is based ona two-levelDWT transformand two-level
DCTtransform in connection withthe proposedMatrix Minimization algorithm. The results showed
that our approach introduced better image quality at higher compression ratios than JPEG and
JPEG2000 being capable of accurate 3D reconstructing at higher compression ratios. On the other
hand, it is more complex than JPEG2000 and JPEG. The most important aspects of the method and
their role in providing high quality image with high compression ratios are discussed as follows:

1- In a two-levelDCT, the first level separates the DC-values and AC-values into different
matrices;the second level DCTis thenapplied to the DC-valuesand thisgenerates two new
matrices. The size of the twonew matrices areonly a few byteslong (because they contain
manyzeros), this process increasesthecompression ratio.

2- Since mostof thehigh-frequencymatrices containlot of zerosas above, in thischapterwe used
the EZSN algorithm, to eliminatezeros and keepnon-zero data. This process keeps significant
informationwhile reducingmatrix sizesup to50% or more.

3- The Matrix Minimization algorithm is used toreplaceeach three coefficients from thehigh-
frequencies matricesby asingle floating-point value.This process converts each high-frequency
matrix into a one-dimensional array, leading to increasedcompression ratioswhile keeping the
quality of the high-frequency coefficients.

4- The FMS-Algorithm represents thecore of our search algorithm forfinding the exact original
datafromaone-dimensional array (i.e.Reduced-Array) converting toa matrix, and depends on
the organized key-values andLimited-Data.According to time execution tables,the FMS-
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Algorithm finds valuesin a few microseconds, for some high-frequencies needs just few
nanosecondsat higher compression ratios.

5- The key-valuesand Limited-Data are used in coding and decoding an image, without these
information imagescannot be reconstructed.

6- Our proposed image compression algorithmwastested on true colour images (i.e. Red, Green
and Blue), obtained higher compression ratiosand highimage quality for images containing
green stripedlines. This makesour proposed compression algorithm featured more than JPEG
and JPEG2000, because thesemethodscan„t not compress 2D images without using YcbCr
format.Additionally, our approach hasbeentestedon YCbCr layerswith good quality at higher
compression ratios. This makes ouralgorithm run better no both colour formats ( RGB and
YcbCr).

7- Our approach gives better visual image quality compared to JPEG and JPEG2000. This is
because our approach removes most of the block artefacts causedby the 8x8 two-dimensional
DCT. Also,our approach usesasingle level DWTor two-levelDWT rather than multi-level
DWTas in JPEG2000;for this reason blurringtypical of JPEG2000 isremovedinourapproach.
JPEG and JPEG2000failed to reconstruct a surface in 3D when compressed tohigher
ratioswhileit is demonstrated that our approachcan successfully reconstruct the surfaceand
thus, is superior to both on this aspect.

However, thereisa larger number ofsteps in the proposed compression and decompression
algorithm thanin JPEG and JPEG2000. Also, the complexity ofFMS-algorithm leads to increased
execution time for decompression, because this algorithmis based onabinary searchmethod.
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Chapter 6

DCT and DST based Image Compressionwith Fast-Matching-
SearchDecompression

6.1. Introduction
The two most widely used image compression transforms are the discrete cosine transform
(DCT) and the discrete wavelet transform (DWT)[119,151]. The DCT is usually applied to
small, regularblocks of image samples (e.g. 8x8 squares) and the DWT is usually applied to
largerimage sectionsor to complete images. Many alternatives have been proposed, for example
3D transforms (dealing with spatial and temporal correlation), variable block size transforms,
fractal transforms,andGabor analysis. The DCT has proved particularlyusefuland it is at the
core of most current generation of image and video coding standards, including JPEG, H.261,
H.263, H.263+, MPEG-l, MPEG-2 and MPEG-4 [22,152].

In line with previous chapters,we focus on compressing 2D image data appropriate for 3D
reconstruction. This includes 3D reconstruction from structured light images, and 3D
reconstruction from multiple viewpoint images.In previous publications, we havearguedthat
while geometry and connectivity of a 3D mesh can be tackled byseveraltechniques such as high
degree polynomial interpolation[114] or partial differential equations[125,135], the issue of
efficient compression of 2D images both for 3D reconstruction and texture mapping hasnot yet
been addressed in a satisfactory manner. Using structured light techniques for 3D reconstruction,
surface patches can be compressed as a 2D image together with 3D calibration parameters,
transmitted over a network and remotely reconstructed (geometry, connectivity and texture map)
at the receiving end with the same resolution as the original data[133, 136].

In previous chapterswe proposeda methodwhere a single level DWT is followed by a DCT on
the LL sub-band yielding the DC component and the AC-matrix. A second DWT is applied to
the DC components whose second level LL2 sub-band is transformed again by DCT. Amatrix
minimization algorithm wasapplied to the AC-matrix and other sub-bands. Compression ratios
of up to 98% were achievedwith a sequential search algorithm being used at decompression
stage.In Chapter 4 we proposed atechnique[42]where a DWT was applied to variant
arrangements of data blocks followed by arithmetic coding. The novel aspect of that paper is at
decompression stage, where aBlock Sequential Search Algorithm wasproposed and
demonstrated. Compression ratios of up to 98.8% were achieved. In Chapter5[137]a two-level
DWT was applied followed by a DCT to generate a DC-component array and an MA-Matrix
(Multi -Array Matrix). The MA-Matrix was then partitioned into blocks and a minimization
algorithm codedeach block followedby theremoval of zero valued coefficientsandarithmetic
coding. At decompression stage, a new algorithmcalled Fast-Match-Search decompressionwas
used to reconstructthehigh-frequency matrices by computing data probabilities through a binary
search algorithmin association with a look up table. A comparative analysis of various
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combinations of DWT and DCT block sizes wasperformed, with compression ratios up to
99.5%.

This Chapter introduces a new method for 2D image compression whose quality is demonstrated
through accurate 3D reconstruction using structured light techniques and 3D reconstruction from
multiple viewpoints. The method is based on two discrete transforms: 1) Aone-dimensional
Discrete Cosine Transform (DCT)is applied to each row of the image followed by quantization
of the high frequencies. 2) The output from the previous step is transformed again by a one-
dimensional Discrete Sine Transform (DST), which is applied to each column of data generating
new sets of high-frequency components. The output is then divided into two parts where the low-
frequency components are compressed by arithmetic coding and the high frequency ones bya
high frequency minimizationalgorithm[158].

At decompression stage,a binary search algorithm is used to recover the original high frequency
components. The technique is demonstrated by compressing 2D images up to 99% compression
ratio. The decompressed images, which include images withstructured light patterns for 3D
reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D
reconstruction. Perceptual assessment and objective quality of compression are compared with
JPEG and JPEG2000 through 2D and3D RMSE. Results show that the proposed compression
method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with
equivalent perceptual quality to JPEG2000.The main steps in the compression algorithm are
depicted inFigure6.1.

Figure6.1:The main steps of the proposedcompression algorithm.
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6.2. Using the One-Dimensional Discrete Cosine Transform (DCT)
The one-dimensional DCT is used to transform each row from an image (spatial domain) to
obtainthetransformeddatacalled "Tdct", as shown in the following[119,131,151, 158]:
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Wherei=0, 1, 2, 3, €,n-1 is the image row index,and the output is a set of DCT coefficients
"Tdct". The first coefficient is calledthe DC coefficient, and the rest are referred to as the AC
coefficients. Notice that the coefficients are real numbers, andthey are rounded offto integers.
The important feature of the DCT is thatit is useful in imagecompression[134]. It takes
correlated input data and concentrates its energy in just the first few transform coefficients. If the
input data consists of correlated quantities,thenmost of the "n" transform coefficients produced
by the DCT are zeros or small numbers[153], and only a few are large (normally the first data).
The earlycoefficients containthe mostimportant (low-frequency) image information and the
later coefficients contain the less-important (high-frequency) image information[154, 158]. This
featureallows good compression performance asa proportion ofthe less importantcoefficients
canbe discardedwithout much degradationin image quality.Figure6.2 shows the DCT applied
to each rowof an8�x8block without using scalar quantization.

Original data Tdct : DCT applied toeach row
(Coefficientsare rounded off tointegers)

Figure6.2: (Left) Original block of data, (right)Tdctproduced by applying one-dimensional DCT to each row
independently.
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6.3. One Dimensional Discrete Sine Transform (DST)
Our research has indicated thataone dimensional DCT works together witha one-dimensional
DST yielding largeamounts of high-frequencycomponents. Thesehigh frequencycomponents
areusefulto obtain highcompressionratios comparableto theJPEG technique. In this research,
we will apply one dimensional DSTto each column of the transformed matrix "Tdct" from
previous section. The DSTdefinition is representedas follows[153,155]:
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Eq. (6.3) is used to transform "n" values of "Tdct" matrix into "n" coefficients. These are thelow
andhigh frequencycoefficientscontaining important andless importantimageinformation. The
one-dimensional DSTis appliedto each column of "Tdct" to producea new transformed matrix
"Tdst". The DST is equivalent to the imaginary part of theDiscrete Fourier Transformation
(DFT), while in this chapterthe results of the DSTarereal numbers [156,157, 158]. The main
advantageof using the DSTfor image compression in this context is that the DSTpreservers
theimage qualityencoded by the low frequencycomponents of "Tdct" and increases the number
of zeros, which can be discarded without loss of quality.

After the DST, we applya quantization of the high frequency components of thetransformed
matrix "Tdst". In this way, the quantizationmeans losingonly insignificant information from the
matrix. Each coefficient in the matrix is divided by the corresponding number froma
•Quantization table‚ and the result is roundedoff to the nearest integer. The following equation
is proposedas aquantizationtable.

Q(i,j)=(i+j) F (6.5)

Where: F>0and i,j=1,2,3,...,n�xm (image dimensions)

In Eq. (6.5) "F" is a real number greater than zero. This value affects image quality asfor "F>1"
image qualityis decreased. There is no limitfor F, however, fromour experimentswe suggestF
from 0.1 to 10. Figure6.3 shows the DST appliedto each column and quantized by Eq.(6.5).
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Figure6.3: DST appliedto each Column ofTdct followed by quantization withF=2(cf. Eq.(6.5))

In the above example,low andhigh frequencycomponentsarecontrolledby the user. The low-
frequencyones are not compressed any further, we just represent them infewer bytes by
arithmetic coding. Meanwhile,the high-frequencycomponents eitherhorizontalor vertical are
compressedby theHigh-Frequency Minimization algorithm described in the next section.

6.4. High Frequency Minimization Algorithm
In this section, we describean algorithm to convert the high-frequency coefficients(i.e. from
previous section results passed to Minimization algorithm)into a compressed array called
Minimized-Array through a matrix minimization method involving eliminating zeros and triplet
encoding whose output is then subjected to arithmetic coding.Normally, the highfrequency
componentscontainlarge numbers of zeroes with a few nonzero data.The technique eliminates
zeroes and enhancesthecompressionratio [134, 154, 158].

The high-frequency minimization algorithm is applied further reducing the size of high-
frequency sub-matrix by 1/3.This process hinges on defining three key values and multiplying
these by three adjacent entries inH which are then summed over producing single integer
values(cf. Section 3.2.3)[42,137].Thus, each set of the three entries fromH are converted into a
single value which are then stored into a new coded array�M�i�n�i�m�i�z�e�d�_�A�r�r�a�y. Assuming that is the
length of , �= �1�,�2�, &�, "� �3, and is the index of new coded array, the following
transformations define thehigh frequency encoding[133]:

�_ �= �+ �( �) �+ �( �) �(�6�.�6�)

Thekey values �, �, are generatedby a key generator algorithm(cf. Section 5.2.3- Key
generatorthrough Eq.(5.6)ƒ (5.9) )[137,154].

The keys are the weights andeach tripletsummationin theminimized-array that can later be
recovered by estimating theH values(cf. Section6.5) for the �M�i�n�i�m�i�z�e�d�_�A�r�r�a�y. Following the
models above, the �M�i�n�i�m�i�z�e�d�_�A�r�r�a�yfor the example in Figure6.3 can be illustratedby the
followingTable6.1[158].
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Table 6.1: From the example of Figure6.3: each high-frequencysub-matrix is compressed independently
Assumethat:
M = 2 (Maximum value in high-frequency sub-matrix: Horizontal)
Keys K1=1, K2=5, K3=18(for both high-frequency components: Horizontal and Vertical)
High-Frequency Sub-matrix Compressed Size Comments
�M�i�n�i�m�i�z�e�d�_�A�r�r�a�y(Vertical)={ -1,0,0, 0, ... 0} compressed size 16 48(original size)/3 =16 data
�M�i�n�i�m�i�z�e�d�_�A�r�r�a�y(Horizontal)={2,0,0, 0,0,0} compressed size 6 16(original size)/3 = 5.3 (last zero is alone)

Our compressionmethod createsa new array ofheaderdataH, which is used laterby the
decompression algorithmto estimatethe original data values. This information is kept in the
header of the compressed file as a string(cf. Chapters3ƒ 5 )).Per aboveexample in Figure 6.3,
the Limited-Data can beestimated from high-frequency sub-matrices (Horizontal and
Vertical).Limited-Data(Vertical)= {-1,0} and Limited-Data(Horizontal)={2,0}.

The encoded tripletsin the �M�i�n�i�m�i�z�e�d�_�A�r�r�a�ymay contain large number of zeros which can be
further encoded through a process proposedalgorithm in chapter 5(cf. Figure 5.3)[137]. For
example, assumethe following encoded�M�i�n�i�m�i�z�e�d�_�A�r�r�a�y={ 125, 0, 0,0,73, 0, 0,0,0,0,-17} .The
zero array will be{ 0,3,0,5,0} where the zeros in red refer to nonzero data existing at these
positions and the numbers in black refer to the number of zeros between two consecutive non-
zero data. According to thismethod, the�M�i�n�i�m�i�z�e�d�_�A�r�r�a�yboth Horizontal and Vertical can be
illustrated in Table6.2.

Table 6.2: EachMinimized-Array is coded to zero-array and nonzero-array
High-Frequency Sub-matrix Zero-Array Nonzero-Array
�M�i�n�i�m�i�z�e�d�_�A�r�r�a�y(Vertical)={ -1,0,0, 0 ... 0} Zero(Vertical)={0,5, 5, 5} Nonzero_Array(Vertical)={ -1}
�M�i�n�i�m�i�z�e�d�_�A�r�r�a�y(Horizontal)={2,0,0, 0,0,
0}

Zero(Horizontal)={0, 5} Nonzero_Array(Horizontal)={2}

Note:the "0" refers to the nonzero data in Nonzero-Arrays

6.5. The Fast-Matching SearchDecompression Algorithm
The decompression algorithm isthe inverseof compression. First,decodethe Minimized-Array
for both horizontal and vertical components bycombining thezero-arraywith thenon-zero-array.
Second, decode high-frequenciesfrom the Minimized-Array using the fast matching search
(FMS) algorithm[137].Third, inversetheDST and DCTto reconstructthe original2D image.The
images are thenassessedon their perceptual quality and on their ability to reconstruct the 3D
structures compared with the original images.Figure6.4 illustratesthedecompression method.

The Fast Matching Search Algorithm (FMS)has been designed to recover the original high
frequency data. The compressed data contains information about the compression keys (K1,K2

and K3) and Limited-Data followed by streams of compressed high frequency data. Therefore,
the FMS algorithm picks up each compressed high frequency data and decodes it using the key
values and compares whether the result is expressed in the Limited-Data. Given 3 possible
values from Limited Data, there is only one possible correct result for each key combination, so
the data is uniquely decoded. FMS-Algorithm is described in Chapter5 (cf.Section 5.3)[137].
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Figure6.4: The steps in the decompression algorithm.

Once the horizontal and vertical high frequencycomponentsare recovered bythe FMS-
Algorithm, they arecombinedto regeneratethe 2D matrix. Then each data from the matrixis
multiplied by each data inQ (Eq. (6.5)) followed by the inverse DST (Eq. (6.4)) appliedto each
column. Finally, we multiply each data byF followed by the inverse DCT (Eq. (6.2)) applied to
each row torecover theoriginal 2D image as shown in Figure6.4. If we compare the results in
Figure6.4 with the original 8�x8 matrix of Figure6.2, wefindthat there is not much difference,
and these differencesdo notaffect imagequality. This demonstrates that the proposedtechnique
is very attractivefor image compression.

6.6. Experimental Results
The experimental results described here were implemented in MATLAB R2013a and Visual
C++ 2008 running on an AMD Quad-Core microprocessor. We describe the results in two parts:
first, we apply the compression and decompression algorithms to 2D images that contain
structured light patterns allowing 3D surface data to be generated from those patterns. The
rationale is that ahigh-quality image compression is required otherwise the resulting 3D
structure from the decompressed image will contain apparent dissimilarities when compared to
the 3D structure obtained from the original (uncompressed) data. We report on these differences

After inverse DCT After inverse DST



�1�2�1

in 3D through visualization and standard measures of RMSE-root mean square error. Second, we
apply the method to general 2D images (with no structured light patterns) of different sizes and
assess their perceived visual quality and RMSE. Additionally, we compare our compression
method with JPEG and JPEG2000 through the visualization of 2D images, 3D surface
reconstruction from multiple views and RMSE error measures.

6.6.1. Results for Structured Light Images and 3D Surfaces
3D surface reconstruction was performed with our own software developed within the GMPR
group[125, 135, 136]. The justification for introducing 3D reconstruction is that wecan make
use of a new set of metrics in terms of error measures and perceived quality of the 3D
visualization to assess the quality of the compression/decompression algorithms(cf. Section 3.4).

Figure6.5 showsseveraltest images used to generate 3D surfaces both ingrayscaleand colour.
The top row shows twograyscaleface images, FACE1 and FACE2 with size 1.37MB and
dimensions�1�3�9�2�×�1�0�4�0pixels. The bottom row shows colour images CORNERand METAL
with size 3.75MB anddimension�1�2�8�0�×�1�0�2�4pixels. We usethe RMSE measureto compute
the differences between decompressed images and original ones. The RMSE however, cannot
give an absoluteindication ofwhich is the „best… reconstructed image or 3D surface, as errors
may beconcentrated in a regionthat may or may not be relevant to the perception of quality. To
get a better assessment of quality, we analyse3D surface images at various compression ratios.

Table 6.3: Structured light images compressed by our approach

Image
Name

Original
Image
Size

(MB)

Original Image size Compressed
Size
(KB)

Compression
Ratio

2D
RMSE

3D
RMSEDCT DST

FACE1 1.37
1 2 18.75 98.6% 4.82 1.51
1 6 11.7 99.1% 6.22 1.54

FACE2 1.37
1 2 15.6 98.8% 1.89 2.25
1 6 7.8 99.4% 2.56 2.67

CORNER 3.75
{1, 5, 5} {2, 2, 2} 21.2 99.4% 5.56 1.36
{1, 5, 5} {2, 3, 3} 14.7 99.6% 7.0 0.5

METAL 3.75
{1, 5, 5} {1, 5, 5} 27.5 99.2% 5.25 1.87
{1, 5, 5} {2, 5, 5} 12.1 99.6% 5.62 1.98

Table 6.3shows the compressed size for our approach using two different values of quantization.
First, the quantization scalar for FACE1 and FACE2 is 1. This means that after DCT each
coefficient is divided by 1, this means rounding off each floating-point value to integer.
Similarly, after DST the quantization equation is applied withF (cf. Eq. 6.5).
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Figure6.5: Structured light images used to generate 3D surfaces. Top row grayscale images FACE1 and FACE2, and colour
images CORNER and METALrespectively.

The colour imagesare definedby using colour transformation[22, 118] into YCbCr format.We
then apply the proposedapproachto each layer independently. For this reason, after DCT the
quantizationscalar forcolour imagesis {1, 5, 5} for each layerof Y, Cb andCr respectively.

FACE1: Compressed size 18.75 KB (texture and shaded). Compressed Size=11.7KB (shaded)
3D reconstructed FACE1 from decompressed image by our approach
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FACE2: Compressed size 15.6 KB (texture and shaded) Compressed Size=7.8 KB (shaded)
3D reconstructed FACE2 from decompressed image by our approach

2D decompressed images zoomed-in, to show the details: FACE1 and FACE2 at higher compression ratio

Figure6.6: Top:FACE1 shows decompressed 3D surfacewith texture and shaded at compressed size 18.7KB and 11.7KB.
Middle: FACE2 shows decompressed 3D surfacewith texture andshaded at compressed size 15.6KBand7.8KB. Bottom:details

of 2D images FACE1 and FACE2respectively at the higher(99%)compression ratio.

Figure 6.6 shows the visualization of the decompressed 2D images using different values for
quantization. These decompressed images are converted to 3D surfaces. FACE1 ontop of Figure
6.6 from left to right are higher quality surfaceper3D RMSE. In fact, some parts of 3D surface
havedisappeared at higher compression ratio. But in FACE2 in the middle, the 3D reconstructed
image at higher compression ratiois approximatelythe sameasforlow compression ratio. This
meansthat 3D reconstruction depends on the structured light's quality in an image.Figure6.6
(bottom) showszoomed-in regionsfor the two images;the structure light patterns are clearly
presentevenat 99% compression ratio.

Figure 6.7shows 3D reconstructed surfaces for CORNER and METAL images respectively. On
top, the quality of CORNER 3D surface at 99% compression ratio. But the 3D surface (top right)
has some artefacts; this type of artefacts does not show in the originaland decompressed 2D
image at lower compression ratio. Artefacts appear when the structure light patterns are not
clearly defined in the image, or are degraded after compression and decompression. In Figure 6.7
middle, the decompressed METAL image is converted to a 3D surface. The reconstructed 3D
surface of middle right is degraded for all cases in which compression ratios exceed 99%. To
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analyse 2D colour image compression, we zoomed-in the decompressed 2D images. It is shown
that the structured light patterns are clearly visible at higher compression ratios of 99%.

CORNER: Compressed size 21.2 KB (texture and shaded) Compressed Size=14.7 KB (shaded)

METAL: Left and middle: compressed size 27.5 KB (texture and shaded) Right: compressedSize=12.1KB (shaded)

2D decompressed images zoomed-in, to show the details: CORNER and METAL at higher compression
ratio

Figure 6.7: Top row:showsdecompressed 3D surfaceof CORNER withtexture and shaded at compressed sizes 21.2KBand
14.7KB. Middle row: shows decompressed 3D surfaceof METAL with texture and shaded at compressed sizes 27.5KBand
12.1KB. Bottomrow: zoomed-in details for 2D imagesCORNERandMETAL respectively at higher compression ratio.
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JPEG2000- 18.75KB JPEG2000- 11.7KB JPEG2000- 15.6KB JPEG2000- 7.8KB

JPEG2000- 21.2KB JPEG2000- 14.7KB

Figure 6.8: Top:3D reconstructed surface for FACE1 and FACE2 respectivelyusing JPEG2000. Bottom:CORNER image
successfully 3Dreconstructed, whiletheMETAL image failed3D reconstruction.

Table 6.4: Compression and decompression of 3D images by JPEG2000 and JPEG at higher compression ratios

Image
name

Compression
Ratio

JPEG2000 JPEG
2D

RMSE
3D

RMSE
2D

RMSE
3D

RMSE
FACE1 99.1% 6.3 1.8 FAIL FAIL
FACE2 99.4% 3.2 2.66 FAIL FAIL

CORNER 99.6% 5.7 0.63 FAIL FAIL
METAL 99.6% 4.17 FAIL FAIL FAIL

For a comparative analysis,we compressed and decompressedthe 2D images by JPEG2000and
JPEG, then converted toa 3D surface.Figure 6.8 andTable 6.4describethe compressed and
decompressed resultsfor JPEG2000only, as JPEG compression at equivalentratios failed3D
reconstruction; that is, the images had so many artefacts that the 3D reconstruction algorithms
were unable to successfully reconstruct a3D surface. The comparison is based onapplying the
samecompression ratios between JPEG2000 and our approachandshow the visualization for the
two methods. Whilethe JPEG algorithm simply failed to compress the images at the required
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ratio, it is important to stress thatJPEG2000[37] cannot decompress some 2D images to
equivalent quality 3D reconstructionas our method.Or,if it does, the3D surface contains
degradation. Figure6.9 shows the compressed 2D images by JPEG2000with zoomed inimage
details.

Figure 6.9.Details of2D decompressed imagesby JPEG2000: Top: FACE1on the left isclearly blurredleading to degraded
3D reconstruction. Bottom:METAL image on the right is blurredrendering itunable toreconstruct a3D surface.

6.6.2. Results for 2D Images
In this Section,we apply the algorithmsto generic 2D images, that is, images that do not contain
structured light patterns as described in the previous section.In this case,the quality of the
compressionis performed by perceptual assessment and by the RMSE measure. Weuse
imageswith varyingsizesfrom 2.25MB to 9MB. Also, we present a comparisonwith JPEG and
JPEG2000highlighting the differences incompressed image sizesand the perceivedquality of
thecompression.

Figure6.10(a) gives an indication of compression ratios achieved with our approachwhile in (b)
is shown details with comparative analysis with JPEG2000 and JPEG. First, the decoded 'baby'
imageby JPEG2000 contains some blurring at places, while the same image decoded by our
approach and JPEGareof higher quality. Second, the decoded 'eyes' image by JPEG algorithm
had some block artefacts resulting in a lower quality compression. Also,thesameimage decoded
by our approach and JPEG2000 at equivalent compression ratios, has excellent image quality.
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Finally, the decoded 'girl' image by JPEG2000is slightly degraded, whileour approachand
JPEGshowgood image quality.

Compressed size:107.7 KB
Original size: 2.25 MB
Compression ratio: 95%

Compressed size: 59.4 KB
Original size:3 MB

Compression ratio: 98%

Compressed size: 59.9 KB
Original size: 9 MB

Compression ratio: 99%

(a) Compressedand decompressed 2D images by our approach

Our approach: RMSE=�5�.�9�5 Our approach: RMSE=�4�.�8�4 Our approach: RMSE=�5�.�9�4

JPEG2000: RMSE=2.71 JPEG2000: RMSE=2.83

JPEG2000: RMSE=3.49

JPEG: RMSE=3.2 JPEG: RMSE=6.66

JPEG: RMSE=5.02
(b) Details of compression/decompression byour approach,JPEG2000 and JPEG respectively

Figure6.10: Compressedimages by JPEG and JPEG2000 at equivalent compressed file sizesas with our approach.
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Additionally, we applied our compression techniques to a series of 2D images and
usedAutodesk 123DCatch software to generate a 3D model from multiple images.The
objective is to perform a direct comparison between our approach and both JPEG and JPEG2000
on the ability to perform 3D reconstruction from multiple views.Images are uploaded to the
Autodeskserver for processing which normally takes a few minutes. The 123D Catch software
uses photogrammetric techniques to measure distances between objects producing a 3D model
(i.e. image processing is performed by stitching a plain seam with correct sides together).The
applicationmay ask the user to select common points on the seam that could not be determined
automatically[143, 144]. Compressionsizes and RMSEfor all images used aredepictedin Table
6.5.

Table 6.5: Compressedsizesand 2D RMSEmeasures

Image
Name

Number
of

images

Original
image size

(MB)

Quantization
parameters
used in DST

Compressed
image size

(MB)

Compression
Ratio

Average
compressed size of

each image
(MB)

Average
2D

RMSEY Cb Cr

Baby 1 3 0.5 5 5 0.0594 98% 0.0594 5.95

Eyes 1 9 0.5 5 5 0.0599 99.3% 0.0599 4.84

Girl 1 2.25 0.5 5 5 0.1077 95.2% 0.1077 5.94

Apple 48 336 2 5 5 1.94 99.4% 0.0414 8.33

Face 28 200.7 1 5 5 1.72 99.1% 0.0629 5.68

Figure 6.11 shows two series of 2D images for objects •APPLE‚, and •FACE‚ (all images
areavailablefrom 123D Catch website). We start by compressing each series ofimages whose
compressed sizes and 2D RMSE measures are shown in Table6.5.A direct comparison of
compressionwith JPEG and JPEG2000 is presented in Table6.6. It is clearly shown that our
approach and JPEG2000can reachan equivalent compression ratio, while the JPEG technique
cannot. It is important to stressthat both our technique and JPEG dependon DCT. The main
difference is thatour approachis based on DCT with DST and the coefficients are compressed
by the frequency minimization algorithm.This rendersour technique far superior to JPEG as
shown inthe comparative analysisofTable 6.6, where JPEG simply failed 3D reconstruction for
images compressed to the same size as our technique.
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Figure6.11: (a) and (b) show series of 2D images used togenerate3D models by 123D Catch.

In our method,DCT with DST are appliedover theimage as one block. The used low frequency
block sizefor colour was150�x150, the scalar quantization for DCT was 1, 5 and 5 for each layer
(Y,Cb and Cr) respectively.Furthermore,the quantization matrix used after DSTperforms an
aggressive quantization, this meansthat approximately 50%of thecoefficients are zero (i.e.the
left bottom of the image matrix containslarge numberof zeros after the quantization processcf.
Eq.(6.5)).

(a) 3D model for series ofAPPLEimagesdecompressed byour approach(48 images, average 2D RMSE=8.33, total compressed
size=1.94MB). The compression ratio for the 3D mesh is 99.4% for connectivity and vertices
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(b) 3D model for series ofFACE images decompressed byour approach(28 images, average 2D RMSE=5.68, total compressed
size=1.72MB). The compression ratio for the 3D mesh is 99.1% for connectivity and vertices

Figure6.12: (a) and(b) Successful 3Dreconstructionaftercompression by our approach.

Table 6.6: Comparisonwith JPEG and JPEG2000 techniques

Multiple
2D images

Original size
(MB)

Compressed
size

(MB)

2D RMSE

Our approach JPEG2000 JPEG

APPLE 336 1.94 9.5 6.58 FAIL
FACE 200.7 1.72 5.1 3.39 FAIL

6.7. Conclusions
This Chapter has presented and demonstrated anew method for image compression and
illustrated the quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE. Our
compression algorithm is based onDCT appliedto each rowof an image, then followed by DST
which is appliedto each columnof the matrix.  After the transformationstage, the minimization
of high frequencyalgorithm is usedto reducethe number ofhigh-frequency coefficients.The
compression stageis thencompletedwith arithmetic coding. Inthe decoding stage, the Fast-
Matching-Search algorithm based onbinary searchis used torecoverthe original data. The
results show that our approach introducesbetter image quality at higher compression ratiosthan
JPEG and JPEG2000 asit canmore accurately reconstruct 3D surfacesthan both techniques. A
slight disadvantage of the proposed method is that it is more complex than both JPEG2000 and
JPEG. This is because our approach uses two types of transforms, and that neither JPEG nor
JPEG2000 rely on a search method[158].

The most important aspects of the method and their role in providing high quality image with
high compression ratios are identified as follows:

1. The one-dimensionalDCT can be applied toan image row (i.e.largerarraysize"e �8).
Equally, the one-dimensional DST can beapplied to each column of the output from
DCT.

2. Theuser can ignore the scalar quantizationto removehigher frequencycoefficients (i.e.
keepingmorecoefficients increases image quality).
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3. The two-dimensional quantization (cf. Eq.(6.5)) provides a moreaggressive quantization
removingmost of matrix contents as about50%of thematrix entriesare zero.Applying
this over theDST can keep image quality at higher compression ratios.

4. The final transformed matrixis divided into: low-frequency sub-matrix, and horizontal
and verticalhigh-frequencymatrices.

5. The minimization of high frequency algorithm produces a Minimized-Array used to
replace each three values from the high-frequency sub-bands by a single integer value.
This process reduces the coefficientsby 2/3leading to increased compression ratios.

6. Since the Minimized-Array for both verticaland horizontal high-frequenciescontains
large number of zeros, we applied a newmethod toeliminate zeros and keep nonzero
data. The process keeps significant information while reducing data up to 80%.

7. At decompression stage, the Fast-Matching-Search algorithm is the engine for estimating
the original data from the minimized array and dependson the organized key values and
the availability of a set of unique data. The efficient C++ implementation allowsthis
algorithm to recover the high-frequencymatrices very efficiently.

8. The key values and unique data are used for coding and decoding an image, without this
information images cannot be recovered. This is an important point as a compressed
image is equivalent to an encrypted image that can only be reconstructed if the keys are
available. This has applications to secure transmission and storage of images and video
data.

9. Our proposed image compression algorithm was tested on true colour and YCbCr layered
images at high compression ratios. Additionally, the approach was tested on images
resulting in better 3D reconstruction than JPEG2000 and JPEG.

10. The experiments indicate that the technique can be used for real-time applications such as
3D datafiles and video data streaming over the Internet.



132

Chapter 7

DCT and Matrix Minimization based Image Compression with
Concurrent Fast-Matching-SearchDecompression1

7.1. Introduction
As mentioned in previous Chapters, the DiscreteCosineTransform (DCT) is the basis of the
popular JPEG file format,and most video compression methods and multi-media applications
are generally based on it[117,119,127,138]. In other words, the image is divided into segments
and the DCT is then applied toeachsegment creating a series of frequency components that
correspond with detail levels of the image. Several forms of coding are appliedto store onlythe
mostrelevant coefficients.JPEGis more evident on large data repositories such as YouTube and
cloud storage offered byseveralsuppliers. With the increasing growth of network traffic and
storage requirements, more efficient methods are needed for compressing image and video data
with high quality reconstruction and potential significant reduction in storage size.

In this Chapter a newmethod for 2D image compression and reconstructionisproposed and
demonstratedmaking used of theDCTandMatrix Minimization algorithm(described inprevious
chapters) at compression stage and a new concurrent binary search algorithm at decompression
stage. The proposedimagecompression methodin this chapterconsists of five main steps:

(1) Divide the image into blocks and apply DCT to each block;
(2) Apply Matrix Minimization algorithm toAC-coefficients from each block toencodeeach

block size 1:3 producing Minimized-Array;
(3) Build a look up table of compressed probability data to enable recover original high-

frequencies data at decompression stage;
(4) Apply a delta or differential operator to the list of DC-components; and
(5) Apply arithmetic encoding to the outputs of steps (2) and (4).

Using a look up table at decompression stage, the concurrent binary search algorithm
reconstructs all high-frequency AC-coefficients while the DC-components are decoded by
reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested
the technique by compressing anddecompressinga range of2D images, including images with
structured light patterns for 3D reconstruction. The technique is compared with JPEG and
JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression
method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D
surface reconstruction from images, it is demonstrated that the proposed methodis superiorto
both JPEG and JPEG2000[159].

�1
�T�h�i�s� �c�h�a�p�t�e�r� �w�a�s� �s�u�b�j�e�c�t� �t�o� �a� �p�a�t�e�n�t� �a�p�p�l�i�c�a�t�i�o�n�,� �p�u�b�l�i�s�h�e�d� �a�s� �P�C�T� �o�n� �1� �S�e�p� �2�0�1�6�.�[�1�6�0�]�.
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Figure7.1:High level viewof the proposed image compression algorithm

7.2. The Discrete Cosine Transform (DCT)
ThisSection describes how the DCT is applied tothe original image.First, the 2D image is
divided into non-overlappingnxn blocks (n "e8) and then transformed by DCT to produce de-
correlated coefficients. Each block inthe frequency domain consist of:a DC-componentat the
first locationof each block which is the average value of the samples in the block,and other
coefficients calledtheAC coefficientsasdescribed in Eq.(3.1)[130,131,138].

The quantization of each blockn x ncan be representedas follows:

�( �, �) �= �( �+ �) �(�7�.�1�)

Where �, �= �1�,�2�, &�, and the quantization factor is aninteger �> �1.Each �× block is
quantized byEq.(7.1) using dot-division-matrix whichtruncates the results. This process removes
insignificant coefficients and increases the number of zeroes in each block.The parameter is
used to increase ordecrease the valuesof . Thus, image details arereduced orlost as the value
of increases. The range of is not limited a priori because it depends on the DCT coefficients
and image resolution.The next step isto split the DC-componentsfrom eachquantizedblock

�× by savingthose intoa new array calledDC-Array. Thenthe differences between two
adjacentvaluesin theDC-Array are computed(cf. Eq. (3.5)). This differential process generates
coefficients that are correlated (generally the values are similar as the DC values of adjacent
blocks tend to be similar) so their differences are small and more data are repeated. This process
facilitates compressionby arithmetic coding.
Meanwhile, the remaining AC coefficients (e.g.the 63 AC coefficients from an 8x8 block) are
convertedinto a one dimensional array by scanning column-by-column and savedinto a matrix
calledAC-Matrix. This matrix is subject toa process of eliminating all zeros followed byMatrix
Minimization encodingalgorithmdescribed next.

�O�r�i�g�i�n�a�l
�i�m�a�g�e

�A�p�p�l�y� �D�C�T
�O�n� �e�a�c�h� �b�l�o�c�k

�(�n� �x� �n�)

�D�C�1 �D�C�2 �D�C�3  &� � � � � � � � � � � � � � � � � � � �D�C�p

�R�e�m�o�v�e� �z�e�r�o� �A�C� �c�o�e�f�f�i�c�n�e�t�s� �a�n�d
�k�e�e�p� �n�o�n�z�e�r�o� �d�a�t�a� �i�n� �a�n� �a�r�r�a�y�,� �t�h�e�n
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7.3. High FrequencyMinimization Encoding Algorithm
In this Section we introducean algorithm to convert theAC-Matrix intoa compressedarray
called Minimized-Arraythrough an EnhancedMatrix Minimization algorithm. The algorithm is
enhanced byeliminating zeros and triplet encodingwhose output is then subjected to arithmetic
coding(cf. Section 5.2.3).Normally, theAC-Matrix containsa large numberof zeroes with a few
nonzero data.Herewe propose a technique toeliminate blocks of zeroes and store blocks of
nonzero datainto aone-dimensional array. The algorithmstarts to partition theAC-Matrix into
non-overlappingblocks �× where "e�8and thensearch for nonzerodata inside the block.If
the block containsnonzerodata,such datawill be storedinto a reduced array .Otherwise, the
block€s datawill be ignored, andthealgorithm continuesto searchfor nonzerodata in allblocks
[137]. Thealgorithm isillustratedin List 5.1. (cf. Section 5.2.3)

Onceonly nonzero data are saved intothe reducedRarray,the minimization of high-frequency
encoding isapplied furtherreducing its size by1/3.This process hinges on defining three key
values and multiplying these by three adjacent entries inwhich are then summed over. Thus,
each set ofthree entriesfromRareconverted into a singlevaluewhich are then stored ina new
codedminimizedarray[42,134,137]. Assuming that is the length of , �= �1�,�2�, &�, "� �3is the
index of data in , and is the index of encodedMinimized-Array. The following
transformations definethe minimizationof highfrequencyencoding:

�_ �( �) �= �( �)�+ �( �+ �1�)�+ �( �+ �2�) �(�7�.�2�)

Wherethe K1, K2 andK3 are generated bya key generator (cf. Section 5.2.3)[137]. To map the
Limited-Data values to each summation,extra information is neededto recover the original data
as the problem ismathematicallyunder-determined. This information is kept in the header of the
compressed file asa string ofuniquedata appearingin (cf. Figure 3.5).The minimized array
may contain many zeros, and their removal is described in Chapter 5 (cf. Section 5.2.2)to
increase the compression ratio[131].

7.4. Decompression Algorithm:Concurrent Binary SearchAlgorithm
While the DC-Array can be recovered by a simple addition process, the issue here is how to
recover the reduced arraythat has been compressed into theminimized-array. For this purpose,
we have devisedanewConcurrentFast-Matching-SearchAlgorithm (CFMS-Algorithm) derived
from the single FMS-Algorithm describedin Chapter 5 (cf. Section 5.3)

The reverse of the compression algorithm consists of three stages:

1) Decodethe DC-components: the first stepis to reverse the differential process of (cf.
Eq. 3.7) by addition such that the encoded values intheDC-Array returnto their original
DC-components. This process takes the last value atposition , and adds it to the
previous value, and then the total adds to the next previous value and so on.

2) Decodethe minimized-array using the CFMS-Algorithm : This novel algorithm has
beendesigned torecoverthereduced array from theminimized-array.
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The compressed data contains information about thethreecompression keysdefined in
Eq.(7.3 • 7.6)andthe probability data (limited data) followed bycompressedstreams of
data.The CFMS-algorithm picks upin turn eachdata elementfromthe minimized-array
and reconstructs the three keysrecovering the tripletR of data through a CFMS-
Algorithm illustratedby steps A and B:

A) Initially, theestimated values defined inLimited-Data arrayare set tothe same value,
that is �= �= �, �= �= �, �= �= �. The searching algorithm
computes all possible combinations of A with, B with and C with that yield a
result keeping in D-array. As a means of an example consider thatLimited-
Data1=[ ] , Limited-Data2=[ ] and Limited-Data3=[ ]. Then,
according to Eq.(7.2) these representthe coded summationrespectively,and the
equation is executed 27 timesto build the array, as described inFigure7.2(a). The
match indicates that the unique combination ofA,B andC arethe original data (i.e.
decompressed data)[137].

B) A Binary Search algorithm[139]is used to recoverthe data andtheir keys.Our design
consists of binary search algorithmsworking in concurrenttoreconstructthe triplets
of original datain the array, as shown in Figure 7.2(b).At each step, eachbinary
search algorithmtakesa single compressed datafrom minimized-arrayand compares
with the middle element of the D-Array.If the values match, then a matching element
has been found and its relevant (A,B andC) returned. Otherwise, if the search isless
than the middle elementthe algorithmis repeatedto the left of the middle element or,
if the value is greater, to the right.All binarysearchalgorithms aresynchronised[137].

3) Combine the DC-components with AC-coefficients: once the reduced arrayis
recovered in step 2, the corresponding high frequencyAC-Matrix is re-built by placing
the nonzero data in the exact locations defined by the algorithm inList-5.1. The DC-
components and AC-coefficients are then followed by inverse quantization (dot-
multiplication with Eq.(7.2) and the inverse DCT is appliedto each blockn x n Eq.(3.2),
to recover approximatelytheoriginal image.
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�(�a�) Compute allpossibilities for keys with Limited-Data toreconstructthereducedarray

(b) Binary Search algorithms work in parallel to find group of decompressed data.

Figure7.2: TheCBS-Algorithm to reconstruct the reduced array.

7.5. Experimental Results
The experimental results describedhere were implemented in MATLAB R2013a and Visual
C++ 2008 running on an AMD Quad-Core microprocessor. We describe the results in two parts:
first, we apply the compression and decompression algorithms to 2D images that contain
structured light patterns allowing 3D surface data to be generated from those patterns. The
rationale is that a high quality image compression is required otherwise the resulting 3D structure
from the decompressed image will contain apparent dissimilarities when compared to the 3D
structure obtained from the original (uncompressed) data. We report on these differences through
visualization and standard measures of RMSE-root mean square error. Second, we apply the
method to general 2D images (with no structured light patterns) of different sizes and assess their
perceived visual quality and RMSE. Additionally, we compare our compression method with
JPEG and JPEG2000 through visualization of 2D images and 3D surfaces and RMSE.
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7.5.1.Results forStructured Light Images and 3D Surfaces
In Figure7.3 shows a number of test images used to generate 3D surfaces both in greyscale and
colour. The top row shows two greyscale face images, FACE1 and FACE2 with size 1.37MB
and dimensions�1�3�9�2�×�1�0�4�0pixels. The bottom row shows colour imagesCORNER, WALL,
METAL with size 3.75MB and dimension�1�2�8�0�×�1�0�2�4pixels.As stated in previous Chapters,
the RMSE although useful, is a single measure of error and may not give a clear indication to
which reconstruction is `best'. This is so because errors could beconcentrated in an area that we
perceive as less important in the image, and this is more clearly seen by analysing the 3D surface
images at various compression ratios.

Figure7.3:Structured light images used to generate 3D surfaces. Top row greyscale images FACE1 and FACE2, and colour
imagesCORNER, WALL, METAL respectively.

Figure7.4:Reconstructed 3D surfaces from images FACE1 and FACE2at various compression ratios.
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Figure 7.4 shows a visualization of the decompressed images converted to 3D surfaces using
different DCT block sizes (from�1�6�×�1�6to �6�4�×�6�4). FACE1 on the top row from the left, the
first and second 3D surfaces with RMSE of 1.45 and 2.48 are high quality surfacescomparable
to the original one. The 3D surface with 3D RMSE of 2.25 represents median quality image
while the 3D surface with 3D RMSE of 2.57 is low quality as some parts of surface are
degraded. Note that the RMSE of 2.25 (third image from left) is lowerthan 2.48 (second image)
but it's perceived quality is not higher, instead it is lower due to localised errors in less important
areas of the face. Figure 7.4bottom row shows the decompressed FACE2 images.The 3D
surfaces with 3D RMSE of 1.11 and 1.45 represent high quality surfaces comparable to the
original surface, while the other two represent median to low quality with varying degrees of
degradation. It is apparent here that because the RMSE algorithm only calculates the differences
between validsurfacespoints in two surfaces (original and reconstructed from compressed data)
the dropping or disappearance of some areas on the surface will have a marked effect on the
meanerror.

Table 7.1: Proposed image compression and decompression applied to greyscale images
(Original image size =1.37MB)

Image
Name

Block
size used
by DCT

Factor Compressed
image size

Compression
Ratio

2D
RMSE

3D
RMSE

FACE1
�1�6�×�1�6 5 34.2 KB 97.5% 4.0 1.45
�1�6�×�1�6 10 18.3 KB 98.6% 5.12 2.48
�3�2�×�3�2 5 20.7 KB 98.5% 4.79 2.25
�3�2�×�3�2 10 11 KB 99.2% 5.83 2.36

�6�4�×�6�410 6.4 KB 99.5% 6.65 2.57

FACE2
�1�6�×�1�6 5 21.98 KB 98.4% 2.65 1.11
�1�6�×�1�6 10 12.25 KB 99.1% 3.32 1.45
�3�2�×�3�2 5 14.47 KB 98.9% 3.12 0.98
�3�2�×�3�2 10 7.94 KB 99.4% 3.8 4.0

Table 7.2: Proposed image compression and decompression applied tocolour images
(Original image size =3.75MB)

Image
Name

Block
size used
by DCT

Factor for each
layer

[Y, Cb, Cr]

Compressed
image size

(KB)

Compression
Ratio

2D
RMSE

3D
RMSE

WALL �6�4�×�6�4 [5,5,5] 14 99.6% 2.4 0.25
�6�4�×�6�4 [10, 10, 10] 7.62 99.8% 2.8 2.11
�6�4�×�6�4 [25, 25,25] 4.0 99.8% 3.5 0.59

CORNER �3�2�×�3�2 [10,10,10] 20 99.4% 5.34 0.14
�3�2�×�3�2 [20, 20, 20] 10 99.7% 6.7 0.65
�6�4�×�6�4 [30, 30,30] 5.1 99.8% 8.26 2.08

METAL �3�2�×�3�2 [2, 25, 25] 25.2 99.3% 4.19 1.89
�3�2�×�3�2 [5, 25, 25] 13.4 99.6% 4.48 2.04
�6�4�×�6�4 [5, 25, 25] 9.8 99.7% 4.73 2.00

Tables7.1 and7.2 provide a quantitative view of compression concerning 2D structured light
images and corresponding 3D surfacereconstructionfor a number of different DCT block sizes
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and quantisation factors. The purpose is to analyse the sensitiveness of the algorithms to both
parameters.  In Table7.1 there isonly one value for quantization factoras these are grey scale
images and thushave only one colour channel to quantise. As expected, it is observed that by
doubling the factor, the size of the compressed image is halved. On the other hand, by doubling
the block size, the size of the compressed image is only reduced by about a third.It is also
observed that no relationship exists concerning block size, factor, and RMSE (both in 2D and
3D). An image that is compressed to double the size of an earlier compression does not mean
that its RMSE will be halved compared to the earlier RMSE.The reasons for this have been
pointed out above as localised errors in the image will give rise to localised errors in the 3D
structure and these do not necessarily correspond to our perception of better or worst.

Table 7.2depictsthree parameters forquantizationfactor , one for each channelas these are
colour images. Here again by doubling the factor it is observed a halving of the compressed
image size. Normally, it would not make sense to have different factor values for different colour
channels,but this is a possibility that can be exploited especially in structured light applications
where we know that patterns can be projected using a single colour channel (red, green or blue).
The same comments above on RMSE also apply here.

Figure.7.5:Reconstructed 3D surfaces for images WALL,CORNERand METAL after compression and decompression.

Figure 7.5 depicts the 3D surface images from the decompressed WALL,CORNER and
METAL images. The first image on the left with texture mapping on is for information only. The
remaining 3 shaded images were compressed by varying the DCT block size and the colour
channels according to the data depicted in Table7.2. Thus, the firstrows of shaded images
correspond to the first 3 entries in Table7.2 and so on. The perceived quality of all reconstructed
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3D surface images follows a similar pattern: as the quantisation factoris increased, the size of
the compressed file decreases with corresponding deterioration in quality and this is the expected
behaviour.

Table 7.3: Compression and decompressionof 3D images by JPEG2000 and JPEG at higher compression ratios
Image
name

Compression
Ratio

JPEG2000 JPEG

2D
RMSE

3D RMSE 2D
RMSE

3D
RMSE

FACE1 99.5% 6.3 1.8 FAIL FAIL
FACE2 99.4% 3.2 2.66 FAIL FAIL
WALL 99.8% 3.8 2.3 FAIL FAIL
METAL 99.8% 11.6 1.35 FAIL FAIL

CORNER 99.6% 4.0 90 FAIL FAIL

Table 7.3 and Figure7.6 describe the compressed and decompressed results for JPEG and
JPEG2000 with comparison with our approach. Here we compressed very aggressively and in
Table 7.3 the JPEG algorithm simply failed to compress images at the required ratio with
equivalent filesizes as our approach. This is indicated by ‚FAILƒ. An important point to note is
that while JPEG2000 can compress to equivalent ratios or file sizes as our algorithm, the
decompressed image is not of equivalent quality for the purposes of 3D reconstruction.

(a) The3D reconstructedFACE1 (3D RMSE=1.8) by JPEG2000 degraded compared with our approach, also some partsare
missing.FACE2 (3D RMSE=2.66)is compressedby JPEG2000 athigher compression ratio, butthetoppart of thesurfaceis
missing.

Figure 7.6 provides a direct comparison between our approach and JPEG2000 for quality
assessment through visualisation of the reconstructed 3D surface. Each file containing structured
light patterns was compressed to the same size using our method and JPEG2000. The
visualisation clearly indicates that our method is superior to JPEG2000 concerning 3D
reconstruction in all cases considered both in terms of perceived quality of the reconstruction and
absolute RMSE.
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(b) Top, the 3D reconstructed CORNER(3D RMSE=1.35) by JPEG2000is more degraded than our approach. Bottom, the3D
reconstructedWALL (3D RMSE=2.3)by JPEG2000 has ahigher compression ratio, butthetop part of the surfaceis missing.

(c) The3D reconstructed METAL(3D RMSE=90) by JPEG2000is completely degradedcompared with our approach.
Figure7.6: (a), (b) and (c) Comparison of3D reconstructionbetween our approachandJPEG2000

7.5.2.Results for 2D images
In this Section,we report on our approach applied to generic 2D images, that is, images that do
not contain structured light patterns as described in the previous section. Table7.4 tabulates
compression results and comparison of our approach with the two compression algorithms
JPEG2000 and JPEG respectively using 5 publicly available images with sizes varying from
0.5MB to 9MB. For eachimage,we used different block sizes from �8�x�8to �6�4�x�6�4as depicted in
Table7.4. Despite the RMSE limitations as an absolute measure ofquality, the tabulated values
indicate that JPEG has a much higher error than both our technique and JPEG2000. For this
reason, it is the least desirable technique.
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Table7.4: Proposedimage compression and decompression appliedto 2D images

Image
Name

Original
image size

(MB)

Our approach
Our

Approach
2DRMSE

JPEG2000
2D RMSE

JPEG
2D

RMSE
Block size

used by
DCT

Compressed
image size

(KB)

Compression
Ratio

X-ray 0.588 �8�×�8 10 98.3% 5.0 3.2 11.88
Eye 9 �6�4�×�6�4 14.2 99.8% 4.89 4.1 15.3
Girl 2.25 �1�6�×�1�6 21.2 99% 10.48 6.4 21.1
Cell 8.5 �6�4�×�6�4 9.8 99.8% 4.2 2.5 16
Baby 3 �3�2�×�3�2 18.3 99.4% 5.3 3.5 15.5

(a) X-rayCompressed size to 10KB

(b) Eyeimagecompressed to 14.2KB

(c) Girl imagecompressedto 21.2KB
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(d) Cell imagecompressed to 9.8KB

(e)Baby image compressed to18.3KB
Figure7.7: (a-e) Comparativeperceptual qualitybetween our approach, JPEG2000 and JPEG

Figure7.7depictsdecompressed images by our approachwith a comparison with JPEG2000 and
JPEG. One can state that JPEG2000 seems to be the better technique for general 2D compression
as it hasa high perceived quality with low RMSE. Our technique is at comparablelevel to
JPEG2000 concerning perceived quality, butwith slightly higher RMSE.It is known that both
JPEG and JPEG2000 are widely used in 2D image and video compression. This research has
demonstrated that our proposed compression method can equally be used for the same purposes
with the added advantage that it is superior to both JPEG and JPEG2000 concerning 3D surface
reconstruction using structured light techniques.

7.5.3. 3D Modelling by using multiple images
Autodesk€s 123DCatch software generates a3D modelfrom multiple picturestaken atdifferent
angles (HDimages recommended). Theseimages are uploaded to the server for processing,
which normally takesa few minutes. The programuses photogrammetric technology to measure
distances between objects yieldinga 3D model; in other words, image processingis performed
by stitching a plain seam with correct sides together. However, the softwaremay askthe user to
select pointsfor connectionthat could not be automatically determined throughonline
processing[143, 144].
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(a) Apple images:a series of48 images(336 MB)are used

(b) Face images:a series of28 images(200 MB)are used

(c) Statute images:a series of51 images(366 MB) are used

Figure7.8(a, b and c): Theselected series ofimagesfor 3D reconstruction from multiple points.

Table 7.5: shows our compression algorithm results

Multiple 2D
images

Total Original
BMP file size

(MB)

Total original size
as JPEG format at

100% High-
Quality
(MB)

Total
Compressed
size by our
Approach

(KB)

Compression
Ratio

Quantization factor
According to the

layers: [R, G, B] Block
size

2D RMSE

Apple 336 52.4 929 99.7% [40,40,40] 16x16 9.5
Statue 366 58.5 916 99.7% [20,30,30] 64x64 14.35
Face 200.7 45.5 784 99.6% [11,30,30] 16 x 16 5.1

Table 7.6: Comparison with JPEG and JPEG2000 techniques

Multiple
2D images

Compressed
size
(KB)

2D RMSE 3D RMSE

Our
Approach JPEG2000 JPEG Our

Approach JPEG2000 JPEG

Apple 929 9.5 6.58 FAIL 13.93 12.61 FAIL
Statue 916 14.35 13.81 FAIL 13.67 12.0 FAIL
Face 784 5.1 3.39 FAIL 14.73 12.35 FAIL
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A comparative analysis is performed as follows. We compress a series of images using our
method, JPEG and JPEG2000 and upload to the 123D Catch server for 3D reconstruction. We
then analyse the quality of the returned 3D mesh obtained from the three compression methods.
Figure 7.8 shows an original series of 2D images and Tables 7.5 and 7.6 depicts the compressed
sizes by our approach compared with the othertwo techniques.Table 7.6 shows our approach
and JPEG2000 to a maximum compression ratio, while the JPEG technique failed to reach that
same compression ratio.Decompressed 2D images by our approach converted into a 3D surface
by 123D Catcharedepicted in Figures 7.9, 7.10 and 7.11.TheJPEG2000 images converted into
a 3D modelare depicted inFigure 7.12.

(a) Autodesk123DCatchconverts48 Appleimagesintoa3D model

(b) 3D surface details forApplemodel

Figure7.9: (a, b)3D model for series of48 Apple images decompressed by our approach, average 2D RMSE for all
decompressed images=9.5, total compressed size=929KB. Theoretically, the achievedcompression ratio for 3D

mesh is 99.7% for connectivityandvertices.
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(a) Autodesk123DCatch converts 28Faceimagesintoa3D model

(b) 3D surface details forFacemodel

Figure7.10: (a, b)3D model for series of28 FACE images decompressed by our approach, average 2D RMSE for
all decompressed images=5.1, total compressed size=784KB. Theoretically, the achievedcompression ratio for 3D

mesh is 99.6% for connectivityandvertices.

(a) Autodesk€s 123DCatch converts 51Statueimagesinto a3D model
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(b) 3D surface details forStatuemodel

Figure7.11: (a, b)3D model for series of51 Statue images decompressed by our approach, average 2D RMSE for
all decompressed images=14.35, total compressed size=916KB. Theoretically, the achievedcompression ratio for

3D mesh is 99.7% for connectivity and vertices.

Figure7.12: Results for JPEG2000: Left, the3D Facemodelis degradedwhencodedby JPEG2000, (middle and
right) the 3D models forStatue and Appleare successfullyreconstructedfrom JPEG2000images.

7.6. Conclusions

This Chapter has presented and demonstrated anew method for image compression and
illustrated the quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE and
the perceived quality of the visualisation. The method is based on DCTtogether withthe
proposeddifferential process,minimization of high-frequencyencoding and concurrent binary
searchalgorithms. The results showed that our approach introduced better image quality at
higher compression ratios than JPEG andequivalent perceived quality asJPEG2000.
Furthermore,the proposed methodcan more accurately reconstructthe 3D surfacesat higher
compression ratiosthan both techniques, i.e. in this respect it isalsosuperior to JPEG2000. On
the other hand,the methodis more complex than JPEG2000 andJPEG. The most important
aspects of the method and their role in providing high quality image with high compression
ratios are identified as follows[158]:
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1- The DCT can be appliedto large block sizes"e �8, and the DC-componentsand AC-
coefficients are separated into different matricesby the proposed method and coded
separately.

2- Since the AC-coefficients contain a large number of zeros, weapplied anew methodto
eliminate zeros and keep nonzero data. Theprocess keeps significant information while
reducingdata up to 75%.

3- The Matrix Minimization algorithm, used to reduce high-frequencycomponentsproduceda
Minimize-Arrayby replacing each threevaluesfrom the AC-coefficientsby a single floating-
point value.This process reducesthe coefficientsleading to increased compression ratioswith
faithful decoding.

4- The concurrent binary searchalgorithm represents the core of our search algorithm for
finding the exact original data from theminimized-arrayand depends on the organised key
values and the availabilityof the unique data. The efficient implementation of Visual C++
code allowstheconcurrentalgorithms to recover theAC-coefficientsin a few microseconds.

5- The key values andunique dataare used for coding and decoding an image, without this
information images cannot be recovered. This is an important point as a compressed image is
equivalent to an encrypted image that can only be reconstructed if the keys are available. This
hasapplicationsinto secure transmission and storage of images and video data.

6- Our proposed image compression algorithm was tested on true colourand YCbCr layered
imagesat high compression ratios. Additionally,theapproachwastested onimages resulting
in better3D reconstruction than JPEG2000 and JPEG.

7- The experiments indicate that the techniquecan be used for real-time applications such as 3D
data objects and video data streaming over the Internet.



�1�4�9

Chapter 8
3D Geometry and Connectivity Compression with
Concurrent Fast Matching Search Decompression

8.1. Introduction

Polygonal meshes remain the primary representation for visualization of3D data in a
wide range of industries including architecture, geographic information systems,
medical imaging, robotics, entertainment, and military applicationsamong others.
Because of its common use, it is desirable to compress polygonal meshes and
exchanged over computer networks to reduce storage and reduce transmission time.
3D files encoded byWavefront€sOBJ file format are commonly used to sharing
models due to its clear simple design. Normally, each OBJ file contains a large
amount of data (e.g. vertices and triangulated faces, face normal directions) describing
the mesh surfaceand other parameters such as illumination.

In Chapter 2we brieflydescribedprevious work on mesh compression (geometry and
connectivity). First we introduced Deering€swork focused on geometrycompression
for datacommunication between theCPUand agraphic adapter[63]. Also, Rossignac
and Taubindescribedthe Topological Surgery (TS) method,which isa compression
scheme used formaintainingmanifold triangularmesh[67]. TS hasbeenextendedfor
use in compressed file format to encode VRML, and nowit is alsoused intheMPEG-
4 standard compression[145].

MPEG-4 coding is based on Topological Surgery and Progressive Forest Split
Scheme (FPS)which is a newimprovedschemefor compression and transmission of
3D meshes in progressive form[146,147]. Many algorithmshave beenproposed and
incorporatedinto the standard which now supportsthe encodingof any polygonal
mesh (also non-manifolds)[148,149].Additionally, there is no loss intheconnectivity
of triangle faces, and no duplication of geometry and property data related with
vertices (x,y,z).TheMPEG-4 standards are thestate-of-the-art [150].

In this Chapter, we deal with direct compression of 3D datastructures by Matrix
Minimization algorithm, which is called Geometry Minimization algorithm used to
compress mesh data (vertices and triangle faces).First, each vertex consisting of
(x,y,z) coordinates are encoded into a single value by the GMalgorithm. Second,
triangle faces are encoded by computing the differences between two adjacent vertex
locations, and then coded by the GMalgorithm followed by arithmetic coding. We
tested the method on large data sets achieving high compression ratios over 90%
while keeping the same number of vertices and triangle faces as the original mesh.
The decompression step is based on aConcurrentFast Matching Search Algorithm
(CFMS) to recover the structure of the 3D mesh. A comparative analysis of
compression ratios is provided withseveralcommonly used 3D file formats such as
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MATLAB, VRML, OpenCTM and STL showing the advantages and effectiveness of
our approach.

This Chapteris organizedas follows:Section8.2 introduces geometry coding and
describes theproposedGeometry Minimizationapplied to vertex data. Section8.3
describes losslesscoding of mesh connectivitybythe GM-Algorithm, while section
8.4describes theConcurrentFast Matching Search algorithm (CFMS) used to
reconstruct vertices and triangulatedfaces. Section8.5 describes experimental results
with a comparative analysis followed by conclusions inSection8.6.

8.2. TheGeometryMinimization Algorithm (GM -Algorithm)

The algorithm starts witha lossyquantization process to convert vertices to integer
values (because our approach works on integer numbers by truncating the vertices
coordinates that can be representedby limited number of bits).

Figure 8.1, The GM-Algorithm applied to each block of vertices

A scale parameterðais used by the quantization process,it is used to move numbers
from the exponent part tothe mantissa part.In this way, the 3D structure can be
reconstructed in the same units and scale as the original.The lossyquantization byða
transforms each (x, y, z) coordinates into integers ranging from 0 to 2B€1, whereB is
the maximum number of bits needed to represent the quantized coordinates.
Normally, 12bit• 16bit integers are sufficient to ensure geometric fidelity for most
applications and most models. Thus, this lossy quantization step reduces the storage
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cost of geometry from 96-bits to less than 36-bits. The quantization of vertices (x, y, z)
is defined as:

�, �, �= �( �, �, �) (8.1)

Where "d �1�0�,�0�0�0.We reduced the number of bits for each vertexto less than 16-bit
by calculating the differences between two adjacent coordinates for increased
redundancy dataand thus,making itmore susceptible to compression. Thedifferential
process defined in Eq. (3.5) is appliedtoaxes X, Y and Z independently(cf. Figure
3.3)[42].

Once thedifferential process is applied to the vertices, the list of vertices is divided
into blocks, andtheGM-Algorithm is applied to each block of vertices (i.e. the vertex
matrix from 3D object file is divided intok non-overlapping blocks) as illustrated in
Figure8.1. The main reason for placing vertices into separate blocks is to speed up the
compression and decompression steps. Eachk block is reduced to an encoded data
array. The GM-Algorithm is defined as taking three key values and multiplying these
by three geometry coordinates (x, y, z) from a block of vertices which isthen summed
over to a single integer value(cf. Section 3.2.3). A compression keyKC is generated
from vertex data(cf. Section 5.2.3- key generator)asfollows [137]. First, defineM as
a function ofthe maximum value in the data:

�= �m�a�x�( �, �, �)�+
�( �, �, �)

(8.2)

Then define 3compressionkeys as follows:

�= �(�0�,�1�) (8.3)

�= �( �+ �)�+ (8.4)
�= �( "� �+ "� �)"� (8.5)

Where is a positive factor multiplier, each vertex is then encoded as:

�( �) �= �( �) �+ �( �) �+ �( �) (8.6)

Figure8.2(a) illustrates the GM-Algorithm appliedasEq(8.6) to a sample of vertices.
After applying the GM-Algorithm, the likelihood for each block of vertices is selected
from which aKu (i.e. Limited-Data • cf. Figure 3.5)is generated to be used in the
decompression stage as illustrated in Figure8.2(b) with a numerical example.

8.3. Connectivity Compression

Several algorithms have been developed to address the problem of compactly
encoding the connectivity of polygonal meshes, both from theoretical and practical
viewpoints. The short encoding of embedded graphs hasbeen tackled as a theoretical
problem, while compressing the incidence table of the triangle mesh in a 3D model as
a practical problem.
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(a) Floating point vertices

(b) Limited DataKucomputed from vertices X,Y and Z

Figure8.2: (a): Sample of vertices compressed by GM-Algorithm, (b)The set of�K valuesgenerated
from a block of vertices

Triangulatedmeshesrepresentgeometricconnectivity. In a3D OBJfile, each triangle
is followed by reference numbers representing the location of the verticesin the 3D
file. These reference numbersarearranged in ascending order in most 3DOBJ files.
We refer to theseas regular triangles. One of regular triangles€ advantagesis that
they can be losslesscompressed ina few bits by applying a differential process (e.g.
the differential processeddefinedby Eq. (3.5) appliedto all reference numbers). The
resulting 1D-array is divided into sub-arrays, and each sub-array encoded
independentlyby the GM-Algorithm followed by arithmetic coding asillustratedin
Figure 8.3.TheGM-Algorithm works in thesame way as appliedto thevertices: three
key values aregenerated and multiplied by threeadjacentvalues whichare then
summedinto singlevalue accordingto Eq. (8.6).

Sampleof vertices (before coding)
-101.284 48.426 45.478
-100.916 48.399 45.468
-100.636 48.414 45.426
-100.396 48.449 45.341
-100.150 48.480 45.215
-99.900 48.510 45.053
-99.6262 48.529 44.863
-99.355 48.548 44.653

Quantized vertices
-1013 484 455
-1009 484 455
-1006 484 454
-1004 484 453
-1002 485 452
-999 485 451
-996 485 449
-994 485 447

Differential Eq (7.2) applied       GM-Algorithm applied
-4 0 0 -0.4
-3 0 1 42.9
-2 0 1 43
-2 -1 1 35.9
-3 0 1 42.9
-3 0 2 86.1
-2 0 2 86.2

-994 485 447 -994 485 447

Subtract each column by Eq(2); then apply theGM-Algorithm, maximum value
M=|4|, F=1:- Kc1=0.1,Kc2=7.1,Kc3=43.2

KU

Vertices after the differential process
X       Y        Z
1 1 3

1 2 - 2 -

2 3 3

. . .

1 1 2

GM-Algorithm
�1�,� �3�,�-�2�,� �2�,� �3�,� �.� �.� �.

�E�n�c�o�d�e�d� �D�a�t�a

�K�C














































































































