
Students’ understanding of computational thinking with a
focus on decomposition in building network simulations

MVALO, Steve and BATES, Christopher <http://orcid.org/0000-0002-1183-
1809>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/17910/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

MVALO, Steve and BATES, Christopher (2018). Students’ understanding of
computational thinking with a focus on decomposition in building network
simulations. In: CSEDU 2018 Proceedings : 10th International conference on
computer supported education. SCITEPRESS, 245-252.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Students’ understanding of computational thinking with a focus on

decomposition in building network simulations

Steve Mvalo1 and Chris Bates1
1Sheffield Hallam University, Faculty of Arts, Computing, Enginering and Science, Department of Computing, City

Campus, Sheffield, UK {s.mvalo@shu.ac.uk, c.d.bates@shu.ac.uk}

Keywords: Computational thinking, simulation software, problem-solving experiments

Abstract: This paper reports a study into students’ understanding of decomposition when building network

simulations. Students were asked to complete three problem-solving tasks involving designing and

troubleshooting computer networks using simulation software. Through online surveys, interviews and focus

groups the students’ understanding of computational thinking was interrogated. The results show that

students were not conscious that they were applying computational thinking concepts when designing and

troubleshooting networks on simulation software. It appears their interest were to simply get problems

solved but not necessarily with the understanding of the application of the concepts of computational

thinking.

1. INTRODUCTION

In this study we investigate students’

understanding and application of one concept of

computational thinking: decomposition. We

examine how students apply the concept when

building network simulations and how, in turn,

those simulations facilitate students’ ability to

decompose a networking problem into a set of

smaller tasks.

Decomposition is one of the core concepts of

computational thinking. When using

decomposition, problems are systematically broken

into levels of abstraction that can be understood

and solved more readily than can the original,

complex problem. Computational thinking brings

together a number of ideas about problem solving

and algorithmic thinking in ways that can be

readily applied to a wide variety of

problems across diverse domains.

Section two introduces the idea

of computational thinking, section three looks

at how simulation tools can facilitate teaching

computer networks, section four looks at

experimental design, section five introduces the

tasks that were set for the students and section six

presents the results. We conclude by providing

some emerging ideas and recommendations for

further studies.

2. COMPUTATIONAL

THINKING

Computational thinking is an approach to problem-

solving which uses abstraction, decomposition,

generalization and the creation of algorithms to

identify solutions. The approach closely mirrors

that which is used in software development and

creates solutions that can be implemented

relatively easily by people or by machines.

Originally coined by Papert (1980), the term was

popularized in (Wing, 2006) where the approach

was applied to general problem-solving rather than

being restricted to the domain of computer science.

Wing (2006, 2008) describes computational

thinking as involving problem-solving

encompassing a set of mental tools, the design of

systems and an understanding of human behaviour

and that it represents a universally applicable

attitude and skill set everyone, not just computer

scientists, [could] learn and use. In 2011, Wing

revised her definition of computational thinking as

the “thought processes involved in formulating

problems and their solutions so that the solutions

are represented in a form that can be effectively

carried out by an information processing agent” (p.

60).

mailto:c.d.bates@shu.ac.uk

Computational thinking helps students think

algorithmically, define abstractions, decompose

and reify them in their solutions, (Wing, 2011).

The core concepts of computational thinking are

abstraction; algorithmic thinking; problem solving;

pattern recognition (generalization); design-based

thinking; conceptualising; decomposition;

automation; analysis; testing and debugging;

mathematical reasoning; implementing solutions;

modelling, (Grover & Pea, 2013; Kalelioglu et al.,

2016).

This study uses a working definition of

computational thinking as:

 Those thought processes that apply

fundamental ideas and approaches from computer

science including, but not limited to, algorithms,

abstraction, decomposition and generalization to

solving technological problems such as the design

of computer networks.

Within the broad discipline of computer

science computational thinking can easily become

entwined with the use of specific tools such as

those used for software design because when using

such tools the ideas and practices of abstraction,

decomposition, generalization and so on become

explicit to students. Wing (2008) is clear that tools

should not get in the way of understanding and

applying the concepts behind computational

thinking but, rather, should reinforce and facilitate

them. It is not sufficient that a learner be adept in

the tool, they must become adept in using the tool

to produce abstractions and concrete

implementations from those abstractions.

3. DECOMPOSITION

The intellectual skill of decomposition is the

ability to breakdown complex problems to a level

such that it can be understood, solved, developed

or evaluated (Csizmadia et al., 2015).

Decomposition can involve looking at similarities

within, and patterns of, the constituent parts of the

problem. In so doing they become easier to

understand and work with. The ability to identify

these similarities and patterns depends on one’s

previous knowledge, experiences and skills

(Bocconi, et al., 2016). Decomposing a problem is

one thing but solving the problem is another

matter, albeit one that also requires prior

knowledge, experiences and skills.

Wing (2008) defines decomposition within

Computational Thinking as the process of

unwrapping an abstraction of a complex problem

into a concrete solution. Once students have solved

a complex problem, they should be able to describe

both how they identified the problem and the

strategies they used.

4. SIMULATION TOOLS IN

TEACHING COMPUTER

NETWORK DESIGN

Simulation software provides a platform on which

students can design, build and test networks that

vary in complexity from trivial to complex

simulations of the infrastructure of multi-national

companies. Using such software students are able

to work with systems that are far too complex for

them to be able to build in real-life and to include

technologies that they would otherwise not meet at

University.

Teaching students to build even relatively

simple networks that include a couple of routers

and a few VLANs can require racks of dedicated

hardware. Typical university class sizes mean that

significant quantities of specialized equipment

must be available to the students both within

formal teaching sessions and when they undertake

their own project and assessed work. This

hardware is not intended by its manufacturers for a

classroom setting. It has the robustness necessary

to run almost indefinitely in the controlled

environment of a network server room but is less

able to withstand the rigour of constant re-cabling

or power cycling or, indeed, of operating in warm,

dusty classrooms.

Simulation software provides an excellent

alternative to physical infrastructure when teaching

computer networking (Janitor et al., 2010).

Network simulations provide feature-rich, flexible

platforms with a range of devices and software that

is far greater than would be possible when using

physical devices (Ruiz-Martinez et al., 2013).

When using network simulations students have the

flexibility to work on their network designs away

from the classroom, (Zhang et al., 2012).

Many studies including those of (Galan,

Fernandez, Fuertes, Gomez, & de Vergara, 2009;

Hwang et al., 2014; Ruiz-Martinez et al., 2013)

have shown that simulation software provides a

highly realistic way of teaching computer

networks, conducting research and experiment in

designing complex network systems. And because

simulations are inherently flexible, extensible and

highly configurable, students are able to use them

to design network topologies that range from

simple to highly complex. The inherent plasticity

of a good simulation tool means that it provides a

platform upon which students can build almost any

structure and, in so doing, extend their

inventiveness and innovation (Ruiz-Martinez et al.,

2013).

5. DATA COLLECTION

METHODS

This study used mixed methods with dominant

qualitative approaches. Initially two separate

surveys comprising 69 students and 14 lecturers

respectively were conducted to discover

participants’ understanding of computational

thinking and of the use of simulation software in

network design. Seven undergraduate students

studying for computer networks were sampled

randomly for a focus group interviews. In this

focus group, students were queried about their

understanding of computational thinking and their

experiences of using simulation software to design

networks in their day-to-day lab activities. A small

group of postgraduate students undertook three

consecutive problem-solving tasks and followed-

up with one-to-one and focus group interviews.

The postgraduate students were taught by one of

the authors and the three tasks formed part of their

assessment.

The students were given three different

problems and six weeks to complete each. In total

the students were monitored for almost six months

as they designed and built simulations and

undertook troubleshooting of their simulations. On

completing each problem, the students recorded

videos in which they demonstrated their problem-

solving approach, showed their solutions and

reflected on their learning through the task. In the

focus group the postgraduate students were asked

to reflect upon their understanding of the problems

and how they had solved during the practical tasks.

All participants have been anonymized to

preserve their confidentiality. Undergraduate and

postgraduate students in this study have been

referred to as UGx and PGx respectively, where x

represents a random number. Lecturers have been

referred to as LecX where X represents a random

number too.

In the focus groups the students were prompted

to explain their understanding of the differences

between computational thinking and critical

thinking. Students were asked about the strategies

that they used when designing complex network

simulations to try and reveal whether, and how,

they might apply the core concepts of

computational thinking. Students were further

asked to explain their previous experiences in

using simulation software against physical

hardware and finally were asked to explain their

general recommendations on the use of simulation

software in developing their understanding of

computational thinking.

The focus groups investigated the students’

perceptions and reflections on the use of

simulations in network problem solving. These

students were also asked their understanding of

computational thinking and their perceptions on

the use of simulation software in developing their

computational thinking. The intention was to

investigate their ability to apply any of the core

concepts of computational thinking and to further

drill down into their use of decomposition in

building network simulation.

To triangulate the findings of the online survey

and focus groups, three lecturers participated on

one-to-one interviews in which they talked about

their own understanding of computational thinking

with a particular interest in decomposing network

abstraction when building network simulation.

Lecturers further talked about how they apply the

core concepts of computational thinking in their

own teaching practice.

6. THE PROBLEM-SOLVING

TASKS

The students undertook series of increasing

complexity tasks across six months during

laboratory sessions for three of their modules.

They recorded themselves using the

Screencastomatic software desktop capture

program, https://screencast-o-matic.com/. Because

the students were asked to record all of their

activities in each lab session we were able to see

exactly how they used the simulation software

including mistakes, dead-ends and failed

approaches. Desktop capture differs from other

approaches because it is unobtrusive - these

students tended to forget that it was recording them

- and so gives the researcher a raw and unfiltered

view of the activity.

When capturing their sessions, the students

were asked to outline the task as they understood

it, show themselves solving the task, demonstrate

and discuss the strategies they used, and

demonstrate their working solutions. On

completing each lab task, the students were

questioned about their thinking as they solved the

problem.

https://screencast-o-matic.com/

6.1 Task one

Students had to reverse engineer an enterprise

network from a list of routing tables. Routers

advertise those networks to which they connect

directly and share those networks advertised by

their neighbours. The set of routes gives the

topology of the enterprise network. In reverse

engineering the networks which are advertised are

traced back so that the topology of the entire

network can be re-built.

In this first task the students had to reverse

engineer the enterprise network infrastructure,

troubleshoot design problems that were embedded

in the routing tables, and implement appropriate

solutions. To verify their designs, students had to

show their routing tables matched those given in

the task description and corrected its embedded

errors.

6.2 Task two

In the second task the students had to design from

scratch an enterprise network infrastructure as

shown in Figure 1 with sites dispersed across five

cities. Specific requirements covering: the

provision of bandwidth; throughput; response time;

access by users to appropriate resources;

confidentiality; and system integrity. The students

were told to use IP addressing schemes that

involved IPv4 and IPv6 and to choose suitable

routing protocols to facilitate communication

across the network.

This was a challenging task for these students

because it built on their priori knowledge and skills

in LAN design and implementation to produce a

larger, more functional network infrastructure

incorporating WANs. At the time that they

undertook the task, the students were still

becoming familiar with many aspects of

networking technology.

6.3 Task three

The third task was a set of activities that combined

the design of LANs and WANs to implement a

secure enterprise infrastructure. The key learning

points for the students were the incorporation of

security into otherwise familiar network

infrastructure.

6.4 Task four

The final task having attempted all three of the

networking tasks, the students were asked to write

an individual reflective report covering all three

tasks. They had to discuss their thought processes

and the strategies that they followed in creating

their solutions and recommendations. This task

was an important part of the assessment that the

students were undertaking. For the researchers

these reports had the benefit that the students'

recollections and memories could be compared

with the video evidence to show whether they had

done the things as they thought they had.

7. RESULTS

Simulations are not just about designing and

making complex systems, they also allow students

to work with complex ideas. The flexibility and

usability of simulations mean that students can be

encouraged to do more testing and thus be able to

critically evaluate their own work. This was

alluded to by a number of subjects in the focus

groups:

I think I will however, test more on simulation

software than on real kit. You would therefore

apply problem solving on simulation software

with more critical because you know you are

not doing it on the real thing (UG6)

It's more efficient and you don’t waste time

Figure 1: Sample problem-solving task.

when configuring on simulation software; as

you have more and more ideas you can apply

and implement them as you wish hence

developing your computational thinking much

better (UG4)

As their learning progressed the students learned to

decompose the complexity of their network

topologies and the security requirements built into

the problems into small, solvable tasks. This is

what students had to say in their reflective reports:

The topology was designed in such a way that

each branch is separate and can be easily

evaluated. The idea is to break down the

network structure to be less complex when

sorting out issues, through computational

thinking, it makes it easier to isolate the

problem and solve it in bits (PG1)

Breaking the task into smaller tasks and

concentrating on the main task helped me a lot

in solving network problems such as when

designing a WAN, the whole design can be

broken down to smaller task that is into LANs

and the LANs can be breakdown into smaller

branches like creating small networks and

combining them as a LAN (PG4)

By building the simulations the students were able

to view the entire enterprise network and identify

areas of vulnerability, loopholes, bottlenecks and

threats. Once they were able to visualize and

experiment with problems within the network, the

students could begin to develop their ideas about

overcoming them and so secure the system. In their

reflections the students noted that decomposing

systems within the simulation meant that they

could better appreciate the abstraction and

operation of routing tables. This is something that

has been shown to be difficult to achieve when

using physical hardware (Janitor et al., 2010).

These are some of their comments:

Depending on the level of complexity working

on simulation was much more appreciated […]

it was less stressful to work on complex design

than real set [hardware] (PG2)

when you are analysing a network it is pretty

much easier to analyse it through Packet

tracer. It is easy to see things which need to be

seen. You can easily break down problems.

Packet tracer is user-friendly as a software and

so it is easy to apply critical thinking (PG1)

Through the simulation's visual representation of a

network the students were able to work at differing

levels of abstraction. They could think about

hardware, applications or routing tables as

necessary, focusing on important details as they

produced the final concrete design. The topology

in Figure 2 shows a partial output from one of the

students after working out a reverse engineering

problem-solving task.

After creating a visual representation of the

enterprise network, students were able to solve

problems that were inherent in the routing table

that they were given. The students managed to

breakdown problems for each router and its

switches to create a correct routing table.

Having learned to break problems down to

their constituent parts, the students were asked to

demonstrate whether they could generalize

solutions from specific instances. In computational

thinking, the concept of generalization is extended

from the concept of decomposition (Bocconi et al.,

2016). Once students have broken the problem

down and begin solving them they must apply their

prior knowledge, experience and skills to identify

patterns, similarities and commonalities to come

up with their optimum solutions.

Students’ reflective reports showed that they

were often able to identify similarities and

commonalities from their previous knowledge and

experience but they were not aware that they were

applying computational thinking skills to the

problems. They were not able to demonstrate how

they identified patterns in solving tasks that they

Figure 2: Student partial topology.

could go on to apply to other tasks. This is what

one of the students commented:

I think the main problem is your knowledge in

solving the problem, because in as much as you

may be able to break down the chunk of a

bigger problem into small manageable

problems but if you don’t know how to solve all

those small problems, it still remains a

problem. So your knowledge to the problem

you are solving is significant. […] Background

knowledge helps in understanding the

similarities and differences which will help in

making appropriate decision in solving that

problem (UG6)

Some of the lecturers who were surveyed as part of

the work said that their students were interested in

making sure that the problems were solved but not

in how they were doing so. It became clear through

the study that students were solving problems

through a routine of troubleshooting, configuring

and fine-tuning.

These were some of the comments students

made in their reflective report which were not

clearly demonstrated:

Sometimes viewing the case via a general point

of view can be useful to find out possible

solutions as it helped me to recognise the

general similarities and differences in the

whole scenario so that I could apply the same

solution for the similar parts of the case. For

example, in WAN assignment I found out that

some LANs followed the similar patterns so I

applied the same configuration for each of

them based on my previous knowledge in

configuring LAN Student (PG6)

Analyzing similar patterns (network

requirements, when defined the role of each

branch, specifically we had a plan of setting up

similar configuration on different branches,

such as where it was asking to provide NAT on

LEICESTER and DERBY we had a same

requirement, ACLs on VLANs) (PG2)

The students were not taught an explicit approach

to problem solving and the strategies that they

developed did not necessarily map onto a

computational thinking approach. The students'

design approach was not based on their

understanding and application of computational

thinking but was one of simply making sure

through trial and error that their designs were

operational.

This was a lot of trial and error for me. I found

it most difficult to find how to use the

redistribute command correctly. I had to use

online resources to figure out a solution. I am

still studying up on this so I may not have used

it in the exactly correct way, but it did produce

an output that appears to match [routing

output] (PG3)

This concurred with what one of the lecturers

commented:

I expect students will largely use trial and error

in the beginning until they understand the

problem. If students knew how to do

computational thinking (or indeed any

structured approach to thinking) they would be

more organised. I guess we have to teach them

that (Lec7)

This point was well encapsulated by one of

undergraduate students during focus group

interviews who alluded to the nature of their

course as being one that gave practical skills rather

than teaching a way of thinking about problems

and systems. This suits these students who are

focused on getting into employment on graduation.

They are more interested in gaining good practical

skills that will immediately help them to get

employment in their field of study than in

developing those higher-level analytical skills that

may be used to build a career. This student thinks

computational thinking is just “an academic buzz

word”:

I don’t feel our course teaches us any

computational thinking, I feel our course is

design to incooperate workforce processes. The

course is designed to introduce workplace

processes, best practices from hardware, best

practices from enterprises. It is designed ready

to get you in the workplace; it gets you

understand how the mind of everyone who

works in the industry works; so I can jump into

my job and design my network based on

CISCO-based practice or Juniper-based

practice, so you don’t necessarily approach it

from a computational thinking point of view.

Computational thinking is kind of like an

academic buzz word and not a real while in

deploying enterprise architects (UG4)

The lecturers indicated that they do not focus on

computational thinking. Their focus is to test all of

the concepts that they have taught in class by

making sure that students are able to demonstrate

and apply them in practical tasks. One lecturer said

that he does not influence his students’ choice of

the methods that they adopt when designing

solutions because he believes that every student

has his or her own best way of solving problems.

These are some of the comments which other

lecturers made:

I simply give them an assessment that test all

the points of knowledge they should have and

not necessarily from the computational

thinking point of view. I look at can they

implement it, can they look at why am I doing

this, […] But I have never thought on how do I

create an assessment from a computational

point of view […] may be its some of the things

we should be thinking about (Lec2)

I want to see that students can demonstrate that

they can apply what is it they have learnt to

produce a viable solution, for example, and be

able to critically evaluate that solution that

they come up with – so am not thinking down

the levels of how would they break down the

problem and how would they solve each

element or how do they choose a protocol so

which in effective is the algorithm path […], Or

abstracting by saying this protocol functions

like this and that – so that’s not how am

thinking about it when I am designing or

assessing students (Lec3)

8. ANALYSIS

From the online survey, one-to-one interviews and

focus groups it became clear that neither the

students nor lecturers in this study were aware

what computational thinking is. Several of them

indicated that they had to use internet searches to

understand what the term computational thinking

means. It was, therefore, not surprising that

lecturers said that they are neither conscious of,

nor focus on, computational thinking when

teaching and assessing students.

The results have shown that the use of

simulation software in designing computer

networks helps students breakdown complex

problems into smaller, manageable tasks. This is

decomposition. Simulation software allows visual

representation (Janitor et al., 2010) of the

enterprise network infrastructure. The students

found it easier to understand the abstract concepts

of network design once they had this

representation. Working back from their

abstractions students were able to produce a new

functional network infrastructure. The ability of

simulation software to provide visual

representation of their entire design let students

focus more closely on the problem (Zhang et al.,

2012) so that new ideas emerged when solving

problems. These results are consistent with Galan

et al., (2009); Hwang et al., (2014); and Ruiz-

Martinez et al., (2013).

Students reported that they were able to

identify the security vulnerabilities and inherent

errors in the design they were given, and hence,

work to solve those problems. However, students

found that they were unable to apply some

solutions because of limitations with the software.

Expósito, Trujillo and Gamess, (2010) reported

that simulation software, particularly Packet tracer,

has limitations compared to physical devices in

that some commands cannot be applied.

It became clear that although students were

able to explain in their reflective report how they

identified patterns, similarities and commonalities

in problems, they were not aware that in doing so

they were applying the concept of computational

thinking.

The results show that participants in this study

have little understanding and application of

computational thinking. The results show that

students consistently applied one aspect of

computational thinking: decomposition. At

Sheffield Hallam University teaching and learning

in the area of networking is skills-based which

may explain why the students are able to

decompose problems.

Focus-group responses show that stuednts think

that computational thinking helps them understand

abstract concepts and produce concrete solutions.

During their demonstrations of their problem-

solving tasks they were not clear how they applied

computational thinking. Their interest was to solve

problems in any way that worked, including

through trial and error. This observation is in line

with the comments from some of the lecturers

when asked about the strategies they use when

teaching and assessing students when designing

networks.

9. CONCLUSION

This study has demonstrated that students are able

to apply the ideas that together form computational

thinking even when they have not formally been

taught those ideas. The students who participated

in this study were able to break complex problems

into smaller sub-problems, build solutions to those

sub-problems and compose them into simulations

that solved the whole problem. Teaching staff who

said that they were more engaged with the use of

technology than with approaches to problem-

solving were actually giving their students the

types of advanced thinking skill that is usually

included in a definition of computational thinking.

The study shows that simulation software is a very

important tool in the teaching of network design. It

provides visual representations of computer

networks that can be manipulated at different

levels. By manipulating the levels of abstraction in

their simulations, students are able to decompose

problems. This helps them to develop their

understanding of both problems and solutions. The

use of simulations within networking courses is

recommended because not only are students able to

solve the immediate problems that they face, their

use of the software improves their ability to apply

some of the principles of computational thinking.

It is also recommendable that lecturers familarise

themselves with the concepts of computational

thnking so that they are able to consciously teach

and assess students when designing simulation

networks. Further work is needed to investigate

whether, and how, other aspects of computational

thinking may be developed implicitly through this

and other aspects of education in computer

networking.

10. REFERENCES

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A.,

Engelhardt, K. (2016). Developing computational

thinking in compulsory education – Implications for

policy and practice; EUR 28295 EN;

doi:10.2791/792158

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S.,

Ng, T., Selby, C., & Woollard, J. (2015).

Computational thinking, a guide for teachers.

Computing at school, Digital Schoolhouse.

Available from

http://computingatschool.org.uk/computationalthinki

ng [access on 02/03/2016]

Expósito, J., Trujillo, V., & Gamess, E. (2010). Using

visual educational tools for the teaching and learning

of EIGRP. In Proceedings of the World Congress on

Engineering and Computer Science (Vol. 1).

Galán, F., Fernández, D., Fuertes, W., Gómez, M., & de

Vergara, J.E.L. (2009). Scenario-based virtual

network infrastructure management in research and

educational testbeds with VNUML. Annals of

telecommunications-annales des

télécommunications, 64(5-6), 305-323.

Grover, S., & Pea, R. (2013). Computational thinking in

K–12. A review of the state of the field. Educational

Researcher, 42(1), 38-43.

Hwang, W.Y., Kongcharoen, C., & Ghinea, G. (2014).

To enhance collaborative learning and practice

network knowledge with a virtualization laboratory

and online synchronous discussion. The

International Review of Research in Open and

Distributed Learning, 15(4), 113-137.

Janitor, J., Jakab, F., & Kniewald, K. (2010). Visual

learning tools for teaching/learning computer

networks: Cisco networking academy and packet

tracer. In Networking and Services (ICNS), Sixth

International Conference on IEEE, 351-355.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A

framework for computational thinking based on a

systematic research review. Baltic Journal of

Modern Computing, 4(3), 583–596.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. New York, NY: BasicBooks.

Ruiz-Martinez, A., Pereniguez-Garcia, F., Marin-Lopez,

R., Ruiz-Martínez, P.M., & Skarmeta-Gomez, A.F.

(2013). Teaching advanced concepts in computer

networks: Vnuml-um virtualization tool. Learning

Technologies, IEEE Transactions, 6 (1), 85-96.

Wing, J.M. (2011). Computational thinking.

In VL/HCC (p.3). Available from:

https://csta.acm.org/Curriculum/sub/CurrFiles/Wing

CTPrez.pdf [access on 12/02/2016]

Wing, J.M. (2008). Computational thinking and thinking

about computing. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 366(1881), 3717-3725.

Wing, J.M. (2006). Computational

thinking. Communications of the ACM, 49(3), 33-

35.

Zhang, Y., Liang, R., & Ma, H. (2012). Teaching

innovation in computer network course for

undergraduate students with packet tracer. IERI

Procedia, 2, 504-510.

http://computingatschool.org.uk/computationalthinking
http://computingatschool.org.uk/computationalthinking
https://csta.acm.org/Curriculum/sub/CurrFiles/WingCTPrez.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/WingCTPrez.pdf

