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Abstract 

High quality input data are a necessity for successful Discrete Event Simulation (DES) 

applications, and there are available methodologies for data collection in DES projects. 

However, in contrast to standalone projects, using DES as a daily manufacturing 

engineering tool requires high quality production data to be constantly available. In fact, 

there has been a major shift in the application of DES in manufacturing from production 

system design to daily operations, accompanied by a stream of research on automation of 

input data management and interoperability between data sources and simulation models. 

Unfortunately, this research stream rests on the assumption that the collected data are 

already of high quality, and there is a lack of in-depth understanding of simulation data 

quality problems from a practitioners’ perspective. Therefore, a multiple-case study 

within the automotive industry was used to provide empirical descriptions of simulation 

data quality problems, data production processes, and relations between these processes 

and simulation data quality problems. These empirical descriptions are necessary to 

extend the present knowledge on data quality in DES in a practical real-world 

manufacturing context, which is a prerequisite for developing practical solutions for 

solving data quality problems such as limited accessibility, lack of data on minor 

stoppages, and data sources not being designed for simulation. Further, the empirical and 

theoretical knowledge gained throughout the study was used to propose a set of practical 

guidelines that can support manufacturing companies in improving data quality in DES.  
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1. Introduction 

Today’s business environment within the automotive industry is extremely competitive. 

In order to gain a competitive advantage, automotive companies must meet high and 

rapidly changing customer demands, which requires fast development of flexible, high 

performance, and cost-effective production systems. This in turn, creates a strong need 

for short lead times in product realization projects and continuous improvements of 

production efficiency. To meet these challenges, automotive companies utilize various 

virtual tools and methods for product and production development, for example Discrete 

Event Simulation (DES) 
1
.  

 

The capability to analyze and understand the dynamics of production systems makes DES 

an effective tool for solving many practical real-world problems in manufacturing 
2
. To 

be successful in using DES, numerous authors have stressed the need to adopt a 

systematic simulation methodology. There is in fact a general agreement on the 

appropriate structure for such methodologies 
3-5

. Within simulation projects, the data 

collection phase has been argued to be particularly time-consuming 
6, 7

, and empirical 

studies have shown that it constitutes around one third of the total project time 
8
. Poor 

data availability is a major reason for long data collection time 
9
, and various data 

collection methodologies have therefore been proposed 
9-11

. A common denominator in 

all the proposed methodologies, both regarding overall simulation methodologies and 



data collection methodologies, is that they stem from a project-based approach to 

simulation. Standalone simulation projects are often run over the course of several 

months 
3
, in which lengthy data collection phases are often acceptable. However, there 

has been a major shift in the application of DES in manufacturing during the past decade 

from production system design to daily operations. Today, common application areas are 

operations and maintenance planning and scheduling, and real-time control is expected to 

be the next leading area 
2
.  

 

Using DES as a daily manufacturing engineering tool on a close to real-time basis 

completely changes the demands on data collection. Ideally, high quality production data 

should be available and ready to use in simulation at any given time. This is impossible to 

achieve by purely relying on project-based data collection methodologies. To meet these 

new demands, research has focused on areas such as automation of input data 

management 
12, 13

 and interoperability between data sources and simulation models, e.g., 

Core Manufacturing Simulation Data (CMSD) 
14, 15

. In fact, the four possible ways of 

processing and storing data to be used in simulation are thoroughly explained by 

Robertson and Perera 
7
, and Skoogh et al. 

16
 observed an increase in the number of 

industrial examples of automated input data management during the past decade. For an 

overview of input data management research, see the review in Barlas and Heavey 
17

. 

 

However, research in automation of input data and simulation interoperability also face 

limitations. Specifically, this research start from the point where necessary data have 

been collected, identified, and located. As such, it rests on the assumption that the 



collected data are already of high quality. Input data management to DES is a multi-

faceted problem that also includes a number of inherent issues in the data collection 

process. Numerous authors have mentioned such issues and highlighted problems along 

several simulation data quality dimensions, e.g., accuracy, timeliness, and reputation 
16, 

18
, and some studies have described problems along these dimensions such as missing 

data, limited access to data sources, and low quality of collected data 
19

. However, there 

is still a lack of empirical studies describing such simulation data quality problems from a 

practitioners’ perspective. Although it has been acknowledged that research on data 

quality in simulation relates to the broader context of data quality in information systems 

20
, studies within the domain-specific simulation realm usually fail to describe the 

connection between simulation data quality problems and an organization’s overall 

process for generating, storing, and using data. There is an extensive body of literature on 

data quality in information systems that has received little attention in simulation 

publications, e.g., 
21-23

. Similarly, several publications have focused on improving the 

quality of maintenance data, e.g., 
24, 25

, which is not only a fundamental input to 

manufacturing simulation when modelling variation in machine breakdowns, but a 

necessity for using DES in maintenance scheduling 
2
. 

 

Therefore, the aim of this paper is to contribute to improved data quality in DES within 

the manufacturing industry. Specifically, this study contributes with empirical 

descriptions that extend the present knowledge on data quality in DES in a practical real-

world manufacturing context, which is a prerequisite for developing practical solutions 

for solving data quality problems. The empirical descriptions cover simulation data 



quality problems from a practitioners’ perspective, the organizations’ overall process for 

generating, storing, and using data, and relationships between this overall process and 

simulation data quality problems. This is achieved through a multiple-case study within 

the automotive industry. From the empirical and theoretical knowledge gained 

throughout the study, this paper also contributes with a set of practical guidelines that can 

support manufacturing companies in improving data quality in DES.  

2. Previous literature on data quality 

Important factors for improving simulation data quality are presented in this section, with 

a particular focus on theory covering simulation data validation, data quality dimensions, 

and roles, responsibilities, and relationships within an organization’s process for 

generating, storing and using data.  

2.1 Data quality dimensions 

A key factor in any simulation application is working in an organized manner. However, 

even the most well performed simulation studies can be rejected if one fails to achieve 

acceptability of the results. To improve acceptability, Balci 
26

 suggests striving for high 

credibility of the simulation results by relying on a hierarchy of credibility assessment 

stages. Within these stages, data validation is included. Sargent 
27

 defines simulation data 

validity as “ensuring that the data necessary for model building, model evaluation and 

testing, and conducting the model experiments to solve the problem, are adequate and 

correct”. Therefore, any validation activity requires a structured methodology 
18

, and 

several authors have suggested ways to perform organized data validation, e.g., 
26, 28

. A 



practical approach is face validation through collaboration with process experts 
11

. 

Validation and verification of input data can also be partly automated 
9
, e.g., by using the 

Generic Data Management (GDM)-Tool 
12

. However, Sargent 
27

 argues that 

unfortunately, there is not much that can be done to determine whether data are correct. 

Nonetheless, Balci et al. 
18

 suggest that in order to achieve credibility of data, it is critical 

to assess 11 data quality dimensions: Accessibility, Accuracy, Clarity, Completeness, 

Consistency, Currency, Precision, Relevance, Resolution, Reputation, and Traceability. 

These dimensions can be seen as guiding criteria to achieve high quality simulation data, 

and in this study we adhere to the definitions of these 11 dimensions provided in Balci et 

al. 
18

. 

 

The data quality area provides an extensive body of literature on data quality in 

information systems. However, this literature has received little attention in simulation 

publications, despite several areas of common ground. For example, data quality 

literature explains how successful data validation requires knowledge of underlying data 

structures, especially when data are collected without involvement from users 
21

. This 

dilemma has been described in simulation: simulation is often ignored in the specification 

of the collection system and databases, resulting in simulation analysts needing to invest 

time on learning and understanding all data sources 
8
. Further, simulation literature has 

recognized a broad spectrum of data quality dimensions 
16, 18, 20

 that also exists in the data 

quality literature. In fact, a plethora of data quality dimensions has been proposed, 

resulting in a lack of consensus as to which set of dimensions defines data quality, and 

the exact meaning of each dimension 
23, 29

. For example, Eppler 
30

 lists seventy of the 



most widely used data quality dimensions and reviews sixteen frameworks that make use 

of them. To pursue simplicity and symmetry, efforts have been directed towards reducing 

this multitude of data quality dimensions to a smaller set of attributes. For example, 

Scannapieco and Catarci 
31

 studied which dimensions received most attention and 

proposed to reduce these into four basic sets: accuracy, completeness, consistency and 

timeliness, an observation also supported by Eppler 
30

. There have also been several 

attempts to divide sets of quality dimensions into aggregated categories. Eppler 
30

 suggest 

four levels (community, product, process and infrastructure level), Bogon et al. 
20

 discuss 

four aspects (content, meaning, origin, utilization), and Wang 
22

 promote four overall 

categories: intrinsic, accessibility, contextual, and representational data quality. Intrinsic 

data quality captures the fact that information has quality in its own right 
22

, thus 

encompassing value as perceived by consumers, and therefore includes not only accuracy 

but also reputation 
32

. Accessibility is the degree to which data are easily or quickly 

retrievable 
18

, and there is little difference between treating accessibility as a category of 

overall data quality, or separating it from other dimensions of data quality 
32

. Contextual 

data quality highlights that quality must be considered within the context of the task at 

hand 
22

 because tasks and their context may vary across time and use 
32

 (see further 

elaboration of relativity in section 2.2). Finally, representational data quality includes 

aspects of the format and meaning of data that influence the users’ ability to conclude 

whether data are well represented 
32

. Nevertheless, the generally adopted criterion is that 

high quality data are “fit for use” 
22, 23, 33

. This definition largely concurs with Sargent’s 
27

 

view on valid simulation data as “adequate and correct”. Further, a data quality problem 

is generally defined as a difficulty encountered along quality dimensions that render data 



completely or mostly unfit for use 
33

, or a situation in which the content or medium of 

information does not meet the requirements of its producers, consumers, or users 
30

. In 

this study, we relax this definition and define simulation data quality problems as 

difficulties along data quality dimensions that aggravate the input data management 

procedure. 

2.2 Relativity of data quality 

The data quality area has recognized a particularly challenging aspect of data quality: 

relativity - what can be considered good data for one user might not be sufficient for 

another. Several related perspectives on this relativity are available. For example, data 

quality cannot be assessed independently of the users 
29

 because users evaluate data 

quality in relation to their specific tasks 
33

. Further, the same data could be needed at any 

time for multiple tasks with different and ever-changing quality requirements, which 

makes achieving high quality data like tracking an ever-moving target. Therefore, solving 

data quality problems requires continuous consideration of the entire range of concerns 

present among all users, and achieving high quality data goes beyond good data 

requirement specifications. Instead, there is a need for flexible data collection systems 

with data that can be easily aggregated and manipulated for a wide variety of users 
33

. 

 

This relativity has been touched upon in simulation. Not all simulation data require high 

accuracy and validity 
11

, and simulation data always need to be evaluated in relation to 

objectives 
26, 34

. Randell 
35

 realized the importance of flexible data collection systems to 

meet the requirements of simulation. He argues that data should be useful for a variety of 



activities and therefore proposes a generic framework that describes the appropriate data 

structure. Similarly, in the case of long-life cycle simulation models, data integrity needs 

to be checked continuously 
6
, and if regular updates of data are needed, a suitable process 

should be in place or prepared 
28

. 

2.2 Roles, responsibilities, and relationships in data production 

processes 

Knowledge and experience are essential in simulation and every simulation project team 

should include designated roles and responsibilities in order to avoid project failure, e.g., 

leadership, client, modelling, system experts, data providers etc. 
3, 26

. But in contrast to 

literature regarding simulation projects, most of the articles proposing data collection 

methodologies do not deliberately explain specific roles or responsibilities, e.g., 
9, 11

. 

 

Again, answers can be found within the data quality literature. Within this literature, there 

exists one fundamental process for generating, storing, and using data: the data 

production process. This process involves different roles and responsibilities with one 

common goal: producing high quality data. There are three primary roles: data producers 

(who generate data), data custodians (who store data), and data consumers (who use 

data). Consequently, these three roles have their distinctive responsibilities: data 

producers are responsible for generating data; data custodians for storing, maintaining, 

and ensuring security of data; and data consumers for using data 
23, 36

. Without well-

established roles and responsibilities, numerous issues can arise, e.g., between data 

custodians and data consumers. From their own perspective, data custodians build 



systems that meet the requirements of the consumers, then leave the responsibility of data 

quality to the consumers. Consumers on the other hand have felt responsible for data 

quality in systems they did not understand, or which were difficult to correct 

appropriately. In fact, all three roles are mutually dependent on each other. For example, 

data quality is dependent on the design of the data production process, but the designers 

do not control the actual use of the data. Because data quality is a function of its use, 

improving data quality also implies improving how it is used 
37

. 

 

However, establishing these three roles and responsibilities is insufficient. There must 

also be properly functioning relationships among them, a topic studied by Lee and Strong 

36
. They investigated how the three modes of knowledge (what, how, why) held by 

different roles (producers, custodians, consumers) impact data quality dimensions. 

Through exploratory factor analysis, they show that as a whole knowledge of the data 

production process across the different roles is associated with higher data quality. This 

supports the benefits of cross-functional knowledge being used to achieve high data 

quality, and the three different roles must therefore demonstrate inter-disciplinary 

collaboration. However, Lee and Strong 
36

 were particularly interested in knowing-why: 

contextual knowledge about why data are generated, stored, and used within an 

organization. They propose that data producers’ knowing-why is the most critical 

prerequisite for high data quality across the entire data production process. Data 

producers should understand the needs of data consumers and generate accurate and 

complete data to be stored by data custodians. In fact, data producers’ knowing-why is 

more associated with high data quality than are data consumers. Instead, data consumers’ 



knowing-why is closely associated with data relevance, i.e., only they know whether the 

data are relevant. Interestingly, data custodians’ knowing-why is not highly associated 

with producing high quality data. Lee and Strong 
36

 thus conclude that the key role is held 

by the data producers, because they can serve as intermediaries between custodians and 

consumers. Therefore, the importance of knowing-why in data producers should be 

recognized and exploited in organizations.  

2.3 Difference between simulation data collection and data 

production processes 

Throughout this study, we observed a difference in mind-set between simulation 

literature and general data quality literature. State of the art simulation literature (e.g., on 

automated input data and CMSD) refers to simulation data collection as a process of 

collecting data that have already been produced. As such, simulation data collection is a 

passive action that rests on the assumption that the collected data are already of high 

quality. In contrast, data quality literature refers to data production as a systematic 

process that involves inter-disciplinary roles, responsibilities and relationships that 

actively pursue a common goal: producing high quality data. Adhering to this 

observation, the remaining part of this paper refers to generating, storing, and using data 

as the data production process, in which simulation data collection is a subset. The 

empirical data and subsequent findings are built upon the distinction between the two 

research domains.  

 



3. Methodology 

An embedded multiple-case study design was adopted 
38

. Six empirical cases were 

studied within two of Sweden’s largest automotive manufacturers, based on a literal 

replication logic guided by the theoretical framework (section 2). This allows for theory 

to be confirmed, extended, and sharpened across cases 
38, 39

. The six cases were identified 

based on four criteria: (1) been applied in a real-world manufacturing context, (2) had 

significant impact within the organization, (3) illustrated existence of data quality 

problems, and (4) enabled traceability from initiation to implementation. In the first case 

study (referred to as company A), three completed simulation cases in concurrent 

engineering projects were studied on one production site, referred to as E1, E2, E3. In the 

second case study (referred to as company B), simulation cases were studied on three 

sites: a Research and Development (R&D) center (site 1); a cab and vehicle assembly 

plant (site 2); and an engine plant (site 3), referred to as E4, E5, E6. The empirical data 

formed descriptions of simulation data quality problems and data production processes. A 

schematic illustration of the empirical research design is provided in figure 1. 



 

Figure 1: Illustration of empirical research design. 

3.1 Empirical data collection 

Three sources of empirical evidence were used: semi-structured interviews, direct 

observations, and reviews of archival records 
38

. Ten interviews were conducted with 

simulation analysts, maintenance engineers, automation engineers, and information 

system managers. Interviews followed interview templates developed from theory, lasted 

between 45-120 minutes, were audio recorded, and transcribed within 24 hours. For the 

interviews with simulation analysts, the interview template consisted of both generic 

questions about input data management (e.g., use of formal simulation study 

methodologies 
3-5

, input data methodologies 
16

, and existence of formal roles and 

responsibilities for data quality 
36

) as well as specific questions covering the empirical 



case under investigation (e.g., involved persons 
3, 26

, data requirements 
11

, lead time of 

input data management 
8
, and clients’ perspectives on simulation credibility 

18
). The 

interviews with maintenance and automation engineers and information system managers 

included questions about e.g., formal roles and responsibilities for data quality 
36

, work 

procedures for collecting and implementing data requirements 
37

, and data validation 
27

. 

The templates were used consistently with all simulation analysts (E1-E6), but included 

minor alterations for subsequent interviews so as to align with the specific context of 

each empirical case. Direct observations primarily consisted of walkthroughs with the 

simulation analysts, which focused on describing both general input data management 

procedures as well as input data procedures used during the specific empirical case under 

investigation. Whenever possible, these observations were supported with plant visits 

where the simulation analyst further elaborated on the specific empirical case in situ. 

Collection of data from archival records included production data from monitoring 

systems used during the empirical cases as well as formal data production guideline 

documents used within the organizations (e.g., cycle-time definitions and data validation 

procedures). 

 

In company A, interviews were first held with a simulation analyst (E1, E2, E3). 

Thereafter, interviews were conducted with three maintenance engineers; one responsible 

for the latest implemented production monitoring system; one working with strategies for 

generating production data; one laser equipment expert responsible for all laser 

equipment in the body shop. Although it could be thought four interviewees represent a 

rather limited spectrum, the participants represented the four key persons involved in the 



data production process at the site. One limitation in this case is the lack of interviews 

with information system managers (i.e., Information Technology (IT) department), and 

this might have contributed to a limited understanding of the roles and responsibilities of 

data custodians. The following three empirical cases were investigated: 

 

 E1 Determine the standalone throughput of a specific production line by verifying its 

availability. 

 E2 Evaluate the performance of a new laser station by estimating technical 

availability of all components that affect throughput. 

 E3 Determine the buffer size between the new laser station and the subsequent arc 

weld station to ensure sufficient throughput. 

 

In company B, the three empirical cases were geographically dispersed. First, an 

interview was conducted on site 1 with an R&D engineer working as a global simulation 

analyst (E4). Thereafter, interviews were conducted on site 2 with a simulation analyst 

and an automation engineer responsible for the production monitoring system (E5). 

Finally, interviews were conducted on site 3 with a simulation analyst, an automation 

engineering responsible for installation and validation of the production monitoring 

system, and an information system manager globally responsible for the production 

monitoring system used within company B (E6). The following three empirical cases 

were investigated: 

 

 E4 Evaluate different production strategies, e.g., buffers, personnel, and bottlenecks 

in a model of the complete factory. 



 E5 Quantify waiting times and experiment with alternative distribution logics in the 

paint distribution system. 

 E6 Identify waiting times, bottlenecks and capacity losses, and experiment with new 

logics for prioritization in a flow of material handling pallets. 

3.2 Data analysis and presentation of findings 

The three sources of empirical data were triangulated by developing converging lines of 

enquiry 
38

, which allows for stronger confirmation of constructs and hypotheses 
39

. 

Within-case analyses were conducted first to provide separate descriptions of the six 

cases 
39

. An analytical strategy of relying on theoretical propositions was adopted, which 

is a way of letting available theory guide the analysis and focus on the most significant 

parts of the study 
38

. First, theory on data quality dimensions (section 2.1) was used to 

code the empirical data on data quality problems in simulation. Second, theory on roles, 

responsibilities, and relationships (section 2.2) guided the analysis of data production 

processes. The empirical data were analyzed using analysis software Nvivo11, which 

enables a chain of evidence to be maintained by linking all empirical data to the 

theoretical propositions that served as the basis for the aim and design of the study 
38

.  

 

This analytical strategy allowed for a consistent presentation of within-case data. For the 

descriptions of simulation data quality problems (section 4.1), Balci et al.’s 
18

 eleven  

simulation data quality dimensions were merged with Wang’s 
22

 four overall data quality 

categories (see also Wang and Strong 
32

). Since there are a plethora of data quality 

dimensions discussed in literature (see section 2.1), we chose to adhere to the dimensions 



proposed in Balci et al. 
18

 since they have been acknowledged and disseminated within 

the simulation domain (see original reference for definitions). This also supports the 

intent of developing guidelines and tools for improving data quality in DES in practice as 

fast as possible. The merging with Wang’s 
22

 four categories were chosen to support 

alignment in quality dimensions between the two research domains (DES and 

information systems).  

 

In line with the interpretation of a data quality problem adopted in this study (see section 

2.1), the empirical data on simulation data quality problems in each case study are 

presented within its corresponding data quality dimension. Note that a limitation of this 

research is that interdependencies between the eleven data quality dimensions, such as 

trade-offs or goal conflicts 
30

, are not explicitly studied. For the description of data 

production processes (section 4.2), the empirical data for each case study are presented in 

relation to the roles, responsibilities, and relationships proposed in theory (section 2.2). 

To facilitate a focus on the most significant aspects of the study, we concentrated on 

presenting 10 key characteristics of these processes 
38

. 

 

After within-case analyses, cross-case analyses were conducted. This can break simplistic 

frames, lead to more sophisticated understanding, and increase the probability of 

capturing novel findings 
39

. A tactic of identifying similarities and differences between 

cases 
39

 was adopted for both simulation data quality problems (section 4.1) and data 

production processes (section 4.2). Finally, from the empirical and theoretical knowledge 



gained throughout the study, a set of practical guidelines are presented that can support 

manufacturing companies in improving data quality in DES.  

3.3 Generalizability of case study results 

A misleading misconception is that one cannot generalize the findings from single case 

studies 
40

, and a common argument is that multiple-case studies yield more generalizable 

findings 
38

. However, any form of case study (single or multiple) supports scientific 

development via generalization by acting as supplement or alternatives to other methods. 

The collective use of methods for both breadth and depth are necessary for sound 

scientific development in any field 
40

. Therefore, case studies are necessary for specific 

research tasks where the problem is one of depth, such as using DES as a daily 

engineering tool in a practical real-world manufacturing context. Instead of relying on the 

number of cases, the decisive factor for generalizability is strategic selection of cases 
40

. 

Based on four criteria, this study identified and selected six cases that allowed for the 

current knowledge on data quality in DES to be extended from a practical real-world 

perspective, which is a prerequisite for developing practical solutions for solving data 

quality problems. 

4. Results 

Based on the interviews, direct observations, and review of archival records in regard to 

the six empirical cases within companies A and B, within-case descriptions of simulation 

data quality problems and data collection processes as well as cross-case similarities and 



differences are presented in this section. The presentation follows the analytical strategy 

explained in section 3.2. 

4.1 Simulation data quality problems 

Simulation data quality problems in regard to E1, E2, and E3 (company A) are presented 

in table 1. 

 

Table 1. Data quality problems in E1, E2, E3: 

Data quality  

dimensions (n = 11) Data quality categories (n = 4) 

 Category 1: Intrinsic data quality 

1: Accuracy 
Source errors are prevalent, e.g., faulty Programmable Logic Controller (PLC) signals and failure 
signals that are not being recorded. 
Dependencies between equipment, e.g., safety zones and robots working in several stations, 
make it difficult to collect accurate cycle times for individual resources. 

2: Reputation 
Input data are largely questioned by project leadership due to assumptions and estimations in 
manual correction and calculation phases. 
Diverging views of disturbance patterns in data vs. experience provoke distrust in the data.  
Simulation analyst is well aware of data quality issues and does not trust raw data. 

 Category 2: Accessibility data quality 

3: Accessibility 
Access to raw data logs is limited for simulation analysts, and long lead times are prevalent when 
ordering extensive data history. 
Access to availability data for new equipment is limited from vendors. 

 Category 3: Contextual data quality 

4: Currency 
Structural changes in production are not visible in the data sources, making it difficult to assess 
the representativeness of data. 

5: Completeness 
Disturbance data are automatically filtered, e.g., removing minor stoppages of less than 1 minute. 
Complete stop type categories are missing in filtered data. 
Lack of commenting and cause code classification aggravates data correction. 
Design-related disturbances are not distinguishable in the data; e.g., welding scratch starts 
causing cycle time variations. 

6: Precision 
 

7: Relevance 
Disturbance data is not suitable for simulation purposes and require extensive manual 
transformation to be relevant. 
Availability figures from vendors only include mean values, not distributions. 

8: Resolution 
Large variety exists in the level of detail of disturbance data (e.g., line, station, equipment, 
component level), and not always aligned with simulation needs. 

9: Traceability 
 

 Category 4: Representational data quality 



10: Clarity 
Raw disturbance logs are not designed to be understandable for data consumers. 
Inconsistent disturbance classifications and interpretations cause ambiguity, e.g., when 
determining what disturbances affect technical availability, or distinguishing between stopping 
and non-stopping disturbances. 

11: Consistency 
Variety in cause codes and stop type categories between production areas. 
Spelling mistakes in manual data logs aggravate data correction 

 

The data in table 1 illustrate a wide variety of simulation data quality problems. A total of 

19 data quality problems are found, located within all four categories and along 9 out of 

11 quality dimensions. There is great variety in the nature of these problems, illustrated 

by how they range from technical PLC issues (accuracy), data filtering processes 

(completeness), to organizational mistrust (reputation). To overcome these problems, the 

simulation analyst is obliged to consult various experts within the organization. For 

example, accessibility and completeness problems are solved together with the 

maintenance department (e.g., extracting more extensive data logs), clarity problems are 

solved together with equipment experts (e.g., manually analyzing disturbance 

classifications), and reputation problems are solved together with project leaders and 

equipment experts (e.g., rework of data transformation). The most common effects of 

these data quality problems are increased lead-time of input data management and lack of 

credibility in simulation results. 

 

Simulation data quality problems in regard to E4, E5, and E6 (company B) are presented 

in table 2.  

 

 

 

 



Table 2. Data quality problems in E4, E5, E6: 

Data quality  

dimensions (n = 11) Data quality categories (n = 4) 

 Category 1: Intrinsic data quality 

1: Accuracy 
Source errors are prevalent, e.g., poor signal quality and faulty PLC alarms. 
Dependencies between equipment, e.g., safety zones and robots working in several stations, as well 
as variation in manual assembly processes, make it difficult to collect accurate cycle times for 
simulation.  
Accuracy of manually collected disturbance data is limited to the operators’ level of detail, and many 
events are missing in the data. 

2: Reputation 
Data reputation varies between sites and production areas, where automated data collection has a 
higher reputation than manual data collection. 
Low data reputation is often connected with low levels of awareness and understanding of the data 
collection process (e.g., PLC logic and cycle time definitions). 

 Category 2: Accessibility data quality 

3: Accessibility 
Large amounts of equipment do not have automated data collection, and valuable input data 
parameters for simulation are not recorded in production. 
Access to raw data logs is limited for simulation analysts, and long lead times are prevalent both 
when simulation analysts are extracting data, and when data custodians are delivering data. 

 Category 3: Contextual data quality 

4: Currency 
Structural changes in equipment are difficult to track and not visible in the data sources, making it 
difficult to assess the representativeness of data. 

5: Completeness 
The number of available data points limits model detail. 
Whilst maintenance personnel record breakdowns, chronic disturbances (e.g., minor stoppages or 
short quality controls and inspections) are not always collected. 

6: Precision 
 

7: Relevance 
Data sources are not designed for simulation purposes, and often require extensive manual 
transformation to be relevant. 

8: Resolution 
Level of detail in data does not always correspond with the needs of simulation, e.g., using 
aggregated availability or Overall Equipment Effectiveness (OEE) figures for individual resources. 

9: Traceability 
 

 Category 4: Representational data quality 

10: Clarity 
In order to understand the data, large efforts are required if the simulation analyst is to understand 
PLC-logic, process control, signal specification etc. underlying the data set. 
Production flow cannot be understood solely from the data structure. 

11: Consistency 
 

 

Table 2 describes a total of 14 data quality problems, located in all four categories and 

along 8 out of 11 quality dimensions. Similar to table 1, the problems are diverse: poor 

signal quality (accuracy), lack of minor data on minor stoppages (completeness), and 

insufficient level of detail in data (resolution). To overcome these problems, the 

simulation analysts need to consult various experts within the organization, e.g., 



production and maintenance engineers to understand the flow and PLC logic (clarity), IT 

engineers to extract data (accessibility), or production managers to collect aggregated 

data (resolution). The most common effects of these data quality problems are increased 

lead-time of input data management and limitations to model complexity.  

 

Table 3. Cross-case analysis of simulation data quality problems (E1-E6) 

Similarities: 

Input data management procedures are time-consuming and 
predominantly manual. 
Simulation analysts need to consult various experts within the 
organization to resolve data quality problems. 
Source errors (e.g., faulty PLC signals) are prevalent. 
Dependencies between equipment (e.g., safety zones) influence 
cycle time data. 
Accessibility is limited for simulation analysts, resulting in long-
lead times for data collection. 
Structural changes in production are difficult to track and not 
visible in the data. 
Data on minor stoppages are often lacking. 
Data sources are not designed for simulation purposes and 
require extensive data transformation. 
Data resolution is not always in line with simulation 
requirements. 
Considerable efforts are required for the simulation analyst to 
understand the logic of data sources and the data structure. 
No evidence for precision or traceability problems. 

Differences: 

Simulation input data are to a greater extent questioned in 
company A as compared to company B (i.e., difference in data 
reputation). 
Evidence of consistency problems are found in company A, but 
not in company B.  
Level of detail in data is higher in company A (component level 
in new monitoring systems) compared to company B (often 
aggregated availability or OEE data). 
 

 

The cross-case analysis (table 3) shows a higher proportion of similarities between the six 

cases. In particular, simulation practitioners in both companies experience several data 

quality problems in a similar way, e.g., limited accessibility, lack of minor stoppages 

data, and data sources not being designed for simulation purposes. The largest difference 

between the two case studies is found in regard to data reputation, where simulation input 

data are to a greater extent questioned at company A compared to company B. Further, 

the wide variety of problems in table 1 and table 2 implies that simulation data quality is 

a multi-faceted topic that involves both hard (technological) and soft (organizational) 

issues.    



4.2 Data production processes 

The data collection processes at companies A and B are illustrated in this section, 

including descriptions of roles, responsibilities, and relationships. The data production 

process at company A is illustrated in figure 2, and the 10 most notable characteristics of 

the process are described in table 4.  

 

Figure 2. Data production process in company A.  

 

 



Table 4. 10 key characteristics of the data production process in company A.  

Poor communication between maintenance department and data consumers. 
Lack of structured process for collecting data requirements. 
Lack of resources for data validation. 
Low involvement of simulation analysts in data requirements for simulation. 
Lack of involvement from shop-floor personnel, despite holding the responsibility for generating data.  
No education on information systems for data consumers. 
Lack of time and resources for collaboration between custodians, producers, and consumers. 
Data consumers have difficulty in expressing data quality requirements. 
User meetings have been previously prevalent and there is a wish to establish new user councils. 
Equipment experts hold the knowledge on how to measure specific equipment (e.g., cycle times and disturbances). 

 

Figure 2 shows a schematic illustration of the data production process in company A, 

including the current input data management procedures. The empirical data reveals the 

existing roles, responsibilities, and relationships. The role of data custodians is primarily 

held by the IT department, who are responsible for all factory IT. The central 

maintenance department also holds custodian responsibilities, e.g., in regard to servers, 

but acts primarily as a data producer responsible for collecting data requirements from 

users and communicating these with IT. Operative production personnel hold the end 

responsibility for generating data for the monitoring systems. Data consumers exist 

within the entire organization and include operators, maintenance and manufacturing 

engineers, simulation analysts etc. All information systems have various levels of user 

responsibilities (e.g., key users, super users, and local users).  

 

Considering the size of the organization in company A, it is not surprising that there exist 

gaps, overlaps, and ambiguity in the roles and responsibilities of data production. 

Moreover, the data in table 4 describes various issues in the relationship between the 

three roles. In particular, the relationship between data producers (maintenance 

department) and data consumers (shop-floor personnel, simulation analysts etc.) is 

characterized by lack of mutual involvement and poor communication (dashed lines in 



figure 2). This is aggravated by the lack of structured processes, time, and resources for 

e.g., data requirement specifications, data validation, and education in IT systems. In 

sum, a substantial improvement potential can be found for the data production process in 

company A. However, it is important to note that a majority of the problematic 

characteristics in table 4 refers to a newly implemented monitoring system that faces 

many teething problems. In particular, the lack of strategies for implementing such 

systems can probably explain several of these characteristics.  

 

The data production process in company B is illustrated in figure 3 and the 10 most 

notable characteristics of the process are described in table 5.  

 



 

Figure 3. Data production process in company B.     



Table 5. 10 key characteristics of the data production process in company B.  

Data production has been problematic for a long time, but is now entering a new phase with many changes for the better. 
Global network of custodians and producers that holds regular meetings to discuss and communicate system improvements. 
Digital platform to manage implementation projects, collect data requirements, and report data quality problems (site 3).  
Continuous updates and improvements of monitoring systems. 
Local users responsible for reporting feedback, requirements, and issues. 
New, standardized signal specifications in all equipment to ensure consistency in data structures (site 2). 
Low involvement of simulation analyst in data requirement for simulation due to lack of experience (site 2). 
Emphasis on education within the user groups to increase trust in data (site 3).  
Recently established data validation process that includes custodians, producers, and consumers, where operative personnel 
(consumers) are responsible for signal specification (site 3). 
High involvement from simulation analyst in data requirements for simulation (e.g., flexible data collection and automatic filtering of 
simulation-relevant data) (site 3).   
Large variety in data requirements makes it difficult for data custodians to prioritize between system improvements. 
 

Figure 3 illustrates data production within company B in regard to the globally used 

monitoring system. The system has been in use for over a decade, accumulated long 

experience from use, and gone through several iterations of upgrades and improvements. 

The roles, responsibilities, and relationships within the data production process can be 

described with the empirical data. The IT-department acts as data custodians and holds 

pure IT responsibilities (e.g., IT-architecture, system installations, and communication 

with vendors). On site 2, data producers primarily consist of automation engineers 

responsible for signal specification, PLC programming, data validation, and 

communicating with users in regard to data requirements. On site 3, the role of data 

producers is held by the centralized organization for process monitoring systems, who are 

responsible for installation and implementation of monitoring equipment, PLC resources, 

data validation, and communicating with users in regard to data requirements. At both 

plants, data consumers are organized in local user groups at various levels (i.e., local 

users and user councils for different production areas). Data consumers consist primarily 

of shop-floor personnel, production-, and maintenance engineers, who are primarily 

responsible for communicating feedback, data requirements, and reporting data issues.  

 



The relationships between roles are also described by the empirical data (figure 3 and 

table 5). Data custodians and producers are closely connected in a global network 

organization run by the IT department that holds regular meetings to discuss and 

communicate system improvements. On site 3, this network is further supported by a 

digital platform to manage implementation projects, collect data requirements, and report 

data quality problems. On site 2, data producers hold regular meetings with users to 

collect requirements and communicate changes and updates to the information systems. 

On site 3, data producers offer education to data consumers in regard to knowledge of the 

data production process. Particular notice should be paid to the formal data validation 

process at site 3, which spans across all roles and builds upon the decentralization of 

signal specification to the users (e.g., cycle time and stop time definitions). In sum, 

company B have faced many issues with data production in the past, but recently invested 

large time and effort in improving their data production processes. Although a huge 

improvement potential still exists, recent changes to existing installations (e.g., 

standardized signal structures in site 2) and updated procedures for new installations 

(e.g., data validation in site 3) hold great promise for achieving high quality production 

data in the future.  

 

  



Table 6. Cross-case analysis of data production processes (companies A and B). 

Similarities: 

Largely similar roles and responsibilities for data custodians, 
producers, and consumers.  
Advanced automated data collection systems where simulation 
data are primarily extracted from databases.  
Wide variety of users within the organization (with different 
data requirements). 
Low involvement from simulation analysts in communicating 
data requirements for simulation (except E6).  

Differences: 

The study in company A revolves primarily around a newly 
implemented monitoring system, whilst the study in company B 
revolves around a global system that has been used for over a 
decade.  
Clearly established organizational structures for data production 
in company B. 
Continuous meetings between data custodians and data 
producers on data requirements and system updates. 
Closer collaboration between data producers and data 
consumers in company B compared to company A. 
Data validation processes exist in company B (site 3), whilst 
company A lacks resources for data validation. 
Education of data consumers present in company B (site 3), but 
lack of time and resources prevent this presence in company A.  
Digital platforms support the data production process in 
company B.  
Different strategies when installing new equipment. 

 

The cross-case analysis (table 6) shows that largely the same types of roles and 

responsibilities exist in the data production processes in companies A and B. However, as 

a whole, the empirical data indicates that company B has come further in developing a 

data production process capable of producing high quality data. In particular, roles and 

responsibilities are clearly described in organizational structures, strategies exist for data 

validation, and education is prevalent. Moreover, several of the differences between the 

two case companies revolve around communication, collaboration, and involvement from 

all three roles.   

 

A difference between the two case studies is the life-span of the monitoring systems. The 

study in company A revolves around a newly implemented system, where many of the 

issues in the data production process (table 4) are teething problems that can probably be 

explained by the lack of implementation strategies. In contrast, the study in company B 

revolves around a global monitoring system that has been strategically used for over a 

decade, where the recent changes and improvements build upon long accumulation of 



experience from use. Nevertheless, the two case studies provide an understanding of the 

differences between data production processes: those that are facing many problems 

(company A) and those that exhibit many promising features (company B).  

5. Discussion 

This study contributes with empirical descriptions of simulation data quality problems as 

well as data production processes and its relation to simulation data quality problems. 

Empirical descriptions of 33 simulation data quality problems are provided along 9 out of 

11 simulation data quality dimensions (table 1 and 2) 
18, 22

. These descriptions depict a 

wide variety of quality problems, which implies that simulation data quality is a multi-

faceted topic that involves both hard (technological) and soft (organizational) challenges. 

In addition, simulation practitioners interpret several data quality problems in a similar 

fashion (table 3). These findings act as support to several previous studies within 

simulation by providing a more in-depth understanding of data quality in DES. For 

example, the problems with data accessibility fortifies the fact that data collection is a 

particularly time-consuming activity for simulation analysts 
6-8, 20

; the problems with data 

clarity supports Skoogh and Johansson’s 
8
 findings of the high requirements on learning 

and understanding data sources; and the relevancy problems, which result in extensive 

manual data transformation, illustrate the value of both automated input data management 

and CMSD 
9, 12-16

. 

 

The study also provides an understanding on the relativity of data quality, i.e., good data 

for one user might not be sufficient for another 
29, 33

. For example, data on minor 



stoppages are often missing since these stoppages are not the primary concern of 

maintenance engineers (table 3), but such data are crucial to simulation analysts in order 

to model variation in machine breakdowns. Similarly, data resolutions fulfil the 

requirements of production and maintenance engineers (e.g., aggregated OEE figures) but 

do not align with the requirements of simulation (table 1 and 2). Further, data custodians 

have difficulties in prioritizing between system updates due to large variety in data 

requirements (table 5). These findings provide additional support for the need to develop 

generic data structures and flexible information systems that are useful for a variety of 

activities, including simulation 
33, 35

. 

 

The existence of a wide variety of simulation data quality problems illustrates the major 

challenge of simulation data validation. It has been proposed in literature that validation 

of simulation data should be a structured process 
18, 26, 28

. However, successful data 

validation requires knowledge of the underlying data structures, especially when data are 

collected without involving the user 
21

. This study describes how simulation practitioners 

in manufacturing companies have difficulty in understanding data structures (table 3), are 

rarely involved in the overall data production process (table 6), and primarily rely on data 

validation through face validation with process experts 
11

. Within this context, it is indeed 

true that little can be done to determine whether the data are adequate and correct for 

simulation 
27

. Therefore, simulation data validation cannot be a stand-alone activity 

separated from the organization’s overall data production process.  

 



Roles and responsibilities within the studied data production processes are largely similar 

(figure 2 and 3, table 6), i.e., production, maintenance, and automation engineers are data 

producers that generate data, IT engineers are data custodians that store data, and 

simulation analysts are data consumers that use data 
23, 36

. However, the context of the six 

cases (especially the life-span of the monitoring systems) resulted in a tendency showing 

the empirical descriptions of the data production process in company A to be 

predominantly negative, whilst the descriptions in company B are predominantly 

positive. Awareness of this polarity (evident in the cross-case differences in table 6) 

enables the results of this study to be used as tentative guidance for further understanding 

of how simulation data quality problems are associated with both weaknesses and 

strengths within an organization’s data production process.  

 

In the general sense, company A lacks a well-established and structured data production 

process, which manifests itself through a number of hurdles having to be surmounted in 

order to achieve high quality data: poor communication and collaboration, lack of time, 

resources and clear strategies, and failure in utilizing existing knowledge within the 

organization (table 4). In such an organization, it is hardly surprising to find simulation 

data quality problems along dimensions such as reputation, accessibility, and relevance 

(table 1). A specific example is the relevance problems that are likely to be associated 

with the lack of involvement from the simulation analyst 
36

. 

 

In contrast, the data production processes in company B exhibit a number of features that 

have, in theory, been proposed as effective for achieving high quality data. For example, 



education within the user groups (E6, table 5) increases knowing-why in both data 

producers and data consumers, which is, according to Lee and Strong 
36

, associated with 

higher data quality. Similarly, the continuous meetings between producers and consumers 

(E5 and E6) as well as the digital platform for feedback, data requirements, and problem 

reporting (E6) are likely to support data producers in at least two ways: understanding the 

needs of data consumers 
36

 and understanding how data are used, which is valuable for 

improving the design of data production 
37

. Furthermore, the interviewed data producers 

in E6 experience that better knowledge of the data production process amongst data 

consumers is associated with higher levels of data reputation (table 5). Finally, the data 

validation process in E6, which rest upon decentralization of responsibilities to data 

consumers, is a particularly promising feature 
21

. In sum, these examples illustrate that 

data production processes which exhibiting well-established roles and responsibilities, 

cross-functional knowledge, and inter-disciplinary collaboration, are likely to be 

associated with higher levels of simulation data quality 
36

. Naturally, we propose that 

future research should invest in studying these associations causally in order to develop 

methodologies that proactively prevent simulation data quality problems. 

 

Lee and Strong 
36

 proposed that data producers hold a key role, and the empirics in this 

study elaborates on this proposition. For example, it is evident that the maintenance 

department in company A plays the role of intermediary between data custodians and 

data consumers, and that many of their issues and challenges have an impact on data 

quality. Moreover, since the empirical descriptions in this study largely revolve around 

breakdown input data, maintenance engineers involved in data production can indeed be 



perceived as having a key role that should be recognized and exploited in manufacturing 

companies. This is further strengthened by the observation of increased use of DES for 

maintenance scheduling 
2
. Therefore, researchers interested in simulation data quality 

within the manufacturing industry can benefit from relating their work to research into 

quality of maintenance data, e.g., 
24, 25

. 

 

Throughout this study, we observed another role of particular importance to simulation 

data quality: the simulation analyst. From general data quality theory, it is known that 

data quality cannot be assessed independently of data consumers 
29, 33, 36

 and involvement 

from data consumers is necessary for data validation 
21

. However, this study provides a 

deeper view on a situation where simulation analysts are, in most cases, not actively 

involved in the data production process. This observed passivity of simulation analysts 

relates to the difference in mind-set between data collection in simulation literature and 

data production in data quality literature (section 2.3). We believe this difference in 

mind-set is not a matter of semantics. Instead, the existence of simulation data quality 

problems across various dimensions may very well be a result of this passive attitude 

towards simulation data collection. Therefore, we pledge not only extended 

methodologies, but also a prevailing mind-set within simulation not to passively collect 

data, but to actively participate in producing data.  

5.2 Practical guidelines for improving data quality in DES 

In this study, we define simulation data quality problems as a problem along data quality 

dimensions that aggravate the input data management procedure. The most common type 



of aggravation from the simulation data quality problems in table 1 and 2 is increased 

lead-time. This time is incompatible with the need for continuous availability of high 

quality data when DES is used as a daily manufacturing engineering tool or in next 

leading area of real-time control 
2
. Since simulation data quality problems are prevalent 

along several dimensions as well as being dependent on the roles, responsibilities and 

relationships within the data production process, efforts for improving simulation data 

quality needs to span from the point of data generation to the point of data use. However, 

despite the impact of data quality on simulation results, there are few available best-

practice checklists and procedure models for information acquisition in simulation 

studies, where one example is the EDASim approach that provide checklists for 

systematically collect and prioritize information needs based on a set of data quality 

dimensions 
20

. In fact, most data quality frameworks from other domains lack supporting 

tools or guidelines to put them into practice 
30

. Therefore, the empirical and theoretical 

knowledge gained throughout the study were used to develop a set of practical guidelines 

that can support manufacturing companies in improving data quality in DES. These cover 

input data management to DES, the role of simulation practitioners in the data production 

process, and the data production process as a whole (table 7; importance in no particular 

order).  

 

  



Table 7. Practical guidelines for improving data quality in DES.  

Practical guidelines for input data management to DES 

In every simulation assignment, impress upon the client that high quality data are a necessity to successful simulation. 
Given that production data are of high quality, input data management should be automated using a standardized process for 
transforming raw data to simulation input data (using e.g., GDM-Tool).  
Broader alternatives to data standards should be explored beyond CMSD, e.g., adapting ISA95/STEP ISO 10303 standards to enable 
PLM-systems to hold detailed data for simulation (mean and statistical distribution). 
Simulation data validation must be separated from simulation model validation, where simulation analysts validate both data and 
models using separate procedures and methods. 

Practical guidelines for the role of simulation analysts in the data production process 

Take an active role, e.g., adopt a leading position in a user council. 
Simulation analysts should be the driving force in achieving credibility of simulation data, which involves providing final decision 
makers regarding simulation results with insights on the data production process and building a trust in the process’s ability to 
produce credible simulation input data. 
Educate the organization on how raw data logs are necessary to achieving input data with both means and statistical distributions; 
aggregated data are insufficient for modelling e.g., variation in machine breakdowns. 
Continuously identify, formulate, and communicate simulation data quality problems and simulation data requirements to data 
producers and custodians. 
Co-operate particularly with data producers, with a focus on expressing simulation data requirements and explaining how data are 
used in simulation. 
In cases of limited data accessibility, explore the possibilities of collaborating with equipment vendors in order to access extended 
data sets from the whole product population.  

Practical guidelines for the data production process 

Establish clear roles and responsibilities (custodians, producers, consumers) and foster inter-disciplinary communication and 
collaboration. 
Educate all roles on what, how, and why data are being generated, stored, and used. 
Pay attention to the full range of needs among all users. 
Develop flexible data collection systems that are useful for a large variety of users, with data that are easily understood and 
manipulated. 
Validate production data using formal data validation procedures that incorporate all necessary competence, including the users. 
Production monitoring systems are commonly implemented as IT-projects, resulting in little value for data users. Instead, design and 
implement systems with a user-driven approach, in which all potential data users with vested interest are involved.  
Decouple manual operator data collection from automated data collection systems. Operators should be involved in designing the 
system, but the system should perform the data collection. 
Make a conscious choice on the extent and duration for storing historical data based on the requirements of the users. 
Support the data production process with meetings, forums, and digital platforms to enable continuous evaluation and 
improvement. 
Produce data on minor stoppages, since this is a necessity for both simulation and various forms of production data analytics. 
Correct coding of root causes to production disturbances is necessary for all types of use of production data (including simulation), 
e.g., distinguishing between equipment failure, operator error, or lack of input material.  
Track and visualize structural production system changes in the data (e.g., root version handling when changes are introduced in 
products or production processes). 

 

The guidelines proposed in table 7 should be perceived as general guidelines that can 

assist in avoiding data quality problems and thereby contributing to success in simulation 

studies. However, they need to be more explicitly specified within each organization. In 

fact, several areas of further research are needed in order to improve data quality in DES 

in practice. First, research should focus on systematically conceptualizing, defining and 



operationalizing measures of data quality and its dimensions specifically within the 

context of DES. To this end, the empirical knowledge gained from this study can be used 

as input. Second, future work needs to be directed towards developing practical solutions 

for solving simulation data quality problems, where additional studies can focus on the 

effectiveness of the proposed guidelines as well as provide extended support on how they 

can be implemented and accomplished most effectively.  

6. Conclusions 

By means of a multiple-case study within the automotive industry, this study contributes 

with empirical descriptions of simulation data quality problems from a practitioners’ 

perspective, data production processes, and its relation to simulation data quality 

problems. These empirical descriptions extend the present knowledge on data quality in 

DES in a practical real-world manufacturing context, which is a prerequisite for 

developing practical solutions for solving data quality problems. 

 

First, by applying general theory on data quality within the domain-specific area of DES, 

we extend the knowledge base on simulation data quality problems, conceptually and 

empirically. Conceptually, we relate 11 simulation data quality dimensions (e.g., 

accuracy, relevance, reputation) to four generic categories of data quality (accessibility, 

intrinsic, contextual, representational). Moreover, we build upon data quality literature in 

order to define simulation data quality problems as problems along data quality 

dimensions that aggravate the input data management procedure. Empirically, we provide 

in-depth descriptions of simulation data quality problems from a simulation practitioners’ 



perspective. This includes problems that simulation analysts are experiencing in similar 

fashion, such as limited accessibility, lack of data on minor stoppages, and data sources 

not being designed for simulation. Together, these descriptions span across 9 out of 11 

dimensions and provide further understanding on underlying reasons for extensive lead 

times in input data management to DES.   

 

Moreover, this paper presents empirical descriptions of the data production process in 

two automotive manufacturers. Specifically, by building on existing theories within the 

data quality area, we describe the roles, responsibilities, and relationships involved in 

achieving high quality production data (i.e., data producers, custodians, and consumers). 

Moreover, we describe how these relationships relate to simulation data quality problems, 

and provide examples for how the existences of simulation data quality problems are 

likely to be associated with the organizations’ data production processes (e.g., knowledge 

and education on data production processes, design of data structures, and data 

validation). In particular, we identify high involvement of simulation analysts in the data 

production process as a key aspect of achieving high quality production data to be used in 

simulation. Based on an observed difference between simulation literature and data 

quality literature, combined with the study’s empirical data, we suggest a prevailing 

mind-set within simulation not to passively collect data but to actively participate in 

producing data.  

 

To support manufacturing companies in improving data quality in DES, a total of 22 

guidelines are proposed based on the empirical and theoretical knowledge gained 



throughout the study. These guidelines cover input data management to DES, the role of 

simulation practitioners in the data production process, and the data production process as 

a whole. They are relevant for manufacturing companies with advanced data collection 

systems and particularly in regards to breakdown input data.  

 

As a final note, Orr 
37

 (p. 71) made a striking conclusion on the importance of data 

quality as early as 1998: “Because of the potential for year 2000 problems, every 

organization in the world that uses computers will have to confront the problems of data. 

This, coupled with the increased need for quality data for decision making, will make 

data quality a high priority item in every enterprise.” According to his prediction, well-

functioning data production processes should be a common sight in manufacturing 

companies today, a situation not entirely supported by this study. In fact, considering the 

future realization of digitalized manufacturing (commonly spurred by the German 

initiative “Industrie 4.0”), moving towards using DES for real-time control 
2
, every 

organization is inevitably forced to manage big data quality problems. Therefore, we 

reiterate Orr’s 
37

 statement and argue that today, and even more so in the future, 

producing high quality data should be a top priority in every manufacturing company. 
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