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Abstract  

 

The effects of the type of anode material on the properties of electrodeposited CdTe thin films 

for photovoltaic application have been studied. Cathodic electrodeposition of two sets of CdTe 

thin films on glass/fluorine-doped tin oxide (FTO) was carried out in two-electrode configuration 

using graphite and platinum anodes. Optical absorption spectra of films grown with graphite 

anode displayed significant spread across the deposition potentials compared to those grown with 

platinum anode. Photoelectrochemical cell result shows that the CdTe grown with graphite anode 

became p-type after post-deposition annealing with prior CdCl2 treatment, as a result of carbon 

incorporation into the films, while those grown with platinum anode remained n-type after 

annealing. A review of recent photoluminescence characterisation of some of these CdTe films 

reveals the persistence of a defect level at (0.97 - 0.99) eV below the conduction band in the 

bandgap of CdTe grown with graphite anode after annealing while films grown with platinum 

anode showed the absence of this defect level. This confirms the impact of carbon incorporation 

into CdTe. Solar cell made with CdTe grown with platinum anode produced better conversion 

efficiency compared to that made with CdTe grown using graphite anode, underlining the impact 

of anode type in electrodeposition. 

. 

 

Keywords: Graphite anode; platinum anode; electrodepostion; carbon; conductivity type; CdTe 

solar cell. 

 

 

1. Introduction 

 

CdTe is a II-VI semiconductor with certain interesting properties that make it useful in areas of 

application such as radiation detectors [1] and solar cells [1, 2]. Some of these properties include 

its high absorption coefficient of 10
4
 – 10

5
 cm

-1
 in the near-infrared to visible regions of the solar 

spectrum [3, 4], its near ideal energy bandgap of 1.45 eV for thin film solar cell application [3, 

4], its conductivity mode dependence on stoichiometry, which makes it possible to be grown in 

n-type, i-type and p-type conductivity modes without introducing external dopants [5, 6], its 

Fermi level pinning behaviour due to native defects [7] and so on. Several growth techniques can 
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be applied in the growth of crystalline CdTe in both bulk and thin film forms. These include; 

physical vapour deposition [8], sputtering [9], close space sublimation (CSS) [10] and 

electrodeposition [11] to mention a few. 

Electrochemical deposition, or simply electrodeposition, has been an interesting growth 

technique especially for thin film CdTe and CdTe-based solar cells since the 1970s with the 

work by Panicker and co-workers [12] as well as in the 1980s with the work of Basol and co-

workers [1, 13]. The manufacturability of electrodeposition as a large-scale thin film solar cell 

fabrication technique has already been demonstrated by BP Solar in the late 1990s with the 

manufacture of CdTe-based solar panels of 0.94 m
2
 area and 10.4% conversion efficiency [2]. 

Since this landmark achievement by BP Solar, interest in laboratory research on CdTe-based 

solar cell in general, based on various techniques, has grown considerably. As a result, the record 

efficiency of CdTe solar cell has increased rapidly in recent times from 16.5% [14] to 22.1% [15] 

for lab-scale cells and from 10.4% [2] to 18.6% [16] for modules, from 2001 to 2016, with First 

Solar, United States, taking the lead. This recent progress has triggered further interest in CdTe 

research, especially for thin film solar cell application, shedding more light on the understanding 

of this interesting material for improved device performance. The major improvement that led to 

the current record efficiencies of CdTe solar cell by First Solar has been attributed to 

improvement of carrier lifetime. This no doubt, has to do with elimination of defects (or trap 

centres) in the lattice (or rather bandgap) of CdTe in addition to improvement of crystallinity and 

grain-boundary passivation, among others. The issue of elimination of defects or trap centres in 

the bandgap of CdTe is of paramount importance in CdTe solar cells due to the undesirable 

carrier recombination effect and Fermi level pinning phenomenon which these defects can bring 

about.  

In electrochemical deposition, external impurities can gain access into the deposited 

semiconductor through the chemical precursors used, when they are not of sufficient purity or 

more still, through the electrodes used in the deposition set-up. A faulty or broken Ag/AgCl or 

Hg/HgCl2 reference electrode, for example, can result in the gradual leaching of the KCl or AgCl 

electrolyte of the electrode into the deposition electrolyte/bath and can result in incorporation of 

K
+
 and Ag

+
 into the semiconductor. In the case of CdTe in particular, these ions can pose a real 

problem, especially when an n-type CdTe is meant to be deposited, as they are known to 

constitute p-type (acceptor) dopants in CdTe [17]. This is more so as semiconductor doping takes 

place at parts per million (ppm) levels in general. Again, gradual dissolution of the anode 

material in the acidic deposition electrolyte can result in the incorporation of unwanted ions or 

atoms from the anode material into CdTe. This is possible since electrodeposition is mostly 

carried out in acidic medium with pH in the range of 1.50 – 2.50. Although inert metals (such as 

platinum) or non-metals (such as graphite) are mostly used as anode (counter electrode) 

materials in electrodeposition, their prolonged contact with the acidic electrolyte, which is 

sometimes heated to temperatures up to 90 °C, can lead to their very gradual dissolution into the 

deposition electrolyte. Through this means, undesired external impurities could get incorporated 

into electrodeposited CdTe. The impact of these incorporated impurities will depend on the 



nature of the dissolved anode material (that is, dissolved impurity ions), the rate of dissolution of 

the anode material and the rate of its incorporation of the dissolved ions into the deposited CdTe 

material. This can have serious implications on solar cells or other devices made with such 

contaminated CdTe material. In this work, the authors have studied the impact of the two major 

anode materials – graphite and platinum- used in electrodeposition of semiconductors on the 

properties of deposited CdTe thin films and the possible implications on CdTe-based thin film 

solar cells fabricated with these CdTe materials.  

 

 

2. Experimental procedure 

 

For the electrodeposition of CdTe thin films, CdSO4 (99.0% purity) and TeO2 (99.999% purity), 

purchased from Sigma Aldrich, were used as precursors. The deposition electrolyte was made up 

of aqueous solution of 1.0 M CdSO4 and 1 mM TeO2 (with 1 mM each of high-purity CdCl2 and 

CdF2 to serve as sources of n-type dopants) in 800 ml of de-ionised water, all in 1000 ml plastic 

beaker. The pH of the electrolyte was adjusted to 2.00 using dilute sulphuric acid. The plastic 

beaker containing the electrolyte is in turn placed inside a 2000-ml pyrex glass beaker with some 

de-ionised water to serve as a water bath, and the electrolyte is stirred for 24 h using a magnetic 

stirrer. However, prior to the addition of TeO2, CdCl2 and CdF2, the CdSO4-only solution was 

heated to 85 °C on a hotplate with stirring for few hours. The solution was then subjected to 

cyclic voltammetry with cleaned glass/fluorine-doped tin oxide (FTO) as substrate (cathode) and 

platinum plate as anode (counter electrode) using a Gill AC Potentiostat/Galvanostat (ACM 

Instruments, UK) in two-electrode configuration, in order to determine the cathodic deposition 

potential of Cd. At a cathodic potential slightly less than the deposition potential of Cd, electro-

purification of the CdSO4 solution was carried out for 24 h because of the low purity of CdSO4. 

This serves to remove metallic ions that may be present in the CdSO4 powder. After this electro-

purification step, TeO2, CdCl2 and CdF2 were then added to the solution to obtain the above 

mentioned CdTe deposition electrolyte. Another set of cyclic voltammetry was carried out using 

the graphite and platinum anodes in turn in order to determine the range of deposition potentials 

for CdTe using the different anodes. Full details of the electrodeposition of CdTe thin films using 

graphite anode and platinum anode have been reported recently [6, 18]. The cathodic 

electrodeposition of two sets of CdTe thin films (of four samples per set), at different voltages, 

was carried out on glass/FTO (g/FTO) substrate using the same Gill AC Potentiostat/Galvanostat 

in two-electrode configuration. Each CdTe film was deposited for 1hour while maintaining the 

deposition current density steady. This ensures that equal thickness of CdTe is deposited. This is 

possible because for a given deposition time (t), the theoretical thickness (T) of an 

electrodeposited semiconductor film according to the Faraday’s equation (T = MtJ/nFρ) is 

known to be directly proportional to the deposition current density (J) [11, 18] with the rest of 

the parameters [molecular mass (M), number of electrons involved in the formation (n), 

Faraday’s constant (F) and density of the material (ρ)] being constants for any given material.  In 



one set of the films deposited, graphite rod was used as anode material while platinum plate was 

used in the other set in order to study the effect of each of the anode materials on the properties 

of the CdTe thin films electroplated. Each CdTe in both sets was divided into two. One-half of 

each set was designated “as-deposited” while the other half was dipped in saturated solution of 

CdCl2 in de-ionised water, dried and then annealed at 450 °C in air for 15 minutes. This set was 

designated “annealed”. Both the as-deposited and annealed sets of samples were characterised 

for their structural, optical, electrical, morphological and compositional properties using X-ray 

diffraction (XRD), optical absorption, photoelectrochemical (PEC) cell, scanning electron 

microscopy (SEM) and energy dispersive X-ray (EDX) techniques respectively. Two solar cells 

of device structure g/FTO/CdS/CdTe/Au were fabricated each with CdTe grown at the best 

deposition voltage using graphite anode and platinum anode respectively. For the complete solar 

cell fabrication, the CdTe surfaces were etched with acidified K2Cr2O7 and NaOH+Na2S2O3, 

successively rinsed in de-ionised water each time and finally dried in a stream of N2. Then Au 

metal contacts were evaporated onto the etched CdTe surfaces in a vacuum chamber as described 

previously [19, 20]. Performance of the devices was assessed using Keithley 619 

Electrometer/multimeter under AM 1.5 condition for comparison.  

 

3.0 Results and Discussion 

 

3.1 X-ray diffraction study 

 

Figures 1(a) and (b) show the XRD patterns of as-deposited CdTe thin films grown with graphite 

anode and platinum anode respectively.  

 

  

Figure 1: XRD patterns of as-deposited CdTe films grown at different cathode voltages with (a) 

graphite anode and (b) platinum anode. 
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In the as-deposited form the CdTe films grown with both graphite and platinum anodes display 

similar XRD patterns of cubic CdTe with only (111) and (220) diffraction peaks appearing at 2θ 

~ 23.7° and ~39.2° respectively, and preferential orientation in the (111) crystal plane. These 

patterns agree with the Joint Committee on Power Diffraction and Standards (JCPDS) reference 

file no: 00-015-0770 for cubic CdTe. Important to note from the figures also is the fact that CdTe 

films of similar structural quality could be grown in a reasonably wide window of potentials (9 

mV window in this case) using either counter electrode (anode) material.   

 

Figures 2(a) and (b) also show the XRD patterns of the same samples found in figure 1 after 

post-deposition annealing with prior CdCl2 treatment. This time, as is well known of post-

deposition annealing of CdTe, improvement in crystallization of the films is witnessed through 

the emergence of additional peak from the (311) crystal plane at 2θ ~ 46.3°, as well as 

improvement in the intensities of the two previous peaks from (111) and (220) planes. The 

polycrystalline nature of the CdTe films from both graphite and platinum anodes therefore 

becomes more obvious. The improvement in the intensities of all three peaks is however 

observed to be more pronounced in the films grown with graphite anode. This is attributed to a 

combination of improvement in crystallinity and increase in the randomization of the crystallites 

which gives rise to increased tendency towards polycrystallinity in these materials.  

 

  

Figure 2: XRD patterns of annealed CdTe films grown with (a) graphite anode and (b) platinum 

anode. 
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post-deposition annealing increases the intensity of this peak beyond that of as-deposited film for 

the deposition potentials under consideration.  Thus there is improvement in preferential 

orientation of the crystallites along this plane, for the conditions under study. An analysis of the 

(111) peak for CdTe grown with both graphite and platinum anodes shows similar results with 2θ 

= (23.6 – 23.7)°, inter-planar spacing = (3.75 – 3.77) Å, lattice constant = (6.40 – 6.48) Å, full 

width at half maximum = (0.1624 - 0.1299)° and crystallite size = (50 – 63) nm. These are in 

very good agreement with corresponding parameters of the JCPDS reference material which are: 

2θ = 23.8°, inter-planar spacing = 3.74 Å and lattice constant = 6.48 Å. 

 

 

    

Figure 3: (111) XRD peak intensity vs. cathodic growth voltage for CdTe grown with (a) 

graphite anode and (b) platinum anode. 
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sets of CdTe under study begins to appear with this optical characterization. A wider 

spread/scatter in the optical properties is observed in the annealed samples in figure 5.  

 

   

 

Figure 4: Absorbance vs. photon wavelength for as-deposited CdTe films grown with (a) 

graphite anode and (b) platinum anode.  

 

Figure 5(a) shows unusual behavior in the absorbance of the CdTe grown with graphite anode. 

Two of the samples surprisingly display a sort of reduction and/or saturation in absorbance 

towards the UV region compared to their as-deposited form.  

 

   

 

Figure 5: Absorbance vs. photon wavelength for annealed CdTe films grown with (a) graphite 

anode and (b) platinum anode.  
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This behavior is not seen in the samples grown with platinum anode in which case, one rather 

sees a general improvement in absorbance on annealing compared to the as-deposited forms.  

This unusual behavior in the samples grown with graphite anode is attributed to possible 

incorporation of carbon atoms/ions into CdTe during the growth process. It can be recalled that 

Tkachuk et al.[21] has earlier in 2000 reported what they described as macro- and micro-

inhomogeneities as well as carbon-related deep centres in semi-insulating CdTe(Cl) single 

crystals grown in graphitized quartz ampoules by melt growth technique. According to them, 

these negatively affected the detector performance of these crystals. These effects were not 

observed by the authors in the CdTe(Cl) crystals grown with non-graphitized quartz ampoules.   

 

Figure 6 shows the graphs of square of absorbance vs. photon energy for the as-deposited CdTe 

grown with (a) graphite anode and (b) platinum anode. The graph of square of absorbance vs. 

photon energy is a very easy and quick way of estimating the energy bandgap of thin film 

semiconductors without actually going through Tauc plot which requires determination of film 

thickness and absorption coefficient. Our experience shows that both methods produce very 

similar values for the energy gap determined. Again figure 6(a) shows a wider spread in the 

absorption curves of the samples grown with graphite anode compared to those grown with 

platinum anode. This observed spread corroborates the observation in figures 4 and 5. Figures 

6(a) and (b) however show as-deposited CdTe films from both systems to have a common 

energy bandgap of 1.55 eV.  

 

   

Figure 6: Square of absorbance vs. photon energy for as-deposited CdTe films grown with (a) 

graphite anode and (b) platinum anode.  
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After annealing, figures 7(a) and (b) show that all the CdTe from both systems also have 

common reduced bandgap of ~1.48 eV. However, again, the samples grown with graphite (figure 

7(a)) still show wide spread in the absorption, across the entire photon energy range. This 

situation suggests the presence of trap centres in the bandgap of these particular CdTe samples 

due to the incorporation of carbon atoms/ions into the CdTe films. These atoms create defect/trap 

centres in the bandgap of CdTe and these defects tend to get activated by the annealing process. 

Another important feature arising from figures 7(a) and (b) on close observation is the highest 

gradient of these absorption curves for the films grown at cathodic voltages of 1574 mV (with 

graphite anode) and 2039 mV (with platinum anode). These curves become closer to vertical 

absorption edges, indicating minimization of defects in the bandgap of the materials. Again, the 

absorption edges of the films grown with platinum anode are better than those of the films grown 

with graphite anode.  

 

   

 

Figure 7: Square of absorbance vs. photon energy for annealed CdTe films grown with (a) 

graphite anode and (b) platinum anode.  
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with the result obtained. This is more so as it is extremely difficult to detach the electrodeposited 

CdTe layers from the FTO substrates. As a result, we use PEC signal measurement in our group. 

This rather uses the underlying conducting FTO as an electrode, with graphite as the second 

electrode. The basic principle of the PEC cell measurement for the determination of conductivity 

type of semiconductors has been described in recent publications [22, 23].  However, the 

technique principally involves the formation of a liquid/solid junction at the interface between 

the thin film under study and an appropriate electrolyte. The liquid/solid junction is essentially a 

Schottky barrier junction in which the direction of band-bending in the semiconductor at the 

interface depends on the conductivity type of the semiconductor. A built-in potential develops in 

the depletion region formed. The value of this built-in potential varies under illumination. What 

is very important here is the PEC signal which is the difference between the voltages measured 

under illumination (VL) and under dark (VD) conditions. The magnitude of this PEC signal (VL-

VD) indicates the quality of the depletion layer formed at the semiconductor-electrolyte interface. 

The PEC signal also indicates the doping level of the material under study. The sign of the PEC 

signal determines the conductivity type of the material. Both insulating and heavily doped layers 

show zero PEC. The system must however be calibrated using semiconductors with known 

conductivity types to avoid error. In the system we used, which was properly calibrated using 

well-known n-CdS and p-ZnTe materials, aqueous solution of 0.1 M Na2S2O3 was used as an 

electrolyte and a graphite rod as an electrode. The FTO layer on which CdTe material is grown 

serves as the second electrode. In this system, a positive PEC signal indicates a p-type 

semiconductor while a negative PEC signal indicates an n-type semiconductor. It may be of 

interest also to mention that there are other PEC measurement approaches which involve 

carrying out cyclic voltammetry and doing Mott-Schottky plot in order to determine the 

conductivity type of a semiconductor [24, 25]. These approaches however, are outside the scope 

of this work reported in this paper.        

 

Table 1: PEC cell results of as-deposited and annealed CdTe layers grown using the two-

electrode system with graphite anode. 

 

Vg 

(mV) 

             As-deposited                 Annealed 

VD 

 (mV) 

VL 

(mV) 

PEC  

(VL-VD) 

(mV) 

Type VD  

(mV) 

VL 

 (mV) 

PEC  

(VL-VD) 

(mV) 

Type 

1571 -210 -277 -67 n -121 -49 +72 p 

1574 -240 -382 -142 n -98 -28 +70 p 

1577 -168 -222 -54 n -135 -39 +96 p 

1580 -190 -261 -71 n -112 -33 +79 p 

 

 

 

 



Table 2: PEC cell results of as-deposited and annealed CdTe layers grown using two-electrode 

system with platinum anode. 

 

Vg 

(mV) 

As-deposited                Annealed 

VD 

(mV) 

VL 

(mV) 

PEC 

(VL-VD) 

(mV) 

Type VD 

(mV) 

VL 

(mV) 

PEC 

(VLVD) 

(mV) 

Type 

2036 -250 -427 -177 n -96 -146 -50 n 

2039 -254 -425 -171 n -73 -116 -43 n 

2042 -156 -329 -173 n -75 -84 -09 n 

2045 -163 -315 -153 n -88 -144 -56 n 

 

 

The results in Tables 1 and 2 show that the CdTe films in their as-deposited form are all n-type 

in electrical conduction for both anode types. After annealing however, all of the films grown 

with graphite anode became p-type in electrical conduction (Table 1) while those grown with 

platinum anode remained n-type (Table 2). As mentioned earlier, annealing at 450 °C for 15 

minutes must have activated the carbon atoms, or any other impurities from the graphite 

electrode, which were already incorporated into these CdTe films during deposition. The source 

of incorporated impurities may likely be carbon atoms and impurities that may have gradually 

leached into the acidic deposition electrolyte from the graphite anode. The removed carbon from 

the electrode is sometimes observed as black powder at the bottom of the beaker containing the 

deposition electrolyte when the graphite anode is used for a long time. The incorporation of 

carbon atoms into CdTe is possible owing to the very small atomic and ionic radii of carbon 

compared with Cd, Te and Pt as can be seen in Table 3. Incorporation of Pt would rather be more 

difficult given its very large atomic and ionic radii compared to carbon. For carbon, the very 

small size makes it possible to be incorporated most likely as interstitial impurity into CdTe. 

 

Table 3: Atomic properties of carbon, cadmium, tellurium and platinum [26]. 

Element Atomic 

number 

Atomic 

radius (Å) 

Ionic 

radius (Å) 

C 6 0.67 0.70 

Cd 48 1.61 1.55 

Te 52 1.23 1.40 

Pt 78 1.77 1.35 

 

 

Although Pt is known to be stable at high temperatures, its prolonged contact with hot acidic 

deposition electrolyte, in the presence of certain atomic species like sulphur and halogens, could 

result to its gradual corrosion. It therefore becomes possible that Pt atoms could eventually find 

their way into the electrodeposited semiconductor, a situation which could also affect the 

properties of such semiconductor and the devices made with it. In any case, it is advisable, as a 



precaution, to minimize the contact time of these electrodes in the deposition electrolyte. This 

can be achieved by ensuring that the electrodes only make contact with the electrolyte during 

deposition, and immediately washing and storing them in a safe place after use. 

 

It is important at this point to state that the observed conductivity type change for the CdTe 

grown with graphite anode is most likely due to carbon incorporation and not due to the 

conductivity type conversion well known to take place in CdTe at times after post-deposition 

annealing with prior CdCl2 treatment. This becomes important to note as the deposition 

electrolyte ab initio contains Cl and F for n-type doping of CdTe and we had recently shown that 

CdTe films grown from this electrolyte retain their n-type conductivity after post-deposition 

annealing with prior CdCl2 treatment [27]. Although the graphite rods have been purchased as 

“high-purity graphite”, their impurity contents are not known to the research community. 

Therefore this discussion is only limited to the possible incorporation of carbon into 

electroplated CdTe layers. 

 

A review of photoluminescence (PL) study at 80 K, of a set of CdTe thin films grown in 2-

electrode configuration with graphite and platinum anode, as well as with different Cd precursors 

by the authors, show that CdTe films grown with graphite anode, in 2-electrode configuration, 

tend to uniquely retain a defect level at (0.97 – 0.99) eV below the conduction band minimum of 

CdTe after post-deposition annealing with prior CdCl2 treatment, compared to CdTe films grown 

with platinum anode (see Table 4) [28]. Table 4 shows a summary of the PL results [28] in 

which all the CdTe films electrodeposited from different Cd precursors and using the two 

different anodes have the four identified defect levels. After annealing however, the defect level 

at T1 (0.66 eV) below the bottom of the conduction band is completely removed from all the 

CdTe samples irrespective of the anode materials and Cd precursor used. Strikingly too, the 

defect level at T3 (0.97 – 0.99) eV below the bottom of the conduction band is completely 

eliminated from the CdTe film grown with platinum anode, while for all the CdTe films grown 

with graphite anode, the same defect level persists. This level is therefore most likely related to 

carbon impurities from the graphite anode incorporated into the deposited CdTe. This 

corroborates the results observed in the optical and PEC results of these materials as well as the 

observations of Tkachuk et al. cited earlier in ref [21]. The defect level observed at (1.38 – 1.40) 

eV in both CdTe grown with graphite and platinum anodes must be related to native defects in 

CdTe irrespective of the Cd precursor and anode material used in the deposition.  

A combination of the PEC and PL results indicates that the presence of carbon atoms in the 

CdTe grown with graphite anode tends to cause the movement of the Fermi level of the CdTe 

towards the valence band edge in the post-deposition annealing process as indicated in figure 8 

(a), thereby making the material display p-type conductivity. This situation is also most likely 

encouraged by the Fermi level pinning phenomenon that is well-known to be pronounced in 

CdTe [29].  

 



 

Table 4: Summary of defect levels observed in electrodeposited CdTe thin films using 

photoluminescence study at 80 K for CdTe grown using graphite anode and platinum anode [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           

 

 

 

 

 

 

Figure 8: Energy band diagrams showing energy level transitions in the photoluminescence 

measurements of CdTe grown with (a) graphite anode and (b) platinum anode following post-

deposition annealing.  

 

The persistent deep level at (0.97 – 0.99) eV as shown in Table 4 and figure 8 (a) could act as 

detrimental recombination center for photo-generated electrons when these CdTe materials are 

used for solar cell fabrication thereby producing solar cells with poor performance. It can also 

pin the Fermi level of the CdTe at that level thus limiting the barrier height formed at the 

CdTe/metal interface and therefore adversely affect device performance. This situation will 

become very clear from the performance of solar cell fabricated with these CdTe materials later.   

 

Cd precursor  

and anode type  

Nature  

of CdTe  

Defect levels identified 

T1 

(eV)  

T2 

(eV)  

T3 

(eV)  

T4 

(eV)  

Eg 

(eV)  

CdSO4 (Platinum)  As-Deposited  0.66  0.77  0.97  1.36  1.51  

CdCl2 treated  ----  0.73  ----  1.39  1.47  

CdSO4
 
(Graphite)  As-Deposited  0.66  0.79  0.97  1.37  1.50  

CdCl2 treated  ----  0.74  0.97  1.38  1.48  

Cd(NO3)2(Graphite)  As-Deposited  0.66  0.79  0.98  1.37  1.50  

CdCl2 treated  ----  0.71  0.99  1.40  1.48  

EV 

0.97-0.99 eV 

1.38-1.40 eV 

Eg 
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1.39 eV 
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3.4 Scanning electron microscopy and energy dispersive x-ray studies 

 

Figures 9(a) and (b) show the typical SEM images of electrodeposited CdTe thin films grown on 

glass/FTO/CdS substrates using graphite anode and platinum anode, respectively. Only these two 

images are presented since all the SEM images look alike. The images show tiny nano-

particulate CdTe crystallites coalescing into larger agglomerates in both cases. A good coverage 

of the underlying substrate by the compact agglomerates is also evident.  

 

 

 
Figure 9: Typical SEM images of CdTe films grown using (a) graphite anode and (b) platinum 

anode.  

 

 

Figures 10(a) and (b) also show the representative EDX spectra of CdTe grown on 

glass/FTO/CdS substrates with graphite anode and platinum anode, respectively. Again only two 

representative EDX spectra are presented since others are very similar. Both figures indicate the 

presence of Cd and Te in the CdTe layers grown with graphite and platinum anodes. The two 

spectra also show the presence of S from the underling CdS on which the CdTe layers were 

grown. The peak assigned to carbon in the lower energy region of the EDX spectrum for CdTe 

grown with graphite anode may however be misleading as an evidence of carbon incorporation 

into CdTe. This is because, apart from the fact that this peak and the other peaks around it also 

correspond to peak positions for N, O, Cd, Te and C, EDX is not known to be a very accurate 

technique for the detection of small amounts of atoms, especially at doping levels which occur in 

parts per million levels. For this reason, the EDX spectra in figure 10 will not be used as a 

confirmatory result for the presence of carbon atoms in the electrodeposited CdTe films.  

(b) platinum anode 

1 μm 

(a) graphite anode 

1 μm 



 
 

Figure 10: Typical EDX spectra of CdTe thin films grown on g/FTO/CdS with (a) graphite 

anode and (b) platinum anode. 

 

 

3.5 G/FTO/CdS/CdTe/Au Solar cell performance assessment 

 

Figures 11 (a) and (b) show the current density-voltage graphs of the best g/FTO/CdS/CdTe/Au 

solar cells fabricated with CdTe grown at 1577 mV and 2039 mV using graphite anode and 

platinum anode respectively. These two deposition voltages were chosen by considering both the 

results presented in this work and the results of our previous work on electrodeposited CdTe 

materials using both graphite and platinum anodes. This is necessary as it becomes a bit difficult 

to give a straightforward verdict on the best growth voltage for each anode type from the results 

presented already in this work. However, in our previous but recent careful work on the best 

deposition voltages for CdTe using graphite anode as well as platinum anode, we have reported 

1576 mV as the best deposition voltage using graphite anode [6, 11], and 2038 mV as the best 

deposition voltage for CdTe using platinum anode [18 - 20]. Based on this, we then decided to 

choose 1577 mV and 2039 mV as the deposition voltages of choice for graphite anode and 

platinum anode, respectively for the fabrication of the solar cells presented in figure 11. These 

two voltages are the closest to the already established best voltages based on our recent work in 

this direction. The solar cell open-circuit voltage (Voc), short-circuit current density (Jsc), fill 

factor (FF), efficiency (η) and series resistance (Rs) extracted from the two graphs are 470 mV, 

29.2 mAcm
-2

, 0.33, 4.5% and 253 Ω respectively for figure 11(a) and 660 mV, 33.6 mAcm
-2

, 

0.38, 8.4% and 107 Ω respectively for figure 11(b). These device results show that the CdTe 

grown with platinum anode produces solar cells with better overall conversion efficiency 

compared to that grown with graphite anode. For the device involving CdTe grown with graphite 

anode (figure 11 (a)), the Fermi level of the CdTe may have been pinned at one of the two 

available defect level bands (0.97-0.99 eV and 1.38-1.40 eV) in figure 8(a) and Table 4. It is 

(b) Platinum anode (a) graphite anode 



important here to mention that the CdTe surface treatment employed prior to Au back contact 

formation (i.e etching in acidified oxidizing K2Cr2O7 etch, and then in reducing NaOH+Na2S2O3 

etch) is known to produce Cd-rich surface in which the Fermi level is pinned close to the valence 

band maximum, resulting in devices with better performance for both n-CdTe and p-CdTe 

[19,30, 31].  

Considering the PEC results in which we have both n-type and p-type CdTe after annealing and 

figure 8, pinning of the Fermi level at the 1.38 – 1.40 eV defect level would produce equally 

good solar cells with both CdTe materials, since this situation will give rise to good ohmic 

contact at the p-CdTe/Au interface (combined with p-n heterojunction at n-CdS/p-CdTe 

interface) and a good Schottky barrier at the n-CdTe/Au interface (combined with n-n 

heterojunction at n-CdS/n-CdTe interface). This is however not evident in the solar cell results 

obtained. Whereas the n-CdTe-based device produced good solar cell parameters as expected, 

the type-converted p-CdTe-based device did not. This shows that actually, a good Schottky 

barrier is produced in the n-CdTe–based solar cell therefore producing the relatively higher Voc, 

Jsc, FF, η and lower Rs. This is possible since only one defect level (1.39 eV) is present in this 

CdTe and close to the valence band edge therefore making Fermi level pinning highly probable 

at this level. This particular device structure of g/FTO/n-CdS/n-CdTe/Au n-n heterojunction + 

Schottky barrier is known to produce solar cells with high short-circuit current density as 

observed here, due to a possible combination of two depletion regions at both the n-n 

heterojunction and at the Schottky junction [19, 20, 32]. This situation creates a combined wide 

depletion region in the device. This, coupled with the well-known characteristic fast response of 

Schottky barrier devices (a property that makes them preferable in fast switching circuits), gives 

rise to effective collection of photo-generated charge carriers and therefore high Jsc values.  
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Figure 11: AM 1.5 Current density-voltage graph of g/FTO/CdS/CdTe/Au thin film solar cell 

fabricated with CdTe grown with (a) graphite anode and (b) platinum anode. 

 

 

On the other hand, if the Fermi level is pinned at the defect level with 0.97 – 0.99 eV (a situation 

which is only available in the CdTe grown with graphite anode), this will produce a low 

Schottky barrier height (or a poor ohmic contact) at the p-CdTe/Au interface, since a given metal 

which produces a large Schottky barrier on an n-type semiconductor will produce a low Schottky 

barrier height in a p-type of the same semiconductor [31, 33]. Such poor Schottky barrier or a 

poor ohmic contact will give rise to low Voc, Jsc, FF, η and high Rs which is the case with the 

solar cell made with CdTe produced using graphite anode in figure 11(a). This situation therefore 

indicates that the presence of the defect levels at 0.97 – 0.99 eV is detrimental to CdS/CdTe-

based devices by producing devices with poor parameters. 

 

4. Conclusion 

 

This work clearly shows that better optoelectronic properties and therefore solar cell 

performance, are obtained when CdTe layers are electroplated using platinum anode in two-

electrode configuration than using graphite anode. The use of graphite anode in the 

electrodeposition of semiconductors could result in micro-inhomogeneity and formation of deep 

centers which affect the optoelectronic quality of CdTe material. This inhomogeneity may 

account for the wide spread in the absorption spectra of the CdTe films grown using graphite 

anode compared to those grown using platinum anode. The post-deposition annealing process 

may have resulted in the activation and redistribution of the carbon impurities possibly 

incorporated into CdTe during deposition, most especially as interstitials, resulting in the 

observed tendency toward p-type conductivity, hence the observed defect property, absorption 

spectra and solar cell device performance. This detrimental behavior of carbon is attributed to its 

very small ionic and atomic radii compared to Cd, Te and Pt. The situation can thus result in 

poor performance of devices fabricated with these contaminated CdTe through the existence of 

carbon-related carrier trap centres and/or undesirable Fermi level pinning in the CdTe. It 

therefore becomes important, as a precaution, to use highly inert materials as anodes (counter 

electrodes) and possibly to avoid graphite anode in the electrodeposition of semiconductors for 

device application. 
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