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Abstract 
Cancer stem cells (CSC) are thought to be responsible for the initiation, propagation and 

tumour re-occurrence. CSC have been identified in most solid and haematological cancers 

and account for ~1% of the total cell population. Culturing cancer cell lines in monolayers 

enriches for the most dominant subpopulation which in most cases does not represent the 

slow dividing CSC population.  

We investigated the expression of CSC markers in 2D vs. 3D cell culture with the aim of 

identifying CSC-like cells via a nanog-reporter cell line and enable the subsequent targeting 

of these cells with CSC-targeting agents. 

SUM159 and MCF7 cell lines cultured in 3D cell culture significantly enriched for the 

CD44+/CD24- breast cancer stem cell phenotype when compared against 2D cell culture 

(p<0.05 and 0.001 respectively) and also enriched for expression of CD181 (p<0.05 and 

0.001 respectively). However, this method did not enrich for the prostate CSC with the 

CD44+/CD133+ phenotype in PC3, DU145 and LNCAP cells. Using reporter cell lines to 

further identify the CSC population in SUM159 cell line that express GFP in response to 

Nanog (NRE-GFP), found that these cells were GFP+ve in the absence of Nanog protein. As 

these reporters were selected based on GFP that was supposedly Nanog driven other 

mechanistic studies were examined to determine how GFP is expressed in the NRE-GFP 

and control cell line. It was found that GFP could be induced in apoptosis, CSC enriching 

medium, hypoxia and by inhibiting the proteasome in the absence of Nanog protein. It was 

concluded that reporter cell lines that respond to a response element may not identify the 

CSC population as other factors can induce GFP expression. 

Compounds related to Withaferin A have been proposed to specifically target CSCs. 

Prostate and breast cancer cell lines cultured in 2D and 3D were treated with a novel 

withanolide derivative (LG-02) and Withanilode E to determine if these compounds were 

more effective at inducing cell cycle arrest and apoptosis using flow cytometry and 

microscopy. It was determined that LG-02 and WE primary mode of action is cell cycle 

inhibition and both compounds are more potent cell cycle inhibitors than Withaferin A. G1 

phase accumulation was observed in the SUM159, PC3 and LNCAP cell lines and G2/M 

phase accumulation in the DU145 cell line. Cell cycle arrest was inconclusive in the MCF7 

cell line. An apoptotic morphology was only significantly induced at higher concentrations 

in MCF7, PC3, DU145 and LNCAP. Withanolide derivatives also target the androgen 

response pathway, demonstrated by a decrease in PSA and androgen receptor in prostate 

cancer cell lines. LG-02 slowed growth of breast cancer cell lines cultured in 3D and 

inhibited spheroid formation of prostate cancer cell lines, however the androgen-

dependent cell line LNCAP was consistently able to form 3D colonies, most likely via pAkt 

activation.   

We conclude that 3D cell culture does enrich for the CSC population in breast cancer cell 

lines but using a reporter cell line expressing GFP under the control of a NRE is not a 

suitable model for identifying the CSC population for subsequent drug treatment. In 

addition, Withanolide derivatives have potential anti-tumour activity and may represent a 

novel class of anti-androgenic agents.   
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1.1  Introduction into cancer 

Cancer is a disease that can affect any proliferative cell within the body (Cancer 

Research UK, 2015) and it is characterised based on the ability to overcome stringent 

biological factors that are normally in place to monitor cell growth, tissue architecture 

and homeostasis (Bissell, Rizki and Mian 2003). When these stringent biological factors 

fail, a highly proliferative neoplasm (new growth) develops putting a huge burden on 

local tissues and nutritional supplies (Evan and Vousden 2001). Neoplasms are benign 

as these have not yet acquired the ability to invade local or distant tissue although 

these can also be aggressive. As they progress benign tumours become more 

aggressive, invasive and metastatic and are reclassified as malignant as these are able 

to invade and recolonise at local or distant tissues (Tward et al. 2007). Cancer is 

considered to be the leading cause of death worldwide and in 2013 there were 

352,000 new cases, equalling to 960 cases of cancer diagnosed every day in the UK 

(Cancer Research UK, 2015). In 2014 alone, there were 55,222 new cases of breast 

cancer and 46,690 new cases of prostate cancer in the UK (Cancer Research UK, 2015). 

There are 6 different classifications of cancers based on the tissue types that they 

originate from. Carcinoma is the most prevalent type of cancer as it originates from 

epithelial cells and is found in 80-90% of cancers diagnosed. Other types of cancers 

include Sarcoma, Myeloma, Leukaemia, Lymphoma and mixed type (two or more 

components of the cancer). The most prevalent carcinomas in the UK are breast 

followed by prostate, lung and bowel (Cancer Research UK, 2015).  

Cancer is caused by external carcinogens such as tobacco smoke, alcohol, UV and 

ionising radiation and certain viruses (Tonini et al. 2013, Boffetta and Hashibe 2006, 

Granstein and Matsui 2004), or internal factors such as inherited mutations, hormones 
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or immune conditions (Anand et al. 2008). Cancer develops due to the acquisition of a 

series of mutations in which the cell acquires the ability to evade growth suppression. 

In 1971, Alfred Knudson outlined a concept known as the 'two-hit hypothesis' to 

explain the acquisition of genetic mutations and the development of cancer (Knudson 

1971). Knudson demonstrated in retinoblastoma, individuals with a germline mutation 

in a tumour suppressor gene (TSG) only required a second mutation within the other 

homologue in order for loss of function of that gene (Knudson 1971). Other germline 

mutations have been identified in various cancers such as breast, ovarian and colon 

(Hall et al. 1990, Miki et al. 1994, Bronner et al. 1994) and in individuals with Li-

Fraumeni Syndrome in which multiple tumours may occur (Srivastava et al. 1990). 

Hereditary cancers are rare and develop early on in life and are commonly associated 

with more than one primary tumour whereas sporadic cancers generally occur later 

and usually form a single tumour due to the number of genetic changes required to 

transform cells. The two hit hypothesis is applicable for non-hereditary cancers 

(sporadic cancers) in which the second somatic mutation of a tumour suppressor gene 

initiates tumourigenesis. 
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Figure 1.1 Knudson 2 hit hypothesis. 

 

 

Figure 1.1 Knudson 2 hit hypothesis. In germline mutations an offspring is born with 
an inherited mutation in a TSG derived from either parent. Germline mutations and 
the corresponding phenotype are not expressed in the host as the other TSG 
compensates for the germline mutation and can function efficiently. A second 
mutation in the corresponding TSG results in loss of heterozygosity and the onset of 
tumourigenesis. Germline mutations of TSG induce tumourigenesis earlier on in life 
than that of sporadic mutations.  In sporadic mutations, a mutation occurs in a TSG at 
random, and requires an additional mutation for inactivation of TSG. Cancers derived 
from sporadic mutations occur later on in life due to the length of time required to 
acquire inactivation of both TSG genes. 

 

Genetic mutation of genes that are responsible for cell growth, cell death and DNA 

repair are common targets in the evolution of a normal cell to their neoplastic 

counterparts  (Hall et al. 1990, Li et al. 1997, Hainaut et al. 1998). These genes can be 

classified into two groups which are 1) TSG where loss of function mutations, needing 

inactivation of both copies of gene or 2) proto-oncogenes where a gain of function 

mutation occurs in only one copy of the gene (Vogelstein and Kinzler 2004). As the 

name states TSG are involved in inhibiting tumourigenesis by preventing cell 

proliferation, inducing cell death or are part of the DNA repair mechanisms. Loss of 
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function of TSG such as p53, pRb or PTEN results in uncontrolled cell proliferation and 

the development of cancer (Hainaut et al. 1998, Li et al. 1997, Knudson 1971).  

In contrast to TSG, proto-oncogene when activated drives cell proliferation and inhibits 

cell death (Vogelstein and Kinzler 2004). GTPases such as the Ras family of proto-

oncogenes are involved in signal transduction, proliferation and apoptosis and are a 

common target for mutation. Activation of Ras induces uncontrolled cell proliferation 

and the development of cancer (Fromowitz et al. 1987, Rodenhuis and Slebos 1992). In 

various cancers, particularly breast cancer overexpression of an oncogene known as 

the Human epidermal growth factor receptor 2 (HER2) has been identified,  and is 

responsible for the downstream signalling cascades that drives cell proliferation (Hynes 

and Stern 1994, Slamon et al. 1989, Lei et al. 1995, Beckhardt et al. 1995). Another 

growth factor receptor known as the epidermal growth factor receptor (EGFR) is also 

frequently mutated in solid cancers (Nicholson, Gee and Harper 2001).      

1.2  Mutator phenotype hypothesis 

Although inactivation of TSG's or oncogene activation could lead to defective 

mechanisms that control DNA repair, apoptosis or cell proliferation, a single cell needs 

to acquire multiple mutations before becoming malignant (Tanooka 2004).  The 

mutator phenotype hypothesis was proposed to explain how cancer cells exhibit a 

mutator phenotype in which mutations that are often observed in cancer must induce 

subsequent mutations as normal cells do not acquire the vast amount of mutations 

that would facilitate tumourigenesis (Loeb, Springgate and Battula 1974). Mutations in 

genes that control and regulate DNA replication and repair (Paulovich, Toczyski and 

Hartwell 1997), chromosome segregation, damage surveillance (checkpoints) and 

cellular responses (apoptosis) drive the mutator phenotype. Multifaceted 
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manifestations are observed in cells that have point mutations, microsatellite 

instability and LOH in genetic stability genes (Loeb, Loeb and Anderson 2003) resulting 

in a heterogeneous tumour population with phenotypically different progeny (Loeb 

2011). 

1.3  The hallmarks of cancer 

In 2000, Hanahan and Weinberg identified that there are six biological capabilities that 

are acquired during the multistep development of human tumours and these have 

been categorised to explain the complexities of neoplastic disease (Hanahan and 

Weinberg 2000). The six hallmarks of cancer originally identified are sustaining 

proliferative signalling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, and activating invasion and metastasis 

(Hanahan and Weinberg 2000). Since then another four proposed hallmarks of cancer 

have been identified and these are genome instability, inflammation, reprogramming 

of energy metabolism and evading immune destruction (Hanahan and Weinberg 2011) 

(see figure 1.2). 
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Figure 1.2 The hallmarks of cancer 

 

Figure 1.2. The hallmarks of cancer adapted from Hanahan and Weinberg (2011). The 
10 hallmarks of cancer are: proliferative signalling, evading growth suppressors, 
resisting cell death, enabling replicative immortality, inducing angiogenesis, and 
activating invasion and metastasis, genome instability, inflammation, reprogramming 
of energy metabolism and evading immune destruction. 

 

1.3.1 Sustaining proliferative signalling 

In normal tissues, cell proliferation is highly regulated for cell number homeostasis and 

tissue architecture maintenance and is orchestrated by the careful production and 

release of growth stimulating factors (Witsch, Sela and Yarden 2010). In cancer, these 

processes are deregulated to facilitate and maintain uncontrolled cell proliferation by 

the binding of growth factors to their reciprocal receptor, which in most cases contains 

an intracellular tyrosine kinase domain (Turner and Grose 2010). The binding of growth 

factors to its cell surface receptor induces an intracellular signalling network which 

activates genes required for cell cycle progression, growth and other pathways such as 

those for survival and metabolism (Baixeras et al. 2001, Vaughan et al. 2013). During 
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tumourigenesis mutations occur within the mitogen derived genes (Lemmon and 

Schlessinger 2010). Over 30 years ago it was first identified that cancer cells did not 

fully rely on exogenous supply of growth factors for proliferation as these produce a 

vast amount of peptide growth factors and participate in autocrine secretion (Sporn 

and Roberts 1985). In paracrine signalling a cancerous cell may signal to a nearby 

normal cell in the stroma that is associated with tumours which in turn reciprocates by 

releasing growth factors (Cheng et al. 2008). Another deregulated mechanism utilised 

in cancer is the upregulation of growth factor receptors in which cancer cells are 

extremely sensitive to low levels of mitogens (Brady et al. 2007, Rubin Grandis et al. 

1998, Budillon et al. 1991). Constitutive activation of downstream effectors of mitogen 

signalling has been identified in ~40% human melanomas as mutations within the B-

Raf locus alters the protein structure inducing signalling through RAF to mitogen-

activated protein (MAP)-kinase pathway (M and Samuels 2010). Similarly, constitutive 

activation of the Akt/PKB pathway caused by mutations within the catalytic subunit of 

phosphoinositide 3-kinase (PI3-kinase) isoforms has been identified in many different 

tumour types (Jiang and Liu 2008). A negative feedback mechanism that reduces cell 

proliferation signalling is inhibited in some cancers as Phosphatase and Tensin (PTEN) 

phosphatase, an inhibitory protein of PI3-kinase signalling may be silenced due to 

promoter methylation (Jiang and Liu 2008, T and L 2008).  

1.3.2  Evading growth suppressors 

A mechanism that negatively regulates proliferation is the action of TSG, and as the 

name states expression of these genes can slow down and inhibit cell division, repair 

DNA mistakes or prime the cells for apoptosis (Sherr 2004). In cancer many of these 

TSG are mutated and inactivated resulting in a loss of function (Girod et al. 1998). Two 

of the prototypical types of TSG that encode for the Retinoblastoma associated (RB) 
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and p53 proteins are commonly found to be non-functional in many types of cancer 

(Hanahan and Weinberg 2011). The pRb responds to many intra and extracellular 

stimuli for G1 cell cycle arrest (Weinberg 1995), regulation of apoptosis (Hilgendorf et 

al. 2013), regulation of double strand DNA repair (Cook et al. 2015) and other 

maintenance/homeostatic roles (Burkhart and Sage 2008). Unlike pRb protein that 

receives both internal but predominantly external stimulus, p53 activation is initiated 

from intracellular stress and abnormality sensors (Hanahan and Weinberg 2011). The 

p53 TSG has been described by Lane 1992, and Levine 1997 as "guardian of the 

genome" and "cellular gate keeper" (Lane 1992, Levine 1997) due to its anti-

proliferative cellular response.  The p53 protein primarily functions as a transcription 

factor by inducing the expression of genes involved in cell cycle arrest (Brugarolas et al. 

1995), senescence (Serrano et al. 1997) and apoptosis (Clarke et al. 1993). Loss of 

function of pRB and p53 protein ultimately results in tumour formation. Transforming 

growth factor beta (TGFβ) is an anti-proliferative signalling molecule that functions in 

many ways to prevent cell cycle progression (Hanahan and Weinberg 2011). TGFβ acts 

to prevent pRb inactivation, to halt the cell in G1 phase of the cell cycle (Laiho et al. 

1990) primarily through the upregulation of p15INK4B and p21 (Hannon and Beach 1994, 

Yoo et al. 1999), and in some instances TGFβ can downregulate c-myc (oncogene) 

expression (Pietenpol et al. 1990). Loss of the TGFβ receptor and signalling is common 

in cancers such as ovarian and colon (Antony et al. 2010, Yu et al. 2014) and has been 

found to promote prostate cancer metastasis (Tu et al. 2003).  

1.3.3 Resisting cell death 

A normal cell undergoes a process known as programmed cell death by apoptosis 

(discussed later) as a mechanism for cancer evasion (Evan and Littlewood 1998) 

however it has been found in high grade malignancies and therapy resistance tumours 
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that these cells are resistant to apoptosis (Vaux, Cory and Adams 1988, Sentman et al. 

1991). Apoptosis evasion is propagated by a number of factors such as: Loss of p53 

(Nigro et al. 1989, Munroe et al. 1988), upregulation of anti-apoptotic proteins Bcl-2 

(Vaux, Cory and Adams 1988) and survival growth factors (Hellawell et al. 2002), 

downregulation of pro-apoptotic proteins (Manoochehri et al. 2014) and death 

inducing ligands (Butler et al. 1998). Another type of programmed cell death known as 

autophagy (discussed later) can be anti- or pro-tumorigenic depending on the 

physiological state of the cell and stage of the tumour (Chen and Debnath 2010). 

Nutrient starvation, radiotherapy and some cytotoxic compounds induce autophagy in 

cancer as this impairs cellular function to a dormant state rather than killing the cell (Li, 

Chen and Gibson 2013a, Ito et al. 2005, Cheng et al. 2012). Necrosis is a form of 

programmed cell death unlike apoptosis in which a dying cell shrinks and is engulfed by 

neighbouring cells, necrotic cells expand and explode releasing their cellular contents 

into the tissue microenvironment (Hanahan and Weinberg 2011). The release of 

cellular components and pro-inflammatory signals recruit inflammatory cells that can 

propagate tumour growth, inducing angiogenesis and invasion (Murdoch et al. 2008, 

Lin et al. 2001). 

1.3.4 Enabling Replicative Immortality  

Normal cells within the body have a limited number of cell divisions before they 

become senescent in which cells are viable but no longer proliferative and go through 

a process known as crisis in which cells die (Hayflick and Moorhead 1961). In normal 

cells the ends of chromosomes are protected from end to end fusion by tandem 

hexonucleotide repeats known as telomeres (Muller 1938, McClintock 1941, 

McClintock 1942), however at each cell division the telomeres shorten, eventually 

resulting in senescence and or cell death (Zhang et al. 1999). On some rare occasion a 
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normal cell can overcome this barrier and have unlimited replicative potential, known 

as immortalisation, which is a phenomena present in most cultured cell lines and in 

~90% of cancers (Hanahan and Weinberg 2011). Telomerase is a specialised type of 

DNA polymerase that is expressed in immortalised cells due to mutations within the 

genome and is virtually absent in normal cells and is responsible for adding on 

telomere repeats to the ends of the chromosome, to prevent chromosome shortening 

and enabling replicative immortality (Kim et al. 1994a). Recent literature has found 

that even in the absence of other tumour associated mutations, the proliferative 

barrier imposed by telomere shortening is overcome by mutations within the 

promoter of telomerase facilitating immortalisation and tumourigenesis (Chiba et al. 

2015). 

1.3.5 Inducing Angiogenesis 

In normal tissue maintenance and tumour development the need for nutrients and 

oxygen and the removal of metabolic waste and carbon dioxide is vital to maintain 

homeostasis and facilitate growth of a tumour (Hanahan and Weinberg 2011). The 

vasculature system is fundamental in these processes. Normal adult vasculature is in a 

dormant quiescent state that transiently activates wound healing (Heimark, Twardzik 

and Schwartz 1986) and during the menstrual cycle (Hanahan and Folkman 1996) 

however, in tumour progression angiogenic signalling is switched on facilitating 

quiescent vasculature to become active and the sprouting of new blood vessels 

(Tsunoda et al. 2001).  Angiogenesis is regulated by anti and pro-angiogenic factors 

that when bound to their reciprocal receptors can inhibit or promote angiogenesis 

(Peiris-Pages et al. 2010). A pro-angiogenic factor known as Vascular Endothelial 

Growth Factor (VEGF) is a ligand that is responsible for inducing angiogenesis in 

embryonic (Gogat et al. 2004) and postnatal development (Gerber et al. 1999), and in 
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physiological and pathological situations in the adult (Taichman et al. 1998). VEGF can 

be regulated by many factors such as hypoxia (Liu et al. 1995) and oncogene signalling 

in cancer (Goel and Mercurio 2013). The vasculature in chronic activated angiogenesis 

is often leaky, with micro-haemorrhaging and erratic blood flow, and there is also 

excessive vessel branching which are distorted and enlarged, even in premalignant 

neoplasms (Hanahan and Weinberg 2011).  

1.3.6 Activating Invasion and Metastasis 

Activating invasion and metastasis is the process in which a tumour cell leaves its 

primary site and invades local tissue and stroma, or migrates to distant sites and forms 

secondary tumours also referred to as a metastasis (Valastyan and Weinberg 2011). 

Within the tumour microenvironment carcinomas form adheren junctions for cell to 

cell contact with adjacent epithelial cells and this is facilitated by an adhesion molecule 

known as E-cadherin (Pecina-Slaus 2003).  At the onset of invasion, premalignant 

tumour cells alter their morphology and interactions with neighbouring cells by the 

loss of E-cadherin (Onder et al. 2008). Conversely, an upregulation of adhesion 

molecule N-cadherin that is normally expressed in migratory cells such as migrating 

neurons or mesenchymal stem cells has been identified to be a key player in this 

process (Frixen et al. 1991, Ramis-Conde et al. 2009). Activating invasion and 

metastasis have similar traits to that found during embryonic morphogenesis and 

wound healing, in which cells have the ability to undergo a process known as epithelial 

to mesenchymal transition (EMT) (Baum, Settleman and Quinlan 2008, Lin et al. 2012, 

Shook and Keller 2003). Similarly, increasing evidence about invasive CSC's appear to 

utilise EMT by the acquisition of an ESC phenotype (Chaffer and Weinberg 2011, Dang 

et al. 2011, Gupta, Chaffer and Weinberg 2009, Mani et al. 2008, Santisteban et al. 

2009).  
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During the switch from an epithelial to mesenchymal phenotype the upregulation of 

mesenchymal cell markers such as vimentin (Xu, Lamouille and Derynck 2009, Hay 

2005), fibronectin and actin are observed although these proteins are not exclusive to 

mesenchymal cells (Hay 2005). Collagen and fibronectin are extracellular proteins that 

are increased in EMT and these stimulate signalling via integrin which in turn 

stimulates focal adhesion complexes to enable cell migration (Imamichi and Menke 

2007). Focal adhesion complexes are also activated by the down regulation of E-

cadherin, and down regulation of E-cadherin elevates expression of N-cadherin, 

making these cells more invasive and metastatic (Lim and Thiery 2012, Shirakihara, 

Saitoh and Miyazono 2007). In cancer, after acquisition of a mesenchymal phenotype a 

number of steps commence for the initiation of a secondary tumour. This begins with 

the detachment from neighbouring cells at the primary tumour and penetration into 

local stroma then into the lymphatic vessels or vascular, the cell can then adhere to 

distant endothelia before extravasation followed by the reversal of EMT by a process 

known as mesenchymal to epithelial transition (MET) where the cell recolonizes and 

expands (Geho et al. 2005, Thompson, Newgreen and Tarin 2005, Vergara et al. 2010).  

EMT has been identified in many of the highly malignant cancers including breast 

(Hwang, et al. 2013, Lombaerts et al. 2006), prostate (Cao et al. 2008, Kong et al. 2010, 

Xie et al. 2010), ovarian (Rosanò et al. 2006, Tseng et al. 2011), colon and (Lin et al. 

2012, Qi, et al. 2012, Jang, Jeon and Jung 2009), lung cancer (Shintani et al. 2008, Joëlle 

Roche et al. 2013). 
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1.4 Emerging hallmarks of cancer 

1.4.1 Genome instability and mutation 

The multiple hallmarks of cancer largely depend on a succession of mutations and 

alterations within the genome to facilitate the progression of a neoplastic cell to a 

malignant tumour, although some may be triggered by non-mutational epigenetic 

modifications such as DNA methylation (Feinberg and Vogelstein 1983, Jin and 

Robertson 2013) or histone modifications (Sharma, Kelly and Jones 2010). 

Spontaneous mutations are usually low during each cell division as genome 

maintenance and surveillance systems that monitor genome integrity often referred to 

as "caretakers" of the genome prevent tumourigenesis (Kinzler and Vogelstein 1997). 

However, early neoplastic cells increase the rate of mutation to facilitate 

tumourigenesis by inactivating genes required for: intercepting mutagens before DNA 

damage occurs, detection of DNA damage and DNA repair (Hanahan and Weinberg 

2011). Another precursor in genome instability is the erosion of telomeres in 

premalignant, rapidly proliferating cells (Wong and DePinho 2003, Wright and Shay 

2005). If telomere shortening reaches crisis point and a rare cell continues to 

proliferate, chromosome instability may occur leading to duplicated or deleted 

chromosome's (Davoli, Denchi and de Lange 2010, Rudolph et al. 2001). In 

transformed cells with chromosomal instability, selective pressure ensues for 

activation of telomerase (Kim et al. 1994b) or alternative lengthening of telomeres 

(Heaphy et al. 2011), further ensuing for tumour growth with immortalised cells. 

Centrosome amplification is another defect found in most solid and haematological 

cancers and has been implicated in multipolar mitoses, chromosome mis-segregation, 

and subsequent genome instability and mutation (Ferguson et al. 2015). Catastrophic 

aneuploidy would normally be tumour suppressive, however cancer cells have utilised 
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the abnormal amount of centrosomes by clustering them together for cancer cell 

survival (Kramer, Maier and Bartek 2011).  

1.4.2 Tumour-promoting inflammation 

In some benign and malignant tissues there are a number of immune cells that were 

initially thought to be anti-cancerous by disposing of and eradicating transformed 

mutant cells. However it has become apparent that the tumour associated 

inflammatory response promotes tumourigenesis by aiding neoplastic cells to acquire 

the hallmarks of cancer (Hanahan and Weinberg 2011).   

Cells of predominantly the innate immune system promote carcinogenesis by 

supplying biological factors to facilitate proliferation, anti-apoptosis, angiogenesis, 

invasion and metastasis and EMT (Schoppmann et al. 2002, Fan et al. 2014, Liu et al. 

2014b).  

One of the most prevalent immune cell involved in tumour promoting inflammation is 

the tumour-associated macrophage as it produces cytokines and proteases to 

stimulate angiogenic and lymphangiogenic growth (Schoppmann et al. 2002). 

Neutrophils are another type of immune cell that propagates a mutagenic phenotype 

as when activated these release reactive oxygen species which increases genetic 

defects within tumours (Campregher, Luciani and Gasche 2008). 

1.4.3 Deregulating cellular energetics: Reprogramming Energy Metabolism  

Reprogramming energy metabolism in cancer was first identified by Warburg in which 

he found that cancer cells can reprogramme their glucose metabolism to glycolysis 

(Warburg 1956a, Warburg 1956b). In normal cellular metabolism and in the presence 

of oxygen, glucose is first processed to pyruvate in the cytosol and then into carbon 

dioxide in the mitochondria. In anaerobic conditions and in cancer, even when oxygen 
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is abundant, glucose is processed to pyruvate and then into lactate as a waste product 

(Pertega-Gomes et al. 2015). In cancer, aerobic glycolysis is increased due to the high 

demand of proliferating cells and this is facilitated by the up-regulation of glucose 

transporters (Macheda, Rogers and Best 2005). The lactate that is produced as a by-

product to glycolysis is utilised by the tumour associated stroma as their main energy 

source (Sonveaux et al. 2008).    

1.4.4 Avoiding immune destruction 

The cells of the immune system play a vital role in immune surveillance for 

premalignant and incipient cancer cells as it has been shown that 

immunocompromised individuals are more susceptible to certain forms of cancer 

(Vajdic and van Leeuwen 2009). Also, in mice that are deficient in CD8+ cytotoxic T 

lymphocytes, CD4+ Th1 helper T cells, or natural killer (NK) cells and assessed for 

carcinogen-induced tumours and it has been found that there was an increase in 

tumour formation in immune-deficient mice, signifying the role of the innate and 

adaptive immune system in surveillance and in eradicating tumours (Kim, Emi and 

Tanabe 2007, Vesely and Schreiber 2013). However a secondary tumour would not 

occur if cancer cells derived from an immunocompromised host were implanted into 

an immunocompetent host, but cancer cells derived from an immunocompetent host 

would recapitulate the tumour of origin in all hosts (Teng et al. 2008, Vesely and 

Schreiber 2013).  Solid tumours have somehow evaded immune-surveillance and 

eradication, and it has been suggested that these cancer cells have a low immunogenic 

response and a process known as immune-editing takes place in which immune cells 

selectively target and eliminate highly immunogenic cancer cells (Teng et al. 2015).  
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Within a tumour microenvironment there are a number of different cell types that 

work symbiotically to propagate tumourigenesis. These cell types are cancer 

associated fibroblasts, endothelial cell, pericyte, immune inflammatory cells and CSC 

(Thoma et al. 2014).  

1.5 Cancer stem cells 

1.5.1 Stochastic vs hierarchy model for tumour formation 

There are two theories that have been widely accepted for tumourigenesis which are 

the stochastic model and the hierarchy model (Odoux et al. 2008). The stochastic 

model was the first concept proposed and it states that cancers are made up of a 

predominantly homogeneous cell population, and that a few cells may acquire genetic 

mutations and gain the potential for extensive proliferation and tumour formation and 

that any cell within the tumour has the potential to be invasive and metastatic (Odoux 

et al. 2008). The hierarchy model states that tumours are made up of a heterogeneous 

cell population and that CSC's form a hierarchy in which these cells can proliferate 

extensively to generate identical or phenotypically different progeny that can initiate 

new tumours (Cabrera, Hollingsworth and Hurt 2015). CSC also known as tumour 

initiating cells are a small population of cells within a tumour that have a similar 

phenotype to embryonic stem cells as these are self-sustaining, and can maintain the 

bulk of the tumour by dividing symmetrically or asymmetrically. This is required to 

maintain the CSC population and the non-tumorigenic cancer cells which in most cases 

form the mass of the tumour (Ho 2005, Clarke et al. 2006). 
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Figure 1.3 Stochastic model vs Hierarchy model. 

 

Figure 1.3 Stochastic model vs Hierarchy model. In the stochastic model it is thought 
that any cell within a heterogeneous cell population can give rise to a tumour 
consisting of a mixed population of cells. In the hierarchy model it is said that only the 
cancer stem cells can give rise to a heterogeneous cell population and the other, 
terminally differentiated cell types give rise to phenotypically identical cells.   

 

Since the identification of CSC's the hierarchy model has been studied extensively in 

vitro using colony forming assays in soft agar and spleen colony assay in which cells 

that express 'stem cell markers' form more colonies when compared to the non-stem 

like cells (Hamburger and Salmon 1977), and in vivo using transplant injection in 

NON/SCID mice, in which transplantation of a small number of CSC resulted in tumour 

formation whereas using the same amount or more of the non-stem like cells failed to 

form tumours (Chiba et al. 2006). However using a more immunocompromised 

NOD/SCID interleukin-2 receptor gamma chain-null (IL-2) strain of mouse, this can 

significantly increase the efficiency for tumour formation from unsorted cells (CSC and 

non CSC) (Quintana et al. 2008).  
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1.5.2 Hierarchy in stem cells 

Within the stem cell niche there is a cellular hierarchy based on the morphology, 

proliferation and differentiation potential of the cells and the clones of cells formed in 

the hierarchy are known as: holoclones, meroclones and paraclones (Barrandon and 

Green 1987). Holoclones are the least abundant colony forming cells within the 

hierarchy, but are the most proliferative and can differentiate into both meroclone and 

paraclone, whereas paraclones are terminally differentiated cells and can divide a 

limited number of times by symmetrical cell division. Meroclones are said to be in a 

transitional state between holoclones and paraclones and have some proliferative 

capacity although not as great as holoclones, and can differentiate into meroclones 

and paraclones (Barrandon and Green 1987). The hierarchy within stem cells has also 

been identified in many cancer cell lines including head and neck squamous carcinoma, 

oral squamous carcinoma and prostate cancer (Felthaus et al. 2011, Li et al. 2008, 

Locke et al. 2005, Doherty et al. 2011, Beaver, Ahmed and Masters 2014). It is 

apparent that holoclones may contain the CSC population, or the CSC form holoclones. 

Whichever concept it may be, holoclones have the ability to differentiate into 

meroclones and paraclones and upon terminal differentiation these colony forming 

cells lose the ability to transdifferentiate (Doherty et al. 2011), although in epithelial to 

mesenchymal transition phenotypic plasticity is observed (Baum, Settleman and 

Quinlan 2008, Lin et al. 2012) . 

Embryonic stem cells and Cancer stem cells have many shared characteristics. They are 

distinctive from differentiated cells due to their properties and phenotype and they 

are also unique in stem cell markers, allowing positive identification within a 

heterogeneous cell population although stem cells from different lineages, tissues and 

tumours generally have different cell markers. 
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1.5.2.1 Enrichment of CSC population 

The CSC population of cells grown in vitro remains low when these are cultured on a 

two dimensional (2D) flat substrate. This is due to the morphology (Knight & 

Przyborski, 2015) and gene expression being distorted and also restricts the three 

dimensional (3D) growth that would be found in vivo (C. H. Thomas, Collier, Sfeir, & 

Healy, 2002). Culturing cancer cells in a 3D matrix that is reflective of a tumour in vivo 

enriches for the CSC markers/phenotype and cell population (Chaturvedi et al., 2013b; 

Straussman et al., 2012). 

1.5.3 Markers of stem cells and CSC 

1.5.3.1 CD44 

CD44 is a cell surface glycoprotein that modulates signal transduction through binding 

to the ligand hyaluronan (hyaluronic acid) or with interactions with extracellular matrix 

components, and growth factors to regulate adhesion, differentiation and migration 

(Williams et al. 2013). CD44 is expressed in embryonic, hematopoietic and 

mesenchymal stem cells and also in epithelial and cancer stem cells (Haegel, Dierich 

and Ceredig 1994, Campagnoli et al. 2001, Du et al. 2008, Al-Hajj et al. 2003). The 

highly conserved CD44 gene produces various forms of CD44 protein due to different 

posttranslational modifications dependent upon cell type and growth conditions and 

splice site variants (Screaton et al. 1992). The CD44 gene consists of 20 different exons 

that can be alternatively spliced resulting in ~20 different isoforms with tissue and 

differentiation-specific expression (Liu and Sy 1997). CD44 exons 1–5 and 16–18 

translate to the smallest, constant and non-variant standard isoforms also denoted as 

CD44s and are the most abundantly expressed isoforms on the surface of most cells 

(Naor, Sionov and Ish-Shalom 1997). CD44 exons 6–15 and 19–20 are variants and 

inserted by alternative splicing (Screaton et al. 1992), resulting in larger isoforms that 
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lengthens the extracellular membrane domain that are subjected to alternative post-

translational modifications and ligand binding sites (Ponta, Sherman and Herrlich 

2003). Expressions of the variant isoforms of CD44 are regulated by oncogenic 

signalling pathways such as Ras-MAPK pathway and tissue and environmental specific 

factors (Hofmann et al. 1993, Weg-Remers, et al. 2001). In breast cancer cell lines the 

CD44 isoforms are heterogeneously expressed, however the variant isoforms are 

associated with other cancer stem cell phenotypes (Olsson et al. 2011). CD44 variants 

have also been implicated in breast cancer metastasis by binding to E-selectin (Shirure 

et al. 2015)   

1.5.3.2 CD24 

CD24 is a heavily glycosylated small cell surface protein that is anchored to the cell 

membrane by glycosyl-phosphotidyl-inositol, however due to variable glycosylation it 

has distinct physiological functions in different cell types with some functions still to be 

elucidated (Fang et al. 2010b). It is expressed in haematopoietic cells: B-cells and 

neutrophils but is not expressed in T-cells or monocytes. Its expression has also been 

identified in hematologic malignancies and solid tumours such as lung cancer, 

neuroblastoma, rhabdomyosarcoma, renal cell carcinoma breast and ovary (Akashi, 

Shirasawa and Hirokawa 1994, Jackson et al. 1992, Kristiansen et al. 2002, Kristiansen 

et al. 2003). CD24 is a ligand for adhesion molecule P-selectin that is expressed on 

activated endothelial cells and plays a role in leukocyte rolling or when attached to 

activated platelets (Aigner et al. 1997, Sammar et al. 1994). CD24 facilitates cell-cell 

and cell-extracellular matrix interactions. Cell surface mucin P-selectin glycoprotein 

ligand-1 is the major ligand for P-Selectin, however in its absence; CD24 has a similar 

affinity for P-Selectin and functions in the rolling of tumour cells and attachment of 

tumour cells to activated platelets (Aigner et al. 1998, Aigner et al. 1997). In bladder 
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carcinoma, CD24 has been found to induce proliferation and inhibit apoptosis and is 

regulated downstream of Ral GTPase signalling (downstream effectors of Ras 

oncoprotein) (Smith et al. 2006). However, breast cancers that express low level of 

CD24 are more tumorigenic, metastatic and invasive than their counterparts (Sun et al. 

2013b, Sheridan et al. 2006). 

1.5.3.3 CD133 

CD133, like CD44 is a five transmembrane glycoprotein that localises to membrane 

protrusions and was first identified in hematopoietic stem and progenitor cells (Yin et 

al. 1997). Two isoforms of CD133 have been identified and named CD133-1 (Yin et al. 

1997) and CD133-2 in which the latter has a 27 nucleotide deletion brought about due 

to alternative mRNA splicing (Yu et al. 2002). CD133-1 has been found to be expressed 

in human fetal liver, bone marrow and blood (Yin et al. 1997) whereas CD133-2 is 

mainly expressed in human foetal tissue, adult tissues and several carcinomas (Yu et al. 

2002). Although CD133 function still needs to be elucidated, it has been suggested that 

it functions in cell-cell interaction and signal transduction (Ren, Sheng and Du 2013). In 

cancer CD133+ cells are more tumorigenic (Ma et al. 2010, Fang et al. 2010a, Baba et 

al. 2009), and metastatic (Zhang et al. 2012) than CD133- cells and also show a higher 

degree of chemo-resistance (Damdinsuren et al. 2006) and radio-resistance (Piao et al. 

2012). 

1.5.3.4 ALDH1A 

The aldehyde dehydrogenase (ALDH) family are a group of enzymes with oxidative 

capabilities as these oxidise aldehydes to carboxylic acid. In humans there are 19 

different isoforms of ALDH  and depending on the enzyme family can vary 

distribution in tissue and organs and also enzyme levels (Sladek 2003, Yanagawa et al. 

1995). ALDH isoforms play a role in several physiological processes such as cell survival, 
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cell proliferation and early differentiation. In normal and cancer stem cells ALDH 

isoforms are found to be upregulated, in particular ALDH1A1 and ALDH3A1 (Muzio et 

al. 2012). ALDH1A1 is suggested to be a "stemness" marker as it is involved in the 

oxidation of aldehydes which is essential for early differentiation and survival, and has 

been used in the identification of normal hematopoietic, neural and mammary stem 

cells (Chute et al. 2006, Corti et al. 2006, Hess et al. 2004, Ma and Allan 2011, Yoshida 

et al. 1998). Aldehyde dehydrogenase may also be a potential CSC marker as it has 

been used to identify the most primitive, clonogenic cells in many malignant tissues 

(RW.ERROR - Unable to find reference:84, Emmanuelle Charafe-Jauffret et al. 2010, 

Croker et al. 2009, Huang et al. 2009, Burger et al. 2009, Wu et al. 2013, Doherty et al. 

2011).  

1.5.3.5 ABC transporters  

The ATP-binding cassette (ABC) transporters are a superfamily of membrane bound 

protein transporters that use ATP to transport substrates across membranes (Vasiliou, 

Vasiliou and Nebert 2009).  ABC transporters utilise energy from a pair of ATP 

molecules by binding to and/or hydrolysing this molecule to efflux or flip specific 

compounds across the membrane (Higgins 1992, Dean and Allikmets 1995). A subset 

of this superfamily known as the multidrug resistant (MDR) channels are important in 

stem cells as these remove intracellular cytotoxic agents, preventing cell death. The 

efflux transporter pumps have been identified in many stem cell types and in the 

cancer stem cell population offering resistance to anticancer drugs and increasing 

longevity. Hematopoietic stem cells express ABC transporters ABCB1 and ABCG2, and 

upon differentiation to progenitors or mature blood cells, expression of these genes 

are silenced (Gottesman, Fojo and Bates 2002, Kim et al. 2002, Scharenberg, Harkey 

and Torok-Storb 2002). In several tumour cell lines the first MDR superfamily, ABCB1 
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gene was the first ABC transporter identified and found to be amplified or 

overexpressed (Kartner et al. 1985, Riordan et al. 1985). Since then other ABC 

transporters have been found to be upregulated or amplified in cancer (Dean and 

Allikmets 1995, Kim et al. 2002, Cole et al. 1992, Chua et al. 2016). In Identifying the 

CSC population, cells stained with Hoechst dye can efflux this compound out of the cell 

and when analysed using flow cytometry appear as a side population of unstained cells 

(Moitra 2015). In cell lines derived from solid cancers, a small side population cells able 

to efflux Hoechst dye out of the cell have been identified, these representing the 

cancer stem cell population (Hiraga, Ito and Nakamura 2011, Jin et al. 2015, Boesch et 

al. 2016)  

1.5.3.6 Nanog, Oct4 and Sox2 

Nanog, Oct4 and Sox2 are transcription factors that are expressed in embryonic stem 

cells. Nanog, Oct4 and Sox2 form a core transcriptional regulatory circuit that play a 

crucial role in maintaining pluripotency and self-renewal by the transcriptional 

activation of target genes, and the repression of genes required for lineage specific cell 

differentiation (Loh et al. 2006, Boyer et al. 2005). In human ESC Nanog, Oct4 and Sox2 

co-occupy many of the same loci but with different response element's to induce gene 

expression (Boyer et al. 2005), and Oct4 and Sox2 form a cooperative interaction to 

drive target gene expression (Rodda et al. 2005). Wang et al, (2012) found that not 

only are these transcription factors co repressors of differentiation but they each 

regulate specific cell fate (Wang et al. 2012b). Deficiency in Nanog or Oct4 in ESC by 

knock-out (Mitsui et al. 2003) or knock-down (Nichols et al. 1998, Zaehres et al. 2005) 

experiments resulted in loss of pluripotency, diminished self-renewal capabilities and 

differentiation and in mouse ESC apoptosis is induced (Chen, Du and Lu 2012). 

Alternatively, over-expression of Nanog resulted in proliferation (Zhang et al. 2005). In 
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ESC, p53 induces cell differentiation by the down-regulation of Oct4, KLF4, LIN28A, and 

Sox2 by p53 transcriptional activity of the microRNAs miR-34a and miR-145 (Jain et al. 

2012, Qin et al. 2007). In addition, p53 inhibited Nanog expression in mouse ESC by 

directly binding to the promoter after DNA damage and there was a direct correlation 

to the down-regulation of Nanog transcription during differentiation and the induction 

of p53 (Lin et al. 2005). This activity of p53 is hypothesised to induce differentiation of 

ESCs in response to DNA damage and hence is potentially tumour suppressive. In 

cancer, the triad of transcription factors Oct4, Sox2 and Nanog have been implicated 

as the initiating factor and sustaining factors of tumour growth (Gangemi et al. 2009, 

Gidekel et al. 2003, Jeter et al. 2009, Niu et al. 2011, Piestun et al. 2006, Park et al. 

2016). 

1.5.4 Limitations of the cancer stem cell hypothesis 

Increasing evidence validates the hierarchy model CSC model, however transformation 

of a somatic cell may also be responsible for tumourigenesis as addition of 

endogenous Oct3/4, Sox2, c-Myc, and Klf4 can reprogram mouse embryonic or adult 

fibroblasts to pluripotent stem cells with embryonic stem cell properties, morphology 

and are able to form all three germ layers of a developing blastocyst (Takahashi and 

Yamanaka 2006). In addition, oncogenic reprogramming of primary differentiated 

fibroblast in vitro induces multiple cell lineages, facilitating tumour growth (Scaffidi 

and Misteli 2011). In non-tumorigenic mammary epithelial cell line MCF-10A Oct3/4, 

Sox2, c-Myc, and Klf4 induced a breast CSC phenotype with increased malignancy and 

formed multiple tumours in immuno-compromised mice (Nishi et al. 2014). In severe 

injuries, normal epithelial cells can de-differentiate to a stem like state (Blanpain and 

Fuchs 2014). Inducing pluripotent stem cell may be a similar mechanism in which re-
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expression of cancer stem cell markers arise corroborating the stochastic model, 

although both may play a part in tumourigenesis  

1.6 Introduction into prostate cancer 

Prostate cancer is the second most common cancer diagnosed in the UK affecting men 

with a peak age of 70 years. Over time there has been an increase in the number of 

men being diagnosed with prostate cancer (Cancer Research UK, 2015) due to 

improved diagnosis of asymptomatic patients (Chodak 2006).  

The prostate is a highly organised glandular tissue comprised of epithelial cells in a 

fibromuscular stromal network (Packer and Maitland 2016). The basal layer is 

composed of four different cell types which are stem cells, transit amplifying cells, 

neuroendocrine cells and committed basal cells and there is also a layer of columnar 

luminal cells (Litvinov et al. 2006, Isaacs and Coffey 1989). The basal layer forms ~40% 

of the epithelium with the remaining being that of the luminal secretory cells (Packer 

and Maitland 2016). Identification of basal and luminal cells is based on cell marker 

expression, as basal cells have low expression of the androgen receptor (AR) and are 

positive for cytokeratin 5 and 14, p63, CD44, and GSTP1 whereas luminal cells are AR+, 

and express cytokeratin 8 and 18, CD57, and NKX3 (Schrecengost and Knudsen 2013).  

1.6.1 Prostate CSC phenotype 

In the prostate epithelium there are a small population of ~1% of cells that make up 

the stem cell niche, and these have an increased expression of integrin α2β1  (Collins et 

al. 2001) and these cells exclusively express CD133 (Richardson et al. 2004). Prostate 

cancer stem cells are reported to have a CD44+/α2β1
hi/CD133+ phenotype as these cells 

that have been extracted from human prostate tumours are able to recapitulate the 

tumour of origin generating progeny of different cellular hierarchies (Collins et al. 
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2005). In addition, prostate CSC's are not eradicated by chemotherapy agents and 

radiotherapy but are induced in prostate cancer cell lines and are more tumorigenic 

and invasive (Wang et al. 2013a). CD44+ cells have been classified as more 

proliferative, clonogenic, tumorigenic and metastatic than CD44- cells and are able to 

differentiate into both androgen receptor +ve and -ve cells (Patrawala et al. 2006). 

CD44+/CD133+ prostate CSC when cultured in 3D induce differential expression of Wnt 

related genes and increased expression of APC and downstream targets than CSC 

cultured in 2D (Goksei et al. 2013). Expression of CD44 and CD133 is upregulated when 

cells are cultured in a 3D environment and the CD44+/CD133+ cells have an increase in 

PI3K/Akt signalling (Dubrovska et al. 2009).  

1.6.2 Development, progression and metastasis of prostate cancer 

Prostatic intraepithelial neoplasia (PIN) is defined by the neoplastic growth of epithelial 

cells within the prostatic duct which can lead on to high grade PIN, which is the most 

common precursor to prostate cancer  (Bostwick and Qian 2004).  PIN is characterised 

by highly proliferative cells within ducts and acini with some cytogenic changes and 

nuclear enlargement (Bostwick 2000). Increasing grades of PIN is associated with 

progressive disruption of basal layer, and high grade PIN can be identified based on 

four main architectural patterns which are flat, tufting, micropapillary and cribriform, 

(Bostwick 2000). High grade PIN and prostate cancer share many genetic alterations 

however it is the activation or inactivation of specific genes that induces carcinoma 

(Table 1). 
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Initiation and progression to prostate cancer 
Gene Product Human phenotype Reference 

Rb Cell-cycle regulator Lost or silenced in early 
onset of prostate 
cancer.  

(Steiner et al. 2000) 

p27 Cell-cycle regulator Lost or silenced in early 
onset of prostate 
cancer. 

(Slingerland and 
Pagano 2000) 

p16 Cell-cycle regulator Lost or silenced in early 
onset of prostate 
cancer. 

(Steiner et al. 2000) 

Telomerase Ribonucleoprotein Reduced telomere 
lengths and increased 
expression of 
telomerase. 

(Meeker 2006) 

Myc Transcription factor Amplified in some 
tumours 

(Koh et al. 2010) 

PIN and carcinoma 
PTEN 
 

Lipid phosphatase Loss of TSG leads to 
PI3K/Akt signalling. 

(Ferraldeschi et al. 
2015) 

TMPRSS2:ERG 
translocations 

Transcription factor Translocation of ERG to 
the TMPRSS2 promoter 
leads to a constitutively 
active ERG 

(Tomlins et al. 2005) 

E-cadherin Cell adhesion Reduced in PIN and lost 
in carcinoma. 

(Fan et al. 2012a) 

c-CAM Cell adhesion Reduced in PIN and lost 
in carcinoma. 

(Hsieh et al. 1995) 

Integrins Cell interactions Reduced expression of 
some family members 
in advancing prostate 
cancer. 

(Goel et al. 2008). 

c-Met Tyrosine kinase receptor Overexpressed in PIC, 
carcinoma and 
metastasis. 

(Varkaris et al. 2011) 

Advanced carcinoma and metastasis 
Androgen receptor Hormone receptor Expression maintained 

in androgen 
independent cancers. 
Often amplified or 
mutated. 

(Kahn, Collazo and 
Kyprianou 2014) 

p53 Transcription/apoptotic 
regulator 

Frequently mutated in 
metastasis, 
overexpression 
correlates with a poor 
prognosis. 

(Eastham et al. 1995) 

NKX3.1 Homeodomain 
transcription factor and 
TSG 

Down regulated in high 
grade carcinoma and 
lost in metastasis.  

(Gurel et al. 2010) 

Table 1. Common genetic alterations that are acquired in the normal prostate gland 

that induces PIN and carcinoma formation. During the progression from normal 

prostate to a neoplasm a number of successive mutations are acquired that facilitates 

cell proliferation. As an early neoplasm develops the number of mutations increases 

due to the loss of TSG and activation of oncogenes to form a PIN. Later stage and 

advanced carcinoma results in further genetic mutations and metastasis. 
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1.6.3 Cell of origin in prostate cancer 

Identification of the type of cell involved in the origin of cancer is important as 

different cell types can give rise to a sub-population of cells, distinguishable only by 

their phenotype which has significant implications for patient outcome. In prostate 

cancer it was originally thought that cancers originated from luminal cells, however 

recent evidence suggest that prostate cancer may be of basal or luminal origin 

(Schrecengost and Knudsen 2013). Contrary to this Wang et al 2014, identified that 

luminal cells are the favoured cell type of origin as determined by lineage tracing 

experiment and that basal cells only formed tumours after differentiating into luminal 

cells (Wang et al. 2014b).  

1.6.4 Grading and staging system in prostate cancer 

In order to establish how aggressive a prostate cancer and the likelihood of 

metastases, a grading system is used known as the Gleason classification system (Byar 

1973, Epstein et al. 2005). The Gleason classification system compares how reflective 

the tumour is to normal tissue and is put on a scale from 1-5 to generate a sum score. 

The two most common sum scores are then added together to form a Gleason sum-

score from 2-10.  The lowest sum score mediates a better prognosis as this is the most 

reflective of normal tissue and the higher the number, the least representative of 

normal tissue (Gleason 1992). Many carcinomas are diagnosed >6 indicating a poorer 

prognosis.  
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Figure 1.4. The Gleason Grading System as adapted from (Gleason 1992). Gleason 
grade 1 cells appear uniformed in shape and size with minimal nuclear changes. As you 
increase in stages the cells lose their cellular morphology with infiltration of 
neighbouring stroma and tissues. At pattern 5 there is a total loss of structure and is no 
longer representative of a normal prostate gland. 

 

In addition to the Gleason grading system a complex Tumour Node Metastasis (TNM) 

staging system is employed to determine the stage of the cancer. The T category 

consists of T1, T2, T3 and T4 with the T1 being the most desirable stage as this indicates 

that the tumour is too small to be identified using a scan or during examination. With 

increasing T stages there is a worse prognosis as identification of a T4 stage prostate 

cancer details that the cancer has spread to nearby tissues (Cancer Research UK, 

2015). T1 and T2 are potentially curative and may be suitable for radical prostatectomy 

or local radiotherapy, whereas most T3 and all T4 are not curative by surgery so 

systemic therapies are used (Caner Research UK, 2015). 

The N stage can be subdivided into 3 stages consisting of NX, N0 and N1. NX stage 

means that the lymph nodes cannot be assessed, N0 is where there nearby lymph 

1. Glands appear small and uniformed with minimal 
nuclear changes.

2. Acini is medium in size still separated by the 
stroma.

3. Variation in glandular size and location with 
infiltration to stroma and neighbouring tissues.

4. Atypical cells with considerable infiltration into 
neighbouring tissues.

5.Total loss of structure and no longer 
representative of normal tissue.

1

2

3

4
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nodes do not contain any cancer cells and the worse prognosis of N1 is where there 

are cancer cells in the nearby lymph nodes (Cancer Research UK, 2015). 

The M stage which is subdivided into 5 categories describes if the cancer has spread to 

different parts of the body consisting of M0, M1, M1a, M1b and M1c. M0 is the better 

prognosis with increasing malignancy as you move through the stages. M1 means that 

the cancer has spread outside of the pelvis and is divided into a, b and c dependent 

upon the location of the metastasis. Staging a cancer at M1a signifies that there is 

presence of cancer cells within the lymph nodes outside of the pelvis, M1b means 

there are cancer cells within the bone whereas M1c means there are cancer cells 

within other locations within the body (Cancer Research UK, 2015). 

Both the Gleason grading system and TNM staging are of particular importance as the 

outcome of these depicts which treatments options are available and determine 

survival rates for the patient. 

1.7 Introduction into breast cancer 

Breast tissue also referred to as the mammary gland is distinguishable from other 

organs as development does not fully occur until after birth (Russo and Russo 2004). 

The breast is made up of 12-20 lobes and within each lobe are many smaller lobules 

which make up the gland that produce milk in lactating women (Gusterson and Stein 

2012). Milk ducts are tubes that are connected to the lobes and lobules to transport 

milk to the nipple (Russo and Russo 2004). The vast majority of cancers arise at the 

lobes, lobules or ducts (Cancer Research UK, 2015). Ductal carcinoma in situ (DCIS) is a 

pre-invasive lesion that is confined to the ducts of the breast and is the most common 

type of non-invasive breast cancer diagnosed, and in many cases it may progress to 

invasive ductal carcinoma (Silverstein et al. 1995). Invasive ductal carcinoma- no 
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special type represents up to 80% of cancers diagnosed (Makki 2015). The majority of 

cells have a luminal cell phenotype that express estrogen receptors (ER), epithelial 

membrane antigen and cytokeratins: CK8, CK18 and CK19 (Fulford et al. 2006). 

However in invasive ductal carcinoma- no special type (IDC-NST) there is a small 

population of cells with a basal phenotype that express cytokeratins: CK5/7, CK14 and 

CK17 and smooth muscle markers and are negative for estrogen, progesterone and 

herceptin receptor (Her-2) (Gusterson et al. 1982, Nagle et al. 1986, Gould et al. 1990, 

Wetzels et al. 1991, van de Rijn et al. 2002, Fulford et al. 2006) .      

1.7.1 Breast CSC phenotype  

Cancer stem cells are difficult to isolate within a heterogeneous cell population due to 

their lack of accepted cell markers and due to stem cell markers being tissue specific. 

In normal breast epithelial there are a proportion of cells that are proposed to be 

stem/progenitor cells and these have a CD44+/CD24- phenotype and express other 

stem cell related genes (Bhat-Nakshatri et al. 2010, Ghebeh et al. 2013). Breast cancer 

stem cells are reported to have a CD44+/CD24- phenotype (de Beça et al. 2013, Al-Hajj 

et al. 2003, Wei et al. 2012, Ricardo et al. 2011) and can induce angiogenesis, invasion 

and metastasis (Sun et al. 2013b, Sheridan et al. 2006), are resistant to radiation 

(Phillips, Mcbride and Pajonk 2006) and chemotherapy agents (Ji et al. 2016). The 

CD44+/CD24- phenotype is largely expressed in tumours derived from basal cells that 

are negative for estrogen and progesterone receptors as well as HER2 (Honeth et al. 

2008, Giatromanolaki et al. 2011, Idowu et al. 2012), and is found in majority of 

hereditary BRCA1 breast cancers (Honeth et al. 2008). Patients with the CD44+/CD24- 

phenotype typically present with a 10 year lower median age than the CD44+/CD24+ 

expressing patients (Giatromanolaki et al. 2011). In addition lack of CD44 is associated 

with lymph node metastasis and dual negative for both markers appears to be the 
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worst phenotype, as this is associated with high histological grade (Giatromanolaki et 

al. 2011). The CD44+ population of cells has been associated with stem cell 

characteristics and CD24 positivity is related to differentiated epithelia (Park et al. 

2010). However these CSC markers are somewhat controversial (Ricardo et al. 2011) 

and the CD44+/CD24- phenotype is not expressed in all breast CSC (Honeth et al. 2008). 

Interleukin 8 (IL-8) is a chemokine that is expressed by many cell types and is 

chemotactic to leukocytes in inflammatory responses (Baggiolini and Clark-Lewis 1992, 

Harada et al. 1994). In normal tissues it is virtually undetected but can be rapidly 

induced by TNFα, and is upregulated in cancer (Ning and Lenz 2012). IL-8 binds to 

receptors CD181 and CD182, also known as CXCR1 and CXCR2 respectively, to induce 

its biological effects. In colorectal cancer, IL-8 induces proliferation, invasion, 

metastasis and angiogenesis by binding to CXCR2 (Ning and Lenz 2012). In breast 

cancer, CD181 is suggested to be a CSC marker as cells that are positive for both CD181 

and Aldehyde dehydrogenase, a putative CSC marker can reconstitute a 

heterogeneous tumour with phenotypically different progeny, and the hierarchy 

within tumours is facilitated by IL-8/CD181 signalling (Ginestier et al. 2010). 

Additionally, the up-regulation of IL-8 in breast cancer is associated with a poorer 

prognosis and increases CSC self-renewal of cell lines (Brandolini et al. 2015). 

1.7.2 Breast cancer grading and staging system 

In breast cancer grading there are a number of grading systems employed to describe 

the aggressive potential of the tumour with low grade tending to be less aggressive 

than high grade cancers. The Nottingham histological score system takes into 

consideration of 3 aspects of the tumour which include the amount of gland formation 

in relation to differentiation, nuclear pleomorphism and mitotic activity with each 
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feature scoring from 1-3. Each score is then added to give a final score between 3-9. 

Grade 1 tumours have a score of 3-5 whereas Grade 2 and 3 tumours score between 6-

7 and 8-9 respectively (Cancer Research UK, 2015). 

Breast cancers are also staged using a TNM scoring system with subdivisions within 

each category. The T stage can be divided into TX, Tis, T1, T2, T3 and T4 with further 

division within each T category. TX means that the tumour cannot be scored whereas 

Tis is ductal carcinoma in situ. In stages T1 to T4 the increase in number reflects the 

increase in size of the tumour (Cancer Research UK, 2015).  

The N stage is further divided into N1, N2 and N3 with further subdivision within each 

category with the higher category representing cancer cells being present in lymph 

nodes that are not directly next to the primary cancer (Cancer Research UK, 2015). 

The M stage is divided into 3 categories to identify if the cancer has metastasised and 

where in the body these cells have been found. These sub-divisions are M0 which 

means that the tumour has not spread, cMo(i+) means that there is no sign of cancer 

during physical examination, scans or X-rays but are detected in blood, bone marrow 

or lymph nodes identified using laboratory testing. M1 means that the cancer cells 

have metastasised to another part of the body (Cancer Research UK, 2015). 

As in prostate cancer, the grade and stage of the cancer helps determine treatment 

options for the patient in addition to determine chance of survival.  

1.7.3 Cell of interest in breast cancer 

 In the vast majority of breast cancers it has been found that the cell of origin is 

derived from the luminal population and that basal cells may only contribute to the 

rarer forms of cancer (Keller, et al. 2012). In addition, basal-like breast cancers that 
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represents BRAC1 cancers were originally thought to have developed from a 

transformed basal stem cell, however it has been demonstrated that luminal 

progenitors can give rise to cells with basal like phenotypes, demonstrating phenotypic 

plasticity under selective conditions (Molyneux et al. 2010) 

1.8 Genetics of cancer 

1.8.1.1 p53 

Tumour suppressor gene p53 is probably the most frequently mutated gene in cancer, 

and is usually subjected to point mutations (Hainaut et al. 1998). In normal cells p53 is 

rapidly degraded, however in cancer the mutated allele translates to an abnormally 

stable protein that accumulates within the nucleus. Mutated p53 is normally 

associated with a more aggressive form of cancer, typically metastatic and androgen 

independent, although mutated p53 may also be expressed in primary tumours 

(Grignon et al. 1997, Meyers et al. 1998, Ecke et al. 2007).  

1.8.1.2 PTEN 

Phosphatase and Tensin (PTEN) homolog located on chromosome ten was originally 

identified as a TSG in 1997 and is frequently mutated and inactivated in breast, brain 

and prostate cancer (Li et al. 1997). PTEN is an inhibitor of the PI3K signalling pathway 

that when stimulated goes on to activate effector molecules that induce cell growth, 

proliferation, survival and motility (Leslie and Downes 2004)  Most mutations result in 

truncation or frameshift resulting in inactivation of the phosphatase subunit (Leslie 

and Downes 2004) in addition to point mutations (Han et al. 2000).  

1.8.1.3 BRAC1 and BRAC2 

Breast cancer susceptibility gene 1 (BRAC1) and BRAC2 are tumour suppressor genes 

that are commonly associated with early onset, hereditary breast cancer (Hall et al. 

1990) and sporadic breast cancer (Futreal et al. 1992, Futreal et al. 1994). In response 
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to DNA damage, BRAC1 is activated via phosphorylation by proliferating cell nuclear 

antigen (PCNA), antaxia telangiectasia mutated (ATM) kinase, ATM related kinase 

(ATR) or CHK2 (Thomas et al. 1997, Cortez et al. 1999, Helt et al. 2005, Chaturvedi et al. 

1999). Activated BRAC1 then interacts with proteins involved in DNA repair, and also 

plays a role in transcriptional regulation of cell cycle control genes as reviewed by 

Yoshida et al (2004) (Yoshida and Miki 2004). 

  



37 
 

1.9 Overall aims and hypothesis  

The overall aim of this thesis was to identify a CSC-targeting agent that induced cell 

cycle arrest and apoptosis in breast and prostate cancer cell lines cultured in 2D and 

3D cell culture. 

1.9.1 Hypothesis 1: 

 3D cell culture selects for a cancer stem cell-like phenotype in breast and 

prostate cancer cells vs 2D cell culture. 

Cell lines cultured as monolayers for cell based assays and drug toxicity studies are not 

reflective of a tissue, or tumour of origin (Knight & Przyborski, 2015). In addition, 2D 

cell culture selects for the most dominant sub-population that likely represents the 

most proliferative cells, and may not represent the slow dividing CSC population 

(Rowehl et al., 2014). Using 3D cell culture, prostate and breast cancer cell lines can be 

propagated to enrich for spheroid formation which is a CSC characteristic, and induce 

expression of a CSC phenotype. 

1.9.2 Hypothesis 2: 

 Nanog-GFP reporters (NRE-GFP) select for CSC-like phenotype in breast and 

prostate cancer cells 

 3D cell culture selects for Nanog-positive cells 

Reporter cell lines that express GFP under the control of a Nanog response element 

allows the study of CSC and their characteristics in real time, aiding in CSC proliferation 

in various cell culture environments, location in 2D and 3D cell culture and 

identification of other CSC markers that may be co-expressed.   

1.9.3 Hypothesis 3: 

Novel Withanolide derivative LG-02 and Withanolide E (WE) target breast and prostate 

cancer growth both in 2D and 3D cell culture. 

As only 10% of drugs progress through to clinical development, partly due to 2D cell 

culture being misleading and unreliable, 3D cell culture is more representative of a 
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tumour microenvironment and assaying for drug responses would be more reflective 

of drug responses in vivo. Withanolide derivatives have been investigated for many 

years due to their anti-cancerous properties and have recently been identified as CSC 

targeting agents; however concentrations used to induce a biological affect may have 

increased toxicity to the host. Identification of a withanolide derivative that has a high 

therapeutic index and is able to target the bulk of cancer cells in addition to the CSC 

which normally facilitate tumour reoccurence and a more aggressive phenotype may 

lead to predictive data and increased reliability of compounds during clinical 

progression. 
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2 Comparison of a cancer stem cell     

 phenotype in two dimensional vs       

 three dimensional cell culture 
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2.1 Introduction 

CSC as discussed in chapter 1 are a small population of cells within a tumour that are 

self-sustaining, and can maintain the bulk of the tumour by dividing symmetrically or 

asymmetrically in order to maintain the CSC population and the non-tumorigenic 

cancer cells, which in most cases form the mass of the tumour (Ho 2005, Clarke et al. 

2006). 

CSC were first identified in 1994 from patients with acute myeloid leukaemia (AML) as 

cells expressing cell surface markers CD34+/CD38- were able to proliferate extensively 

and migrate to the bone marrow when transplanted into severe combined immune 

deficient (SCID) mice, disseminating a leukemic morphology similar to that of 

leukaemia patients (Lapidot, et al. 1994). Since this discovery, there has been a huge 

influx of research into the identification of other CSC markers and phenotypes in all 

cancer types.  

2.1.1 Mimicking a tumour microenvironment using three dimensional cell culture  

For many years it has been apparent that cells respond to local signals and cues within 

their environment which in turn has an effect on function, proliferation and 

differentiation (Baker and Chen 2012). Traditionally, the growth of mammalian cells in 

vitro has been carried out in 2D in which cells are cultured on a flat substrate as 

monolayers. 2D cell culture flattens and distorts the cell morphology, induces 

cytoskeleton remodelling and alters the nuclear shape (Knight and Przyborski 2015) 

which can alter gene and protein expression (Thomas et al. 2002). Vergani et al (2004) 

has found that culturing cells on different chemical features of the substratum can 

induce expression of c-jun, c-myc, c-fos and collagen, confirming that mechanical 

factors external to the cell can modulate gene expression through remodelling of the 

chromatin structure (Vergani, Grattarola and Nicolini 2004). Cells grown in 2D are 
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polarised and have an uneven distribution of receptors and adhesion molecules, with 

the majority of adhesion proteins located at the ventral surface in which they attach to 

the rigid surface (Bokhari et al. 2007b). Growing cells in 2D provides limited 

information on phenotype, tissue architecture, cellular interactions and drug response 

and is not representative of the tissue of origin (Knight and Przyborski 2015).  

Currently, much focus into cancer research has been to investigate the role of the 

tumour environment in facilitating tumour growth, migration and drug resistance 

using 3D cell cultures. As cancer is a complex disease comprised of tumorigenic and 

malignant cells, and non-cancerous cell types such as endothelial cells, fibroblasts and 

immune cells (Hanahan and Weinberg 2011), 3D cell culture models have been 

developed and applied to examine the role of intra- and inter-cellular signalling 

networks and crosstalk within the tumour microenvironment (Thomas et al. 2002, 

Knight and Przyborski 2015). Limitations that occur with 2D cell culture grown as 

monolayers are overcome using a 3D cell culture model as this system can mimic the 

cellular heterogeneity, hierarchy and complex tissue architecture and represent 

structures that are present within a tumour microenvironment (Straussman et al. 

2012, Chaturvedi et al. 2013b). 3D cell culture can also give mechanistic information 

about cellular and molecular modifications that occur within the tumour niche (Thoma 

et al. 2014). 3D cell culture offers an optimal micro environment for proliferation, 

differentiation and function that can form tissue like structures in vitro (Knight and 

Przyborski 2015) and is more enriching for a CSC phenotype (Ghajar and Bissell 2010, 

Hirschhaeuser et al. 2010) such as CD44 role in metastasis, ABC transporters in efflux 

of cytotoxic agents or ALDH role in detoxification. 
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Figure 2.1. The tumour microenvironment 

 

Figure 2.1 The tumour microenvironment adapted from Thoma, Zimmermann et al. 
2014 (Thoma et al. 2014). A) A tumour consists of various cell types coexisting to 
facilitate further growth. Extracellular matrix (ECM) components are secreted by cells 
and collagenous fibres are formed embedding and encapsulating the tumour offering 
protection from anti-cancer agents. At the site of invasion, collagenous fibres are 
aligned. B) An overlay of A emphasising the chemical gradients, physical barriers, and 
biological/phenotypical zones and niches that would be found within the tumour 
microenvironment (Thoma et al. 2014).  
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2.1.2 Types of 3D cell culture 

There are two main types of 3D cell culture systems that are being investigated to 

grow mono or co-cultures, for the simulation of the tumour microenvironment in vivo 

(Thoma et al. 2014). These can either be scaffold-based 3D matrices that are porous, 

permeable with mechanical characteristics that reflect that of the ECM or liquid based 

(scaffold-free) that do not rely on any additional support (Knight and Przyborski 2015). 

2.1.2.1 Scaffold free 3D cell culture 

Scaffold free, 3D cell culture form spheroids from mainly aggregates of cells but can 

also be from single cell suspensions in which spheroids may be hypoxic due to the 

oxygen gradient (Fennema et al. 2013) and may include hanging drop method and 

spheroid formation using ultra-low attachment coated plates (Larson 2015). The 

hanging drop method has been used to culture cells in 3D to assess cell-cell and cell-

stratum cohesion (Foty 2011) however this method can be quite expensive, time 

consuming and technical. Culturing cells as spheroids using ultra-low attachment 

plates and serum free medium is simple to do however the plates used are very 

expensive and spheroid size may not be reproducible. 

2.1.2.2 Scaffold-based 3D cell culture 

Scaffold-based 3D cell culture may generate spheroids that are derived from a single 

cell, are heterogeneous with proliferative cells around the outer layer and quiescent 

cells near the necrotic hypoxic centre (Fennema et al. 2013). Types of scaffold based 

3D cell culture may include polymeric hard scaffolds and biological scaffold (Larson 

2015). 

Polymeric hard scaffolds have been investigated to assess cytotoxic effects of 

anticancer agents of cells grown in 2D and 3D, and it was discovered that cells grown in 

polymeric hard scaffolds are more resistant to apoptosis (Bokhari et al. 2007a). 
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Although polymeric hard scaffolds enrich a more resistant cell population the scaffolds 

degrade by hydrolysis, producing carbon dioxide and lowering local pH which may 

induce necrosis (Liu, Liu and Chen 2012). Biological based scaffolds such as collagen or 

proteoglycans are safer to use as these are bio-degradable and allow host cell 

deposition of extracellular matrix components when the scaffold is degraded, however 

some biological components may have poor mechanical properties and it may be 

difficult to extract cells from some of these matrices for gene expression analysis 

(Amp, Apos and Brien 2011). 

Hydrogels are a scaffold based 3D cell culture material that are used in many 

biomedical applications due to these being hydrophilic and having similar mechanical 

properties to native tissues (DeVolder and Kong 2012). A type of hydrogel named 

alginate has been used in tissue engineering (David et al. 2004) and transplantation (de 

Vos et al. 2003) due to it being a natural polymer with lack of immunogenicity and 

good biocompatibility (Burgarski, et al. 1994). Alginate is a natural, anionic compound 

that is derived from brown seaweed and is structurally similar to macromolecules 

present in vivo (Sakiyama-Elbert and Hubbell 2001). Aqueous alginate is gelated by the 

addition of crosslinking agents such as divalent cations Ca2+ as these can directly bind 

to the guluronate blocks of one polymer, forming junctions with adjacent polymer 

chains in an egg-box model of crosslinking (Grant et al. 1973).  Alginate gels are 

advantageous in 3D cell culture as formation by gelation with divalent cations 

encapsulates cells and does not have any unwanted effects on the cells or biological 

properties (Li et al. 2013). Limitations of using ionic cross-linked alginate is that these 

may dissolve due to the exchange of divalent cations with monovalent cations into the 

surrounding media therefore may not be suitable for long term investigations (Lee and 
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Mooney 2011), although supplementing medium with divalent cations can limit this 

process. Extraction of cells under physiological conditions for gene expression analysis 

can be carried out using an alginate dissolving buffer made up from chelating agents 

such as sodium citrate and EDTA (Xu et al. 2014). 

Culturing cancer cells in alginate has been shown to induce an increased CSC 

phenotype, tumorigenicity, metastasis and drug resistance than cells cultured using 

traditional 2D methods (Xu et al. 2014). Xu et al (2014) found culturing hepatocellular 

carcinoma cell lines in 3D from 3-20 days and compared against 2D cell culture 

enriched for expression of Oct3/4, Nanog, CD44, CD133 and ABCG2 mRNA expression, 

CD44 and CD133 protein expressing cells and several matrix metalloproteinases over 

time in 3D cell culture (Xu et al. 2014). 
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2.1.3 Study Aims, Objectives and hypothesis 

The study aim was to identify a cell culture model that would induce expression of CSC 

related genes and enrich for a CSC population. 

Hypothesis 

3D cell culture selects for a cancer stem cell-like phenotype in breast and prostate 

cancer cells vs 2D cell culture. 

The specific objectives of this study were: 

To identify the optimum time for culturing cancer cell lines as spheroids using alginate 

as a 3D cell culture model.  

To determine and compare expression levels of CD133 and CD44 in prostate cancer 

cell lines and CD181, CD44 and CD24 in breast cancer cell lines when cultured in 2D 

and 3D. 

To determine and compare expression when culturing in 2D and 3D of the 

CD133+/CD44+ prostate cancer stem cell phenotype. The CD44+/CD24- breast cancer 

stem cell phenotype and CD44+/CD181+ and CD181+/CD24- phenotypes.  
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2.2 Materials and methods 

2.2.1 Cell Culture regents: 

2.2.1.1 Complete medium 

450ml DMEM or RPMI (Thermo Fisher Scientific, Altrincham)  

50ml heat-inactivated Foetal Calf Serum (FCS) (Thermo Fisher Scientific) 

5ml 100 U/ml penicillin, 100 µg/ml streptomycin (Thermo Fisher Scientific) 

2.2.1.2 0.15M NaCl   

8.76g NaCl2 (Thermo Fisher Scientific) was dissolved in 1L dH2O to give a final 

concentration of 0.15M and autoclaved for 15 minutes at 121C, psi for 20min.. 

2.2.1.3 1.2% Alginate 

1.2g Sodium alginate (Sigma Aldrich, Dorset) was dissolved in 100ml of 0.15M NaCl and 

heated at 60C for ~3hrs until all Sodium alginate had dissolved and then filter 

sterilised using 0.2µm syringe filters (Fisher Scientific) . 

2.2.1.4 0.2M CaCl2 

22.2g CaCl2 was dissolved in 1L dH2O to give a final concentration of 0.2M and 

autoclaved for 15 minutes at 121C, psi for 20min.  

2.2.1.5 Alginate dissolving buffer 

14.2g of Sodium Citrate (55mM) (Thermo Fisher Scientific) and 8.76g EDTA (30mM) 

(Sigma Aldrich) was added to 1L dH2O and autoclaved for 15 minutes at 121C, psi for 

20min.  

2.2.1.6 Hoechst 33342 Stock solution 

Stock solution of 10mg/ml Hoechst 33342 (Thermo Fisher Scientific) in dH2O was 

prepared and aliquot into 10µl working solutions and stored at -20C.
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2.2.2 Cell culture methods 

2.2.2.1 Cell lines 

Cell Line Tissue Metastatic site Morphology Disease Age Gender  Ethnicity Supplier 

Ntera2 Testis Lung Epithelial like- 

differentiation 

changes 

phenotype 

Malignant 

pluripotent 

embryonal 

carcinoma 

22 Male Caucasian ATCC 

PC3 Prostate Bone Epithelial Grade IV, 

adenocarcinoma 

62 Male Caucasian ATCC 

Du145 Prostate Brain Epithelial Carcinoma 69 Male Caucasian ATCC 

LNCAP Prostate left 

supraclavicular 

lymph node 

Epithelial Carcinoma 50 Male Caucasian ATCC 

SUM159 Breast N/A 

(Infiltrating 

ductal 

carcinoma) 

Epithelial Anaplastic-

carcinoma 

 Female Caucasian Asterand 

(NCI) 

MCF7 Breast pleural 

effusion 

Epithelial Adenocarcinoma 69 Female Caucasian ATCC 

Table 2. Cell lines. NTera2 cell line is a testicular germ cell line used as a positive control for CSC markers. PC3, DU145 and LNCAP cell lines were used as a model of 

prostate cancer. SUM159 and MCF7 cell lines were as a used model of breast cancer. 
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2.2.2.2 Culturing cells  

NTera2, MCF7, PC3, DU145 and LNCAP cell lines were all purchased from ATCC and 

were cultured in 75cm2 flask (Thermo Fisher) with DMEM complete medium. SUM159 

cell lines were obtained from Dr Tom Sayers, National Institutes of Health (NIH), USA 

and cultured in complete RPMI medium. 

2.2.2.3 Passaging of cells 

Cell lines were passaged when these were 80% confluent. Culture medium was 

discarded and cells were washed in 1× Phosphate Buffered Saline (PBS) (Sigma Aldrich) 

to remove any residual medium. Cells were then removed by adding 3ml of 0.05% 

Trypsin-EDTA (Sigma Aldrich) per 75cm2 flask at 37C for 5-10min until all cells had 

detached. Inactivation of Trypsin-EDTA was achieved by adding in equal amounts of 

complete medium. 

2.2.2.4 Counting cells 

Cells were counted using the Countess Automated Cell Counter (Thermo Fisher 

Scientific) by mixing 10µl of cell suspension and 10µl of 0.4% (w/v) Trypan Blue (Sigma 

Aldrich) and adding to a countess chamber slide (Thermo Fisher Scientific). Dead cells 

that were stained blue by taking up the Trypan blue were excluded from the cell count.  

2.2.2.5 3D cell culture using Alginate bead model 

5x105 cells/ml of 1.2% Sodium Alginate was gently mixed to prevent air bubbles until 

cells were in a single cell suspension and evenly distributed. Cell suspension was taken 

up by a syringe and 19G needle. Cell suspension was released into 0.2M CaCl2 (Fisher 

Scientific) a drop at a time and then incubated at 37C for 10min to allow the alginate 

beads to polymerise. CaCl2 was removed and alginate beads were washed twice in 

0.15M NaCl, twice in complete medium and incubated in complete medium at 37°C in 

a humidified, 5% CO2. 
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2.2.2.6 Release of tumour spheres from alginate matrix 

Alginate beads are washed in 1× PBS and dissolved by placing 1 bead/0.5ml of alginate 

dissolving buffer for 10mins at 37C on an orbital shaker at 100g until the bead is fully 

dissolved. Cell suspension is then centrifuged at 400g to pellet the cells. Alginate 

dissolving buffer is then removed and cells are suspended in complete medium.   

2.2.2.7 Hoechst 33342 and Propidium Iodide stain for apoptosis/necrosis 

Cells were stained with Hoechst 33342 and Propidium Iodide to determine the viability 

of the cells. Hoechst 33342 was used to assay the number of viable and apoptotic cells 

and Propidium Iodide was used to identify late stage apoptotic and dead cells. Cells 

were treated with 10µg/ml of Hoechst 33342 and 1µg/ml Propidium Iodide solution 

(Sigma Aldrich) and incubated for 20-25min at 37°C in a humidified, 5% CO2 

atmosphere. Cells were imaged using the Olympus IX81 inverted fluorescence 

microscope to assess cell viability using Cell-F software (Olympus).   

2.2.2.8 Hoechst 33342 and Propidium Iodide stain of 3D cell culture 

Cells cultured in alginate were stained with 10µg/ml of Hoechst 33342 and 1µg/ml 

Propidium Iodide in complete medium and incubated for 20-25min at 37°C in a 

humidified, 5% CO2 atmosphere. Alginate bead containing spheroids are thinly sliced 

using a disposable scalpel and flattened on a glass slide and coverslip.  In other 

experiments cells were released from alginate as described in (Figure 2.2.2.5) and 

stained as above. Cells were imaged using the Olympus IX81 inverted fluorescence 

microscope to assess cell viability using Cell-F software (Olympus). 

2.2.3 Principles of flow cytometry 

Flow cytometric analysis is a technique that allows the identification of a cell type 

based on size, granularity and phenotype by passing an individual cell through a 

detector beam. Using hydrodynamic focussing a single cell suspension can be 
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separated and focused to allow the passage of single cells, one at a time through a 

detector beam. The light beams detect the forward and side scatter, which is the 

amount of light scattered as the beam passes through the cell. The forward scatter 

(FSC) gives information on the size of the cell and the side scatter (SSC) gives 

information about the granularity and complexity of the cell. The information obtained 

from FSC and SSC allow the positive identification of single cells from cellular debris, 

cell doublets and clumps of cells which would distort the data. FSC and SSC are used in 

all aspects of flow cytometry, and is an important tool in identifying white blood cells 

and in cell cycle analysis.  

A common application of flow cytometry is the detection of fluorescently labelled 

antibodies that have bound to an intracellular or cell surface protein of interest. Cells 

that emit a fluorescent signal can be detected using fluorescent detector beams that 

have a range of wavelengths. Which fluorescent antibody to use is all dependent on 

the instrument and detector beams available. For example GFP is excited by the FL1 

detector at a wavelength of 400nm with a lesser peak at 475nm. Alexa Fluor647 has an 

excitation of 650nm and can be detected on the FL4 detector. The information 

obtained from the FSC, SSC and fluorescence emissions is used to generate a frequency 

histogram or a dot plot. 

Fluorescent activated cell sorting (FACS) is another technique applied to flow 

cytometry which allows the separation of cells based on different cell characteristics. 

For example, cells that are GFP positive can be isolated from the heterogeneous cell 

population using FACS. In the same manner as flow cytometry, after detection of a 

specific fluorescence cells are given a positive charge whereas negative cells are given 

a negative charge. Cells are then passed through an electromagnetic deflection system 
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and separated based on charge, resulting in two phenotypically different cell 

populations.   

 

 

Figure 2.2. Schematic representation of the FACSCalibur optical layout 4 colour 
detectors as adapted from Becton Dickinson (Dickinson, 2007) 

 

2.2.3.1 CSC phenotype stain and flow cytometry analysis 

5x105 cells in 1% FCS:PBS were placed in Flow Cytometry Tubes and centrifuged at 

1000rpm, 4°C for 5min. The Supernatant was removed leaving up to 100µl of residual 

1% FCS and the cell pellet was flicked repeatedly to break up the cells to obtain a single 

cell suspension. The SUM159 and MCF7 cell lines were incubated with 5µL of 0.2mg/ml 

PerCP-conjugated anti-mouse/human CD44 (IM7/ #103035), 5µL of 0.2mg/ml 

Alexafluor 647-conjugated anti-human CD24 (ML5/ #311109) and 5µLof 0.1mg/ml PE-

Used to for excitation and is 
detected with FSC, SSC, FL1, 
FL2 and FL3 detectors. Used to for excitation and 

detected with FL4 detector.

DM- Dichromic mirror that 
separates the wavelengths.

Fluorescence collection lenses: 
Collects  and aligns different 
wavelengths omitted from 
fluorophores that are bound to 
the target protein or DNA.
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conjugated anti-human CD181 (8F1/ #320608) (Biolegend). The same concentrations 

were used for the isotype controls: PerCP-conjugated Rat IgG2b (RTK4530/ #400630), 

Alexafluor 647-conjugated mouse IgG2a (MOPC-173/#400234) and PE-conjugated 

mouse IgG2b (MPC-11/ #400314) (Biolegend) for 1hr at 4°C. The PC3, DU145 and 

LNCAP cell lines were stained with 5µL of 0.2mg/ml PerCP-conjugated anti-

mouse/human CD44 (IM7/ #103035) and PE-conjugated anti-human 

CD133/1(3152C11/ #141204) and the same concentration of isotype controls: PerCP-

conjugated Rat IgG2b and PE-conjugated Mouse IgG1. The cells were stained at 4°C for 

1hr. Cells were then washed 2x in 1x PBS with centrifugation at 400g to remove excess 

antibodies and fixed at 4°C overnight in 1% Paraformaldehde (w/v) in PBS (Sigma 

Aldrich). 10,000 events were acquired using the FACSCalibur and antigen expression 

was determined using the CellQuest software. 
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2.3 Results 

2.3.1 Expression of cell surface markers CD44 and CD133 in positive control NTera2 

 cell lines as determined by flow cytometry. 

 

The human embryonal carcinoma cell line NTera2 was used as a positive control for 

expression of CD44 and CD133. The isotype controls (Mouse and Rat IgG conjugated to 

PE and Percp) were used to set the gates to distinguish between background 

fluorescence and positive expression of CD44 and CD133. NTera2 cell line express 

CD44 and CD133 in 12% and 33% of the cell population (fig 2.3). Dual positivity for cell 

surface expression of CD44 and CD133 was 3%.  
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Figure 2.3. Expression of CD133 and CD44 in NTera2 cell line. 

 

 

Figure 2.3 Expression of CD133 and CD44 in NTera2 cell line as determined by flow 
cytometry. a) Respective isotype controls conjugated to PE and Percp were used to 
incorporate a gate to identify background fluorescence. Everything to the left of the 
M1 was background fluorescent and taken to be negative.  b) Positive expression of 
CD133 and CD44 was detected in the NTera2 cell line as anything to the right of the 
M1 line is positive for cell surface markers. Dual positivity for CD44 and CD133 was 
identified in 3% of the cell population. Histogram plot and dot plot data are 
representative of 1 independent experiment. 
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2.3.2 Expression of CD44 and CD133 in prostate cancer cell lines cultured in 2D as 

 determined by flow cytometry. 

 

The PC3 cell line had a 96% population of CD44 expressing cells however CD133 was 

only expressed in 1% of the population (fig 2.4). DU145 cell line had a basal expression 

of CD44 in 46% of the cell population and 2% of the population are CD133 positive. The 

LNCAP cell line had a 1% population of cells that were positive for CD44 and CD133. All 

data were gathered on the FACSCalibur and analysed using BD CellQuest software.    
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Figure 2.4. Expression of cell surface markers CD44 and CD133 in prostate cancer cell lines cultured in 2D as determined by flow cytometry. 

 

 

Figure 2.4. Expression of CD133 and CD44 in prostate cancer cell lines grown in 2D. Prostate cancer cell lines were cultured in 2D and stained for 
basal expression of CD133 and CD44. CD133 expression was very low in all cell lines <2%. PC3 cell lines appeared to express CD44 in almost 100% of 
the cells whereas CD44 expression in the DU145 and LNCAP cell line was 50% and 1% respectively. All data is represented as mean ± standard error 
of the mean (SEM) and was carried out in three independent experiments. The histogram plots are representative of three independent 
experiments.  
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2.3.3 Dual expression of cell surface markers CD133 and CD44 in prostate cell lines 

 cultured in 2D as determined by flow cytometry. 

 

Prostate cancer cell lines were cultured in 2D to determine basal expression of 

CD44+/CD133+ prostate CSC phenotype. The CD44+/CD133+ phenotype was low as 

expected in all cell lines grown in 2D as these cells represent the CSC population. The 

PC3 cell line had a 1% population of cells with the CD44+/CD133+ phenotype and the 

DU145 and LNCAP had a 1.7% and 0.6% cell population respectively (fig 2.5). All data 

were gathered on the FACSCalibur and analysed using BD CellQuest software.     
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Figure 2.5. Dual expression of cell surface markers CD44 and CD133 in prostate cancer cell lines cultured in 2D as determined by flow cytometry. 

 

Figure 2.5 Dual expression of CD44 and CD133 in prostate cancer cell lines when cultured in 2D as determined by flow cytometry. Prostate cancer 
cell lines were seeded in 2D overnight prior to harvesting and antibody stain. Dual expression of CD133 and CD44 was <2% for all cell lines when 
cultured in 2D. All data is represented as mean ± SEM and was carried out in three independent experiments. The dot plots are representative of 3 
independent experiments. 
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2.3.4 Expression of cell surface markers CD181, CD44 and CD24 in breast cancer 

 cell lines cultured in 2D as determined by flow cytometry. 

 

Breast cancer cell lines were cultured in 2D to determine basal expression of CD181, 

CD44 and CD24. CD181 was expressed in 7% of MCF7 cells and in 9% of SUM159 cells 

(fig 2.6). The MCF7 cell line had a population of only 4% of cells with CD44 cell surface 

marker whereas CD44 was expressed in 100% of SUM159 cells. CD24 is expressed in 

70% of the MCF7 cell line and 85% of SUM159 cell line. All data were gathered on the 

FACSCalibur and analysed using BD CellQuest software.  
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Figure 2.6. Expression of cell surface markers CD181, CD44 and CD24 in breast cancer cell lines cultured in 2D as determined by flow cytometry. 

 

Figure 2.6. Expression of cell surface markers in breast cancer cells lines cultured in 2D. Breast cancer cell lines were seeded in 2D overnight prior to 
harvesting and antibody stain. MCF7 and SUM159 cell lines had <10% population of cells that were CD181 positivity. CD44 was expressed at low 
levels in the MCF7 cell line and ubiquitously expressed in SUM159 cell line. CD24 was expressed in 70% of MCF7 cells and in 85% of the SUM159 cell 
line. All data is represented as mean ± SEM and was carried out in three independent experiments. The histogram plots are representative of three 
independent experiments. 
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2.3.5 Expression of breast CSC phenotype in breast cancer cell lines cultured in 2D 

 as determined by flow cytometry. 

 

Expression of basal breast CSC phenotype CD44+/CD24- and potential breast CSC 

phenotypes CD44+/CD181+ and CD181+/CD24- was determined in SUM159 and MCF7 

cell line after culturing in 2D.  

MCF7 cell line had <1% of cells with the CD44+/CD24- breast CSC phenotype. The 

population of cells with the CD44+/CD181+ and CD181+/CD24- phenotypes was 1% and 

<1% respectively (figure 2.7).  

The SUM159 cell line had a 19% population of cells with the CD44+/CD24- breast CSC 

phenotype. The population of cells with the CD44+/CD181+ and CD181+/CD24- 

phenotypes was 9% and <1% respectively (figure 2.7).  

 



63 
 

Figure 2.7. Expression of breast CSC phenotypes- of SUM159 cell line cultured in 2D as determined by flow cytometry. 

 

Figure 2.7. Expression of breast CSC phenotype in SUM159 and MCF7 cell lines. Breast cancer cell lines were seeded in 2D overnight prior to 
harvesting and antibody stain. MCF7 and SUM159 cell lines had a <1% and 19% population of cells with the CD44+/CD24- breast CSC phenotype. The 
CD44+/CD181+ and CD181+/CD24- phenotypes were expressed in ~1% of MCF7 cell line. The SUM159 cell line had a 9% and <1% population of cells 
with the CD44+/CD181+ and CD181+/CD24- phenotypes. All graphical data is represented as mean ± SEM and was carried out in three independent 
experiments. The dot plots are representative of 3 independent experiments. 
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2.3.6 Identification of the optimum time for spheroid formation when prostate and 

 breast cancer cell lines are grown in 3D using alginate. 

 

Prostate and breast cancer cell lines were cultured for 0-14 days in alginate acid and 

stained with Hoechst 33342 and Propidium Iodide to asses for the optimum time point 

for spheroid formation. 

The PC3 cell line readily formed tight clusters of cells from day 7-14. At day 7 these 

clusters were not tightly packed, however by day 10 these appeared to be uniformed 

in shape although these were still small in size (<200µm) (fig 2.8). At day 14 these were 

tightly packed, uniformed, regular shape and larger in size (≥200µm), although not too 

large that the core of the spheroid would be necrotic.  Day 14 was considered to be 

optimum for assessing the role that the 3D environment would have on cell surface 

expression and CSC population.  

The DU145 cell line did not easily form spheroids, and represented small clusters of 

cells that had fewer cell-cell interactions than other cell lines investigated due to these 

being loosely compact (fig 2.8). Further time point in the DU145 cell line (data not 

shown) demonstrated that these cells failed to grow larger than clusters observed at 

day 14 and as a result day 14 was chosen for this cell line.  

The LNCAP cell line formed medium sized spheroids (~100µm) by day 7 in alginate and 

by day 14 these spheroids were tightly compact, dense and oblong shape spheroids. 

Day 14 was chosen as an optimum time point for the LNCAP cell line, and also due to 

time points used for the other prostate cancer cell lines (fig 2.8).  

The SUM159 cells were highly proliferative and formed large clusters of cells by day 7, 

however these spheroids did not appear to have strong cell-cell interactions due to the 
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observed loose cell-cell interactions (not tightly compact and spherical). By day 14 the 

spheroids had obvious necrosis in the core of the spheroid as determined by 

Propidium Iodide stain, due to uneven O2 distribution throughout the spheroid. As 

many of the cells were dead in the centre of the spheroid by day 14, the day 10 time 

point was taken for the SUM159 cells (fig 2.9).  

The MCF7 cell line formed spheroids at day 7, and continued to proliferate by days 10 

and 14. At day 14 these appeared tightly compact, dense and spherical in shape. Day 

14 was taken as the optimum time point for assessing the effect that a 3D 

environment has on cell surface expression and CSC phenotype (fig 2.9).   
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Figure 2.8. Identification of the optimum time for spheroid formation when prostate cell lines are grown in 3D using alginate. 

 

Figure 2.8. Identification of optimum time for spheroid formation when cells are grown in 3D using alginate. Prostate cancer cell lines were cultured for 0-14 
days in alginate acid and stained with Hoechst 33342 and Propidium Iodide to asses for the optimum time point for spheroid formation. PC3 cell line readily form 
spheroids after 7 days as these are tightly compact clusters of cells. By day 14 these spheroids are large, spherical and tightly compact. DU145 failed to form large 
tightly compact spheroids by day 14. LNCAP cell line formed tightly compact, medium sized, oblong shape spheroids by day 14. All images are representative of 2 
independent experiments. Images were captured on the mono-camera using the Olympus IX-81 fluorescent microscope using DAPI and Texas Red filters and scale 
bar represents 200µm. Arrows point to the optimised size of spheroid.  
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Figure 2.9. Identification of the optimum time for spheroid formation when breast cancer cell lines are grown in 3D using alginate. 

  

Figure 2.9. Identification of the optimum time for spheroid formation when breast cancer cell lines were cultured in 3D using alginate. Breast cancer cell lines 
were cultured for 0-14 days in alginate acid and stained with Hoechst 33342 and Propidium Iodide to asses for the optimum time point for spheroid formation. 
The SUM159 cells were highly proliferative and formed large clusters of cells by day 7 and at day 10 these were tightly compact. At day 14 some necrotic/hypoxic 
centres were observed. The MCF7 cell line began to form spheroids at day 10 and by day 14 these appeared tightly compact and spherical. All images are 
representative of 2 independent experiments. SUM159 cell line were imaged using the colour camera using the DAPI and Texas Red filters whereas the MCF7 cell 
line were captured on a mono-camera using the Olympus IX-81 fluorescent microscope using DAPI and Texas Red filters. Scale bar represents 200µm. Arrows point 
to the optimised size of spheroid.  

7                                                             10                                                         14

SUM159

MCF7
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2.3.7 Expression of CD133 and CD44 in prostate cancer cell lines cultured in 3D as 

 determined by flow cytometry. 

 

Prostate cell lines were cultured for 14 days in 3D to determine cell surface expression 

of CD133 and CD44. CD133 was expressed in <2% of PC3, DU145 and LNCAP cell lines 

cultured in 3D. CD44 was expressed in 15% of PC3 cells and was expressed in 6% and 

2% of the DU145 and LNCAP cell populations (fig 2.10). All data was gathered on the 

FACSCalibur and analysed using BD CellQuest software.  
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Figure 2.10. Expression of CD133 and CD44 in prostate cancer cell lines cultured in 3D as determined by flow cytometry. 

 

 

Figure 2.10. Expression of CD133 and CD44 in prostate cancer cell lines cultured in 3D as determined by flow cytometry. Prostate cancer cell lines 
were cultured for 14 days in 3D and stained to determine if this environment enriched for CD133 and CD44. CD133 expression were very low in all 
cell lines (<2%). PC3 cell lines appeared to contain approximately 15% of cells that were CD44 positive cells. CD44 expression in the DU145 and 
LNCAP cell line was 6% and 2% respectively. All graphical data is represented as mean ± SEM and was carried out in three independent experiments. 
The histogram plots are representative of three independent experiments. 
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2.3.8 Dual expression of cell surface markers CD133 and CD44 in prostate cancer 

 cell lines cultured in 3D as determined by flow cytometry. 

 

Prostate cancer cell lines were cultured in 3D to determine the effect this environment 

has on prostate cancer stem cell phenotype CD133+/CD44+.  

Dual expression of cell surface markers was low in all cell lines. The PC3 cell line had a 

0.5% population of CD133+/CD44+ cells. The DU145 and LNCAP cell line had similar 

populations with 0.6% and 0.5% positivity (fig 2.11).  
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Figure 2.11. Dual expression of cell surface markers CD133 and CD44 in prostate 

cancer cell lines cultured in 3D as determined by flow cytometry 

 

 

Figure 2.11 Dual expression of cell surface markers CD133 and CD44 in prostate 
cancer cell lines cultured in 3D. a) Prostate cancer cell lines were cultured in 3D to 
determine the effect this environment has on prostate cancer stem cell phenotype 
CD133+/CD44+. b) Dual expression of cell surface markers was <1% in all prostate 
cancer cell lines. All graphical data is represented as mean ± SEM and was carried out 
in three independent experiments. The dot plots are representative of three 
independent experiments.   
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2.3.9 Direct comparison of effects of 2D vs 3D cell culture on cell surface expression 

 of CD133 and CD44 in prostate cancer cell lines.  

 

Cell surface expression of CD133 and CD44 in prostate cancer cell lines cultured in 2D 

and 3D were directly compared to determine if 3D cell culture does enrich for CSC 

markers and phenotype as determined by flow cytometry. 

CD133 was expressed in ~1% of PC3 cells grown in 2D cell culture, and no significant 

changes were observed when cells were cultured in 3D. CD44 expression was 

significantly reduced (p<0.05) when culturing in 3D cell culture as a reduction from 

96% to 15% was observed (fig 2.12). A reduction of CD44 positive cells was observed 

when culturing DU145 cells in 3D from 46% to 4%, however this was not significant. 

There was also a 1% reduction in the CD133 positive DU145 when cultured in 3D 

although no significance was found. The LNCAP cell line expressed a 1% population of 

cells that were CD133 and CD44 when cultured in 2D and no significant differences 

were observed after 14 days of growth in alginate. The prostate CSC phenotype 

CD44+/CD133+ was <2% in all prostate cancer cell lines and was not enriched in PC3, 

DU145 and LNCAP cell lines as no significant differences between 2D and 3D cell 

culture was observed.  
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Figure 2.12. Direct comparison of the expression of CD133 and CD44  cell surface 

markers and CD133+/CD44+ phenotype in prostate cancer cell lines cultured in 2D and 

3D cell culture conditions. 

 

 

Figure 2.12. Direct comparison of CD133 and CD44 cell surface markers and 
CD133+/CD44+ phenotype when cells were cultured in 2D and 3D cell culture. All cell 
lines were seeded in 2D and 3D cell culture prior to harvesting and analysied by flow 
cytometry. a) A significant reduction in CD44 was observed when PC3 cell lines were 
cultured in 3D. CD44 was also reduced in DU145 although not significantly. No 
significant changes in CD44 expression were observed in the LNCAP cell line. No 
significant changes of CD133 in all cell lines. b) 3D cell culture did not induce the 
CD44+/CD133+ prostate cancer stem cell phenotype. All data is represented as mean ± 
SEM and was carried out in three independent experiments. Statistical analysis was 
carried out using nonparametric, Kruskal-Wallis Conover Inman.  (<0.05 *). 
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2.3.10 Expression of CD181, CD44 and CD24 in breast cancer cell lines cultured in 3D 

 as determined by flow cytometry. 

 

Breast cancer cell lines were cultured for 14 days for MCF7 cell line and 10 days for the 

SUM159 cell line in 3D, to determine cell surface expression of CD44, CD24 and CD181.  

CD181, CD44 and CD24 expression was 20%, 18% and 88% respectively when culturing 

the MCF7 cell line in 3D. The SUM159 cell line has a 44%, 91% and 14% population of 

CD181, CD44 and CD24 expressing cells (fig 2.13).  
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Figure 2.13. Expression of CD181, CD44 and CD24 in breast cancer cell lines cultured in 3D as determined by flow cytometry.

 

Figure 2.13. Expression of CD181, CD44 and CD24 in breast cancer cell lines cultured in 3D as determined by flow cytometry. MCF7 and SUM159 
cell lines were cultured for 14 and 10 days to determine the effects of 3D cell culture on cell surface expression. CD181 was expressed in 20% and 
40% of MCF7 and SUM159 cell lines. The MCF7 and SUM159 cell lines had an 18% and 91% population of CD44 expressing cells whereas CD24 was 
expressed in 88% and 14% of MCF7 and SUM159 cells. Graphical data is represented as mean ± SEM and was carried out in three independent 
experiments. Histogram plots are representative of 3 independent experiments.  
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2.3.11 Expression of breast CSC phenotype and 'putative' phenotypes of breast 

 cancer cell lines cultured in 3D cell culture as determined by flow cytometry.  

 

Breast cancer cell lines were cultured in 3D to determine percentage of cells with the 

CD44+/CD24- breast CSC phenotype and CD181+/CD44+ and CD181+/CD24-phenotypes. 

The MCF7 cell line has a 1% population of cells with the CD44+/CD24- breast CSC 

phenotype whereas the SUM159 cell line has a 76% cell population (fig 2.14). 

Expression of phenotypes CD181+/CD44+ and CD181+/CD24- was present in 24% and 

20% of MCF7 cells. There was a 42% population with the CD181+/CD44+ phenotype in 

the SUM159 cell line and a 36% cell population with the CD181+/CD24- phenotype (fig 

2.14). 
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Figure 2.14. Expression of breast CSC phenotype of breast cancer cell lines cultured in 3D. 

 

Figure 2.14. Breast CSC phenotype in breast cancer cell lines cultured in 3D. Breast cancer cell lines were cultured in 3D to determine percentage of 
cells with the CD44+/CD24- breast CSC phenotype and CD181+/CD44+ and CD181+/CD24-phenotypes. The MCF7 cell line had a 1% cell population with 
the CD44+/CD24- phenotype and 75% of SUM159 cells also had this phenotype. The CD181+/CD44+ and CD181+/CD24- phenotypes were present in 
24% and 20% of cells in the MCF7 cell line. The CD181+/CD44+ and CD181+/CD24- phenotypes were present in 42% and 36% of SUM159 cells. 
Graphical data is represented as mean ± SEM and was carried out in three independent experiments. Histogram plots are representative of 3 
independent experiments. 
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2.3.12 Direct comparison of the effects of 2D and 3D cell culture on cell surface 

 expression of CD181, CD44 and CD24 in breast cancer cell lines and 

 phenotypes.   

 

The MCF7 and SUM159 cell lines were cultured in 2D and 3D, to compare the effect of 

cell culture environments on cell surface expression of CD44, CD24 and CD181. Also, to 

investigate if the CD44+/CD24-  breast cancer stem cell phenotype was enriched in 3D 

and the CD44+/CD181+ and CD181+/CD24- phenotype as determined by flow 

cytometry. 

3D cell culture enriched for a significant increase in CD181 and CD44 expression in 

MCF7 cell lines (p *<0.05, **<0.01) however, no significant difference was observed in 

CD24 expression (fig 2.15). The CD44+/CD24-  breast CSC phenotype and CD181+/CD24- 

phenotype was significantly induced (p*<0.05) in the MCF7 cell line cultured in 3D. No 

significant changes in the CD44+/CD181+ phenotype were found when culturing in 3D.  

3D cell culture enriched for a significant increase in CD181 (p<0.005) and a significant 

reduction in CD44+ (P<0.05) and CD24+ (P<0.005) in the SUM159 cell line. The breast 

CSC phenotype CD44+/CD24- was significantly induced in the SUM159 cell lines 

(P<0.005). The CD44+/CD181+  and CD181+/CD24- phenotypes were also induced in the 

SUM159 cell line cultured in 3D (p<0.005). Statistical analysis was carried out using 

nonparametric, Kruskal-Wallis test with Conover Inman post-hoc test.   
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Figure 2.15. Direct comparison of the effects of 2D and 3D cell culture on cell surface 

expression of CD181, CD44 and CD24 in breast cancer cell lines and phenotypes.  

 

 

Figure 2.15. Comparison of 2D and 3D cell culture on cell surface expression and 
phenotype. MCF7 and SUM159 cell lines were cultured in 2D and 3D cell culture to 
compare the effect of cell culture environments on cell surface expression. The 
population of cells expressing CD181 and CD44 were significantly induced in MCF7 cell 
lines cultured in 3D. CD181+ cells were significantly enriched in the SUM159 cell line 
cultured in 3D whereas a significant reduction in the CD44+ and CD24+ cells was 
observed. 3D cell culture did enrich for MCF7 and SUM159 cells with the CD44+/CD24- 

and CD181+/CD24- phenotype and CD44+/CD181+ population of cells was increased in 
the SUM159 cell line cultured in 3D. Graphical data is represented as mean ± SEM and 
was carried out in three independent experiments. Statistical analysis was carried out 
using nonparametric, Kruskal-Wallis test with Conover-Inman post-hoc test.  (<0.05 *, 
<0.01 ** and < 0.001 ***).  
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2.4 Discusion 

2.4.1 Optimisation of 3D cell culture model using alginate 

PC3, DU145, LNCAP and MCF7 cell lines were cultured in alginate as a 3D cell culture 

model and harvested at day 14 based on their 3D morphology. The SUM159 cell line 

was selected at day 10 of growth in 3D. The PC3 cell line increased in size from days 7-

14 consistent with previous reports (Windus et al. 2012, Fan et al. 2012b). The PC3 cell 

line had a fairly compact and spherical morphology with no obvious signs of necrosis 

up to day 14, consistent with previous reports (Fan et al. 2012b, Sheng et al. 2013, 

Wang et al. 2013a) however, Windus et al, (2012) observed PC3 cell line to be irregular 

in shape with invasive/stellate radiating tubular processes when cultured in matrigel 

(Windus et al. 2012). In addition Windus et al, (2012) found that E-cadherin was down-

regulated at day 9 and there was an increase in N-cadherin, Vimentin, β1 integrin and 

chemokine receptor CXCR4 expression indicating a metastatic phenotype (Windus et 

al. 2012).  

 The DU145 cell line formed very small clusters that had little cell to cell attachments, 

and did not appear to form larger spheroids even after 14 days (data not shown) 

consistent with Chambers et al (2014) (Chambers et al. 2014). Day 14 was chosen due 

to consistency with the other prostate cancer cell lines and a similar study by Wang et 

al (2013) in which spheroids were cultured for 14 days in serum free medium (SFM) 

(Wang et al. 2013a). Wang et al (2013) found that the DU145 cell line formed compact 

spherical spheroids at day 14 that had an increased population of cells with the 

CD44+/CD133+ phenotype (Wang et al. 2013a).  The LNCAP cell line formed spheroids 

by day 10, consistent with previous reports culturing LNCAP cell line in SFM (Wang et 

al. 2013b) and by day 14 these were tightly compact and some were oblong shaped 

consistent with Chambers et al (2014).  
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The MCF7 cell line formed cluster-like spheroids from day 7, consistent with previous 

reports in which the MCF7 cell line was cultured in SFM for 7 days (Calvet, Andre and 

Mir 2014, Manuel Iglesias et al. 2013) and continued to grow by day 10 and 14.  Boo et 

al, (2016) found that culturing MCF7 cells using SFM stimulated adherence of 

neighbouring cells to form tight juctions, and micropores were present in the interior 

of the spheroids for nutrient and gas distribution (Boo et al. 2016). The SUM159 cell 

line was harvested at day 10 as these were largeer than 200µm, compact and 

spherical. By day 14 the core of the spheroid was probably hypoxic due to the 

presence of necrotic cells within the core. 

2.4.2 Expression of CD44 and CD133 in prostate cancer cell lines 

CD44 expression was found to be highly expressed in PC3 and DU145 cell lines and 

no/low expression in the LNCAP cell line corroborating earlier findings (Wang et al. 

2013a) and Verkaik et al, 1999 found CD44 expression is inhibited in the LNCAP cell line 

due to hypermethylation of the CD44 promoter (Verkaik et al. 1999). Mcfarlane et al 

(2004) also confirmed CD44 expression in the PC3 cell line but found that DU145 cells 

were CD44-ve (Draffin et al. 2004). This may be due to the lack of specificity of the 

antibody for all variants of the CD44 protein. Surprisingly, CD44 expression was 

significantly reduced when culturing the PC3 cell line in 3D and no significant 

differences were observed in the DU145 cell line.   Primary prostate tumours have 

been found to have 0.1-0.3% of cells that express CD133, data generated from 40 

different samples (Collins et al. 2005) whereas prostate cell lines PC3 and DU145 

contain a 1-2% population of CD133 expressing cells. It has been previously found that 

Androgen receptor positive cells such as LNCAP cells do not express the CD133 cell 

surface marker (Collins et al. 2005). CD133 expression was not enriched in any of the 

prostate cell lines when cultured in 3D, contradicting previous reports by Portillo-Lara 
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et al 2015 in which CD133 was upregulated when cells were cultured as spheroids 

using a scaffold free system of SFM and ultra-low attachment plates (Portillo-Lara and 

Alvarez 2015). 

2.4.3 Expression of CD44+/CD133+ prostate cancer phenotype   

Expression of the CD44+/CD133+ phenotype when culturing PC3 cell line in 2D 

represented a 1% cell population corroborating earlier investigations (Fan et al. 2012b, 

Rao et al. 2014, Sheng et al. 2013) although Wang et al, (2013) were unable to identify 

any PC3 cells with this phenotype (Wang et al. 2013a). 3D cell culture did not induce a 

stem cell phenotype after 14 days growth in alginate. Fan et al, (2012) found that 

culturing PC3 cells in 3D using SFM and ultra-low attachment plates enriched for a CSC 

phenotype as an 18 fold increase in cells with the CD44+/CD133+ phenotype (Fan et al. 

2012b). In addition Sheng et al (2013) and Wang et al (2013) also observed an increase 

in the CD44+/CD133+ population in the PC3 cell line when culturing in SFM (Sheng et al. 

2013, Wang et al. 2013a).   Rao et al (2014) found that culturing PC3 cell lines in 

alginate for 10 days did enrich for the CD44+/CD133+ phenotype, however these cells 

demonstrated phenotypic plasticity between 2, 6 and 10 days with the highest 

proportion of CD44+/CD133+ at day 2 implying that 3D cell culture for 14 days may be 

too long as cell surface expression may be diminished (Rao et al. 2014).  The 

CD44+/CD133+ population represented <2% of the DU145 cell population cultured in 

2D, corroborating earlier reports (Wang et al. 2013a) although Oktem et al (2013), 

previously found that these cells have ~10% cell population with this phenotype when 

culturing as monolayers (Oktem et al. 2013). Similarly to the PC3 cells cultured in 3D, 

the CD44+/CD133+ population was not enriched in the DU145 cell line. A previous 

study had found that 3D cell culture using SFM did enrich for the CD44+/CD133+ 

population in the DU145 cell line. Additionally, culturing only the CD44+/CD133+ CSC 
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population as spheroids and in monolayers induced expression of embryonic and 

mesenchymal lineage gene expression and stem cell related markers such as Sox2 and 

Oct4 although 3D cell culture was more effective (Oktem et al. 2013). The LNCAP cell 

line had little/no dual expression of CD44 and CD133 corroborating earlier 

investigations (Wang et al. 2013a) 

2.4.4 Expression of CD44, CD24 and CD181 in breast cancer cell lines 

CD44 expression was found to be highly expressed in the SUM159 cells and low 

expression was found in the MCF7 cell line, consistent with previously published data 

(Smith and Cai 2012). CD44 expression was significantly induced  in the MCF7 cells 

when cultured in 3D, consistent with Chen et al, (2012) (Chen et al. 2012) and reduced 

in the SUM159 cell line (100-91%). MCF7 cell line are a luminal cell type and contains a 

high percentage of cells expressing CD24 when cultured in 2D, consistent with 

previously published data (Fillmore and Kuperwasser 2007) however the basal cells 

SUM159 also contain a high population of cells with this phenotype contradicting 

previous report by Filmore et al 2008 (Fillmore and Kuperwasser 2008). Expression of 

CD181 in the SUM159 cell line cultured in 2D corrobarates earlier findings by Ginestier 

et al, 2010 (Ginestier et al. 2010). A significant upregulation of cells expressing CD181 

was  observed after 3D cell culture, consistent with a previous report in which CD181 

receptor was upregulated in a 3D co-culture system  (Infanger et al. 2013). CD181 was 

expressed in the MCF7 cell line grown in 2D confirming previuos data by Pang et al, 

(2015) (Pang et al. 2015) and was significantly upregulated when cells where cultured 

in 3D. 
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2.4.5 Expression of CD44+/CD24-, CD44+/CD181+, CD181+/CD24- phenotype in breast 

 cancer cell lines 

The MCF7 and SUM159 cell lines contain a population of cells with the CD44+/CD24-  

breast CSC phenotype as previously demonstrated by Meyer et al, (2009) (Meyer et al. 

2009). Calvet et al (2014) identified that 50% of MCF7 cells cultured in 2D had the  

CD44+/CD24-  breast CSC phenotype, and culturing cells in 3D using SFM surprisingly 

reduced the CSC population, although these cells were cultured for 10 days (Calvet, 

Andre and Mir 2014). The MCF7 and SUM159 cell lines cultured in 3D enriched for cells 

with the CD44+/CD24-  phenotype. Similarly, Chen et al (2012), demonstrated that 

culturing MCF7 cells in 3D induced a CD44+/CD24- phenotype and these cells where 

more tumourigenic and formed larger tumours in xenograft models (Chen et al. 2012). 

In addition Boo et al, (2016) found that 3D cell culture of the MCF7 cell line enriched 

for cells with CD44+/CD24-  phenotype and these  also had an increase in ALDH 

expression (Boo et al. 2016). As both breast cancer cell lines are enriched for this 

phenotype in 3D cell culture, future work identifying the CSC population, investigating 

the role of CSC related genes, drug discovery and responses would be more applicable 

to cells grown in 3D. 

Both MCF7 and SUM159 have a small population of cells with the CD44+/CD181+ 

phenotype when grown in 2D and was significantly upregulated in the 3D cell culture 

model. As CD44 and CD181 expression is associated with a poorer prognosis, their co-

expression induction could potentially be a breast CSC marker. Alternatively the 

CD181+/CD24- phenotype was also significantly induced in SUM159 cultured in 3D and 

although no current literature implies this as a breast CSC marker, further investigation 

would be needed to elucidate the role it plays. 
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2.4.6 Concluding remarks 

The majority of models used to enrich for the CSC population have used scaffold-free 

systems in which cells were cultured using SFM in ultra-low attachment plates. The 

data obtained from these particular studies appeared to enrich for the CSC population 

of cells with the CD44+/α2β1
hi/CD133+  or CD44+/CD133+ prostate cancer stem cell 

phenotype. Using alginate for culturing PC3, DU145 and LNCAP cells does not appear 

to enrich for cells with the CD44+/CD133+ phenotype, even though these cells form 

characteristic stem cell morphologies in vitro. This may be due to the time point 

chosen for phenotyping these cells grown in alginate as an earlier or possibly later time 

point may have been applicable for these cell types. Also the alginate concentration 

may not be representative of the ECM environment and mechanical forces that would 

be present in vivo. However it has been demonstrated for the first time that using 

alginate as a 3D cell culture tool does  enrich for the breast CSC population as a model 

for breast cancer. The MCF7 and SUM159 cell lines re-express, or upregulate the 

proportion of cells expressing the CD44+/CD24-  breast CSC phenotype and CD181 

expression alone, or incombination with other markers  was also upregulated, 

indicating a more aggressive, stem like population. To reiterate, 3D cell culture using 

alginate at the the allocated time points does induce a stem cell phenotype in breast 

cancer cell lines and subsequent experimental design identifying CSC population and 

CSC related genes would be based upon this model.  
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3    Assessment of a Nanog-driven GFP 

    reporter as a marker of CSC 
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3.1 Introduction 

Enriching and inducing a cancer stem cell phenotype in vitro can be achieved using 

various culture conditions such as chemotherapy treatment (Hamilton 2013), hypoxia 

(Liang et al. 2012) and 3D cell culture (Xu et al. 2014). 3D cell culture can propagate the 

most primitive of cell types within a heterogeneous population as shown in chapter 3 

as an increase in cells with the CD44+/CD24- breast CSC phenotype was found. 3D cell 

culture using ultra-low attachment plates and cancer stem cell medium has also been 

used to enrich for the CSC phenotype (Wang et al. 2014a) and enrichment of the CSC 

population may be partly due to the dispersed O2 in the centre of the spheroids 

resulting in a hypoxic environment (Mueller-Klieser, Freyer and Sutherland 1986, 

Khaitan et al. 2006). Hypoxia has been found to induce a breast CSC phenotype 

primarily due to the activity of hypoxia inducing factors (HIFs), predominantly hypoxia-

inducible factor 1α (HIF-1α) and confers increased invasive and metastatic activity 

(Conley et al. 2012, Schwab et al. 2012, Chaturvedi et al. 2013a). In normoxia, HIF-1α is 

hydroxylated, ubiquitinated and degraded by the proteasome, however in hypoxic 

conditions hydroxylation is inhibited thus allowing activation and dimerization of HIF-

1α with constitutively expressed HIF-1ß subunit for the transcriptional activation of 

target genes (Xiang et al. 2014). In cancer one of the genes that HIF-1α regulates is an 

embryonic stem cell marker called Nanog (Mathieu et al. 2011).  

3.1.1 The embryonic Nanog gene (Nanog) and its retrogene NanogP8 

The Nanog gene has been mapped to locus 12p13.31, and in addition, there are 10 

nanog pseudogenes, and 1 evolutionary evolved retrogene known as NanogP8 which is 

located at chromosome 15q14 (Booth and Holland 2004). The Nanog gene is 

composed of a 5' and 3' UTR, 4 exon sequences and 3 intron sequences that are 

spliced out during transcription whereas the NanogP8 locus contains only the protein 
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coding region. Nanog and NanogP8 mRNA share a 99% degree of similarity and only 

differ by 6 nucleotide substitutions (Booth and Holland 2004), translated to proteins 

with only 3 amino acid differences (Ambady et al. 2010).  

 Due to the similarities between these genes, it is likely that they have many similar 

functions as transgenic mice expressing low levels of NanogP8 protein are normal 

except for cataract formation. Alternatively high expression of NanogP8 is detrimental, 

causing developmental abnormalities with many organs (Badeaux et al. 2013) and it is 

likely that high expression of Nanog would induce similar effects.  

3.1.2 Structure and function of Nanog protein 

Nanog protein is around 34kDa (Zhang et al. 2005) and its structure is made up of 3 

subdomains consisting of the N-terminal which binds to the minor groove of DNA, the 

homeodomain (residues 96-155) which binds to the major groove of DNA and the C-

terminal which contains two transcriptional activator domain ranging from 155-240 

and 241-305 (Ambady et al. 2010) and 5 Tryptophan repeats (WXXXX) (ranging from 

residues 198-243) which facilitates homo and heterodimerization (Wang, Levasseur 

and Orkin 2008, Mullin et al. 2008). There are six amino acids in the homeodomain 

(136YKQVKT141) that allow nuclear localization of human Nanog, and within the 

tryptophan rich region there is a CRM1-indepenent signal for nuclear export which 

suggest cellular shuttling between compartments within the cell (Chang et al. 2009). 

Activation of Nanog occurs by dimerization, resulting in the transcriptional activation 

of downstream targets, although monomeric Nanog can bind to DNA, it is suggested 

that it has little/no effect on transcription and maintaining pluripotency (Wang, 

Levasseur and Orkin 2008). Nanog induces the transcription of downstream targets by 

binding to the consensus sequences: 5′-TAAT(TG)(TG)-3′ or 5′-
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(CG)(GA)(CG)C(GC)ATTAN(GC)-3′ (Ho et al. 2012). Although Nanog and NanogP8 share 

a 99% identity the difference in 3 amino acids may affect many aspects of protein 

function such as activity, dimerization, post translational modifications and 

transcription.  

3.1.3 Role of Nanog role in CSC 

Nanog positive cancer cells can divide both asymmetrically and symmetrically to form 

a heterogeneous cell population (Jeter et al. 2011a, Gong et al. 2012, Wang et al. 

2012b, Wang et al. 2014a, Shan et al. 2012). Nanog expression has been detected in 

most solid and haematological cancers including acute myeloid leukaemia, 

glioblastoma, breast, prostate and hepatocellular carcinoma (Lipscomb et al. 2007, 

Hwang, et al. 2013, Lombaerts et al. 2006, Cao et al. 2008, Kong et al. 2010, Xie et al. 

2010, Zhou et al. 2011, Shan et al. 2012, Sun et al. 2013a), and in colorectal cancer, 

human endometrial adenocarcinoma, gastric adenocarcinoma and lung 

adenocarcinoma, Nanog participates in tumour progression and oncogenesis (Meng et 

al. 2010, Chiou et al. 2010, Lin, Ding and Li 2012, Zhou et al. 2011).  In human 

endometrial adenocarcinoma Nanog is expressed but not in the benign endometrium 

(Zhou et al. 2011). In prostate cell lines (Jeter et al. 2011a, Gong et al. 2012) Nanog-

expressing cells preferentially form spheroids (Dontu et al. 2003). In prostate cell lines 

and tumours the CSC population is variable between 0.1%- 2% respectively (Collins et 

al. 2005, Gong et al. 2012), and Nanog expression is much higher in the CSC population 

than the bulk of the cells (non-CSC) (Gong et al. 2012). Using siRNA to knockdown 

Nanog, clonogenic growth and tumourigenicity is significantly reduced in prostate, 

breast and colon cancer cell lines (Jeter et al. 2009, Han et al. 2012) and in head and 

neck cancer tissues (Yu et al. 2011). Over-expression of Nanog in MCF7 cells induces 

resistance to chemotherapy agents by the up-regulation of genes required for cell 
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survival and detoxification such as Bcl-2, ABCG2, CD133, and ALDH1A1 (Jeter et al. 

2011a).  NanogP8 has been found to induce cell proliferation (Zhang et al. 2006) and 

facilitates cell proliferation in gastrointestinal carcinoma (Uchino et al. 2012). In 

prostate cancer cell lines and gastrointestinal cancer cells, primary tumours and 

xenograft models, Nanog derived from the NanogP8 locus is most predominantly 

transcribed (Jeter et al. 2009, Jeter et al. 2011a, Uchino et al. 2012) however in HepG2, 

MCF-7, colon cancer cell lines, breast, urinary bladder and gastric cancer tissue, Nanog 

transcripts are derived from both the Nanog and NanogP8 locus (Ishiguro et al. 2012, 

Zhang et al. 2006). In transgenic mice NanogP8 is biologically functional in 

development and does not induce spontaneous tumour formation when highly 

expressed, but had the opposite effect of inhibiting tumourigenesis by depleting stem 

cell and stem related genes (Badeaux et al. 2013).  

3.1.4 Study of Nanog responses using reporter cell lines 

Nanog or NanogP8 expression can be investigated in vitro by the use of reporter cell 

lines.  Reporter cell lines have been used for many years to investigate the signal 

transduction pathway, by monitoring the activation of a reporter gene such as 

luciferase or Green Fluorescent Protein (GFP). In a reporter vector there is a 

transcription response element (TRE) upstream from the reporter gene, and if a 

transcription factor such as Nanog binds to the TRE the cells fluoresce or luminesce.  

Commonly used plasmid based reporter vectors can be delivered into the nucleus of 

the cell for transient transfection and occasionally stable transfection, but have 

limitations in regards to transfection efficiency in difficult to transfect cells. Lentiviral 

expression vectors packaged into pseudoviral particles have a higher transduction 

efficiency and unlike retroviral systems do not require the cells to be dividing. 
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Figure 3.1. Nanog Response element Reporter Vector adapted from Systems 
Biosciences (SBI 2016). The pluripotency response reporters contains 5' and 3' long 
terminal repeats (LTR) that are located either side of the genes of interest (GOI). The 
LTR are integrated into the genome of the host cell at LTR or retrotransposon 
elements, incorporating the Nanog response element (NRE) upstream from reporters. 
The NRE contains 4 repeated units of ACCCTTCGCCGATTAAGTACTTAAG and is 
incorporated at the multiple cloning site of the vector that is directly upstream of the 
minimal cytomegalovirus promoter (mCMV). The mCMV contains binding sites for 
general transcription factors and RNA polymerase. Downstream from the mCMV is the 
copepod GFP (copGFP) and Luciferase reporters. Although not shown on the diagram 
copGFP has been destabilised and tagged for destruction by the proteasome. The T2A 
peptide is a self-cleaving peptide.  The Woodchuck Post-transcriptional Regulatory 
Element (WPRE) forms a tertiary structure to enhance gene expression.   

3.1.5 Proteasome activity as a marker of CSC 

Reporter cell lines have been used to identify cells with low 26S proteasome activity as 

a marker for CSC as cells that are transfected with a plasmid containing the sequence 

for carboxyl terminus of the murine ornithine decarboxylase (which directs the starting 

place of degradation) fused to GFP reporter, an increase in Green fluorescent cells 

identifies cells with low proteasome activity (Pan et al. 2010, Lagadec et al. 2014, 

Munakata et al. 2016). Cells that have low proteasome activity are more tumorigenic 

and are resistant to irradiation in head and neck squamous cell carcinoma and patients 

Nanog Response 

Element
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with higher proteasome subunit expression lived longer than their counterparts 

(Lagadec et al. 2014). Lung cancer cell lines cultured in 3D cell culture as spheroids 

were enriched for cells with decreased 26S proteasome activity reinforcing this CSC 

phenotype (Pan et al. 2010). In colorectal cancer cell lines, low proteasome activity 

correlated with increased spheroid formation, increased radio-resistance, chemo-

resistance and tumourigenicity (Munakata et al. 2016). Breast cancer cell lines have 

also been found to have a CSC population that is enriched for cells with low 

proteasome activity (Vlashi et al. 2013).     
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3.1.6 Study Aims, Objectives and Hypothesis 

The study aim was to assess the role of Nanog and/or NanogP8 using a lentivirus 

transduced breast cancer cell line, and to identify Nanog/NanogP8 expression in breast 

and prostate cancer cell lines.  

Hypothesis 

Nanog-GFP reporters select for CSC-like phenotype in breast and prostate cancer cells 

and 3D cell culture selects for Nanog-positive cells. 

The specific objectives of this study were: 

To develop and characterise a lentivirus transduced Nanog-GFP reported cell line in 

the SUM159 breast cancer. 

To determine whether 3D cell culture selects for CD44+ve, CD181+ve, CD24-ve and 

Nanog+ve cells cultured in 2D and 3D using a Nanog-GFP reporter assay.  

To identify whether Nanog and/or nanogP8 is responsible for Nanog-driven-GFP in 

these CSC-like cells. 

To validate whether observed Nanog-driven GFP in reporter cells reliably correlates 

with Nanog expression. 

To  identify Nanog expression in breast and prostate cancer cell lines and determine if 

the cells express Nanog or NanogP8 protein. 
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3.2 Methods 

3.2.1 Reagents: 

3.2.1.1 Cancer stem cell medium 

DMEM/F-12 phenol red free (Thermo Fisher Scientific),  

1:50 B-27 Supplement (50X), serum free (Thermo Fisher Scientific) 

4µg/ml Insulin human recombinant zinc solution (Thermo Fisher Scientific) 

0.4% Bovine Serum Albumin (Sigma Aldrich)  

20ng/ml Epidermal Growth Factor (EGF) (Peprotech). 

100ml of cancer stem cell medium was made up and filter sterilised. 

3.2.1.2 Bortezomib  

A 100mM stock solution was made by dissolving 38.4mg bortezomib (Selleckchem, 

Suffolk) in 1ml PBS and stored at -20°C. This was further diluted by serial dilution prior 

to stimulation of cells. 

3.2.1.3 Cell lysis buffer 

1ml CelLytic M (Sigma Aldrich) was added to 10µl Protease Inhibitor Cocktail (Sigma 

Aldrich). 

3.2.1.4 10% Sodium dodecyl sulfate polyacrylamide resolving gel  

9ml deionised H2O 

3ml 2M Tris (Sigma Aldrich) pH 8.8  

3ml Acrylamide/bis-acrylamide, 40% solution (Sigma Aldrich)  

10% Ammonium persulphate (Sigma Aldrich)   

20µl N,N,N′,N′-Tetramethylethylenediamine (Sigma Aldrich)  

10% SDS Solution (Thermo Fisher Scientific) 



95 
 

3.2.1.5 Sodium dodecyl sulfate polyacrylamide stacking gel 

3.6ml H2O 

0.7ml Tris pH 6.8 

50µL 10% SDS solution 

0.6 ml Acrylamide/bis-acrylamide, 40% solution 

 25µl 10% Ammonium persulphate 

10µl N,N,N′,N′-Tetramethylethylenediamine.  

Each layer of the gel was allowed to stand at room temperature until set. 

3.2.1.6 1× SDS running buffer 

1× SDS running buffer was made up by adding 3g Tris, 14.4g Glycine (Sigma-Aldrich) 

and 1g SDS (Sigma-Aldrich) to 1L dH2O. 

3.2.1.7 1× Transfer buffer 

1× Transfer buffer was made up using 3g Tris (25mM), 12.2g Glycine (190mM) in 900ml 

dH2O and incubated at 4C until chilled. 100ml Methanol was added directly before 

use.  

3.2.1.8 1×Tris buffered Saline (TBS) 

2.42g Tris (20mM) and 8.76g NaCl2 (150mM) was added to 1L dH2O.  

3.2.1.9 1×Tris buffered Saline with Tween (TBST) 

1L of TBS was added to 0.5ml Tween 20 (Sigma-Aldrich) 

3.2.1.10 Blocking solution 

5g Blotting-Grade Blocker (Sigma Aldrich) was added to 100ml TBST and inverted until 

all blotting grade blocker had dissolved. 
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3.2.1.11 Coomasie Stain 

Coomasie stain was made up using 0.1g Brilliant blue r-250 (Sigma-Aldrich), 60ml 

dH2O, 30ml Methanol and 10ml glacial acetic acid.  

3.2.1.12 Coomasie destain buffer 

Coomasie destain buffer was made up with 50ml dH2O, 40ml Methanol and 10ml 

Glacial acetic acid. 

3.2.1.13 Gel fixing solution 

Gel fixing solution was made up using 50ml Ethanol (Sigma Aldrich), 10ml Acetic acid 

glacial and 40% dH2O 

3.2.1.14 Protein solubulisation buffer 

256µl ZOOM 2D Protein solubilizer 1 (Thermo-Fischer Scientific) 

 2.10µl ZOOM Carrier Ampholytes pH 4-7 (Thermo-Fischer Scientific) 

1.14µl 2M DTT (Sigma-Aldrich) 

30µl dH2O 

trace of Bromophenol Blue (Sigma-Aldrich).   

3.2.1.15 Equilibration buffers 

1ml 1× NuPAGE was made up by adding 5ml 4× NuPAGE sample buffer to 15ml dh2O. 

1× sample reducing agent was made up by adding 1ml 10×sample reducing agent to 

9ml 1× NuPAGE sample buffer. 

3.2.1.16 Alkylating buffer 

Alkylating buffer was made up by adding 232mg Iodoacetamide (Sigma-Aldrich) to 

10ml 1× NuPAGE Sample buffer. 
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3.2.1.17 4% Paraformaldehyde 

4g Paraformaldehyde (Sigma Aldrich) was added to 100ml 1×PBS (Thermo Fisher 

Scientific) and dissolved on a magnetic hot plate until all the paraformaldehyde had 

dissolved.   

3.2.1.18 TAE solution 

TAE solution was made up using 4.85g Tris (40mM), 1.2g Acetic Acid (20mM) and 0.29g 

EDTA (1mM) and added to 1L dH2O. 

3.2.1.19 1% agarose gel  

1g of agarose was added to 100ml of TAE solution and heated using a microwave until 

all agarose had dissolved.  

When making up the 1% agarose gel, 2µl 5mg/ml Ethidium bromide was added to the 

gel when the gel solution had cooled enough to handle.   

3.2.1.20 Luria Broth (LB) broth 

LB broth was made up by adding 25g Luria Broth to 1L dh2O and autoclaved for 15 

minutes at 121C, psi for 20min. LB broth was allowed to cool before addition of 

100µg/ml Ampicillin.   

3.2.1.21 LB Agar plates 

LB Agar plates was made up by adding 35g LB Broth with agar (Lennox) (Sigma Aldrich) 

to 1L dh2O and autoclaved at 121°C, psi for 20min to sterilise and dissolve agar 

granules. Agar was allowed to cool before addition of 100µg/ml Ampicillin. Agar plates 

were poured, allowed to set at room temp for 2 hours and stored inverted at 4C.  

3.2.1.22 TE buffer  

157mg Tris-HCL (10mM) and 29mg EDTA (1mM) was added to 100ml dH2O and mixed 

until dissolved. Solution was adjusted to pH 8. TE buffer was autoclaved at 121°C, psi 

for 20min for sterilisation.  
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3.2.2 Cell culture methods: 

3.2.2.1 Lentiviral Transduction 

Lentivirus transduction was carried out at the NIH, USA in the SUM159 and PC3 cell 

lines using the pluripotency response reporter that contains the NRE-GFP and a control 

vector known as the minimal CMV-GFP (Systems Biosystems) but will be referred to as 

the Control which contains all aspects of the NRE-GFP excluding the NRE. This was 

carried out to determine if Nanog and/or NanogP8 could bind to the Nanog response 

element and induce expression of GFP. This was carried out at the NCI, and all 

subsequent experiments were carried out at SHU. 

The SUM159 and PC3 cell lines were seeded at 1×104 cells/well in a 48 well plate with 

complete medium and incubated overnight at 37°C in a humidified, 5% CO2 

atmosphere. Viral particles were thawed on ice and 10ml of complete medium was 

prepared with 5µg/ml Polybrene (Sigma Aldrich). Viral particles were diluted to 5MOI 

in 0.1ml complete medium with Polybrene and gently mixed. Culture medium was 

removed and 0.1ml/well viral stock dilution was added to cells and left overnight at 

37°C in a humidified, 5% CO2 atmosphere. The control well contained everything other 

than the viral particles. Viral particles were removed and cells were incubated with 

0.5ml complete medium and incubated overnight at 37°C in a humidified, 5% CO2 

atmosphere. Cells were passaged to 1:3 to allow transduced cells to proliferate further 

and incubated for 48hrs. GFP expression was confirmed using fluorescent microscopy. 

NRE-GFP positive cells were sorted based on GFP expression using FACS. 

3.2.2.2  3D cell culture using cancer stem cell medium and Ultra-low attachment 

  plates 

SUM159 Parent, Control and NRE-GFP cell lines were seeded at 1×105 cells/ well (6 

well) or 2x103 (96 well) in an ultralow attachment plate (Sigma Aldrich) and cultured 
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for 0-7 days in cancer stem cell medium at 37°C in a humidified, 5% CO2. The medium 

was carefully changed every 3 days so as to not dislodge the floating spheroids. GFP 

was assessed using flow cytometry and using fluorescent microscopy.  

3.2.2.3 Culturing cells in hypoxia 

Cell lines were seeded at 3x105 cells/6 well plate and placed at 37°C in a humidified, 

5% CO2 atmosphere overnight to allow cells to adhere. Plates were then transferred to 

a Hypoxic Glove Box (Coy Lab, USA) at 37°C with 5% O2 for between 1-72hrs. At 

allocated time points medium was collected from wells and cells were washed in 1× 

PBS and trypsinised using 0.4ml of 0.05% Trypsin-EDTA for 5min. Trysin-EDTA was 

inactivated using 1ml of complete medium and transferred to the tube containing 

collected medium. Cells were centrifuged at 1000rpm for 5 mins and supernatant was 

removed. Cells were fixed for 7min with 1% paraformaldehyde.  Paraformaldehyde 

fixed cells were centrifuged at 37°C and washed twice in 1× PBS. Cells were re-

suspended in 1× PBS for flow cytometry analysis using the BD FACSCalibur (Becton 

Dickinson). For direct comparison the method was carried out for cells incubated at 

21% O2. For cell viability and GFP expression by flow cytometry, medium was removed 

and cells were washed in 1× PBS and cells used for flow cytometry were fixed for 7min 

with 4% Paraformaldehyde. For cell viability, cells were stained with 10µM Hoechst 

33342 and Propidium Iodide (detailed in figure 2.2.1.6). Cells were imaged using the 

Olympus IX81 inverted fluorescence microscope using the Cell-F software (Olympus).     

3.2.2.4 Treatment of cells with the proteasome inhibitor Bortezomib 

Cell lines were seeded at 3x105 cells/6 well plate and 5x104 cells/96 well plate and 

placed at 37°C in a humidified, 5% CO2 atmosphere overnight to allow cells to adhere. 

Cells were then treated with 0-20nM Bortezomib (Selleckchem) for 24h or 72hrs. Cells 

were harvested and fixed using 4% Paraformaldehyde for flow cytometry analysis. 
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Alternatively, cells were viewed directly using the Olympus IX81 inverted fluorescence 

microscope using the Cell-F software (Olympus) prior to harvest and GFP expression 

was determined.  

3.2.3  Western blotting 

3.2.3.1 Protein Extraction  

Cell lines grown were seeded at 1x106 cells/well (6 well plate) (Thermo Fisher 

Scientific) with complete medium and incubated overnight at 37°C in a humidified, 5% 

CO2
 atmosphere. Supernatant was removed and cells were washed in 1× PBS. Cells 

were lysed with 250µl cell lysis buffer for 15mins at room temperature on an orbital 

shaker. Cell lysate was removed and centrifuged at 17,000g for 15mins to pellet 

cellular debris. Protein containing supernatant was removed to a chilled Eppendorf 

(Thermo Fisher Scientific) and incubated at -20°C for future protein concentration 

determination. 

3.2.3.2 Protein concentration determination using Bicinchoninic Acid Kit 

A standard curve for protein concentration was made from a stock solution of 

2.5mg/ml of Bovine Serum Albumin (Sigma Aldrich) in cell lysis buffer and serially 

diluted. Protein concentration was determined for all cell lines using the Bicinchoninic 

Acid (BCA) Kit following the manufacturer's instructions. Absorbance was read at 

560nm using the Perkin Elmer Wallac 1420 Victor2 Microplate Reader. 

3.2.3.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

20µg of protein was added to 4x Laemmli Sample Buffer (Thermo Fisher) and heated at 

95°C for 2mins to denature proteins and placed on ice. Protein and pre-stained protein 

molecular weight ladder (Thermo Fisher Scientific) was loaded into the wells of a 10% 

gel and run at 150V for 1hr using the Mini-PROTEAN Tetra Vertical Electrophoresis Cell 

(BIO-RAD) in 1× SDS running buffer.  
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3.2.3.4 Protein Transfer and western blot analysis  

For protein transfer onto a nitrocellulose membrane a gel was assembled according to 

the manufactures instructions and transferred onto a nitrocellulose membrane, 0.2 µm 

using a Mini Trans-Blot Cell (BIO-RAD) at 75V for 1hr in 1× Transfer buffer. The 

Membrane was briefly washed in TBST before incubating for 1hr at room temperature 

on an orbital shaker in blocking solution. Blocking solution was removed and 

membranes incubated in 1:1000 Rabbit Anti-Nanog (D73G4/ #4903S) and 1:5000 

Mouse Anti-α-Tubulin (DM1A/ #3763S) (Cell Signaling Technologies, Hertfordshire) in 

blocking solution at 4°C on an orbital shaker. Primary antibodies were removed and 

membranes were washed 3x5min in TBST and the membrane was incubated in 

1:15,000 IRDye® 800CW-conjugated Donkey anti-Mouse IgG and IRDye® 680RD-

conjugated Donkey anti-Rabbit IgG in blocking solution for 1hr at room temperature 

on an orbital shaker. Secondary antibodies were removed and membranes were 

washed in 3×10min in TBST. The Membrane was imaged using the Odyssey® CLx 

Imaging System and data was analysed using the LI-COR Image Studio Software for the 

Odyssey CLx. 

3.2.3.5 Coomasie Blue stain 

SDS gels were incubated with coomasie stain overnight on an orbital shaker. Coomasie 

stained gels were de-stained using coomasie de-staining buffer for up to 1hr on an 

orbital shaker. Excess stain was removed using dH2O. Gels were imaged using a digital 

camera.  

3.2.3.6 Silver stain 

SDS-PAGE gels were fixed overnight using gel fixing solution prior to silver staining. 

Silver staining was carried out using the ProteoSilver Plus Silver Stain Kit (Sigma-

Aldrich) following the manufacturer's instructions and stop solution was added after 
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3.30min. Gels were washed for 15min in ultrapure H2O. Gels were imaged using a 

digital camera. 

3.2.3.7 Optimisation of 2D gel electrophoresis 

40µg of protein lysate was solubilized using 256µl ZOOM 2D Protein solubilizer 1, 

2.10µl ZOOM Carrier Ampholytes pH 4-7 (Thermo-Fischer Scientific), 1.14µl 2M DTT 

(Sigma-Aldrich), 30µl dH2O and a trace of Bromophenol Blue (Sigma-Aldrich).  Protein 

solubilisation solution was added to the ZOOM IPG Runner Cassettes and ZOOM IPG 

Strip pH 4-7 (Thermo-Fisher Scientific) was then added to the cassette. Cassette was 

incubated overnight to allow for protein solubilisation. 2D gel electrophoresis was 

assembled using ZOOM IPG Runner System (Thermo-Fisher Scientific) following the 

manufacturer's instructions. Isoelectric focusing was as follows: 

STEP B 

Programme 

Time in min 

Voltage 1st 2nd 3rd 4th 

200 10 20 40 80 

450 7 15 30 60 

750 7 15 30 60 

1200 15 30 60 120 

Table 3. Optimising of isoelectric focusing, 1st dimension of 2D gel electrophoresis. 
Optimisation was carried out to improve focussing of proteins using Step B voltage 
gated 2D gel electrophoresis. The length of time in which the voltages were applied 
was doubled until the proteins were focussed.  

 

Zoom strips were then incubated in an equilibration buffer to prepare the sample for 

SDS-PAGE. 10ml of sample buffer with reducing agent was added to the cassette 

containing strips, for 15mins on a rotary shaker before it was decanted and then 10ml 
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of alkylating buffer was added for 15mins room on a rotary shaker. Alkylating buffer 

was removed and the gels were placed directly on top of a freshly prepared 10% SDS 

gel as previously detailed in (fig 2.2.1.9) or on to a NuPAGE 4-12% Bis-Tris ZOOM 

Protein Gels, 1.0 mm, IPG-well (Thermo-Fisher Scientific) for 2nd phase separation. 

400µl of 0.5% agarose (Sigma-Aldrich) was added to the top of the gel containing 

isoelectric focusing strip and SDS-PAGE was carried out as previously described in (fig 

3.2.3.3). 

3.2.4 Molecular biology 

3.2.4.1 RNA extraction 

Cell lines were seeded at 1x106 in a 6 well plate and incubated overnight at 37°C in a 

humidified, 5% CO2 atmosphere. Medium was removed and cells were lysed using 1ml 

TRI Reagent (Sigma-Aldrich) and incubated at room temperature for 10min. Cellular 

constituents were collected and 200µl of Chloroform (Sigma-Aldrich) was added. 

Sample was shaken vigorously and left to stand for 3min until separation occurred. 

Samples were centrifuged at 12,000g for 10min until separation of proteins, DNA and 

RNA had occurred. 500µL of the upper aqueous layer containing RNA was taken into a 

fresh tube. Equal amount of Isopropanol (Fisher Scientific) was added to the RNA and 

this was stored at -80°C for at least 1hr to allow the RNA to precipitate prior to 15min 

centrifugation at 12,000g. The RNA pellet was then washed in 70% Ethanol (Sigma-

Aldrich) and centrifuged at 8,000g for 5min. The supernatant was carefully precipitated 

and the RNA pellet was briefly dried on a heated block to remove residual ethanol 

taking care to not dry out the pellet. RNA pellet was re-suspended in 50µl UltraPure 

DEPC-Treated Water (Thermo-Fisher Scientific). 
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3.2.4.2 DNA clean-up 

RNA was quantified using the NanoDrop ND-1000 (Thermo Scientific) and analysed 

using the NanoDrop 1000 3.8.1 software. RQ1 RNase-Free DNase (Promega) was used 

to digest any contaminating DNA. 1U/µg RQ1 RNase-Free DNase (Promega) was added 

to 5µl of RNA, 1µl RQ1 RNase-Free DNase 10×Reaction buffer (Promega) and 3µl DEPC 

treated water and incubated for 30min at 37°C. 1µl RNase-Free DNase stop solution 

was added and heated at 65°C for 10min to inactivate the enzyme. RNA was incubated 

at -20°C for subsequent experiments.   

3.2.4.3 cDNA synthesis 

cDNA synthesis was carried out by adding together 4µl 5x Buffer, 2µl DTT, 0.5µl 

Random Primers, 0.5µl Super Script II Reverse Transcriptase (Thermo-Fisher Scientific), 

9.5µl UltraPure DEPC-Treated Water and 3µl RQ1-treated RNA that had been 

denatured for 5min at 60°C. The control contained everything other than the Super 

Script II Reverse Transcriptase (NO RT). Samples were incubated at 37°C for 2hrs to 

ensure all mRNA had been reverse transcribed. 

3.2.4.4 Genomic DNA extraction 

Cells were seeded at 1x106 cells/well (6 well plate) and incubated at 37°C in a 

humidified, 5% CO2 atmosphere overnight to allow cells to adhere. The following day 

DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN) following the 

manufacturer's instructions. The quality of the DNA was determined using the 

NanoDrop ND-1000 (Thermo Scientific) and analysed using the Nano Drop 1000 3.8.1 

software and the A260/A280 ratio of the isolated DNA was within 1.6-1.9. 

3.2.4.5 PCR and primer concentration optimisation 

NTera2 (NTERA2) is a human testicular embryonic carcinoma stem cell line (ATCC) used 

as a positive control for Nanog expression. NTera2 cDNA was amplified using the 
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polymerase chain reaction (PCR) to determine if these express Nanog or NanogP8 as 

detailed below.  

Primers were designed to amplify 1240 base pairs from Nanog or NanogP8 cDNA. PCR 

optimisation was carried out using NTera2 cDNA as these are a positive control for 

NTera2 expression. PCR was performed on genomic DNA as a positive control for 

NanogP8. 

PCR mastermix was made up using 17.75µl UltraPure DEPC-Treated Water, 2.5µl 

1.5mmol MgCl2, 0.5µl Immolase DNA Polymerase (Bioline, London), 2.5µl10x Buffer 

(Bioline) 1-100pmol 1240 Forward (F) and 1240 (R) primers, 10pmol dNTP (Qiagen) and 

1µl cDNA. Touchdown PCR was used for cDNA amplification.  

1240F and R primers: 

5' Upper 1240F accccagcctttactcttcctacc 

5' Lower 1240R tacgatgcagcaaatacgagacct  

 

Touchdown PCR cycling parameters 

95°C for 10min 

x3 cycles 

95°C for 30s 

63°C for 30s 

72°C for 2min 

Then, as above but decreasing anneal temperature by 2°C  every 3 cycles, followed by 

x30 cycles 

95°C for 30s 

55°C for 30s 
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72°C for 2min 

3.2.4.6 Agarose Gel Electrophoresis 

2µl of 5mg/ml Ethidium Bromide (Sigma-Aldrich) was added to a 1% agarose gel when 

setting. 10µL PCR products were mixed with 6x DNA Gel Loading Dye (New England 

Biolab, Hitchin) and run with TAE buffer at 100V for 45mins. Image was captured using 

UVP BioImaging system and analysed using LabWorks software. 

3.2.4.7 Determination of Nanog/NanogP8 expression by RT-PCR-RFPL ananlysis 

PCR products that were amplified from NTera2 cDNA and gDNA were subjected to 

restriction enzyme digest using A1wNI as this restriction enzyme recognises a single 

nucleotide change within the NanogP8 locus or NanogP8 cDNA but not within the 

Nanog cDNA. This allows for identification of transcription from Nanog or NanogP8 

locus.  

1µg of PCR product from NTera2 or gDNA was added to 5µL 10× NE Buffer (NEB), 1µl 

(10U) AIwN1 (NEB) and topped up to 50µl with DEPC treated water. Sample was gently 

mixed with a pipette followed by a quick spin down in the microcentrifuge. Sample 

was incubated at 37°C for 1hr. Samples were then run on a 1% agarose gel for gel 

electrophoresis. 

3.2.5 Plasmid preparation and transformation    

Plasmid DNA was synthesised at the National Institute of Health, USA to incorporate 

the Nanog promoter-GFP, NanogP8 promoter-GFP and the CMV MAX-GFP into a 

reporter vector to determine if Nanog or NanogP8 was transcribed in cell lines. The 

CMV MAX-GFP was used as a positive control for transfection. 
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Figure 3.2 Reporter vectors 

 

Figure 3.2 Reporter vectors. The Nanog promoter-GFP contains 2589bp of the Nanog promoter, upstream from the Nanog start codon sequence. 
The CMV MAX-GFP contains 819bp of the CMV promoter. Both vectors contain the dsCopGFP and Zeocin resistance. The NanogP8 promoter-GFP has 
identical features other than the promoter region. 

Nanog promoter-GFP CMV MAX-GFP
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3.2.5.1 Transformation of plasmid DNA 

2µg of plasmid DNA: Nanog promoter-GFP, NanogP8 promoter-GFP and CMV MAX-

GFP provided by Dr Tom Sayers, NIH USA was gently mixed with 50µl of TOP10 one 

shot chemically competent E.coli cells (Thermo Fisher Scientific) excluding the negative 

control that did not contain DNA. Samples were incubated on ice for 30min before 

heat shock at 42°C for 30s and returned to ice for 5min. 250µl of SOC outgrowth 

medium (NEB) was added and incubated at 37°C for 1hr. 10µl of transformation cell 

suspension was added to pre warmed agar plates, streaked and incubated overnight at 

37°C. Individual colonies were selected and incubated in 50ml of pre-warmed LB media 

containing 100µg/ml ampicillin overnight at 37°C, 200rpm. The resulting cultures were 

subjected to mini-prep (QIAGEN) following manufacturer's instructions. The resulting 

DNA was stored at -20°C prior to restriction enzyme digest.   

3.2.5.2 Restriction enzyme digest of plasmid DNA 

Plasmid DNA was digested with SpeI restriction enzyme (New England Biolab) following 

the manufactures instructions. SpeI recognises one restriction enzyme site in Nanog 

promoter-GFP and NanogP8 promoter-GFP and two in the CMV MAX-GFP. Following 

restriction enzyme digest the plasmid DNA was run on a 1% agarose gel. 

3.2.5.3 Midi-Prep 

Following successful identification of plasmid: Nanog promoter-GFP, NanogP8 

promoter-GFP and CMV MAX-GFP, the colonies that were positive for plasmid DNA 

were picked and added to 25ml of pre-warmed LB broth and incubated at 37°C for 

16hrs and shaken at 300rpm. Bacterial cells were harvested by centrifugation at 6000g 

for 15min at 4°C prior to Midi-prep using Qiagen midi prep kit. Bacterial cells were re-

suspended in BufferP1 containing RNAse and pipetted to remove cell clumps. Bacterial 

cells were lysed using 4ml of Buffer P2 and vigorously inverted 6 times and incubated 
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at room temperature for 5min. 4ml of chilled BufferP3 was then added, vigorously 

inverted 6 times and left on ice for 15mins to precipitate DNA. Lysate was then 

centrifuged at 20,000g for 30min at 4°C, and the supernatant containing the plasmid 

DNA was removed and centrifuged again at 20,000g for 15min at 4°C. The tip 100 was 

then equilibrated using 4ml of Buffer QBT and allowed to empty by gravity flow. The 

supernatant containing DNA was then added to the tip and allowed to empty by 

gravity flow and tip was then washed using 2×10ml Buffer QC. In a fresh tube, DNA 

was eluted from the tip by addition of 5ml of Buffer QF. DNA was then precipitated by 

the addition of 3.5ml room temperature isopropanol (Fisher) and centrifuged at 

15,000g for 30min at 4°C. DNA pellet was then washed with 70% ethanol and 

centrifuged at 15,000g for 10min at 4°C. Ethanol was carefully removed so as to not 

dislodge the pellet and left to air dry for 5-10min. DNA was re-dissolved in 150µl buffer 

TE. DNA was quantified using the NanoDrop ND-1000 (Thermo Scientific) and analysed 

using the Nano Drop 1000 3.8.1 software. DNA was stored at -20°C for checking its 

quality using gel electrophoresis and subsequent transfections. 

3.2.5.4 Transfection of Nanog reporters using Viromer transfection system 

SUM159 and NTera2 cell lines were transfected with a plasmid containing the human 

Nanog promoter-GFP and NanogP8 promoter-GFP to determine if these cells express 

any of the Nanog proteins using the Viromer transfection reagents (Lipocalyx, 

Cambridge). 

SUM159 Parent cells were seeded at 3x105 cells/6 well plate overnight to allow cells to 

adhere. 11ng/ml of vectors containing the Nanog promoter-GFP, NanogP8 promoter-

GFP plasmids or CMV Max-GFP was diluted with Buffer Red to 540µl. In a separate 

tube 57.6µl Buffer red was added to 2.4µl Viromer red and vortexed for 5s. The diluted 
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plasmid was added to the Viromer and gently mixed, and left for 15min at room 

temperature to allow complexation of the DNA and Viromers. 300µl of transfection 

complexes was added to the wells. For the negative control no DNA was added, 

however TE buffer was used instead. GFP expression was assessed using the Olympus 

IX81 inverted fluorescence microscope using the Cell-F software (Olympus)  

3.2.5.5 Optimising Zeocin concentration 

Zeocin concentration was optimised for the selection of stable transfection of Nanog 

promoter-GFP and NanogP8 promoter-GFP vectors which contain the Zeocin-

resistance cassette in to SUM159 and NTera2 cell lines. 

Cells were plated at 3x105 cells/6 well plate overnight to allow cells to adhere. The 

following day Zeocin (Thermo Fisher Scientific) was treated with cells at 0, 25, 50, 100 

and 200µg/ml and monitored using light microscopy for up to 72hrs to identify a dose 

that kills up to 50% of cells, with the remaining cells appearing quiescent and non-

proliferative. 100µg/ml was optimum for both SUM159 and NTera2 cell lines as at 

doses greater than this induced cell death and at less than 100µg/ml, cells were 

proliferative and continued to proliferate after passage. 
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3.3 Results 

3.3.1.1 Expression of GFP and cell viability in SUM159 cell lines in 2D and 3D cell 

 culture as determined by fluorescent microscopy.  

 

The SUM159 cells were grown in 2D and 3D cell culture to asses for GFP expression 

and counter stained with Hoechst 33342 and Propidium Iodide and imaged using 

fluorescent microscopy. 

All SUM159 cell lines grown in 2D had a normal, regular nucleus with minimal cell 

death, as determined by Hoechst 33342/Propidium Iodide staining and fluorescence 

microscopy (Fig 3.3). The Parent and Control cells exhibited GFP signal below the limit 

of detection as determined by fluorescent microscopy, whereas GFP expression in the 

NRE-GFP cell lines was expressed in the nucleus and cytoplasm (Fig 3.3). 

 SUM159 cell lines grown in 3D were large and compact with some dead/necrotic cells 

within the core of the spheroids and live viable cells around the outer layer (fig 3.4). 

No GFP was detected in the Parent cell lines, however some GFP+ve cells were observed 

in the Control cell line with a similar intensity to NRE-GFP cells. GFP was expressed in 

the medium-large spheroids in the NRE-GFP cell line whereas the smallest spheroids of 

<10 cells did not appear to express GFP. 
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Figure 3.3 The expression of GFP and cell viability in the SUM159 cells in 2D as determined by fluorescent microscopy. 

 

Figure 3.3. The expression of GFP and cell viability of SUM159 cell lines when grown in 2D cell culture as determined by fluorescent 
microscopy.SUM159 cells were seeded into a 96 well plate overnight and stained with Hoechst 33342 and Propidium Iodide. The Parent, Control and 
NRE-GFP cells had regular nucleus and low amount of apoptotic and dead cells (<5%) were observed. No GFP was detected in the Parent and Control 
cells line whereas GFP was abundant in the NRE-GFP cell line. GFP expression was determined using the Olympus IX81 inverted fluorescence 
microscope using the Cell-F software. Images are representative of two independent experiments. Scale bar represents 200µm. 

Hoechst 33342/PI
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Figure 3.4 The expression of GFP and cell viability in SUM159 cell lines in 3D as determined by fluorescent microscopy. 

 

Figure 3.4. The expression of GFP and cell viability in SUM159 cell lines grown in 3D cell culture as determined by fluorescent microscopy. SUM159 
cell lines were grown in alginate for 10 days prior to Hoechst 33342 and Propidium Iodide stain. The Parent, Control and NRE-GFP cells grew to large, 
tightly compact spheroids with some having a necrotic core. The Control cells appeared to proliferate quicker than the Parent and NRE-GFP cell line 
as these were larger in size. The Parent cells were GFP-ve whereas the Control cell line had some GFP positivity. The NRE-GFP cell line had high GFP 
expression within spheroids but in some smaller clusters of <10 cells no GFP was observed. GFP expression was determined using the Olympus IX81 
inverted fluorescence microscope using the Cell-F software. Images are representative of two independent experiments. Scale bar represents 
200µm. 
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3.3.1.2 The effect of 3D cell culture on CSC surface marker expression as determined 

 by flow cytometry. 

 

SUM159 Parent (untransduced), Control (expressing Min-CMV-driven GFP) and NRE-

GFP (expressing Min-CMV-driven GFP with a Nanog response element) cells were 

grown in 2D and 3D for 10 days to asses for CD44, CD181 and CD24 expression as 

determined by flow cytometry. 

SUM159 Parent, Control and NRE-GFP cells showed no significant differences in 

expression of CD44, CD24 and CD181 cell surface markers when grown in 2D. SUM159 

NRE-GFP has significantly more GFP-positive cell population (p<0.001, 34%) when 

compared to the Parent and Control cells in 2D (fig 3.5). 

When culturing cells in 3D a significant decrease in GFP was present in the NRE-GFP 

cell line (p<0.001, 10%) and no significant difference was observed in the Control. 

Unexpectedly, CD181 expression was significantly increased in the CMVmin-GFP cells 

(p<0.001, 60%) and CD44 and CD24 expression was significantly downregulated 

(p<0.001, 22%, 17%) when compared against the Parent cells. Significant differences in 

CD181, CD44 and CD24 (p<0.0001) was observed in the NRE-GFP when compared 

against the Control cell lines. 
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Figure 3.5. The effect of 2D and 3D cell culture on cell surface marker expression in SUM159 cells as determined by flow cytometry.

 

Figure 3.5. The effect of 2D and 3D cell culture on cell surface marker expression in SUM159 cells as determined by flow cytometry. The SUM159 
cells were seeded in 2D and 3D cell culture for 10 days prior to harvesting and antibody stain. All SUM159 cells havd the same phenotype when 
grown in 2D although the NRE-GFP cells has significantly more GFP expression. The Parent and NRE-GFP cells have no significant differences between 
CD181, CD44, and CD24 when grown in 3D however, the Control (CMVmin-GFP) cells has a significant increase in CD181 expression when compared 
against the Parent and NRE-GFP cell lines and a significant decrease in CD44 and CD24 expression. All Graphical data is represented as mean ± SEM 
and was carried out in three independent experiments. Flow cytometry data is representative of 3 independent experiments. Statistical significance 
was obtained using the nonparametric, Kruskal-Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). 
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3.3.1.3 The effect of 3D cell culture on cancer stem cell phenotype as determined by 

 flow cytometry. 

 

SUM159 Control and NRE-GFP cells were grown in 2D and 3D for 10 days to determine 

if there was any co-expression of GFP with any of the cell surface markers and asses 

for GFP/CD44+, GFP/CD24-, GFP/CD181+, CD44+/CD181+, CD181+/CD24- potential 

breast CSC phenotype and CD44+/CD24- breast CSC phenotype.  

GFP positivity was gated from the control (CMVmin-GFP) population as negative 

therefore no GFP co-expression with other cell markers was determined. A significant 

decrease in GFP/CD44+ was observed when NRE-GFP was cultured in 3D cell culture 

and no significant changes were observed in GFP/CD24-, GFP/CD181+. The 

CD44+/CD24-, CD44+/CD181+ and CD181+/CD24- CSC phenotype was enriched in 3D cell 

culture mimicking previously identified data generated from the parental cells (fig 

2.3.12). The CD44+/CD24- breast CSC phenotype was significantly reduced in the 

Control cells (p<0.001) when cultured in 3D and a significant upregulation (p<0.001) of 

the CD44+/CD181+ and CD181+/CD24- CSC was observed in 3D. 
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Figure 3.6. The effect of 2D and 3D cell culture on cancer stem cell phenotype in the SUM159 cells as determined by flow cytometry. 

 

Figure 3.6. The effect of 2D and 3D cell culture on stem cell phenotype in the SUM159 cells as determined by flow cytometry.  The SUM159 cells 
were seeded in 2D and 3D cell culture for 10 days prior to harvesting and antibody stain. No significant increase in the CD44+/CD24- phenotype was 
observed in the Control cells when culturing in 3D cell culture although the other phenotypes were reflective of the Parent cells. A significant 
decrease in GFP/CD44+ phenotype was found when culturing NRE-GFP cells in 3D cell culture. No significant differences observed in the GFP/CD24- or 
GFP/CD181+ phenotype in 3D cell culture. All other phenotypes mimicked that of the Parent cell line. All Graphical data is represented as mean ± 
SEM and was carried out in three independent experiments. Statistical significance was obtained using the nonparametric, Kruskal-Wallis test 
followed by Conover-Inman post-hoc test  (<0.05 *, <0.01 ** and < 0.001 ***) 
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3.3.1.4 Effect of cancer stem cell medium on GFP expression in the SUM159 cell lines 

 as determined by flow cytometry and fluorescent microscopy.  

 

As the SUM159 NRE-GFP cells did not express significantly more GFP expression when 

grown in alginate 3D cell culture, vs 2D, SUM159 cells were grown in a CSC medium in 

ultra-low attachment plates for up to 7 days as previous reports have found this to 

enrich for the Nanog positive CSC population.  

There was no GFP signal in the un-transduced Parent cells as expected, and no 

significant difference in GFP expression in the NRE-GFP cell line cultured in normal and 

CSC medium at day 1, 4 and 7 however a significant increase in GFP expression was 

observed at day 4 in the Control (CMV-Min-GFP) cells as determined by flow cytometry 

(p<0.05) (fig 3.7). This was further supported by images captured using fluorescent 

microscopy (fig 3.9). When assessing GFP expression in all cell lines from days 1-7 there 

was a significant increase in GFP expression in the Control cell lines from day 1-4 

(p<0.05) and a significant decrease in GFP expression from day 4-7 (p<0.05) when 

cultured in CSC medium (fig 3.8). No significant changes in GFP could be observed in 

the Parent and NRE-GFP cells (fig 3.8).  
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Figure 3.7 Effect of cancer stem cell medium on GFP expression in SUM159 cell lines as determined by flow cytometry. 

 

Figure 3.7. The effect of cancer stem cell medium on GFP expression in the SUM159 cells as determined by flow cytometry. SUM159 cells were 
cultured in a cancer stem cell enriching medium for up to 7 days prior to GFP analysis using the flow cytometer. There were no significant differences 
in GFP expression in any of the cells at day 1. At Day 4 there was a significant increase in GFP in the Control cells when compared against the Control 
cell line cultured in complete medium. At day 7 there were no significant differences in all SUM159 cell lines. All Graphical data is represented as 
mean ± SEM. Flow cytometry data is representative of 3 independent experiments. Statistical significance was obtained using the nonparametric, 
Kruskal-Wallis test followed by Conover-Inman post-hoc test  (<0.05 *). 
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Figure 3.8 Effect of cancer stem cell medium on GFP expression in SUM159 cells as determined by flow cytometry. 

 

Figure 3.8. The effect of cancer stem cell medium on GFP expression in the SUM159 cell lines as determined by flow cytometry. SUM159 cells were 
cultured in a cancer stem cell enriching medium for up to 7 days prior to GFP analysis using the flow cytometer. There were no significant differences 
in GFP expression in the Parent cells overtime when compared against cells cultured in complete medium. There was a significant increase in GFP 
expression in the Control cells cultured in cancer stem cell medium from Day 1 -4 and a significant decrease in GFP from Day 4-7 (p<0.05) No 
significant differences were observed in the NRE-GFP cells. All Graphical data is represented as mean ± SEM and was carried out in three 
independent experiments. Statistical significance was obtained using the nonparametric, Kruskal-Wallis test followed by Conover-Inman post-hoc 
test (<0.05 *). 
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Figure 3.9 Effect of cancer stem cell medium on GFP expression in the SUM159 cell line as determined by fluorescent microscopy. 

 

Figure 3.9. The effect of cancer stem cell medium on GFP expression in SUM159 cell lines as determined by fluorescent microscopy. SUM159 cells 
were cultured in a cancer stem cell enriching medium for up to 7 days prior to GFP analysis using fluorescent microscopy. SUM159 Parent cells had 
no GFP expression at any of the time points when cultured in cancer stem cell enriching medium. The Control cells appears to have low levels of GFP 
expression at Day 1, 4 and 7. GFP expression in the NRE-GFP cells appears to be ubiquitously expressed at all-time points and no visual differences 
can be observed. GFP expression was determined using the Olympus IX81 inverted fluorescence microscope using the Cell-F software. Background 
auto-flourescence was due to auto-fluorescence of the CSCM. Images are representative of duplicate experiments. Arrows point to GFP+ve cells and 
spheroids.  
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3.3.1.5 The effect of 2D vs 3D cell culture on Nanog expression in all SUM159 cell 

 lines as determined by Western blot analysis. 

 

The SUM159 cell line was cultured in 2D and 3D to determine if a 3D cell culture 

environment would enrich for Nanog expression using Western blot analysis for Nanog 

protein detection. NTera2 cells used as a positive control for Nanog expression was 

detected using Western blot analysis, however no Nanog expression was detected 

when SUM159 cells were cultured in 2D or 3D in all SUM159 cell lines (fig 3.10). 
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Figure 3.10 The effect of 2D vs 3D cell culture on Nanog expression in all SUM159 cell 

lines as determined by Western blot analysis. 

 

Figure 3.10. The effect of 2D vs 3D cell culture on Nanog expression in the SUM159 
cell line as determined by Western Blot analysis. SUM159 cells were lysed from 2D 
cell culture and after 10 days of 3D cell culture prior to Western blot analysis. SUM159 
cells do not appear to express Nanog protein (molecular weight 42 kDa) when cells are 
grown in 2D or 3D cell culture, however NTera2 cells grown in 2D do express Nanog 
protein. αTubulin (molecular weight 55 kDa) was used as a loading control. Western 
blot analysis is representative of 2 independent experiments. 
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3.3.2 Development of a RT-PCR based assay to differentiate between Nanog or 

 NanogP8 gene expression. 

3.3.2.1 Optimisation of PCR 

Polymerase chain reaction (PCR) was carried out to determine if the SUM159 cell line 

express Nanog or NanogP8 mRNA, as Nanog protein (Nanog or NanogP8) was absent 

or below the limit of detection. 

PCR primer pairs designed to amplify 1240bp of Nanog cDNA derived from the NTera2 

cell line using touchdown PCR and also the same region of the NanogP8 genomic 

sequence. 

All concentrations of primers appeared to give some product however 10pmol of the 

forward and reverse primers gave the best signal without any non-specific binding. 

Concentrations >10pmol resulted in some non-specific binding whereas <10pmol 

resulted in a low yield of product (fig 3.11). 

 

 

 

 

 

 

 

 

 



125 
 

Figure 3.11 Optimisation of 1240 Forward and Reverse primers  

 

Figure 3.11. Optimisation of 1240 Forward and Reverse primers. Primers were 
optimised on NTera2 cDNA using touchdown PCR. Primers <10pmol resulted in low 
yield of product (1240bp) whereas >10pmol resulted in non-specific binding. 10pmol of 
Forward and Reverse primers were optimum for this reaction. Data is representative of 
1 independent experiment. 
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3.3.2.2 Expression of Nanog or NanogP8 cDNA in the SUM159 cell line as determined 

 by PCR. 

 

SUM159 Parent, Control and NRE-GFP cDNA was subjected to RT-PCR to determine if 

these cells express Nanog or NanogP8 mRNA. NTera2 cell line was used as a positive 

control. 

All SUM159 cells did not appear to express Nanog or NanogP8 mRNA as no product 

could be seen in the gel. (Fig 3.12) The NO RT did not have any genomic contamination 

as no amplification of the NanogP8 genome sequence could be visualised in the gel 

(Fig 3.12). PCR reaction was successful as Nanog cDNA was amplified using PCR and 

could be detected after gel electrophoresis (Fig 3.12). 
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Figure 3.12. Expression of Nanog or NanogP8 cDNA in SUM159 cells as determined by PCR 

 

Figure 3.12. Expression of Nanog or NanogP8 cDNA in SUM159 cells as determined by PCR. cDNA from the SUM159 cells was amplified using 

touchdown PCR to identify if these cell lines express Nanog or NanogP8 mRNA. 1240 Forward and Reverse primers were unable to amplify Nanog 

cDNA derived from any of the SUM159 cells. PCR was successful in amplifying Nanog cDNA (1240bp) derived from NTera2 cells. Images are 

representative of two independent experiments. Images were captured using UVP BioImaging system and analysed using LabWorks software. 
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3.3.2.3 Detection of Nanog or NanogP8 in NTERA2 and gDNA using SNP analysis. 

 

The NTera2 cDNA and gDNA was subjected to restriction enzyme digest using A1wN1 

as this enzyme recognises a point mutation in gDNA (NanogP8) or NanogP8 cDNA that 

is not present in Nanog cDNA that is expressed in the NTera2 cell line, aiding in the 

identification of Nanog species.   

A1Wn1 did not recognise and cut cDNA derived from the NTera2 cell line confirming 

that these cells express Nanog from the parental Nanog locus (fig 3.13). A1Wn1 did 

recognise and cut at the point mutation within the NanogP8 locus of gDNA further 

confirming that only Nanog from the parental locus is expressed in NTera2. 
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Figure 3.13. Detection of Nanog or NanogP8 using SNP analysis. 

 

Figure 3.13. Detection of Nanog or NanogP8 using SNP analysis. a) Recognition 
sequence of A1wN1. b) A1wN1 did not recognise and cut NTera2 cDNA due to these 
expressing Nanog from the parental locus. A1wN1 did cut at its recognition sequence 
of NanogP8 locus from gDNA (1060bp). Images are representative of 1 independent 
experiment. Image was captured using UVP BioImaging system and analysed using 
LabWorks software.  
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3.3.3 Validation of the SUM-159 NRE-GFP reporter model 

The SUM159 cell lines did not appear to express Nanog protein in 2D or 3D even 

though they express GFP, supposedly driven by Nanog protein. Furthermore, a small 

number of Control cells (CMVmin-GFP) were positive for GFP, and CSC medium 

experiments (Fig 3.7 and 3.8) showed some GFP positivity in these cells. Therefore to 

investigate mechanisms that might affect GFP expression independently of Nanog 

protein, a series of studies was performed to see if GFP could be induced in the NRE-

GFP or importantly, CMV-Min-GFP cells.  

3.3.3.1 Effect of hypoxia on GFP expression in SUM159 cells as determined by flow 

 cytometry and fluorescent microscopy. 

 

It is known that hypoxia can affect the proteasome-ubiquitin system and given that our 

reporter relied upon Ub-proteasome to degrade destabilised GFP, hypoxia may result 

in Nanog-independent effects, such as elevated GFP in the presence of hypoxia.  

SUM159 cell lines were assessed for GFP expression after 1-72hr incubation in 21% 

(normoxia) and 5% (hypoxia) O2. There were no significant changes in the Parent and 

Control cell lines in both oxygen concentrations and at any of the time points, however  

there was a significant increase in GFP expression in the NRE-GFP in normoxia at 48 

and 72hrs (p<0.05) and at 72hrs in hypoxia (p<0.05) (fig 3.14).  
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Figure 3.14. Effect of normoxia vs hypoxia on GFP expression in SUM159 cell lines as determined by flow cytometry.

 

Figure 3.14. The effect of normoxia vs hypoxia of GFP expression in SUM159 cell lines as determined by flow cytometry. The SUM159 cells were 
incubated in 21% and 5% O2 for 1-72hrs to assess the effect of Oxygen concentration has on GFP expression. In the normoxic environment there 
were no significant increase in GFP in the Parent and Control cells, however there was a significant increase in GFP from 48-72hrs (p<0.05) in both 
normoxia and hypoxia in the NRE-GFP cell line. There was no apparent enhanced GFP signal in hypoxia when controlled for effects in normoxia. All 
graphical data is represented as mean ± SEM and was carried out in three independent experiments. Statistical significance was obtained using the 
non-parametric, Kruskal-Wallis test followed by Conover-Inman post-hoc test  (<0.05). 
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Figure 3.15. Effect of hypoxia on GFP expression in SUM159 cell line as determined by 

fluorescent microscopy. 

 

Figure 3.15. Effect of hypoxia on GFP expression in the SUM159 cells as determined 
by fluorescent microscopy. The SUM159 cells were incubated in 5% O2 for 24, 48 and-
72hrs to assess the effect of oxygen concentration has on GFP expression. In the 
Parent and Control cells no increase in GFP expression was observed at any time points 
although the Control cell line did have some basal GFP expressing cells. The GFP 
intensity from 24-48hrs in the NRE-GFP cell line appeared to increase. GFP expression 
was determined using the Olympus IX81 inverted fluorescence microscope using the 
Cell-F software. Images are representative of duplicate experiments.  Scale bar 
represents 100µm. Arrows are used to show the GFP positive cells observed in the 
Control cells.  
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3.3.3.2 Effect of proteasome inhibition using Bortezomib on GFP expression in 

 SUM159 cell line as determined by flow cytometry and fluorescent 

 microscopy. 

 

As the SUM159 NRE-GFP cells express GFP that does not appear to be under the 

control of the NRE, a proteasome inhibitor was incubated with the cells to determine if 

GFP expression may be an artefact of low proteasome activity. If an increase in GFP 

expression in the Control cells was observed, this may suggest that the GFP derived 

from the NRE-GFP may have been selected based on low proteasome activity and not 

Nanog expression. Given that transduced cells were ‘selected’ for high GFP expression 

for the CMV-NRE-GFP cell line only, this may reflect an artefact whereby low-

proteasome cells, which may represent the CSC phenotype (Pan et al. 2010) were 

inadvertently selected from the outset. As GFP is destabilised it is tagged for the 

proteasome for destruction, however if cells contain low proteasome activity an 

accumulation of GFP may occur. The SUM159 cell line were incubated with 0-20nM of 

bortezomib for 72hrs to determine the effect of inhibiting the proteasome on GFP 

expression. 

There was a significant increase in GFP signal in the untransduced parent cell line at 10 

and 20nM (p<0.05, 0.01) which likely represents auto-fluorescence, and a significant 

increase in GFP was observed at 20nM in the control cell line (fig 3.16). GFP appeared 

to decrease in the NRE-GFP cells although no significant differences were found.  

Fluorescent microscopy images confirm this (fig 3.17). Although Parent cells shows 

increase GFP likely to represent auto fluorescence, the Control cells are distinctly 

green representing basal GFP under the control of the CMV minimal promoter, 

potentially representing the CSC population in the NRE-GFP cells.   
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Figure 3.16. Effect of 72hr proteasome inhibition using Bortezomib on GFP expression in SUM159 cell lines as determined by flow cytometry. 

 

 

Figure 3.16. The effect of proteasome inhibition using Bortezomib on GFP expression in the SUM159 cells as determined by flow cytometry. 
SUM159 cells were treated with 0-20nM of Bortezomib for 72hrs prior to GFP analysis. A significant increase in GFP was found in the Parent cells 
treated at 10 and 20nM of Bortezomib and at 20nM in the Control cells. No significant differences were found in the NRE-GFP cells. All Graphical data 
is represented as mean ± SEM and was carried out in three independent experiments. Statistical significance was obtained using the nonparametric, 
Kruskal-Wallis test followed by Conover-Inman post-hoc test  (<0.05 *, <0.01 **) 
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Figure 3.17. The effect of proteasome inhibition using Bortezomib on GFP expression 

in SUM159 cell lines as determined by fluorescent microscopy. 

 

Figure 3.17. The effect of proteasome inhibition using Bortezomib on GFP expression 
in SUM159 cell lines as determined by fluorescent microscopy. SUM159 Parent cells 
do not appear to have any increase in GFP expression with 20nM of Bortezomib, 
however the Control cells does appear to show distinct GFP signal in some cells 
(arrows). No overt changes in GFP expression were observed in NRE-GFP cell line. GFP 
expression was determined using the Olympus IX81 inverted fluorescence microscope 
using the Cell-F software. Images are representative of two experiments. Scale bar 
represents 100µm. 
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3.3.3.3 Effect of 24hr proteasome inhibition using Bortezomib on GFP expression as 

 determined by fluorescent microscopy. 

A similar experiment was carried out by a Masters student under my supervision to 

investigate the effects of 20nM bortezomib has on GFP after 24hrs in the Parent and 

Control cells as 72hrs did induce GFP expression, these cells appeared apoptotic and 

an increase in auto-fluorescence was observed.     

SUM159 Control cells had an accumulation of GFP after 24hr treatment with 

bortezomib as observed using fluorescent microscopy. GFP was below the level of 

detection in the untreated sample.  

 

 

Figure 3.18. Effect of 24hr proteasome inhibition on SUM159 control cells as 
determined by fluorescent microscopy. There was an increase in GFP in almost all of 
the Control cells treated with bortezomib. GFP was below the limit of detection in the 
untreated sample. No GFP expression was observed in the Parent (untransduced) cell 
line. GFP expression was determined using the Olympus IX81 inverted fluorescence 
microscope using the Cell-F software. Images are representative of one experiment. 
Scale bar represents 100µm. Credit: Chris Smith, Masters research project thesis, 
Sheffield Hallam University, 
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3.3.3.4 Effect of proteasome inhibition using Bortezomib on GFP expression in NRE-

 GFPlo cells as determined by fluorescent microscopy. 

Epigenetic mechanisms have previously been found to induce the silencing of 

transfected and transduced sequences. Using a batch of NRE-GFP cells that no longer 

express basal levels of GFP due to unknown mechanisms, were subjected to 

bortezomib treatment to determine if these could re-express GFP after proteasome 

inhibition. If GFP expression can be reverted due to inhibition of the proteasome, this 

may offer some clarity as to why the control CMV min-GFP induce GFP expression in 

the absence to Nanog protein and might allow detection of a signal in a similar manner 

to the effects observed in the Control (CMVmin-GFP) cells where Bortezomib results in 

a reliable GFP signal. 

NRE-GFP was low in the untreated cells as determined by fluorescent microscopy; 

however after 24hr treatment with bortezomib the NRE-GFPlo cells re-expressed GFP.  

 

Figure 3.19. Expression of GFP in the NRE-GFP cells after 24hr treatment with 
bortezomib. There was an increase in GFP in almost all of the NRE-GFPlo cells treated 
with bortezomib. GFP was below the limit of detection in the untreated sample. GFP 
expression was determined using the Olympus IX81 inverted fluorescence microscope 
using the Cell-F software. Images are representative of one experiment. Scale bar 
represents 100µm. Credit: Chris Smith, Masters research project thesis, Sheffield 
Hallam University,  
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3.3.3.5 Expression of Nanog-driven GFP in PC3 cell lines as determined by flow  

 cytometry and fluorescent microscopy. 

 

Due to inconsistencies with the SUM159 lentivirus transduced cells being supposedly 

NRE-GFP with no apparent Nanog mRNA or protein and GFP expression being induced 

in the control cell line in CSC medium and proteasome inhibition, the lentivirus 

transduced PC3 NRE-GFP cell line was investigated as it is reported to express Nanog 

protein and to validate this reporter model.  

PC3; Parent, Control and NRE-GFP were assessed for GFP expression by flow cytometry 

and fluorescent microscopy. For fluorescent microscopy the cells were counter stained 

with Hoechst 33342 and Propidium Iodide to assess cell viability. 

No significant GFP signal was detected in the PC3 Parent, Control or NRE-GFP cells as 

determined by flow cytometry and was further confirmed using fluorescent 

microscopy (fig 3.20).  

 

 

 

 

 

 

 

 

 

 

 



139 
 

Figure 3.20. Expression of GFP in PC3 cell line as determined by flow cytometry and 

fluorescent microscopy. 

 

 

 

Figure 3.20. Expression of GFP in PC3 cell line as determined by flow cytometry and 
fluorescent microscopy. No significant GFP expression in Parent, Control and NRE-GFP 
cells as detected by flow cytometry. Fluorescent microscopy images confirm this. All 
Graphical data is represented as mean ± SEM and was carried out in three 
independent experiments. GFP expression was determined using the Olympus IX81 
inverted fluorescence microscope using the Cell-F software. Images are representative 
of duplicate experiments.   
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3.3.3.6 Expression of GFP in PC3 NRE-GFP in 2D and CSC medium as determined by 

flow  cytometry and fluorescent microscopy 

 

CSC medium significantly increases GFP expression in the SUM159 Control cells. As the 

PC3 cell line are reported to contain a small proportion of Nanog positive cells (Jeter et 

al. 2009) these cells were cultured in CSC medium to potentially enrich for the Nanog 

expressing CSC population. As the PC3 NRE-GFP cells contains a small number of cells 

that are weakly GFP positive and with the rationale that these cells might express GFP 

driven by the NRE, the PC3 NRE-GFP was investigated.  

Rare GFP positive cells were observed in the PC3 NRE-GFP cells cultured in 2D, 

however when these were counterstained with Hoechst 33342 this single cell had 

obvious signs of apoptosis as apoptotic bodies could be seen (Fig 3.21). It is well known 

that the proteasome reduces in activity during G2 arrest and also apoptosis and as 

such, destabilised GFP reporters are used for the purpose of identifying such cells 

(Dantuma et al. 2000). 

The PC3 NRE-GFP cells cultured in CSC medium induced GFP expression, however the 

majority of these cells that had high intensity of GFP showed evidence of apoptosis. 

When analysing these cells using flow cytometry there was an increase in GFP 

positivity in cells cultured in CSC medium compared to 2D cell culture; however no 

increase in Nanog expression was detected. All data was generated in a parallel project 

by another student (3.21).  
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Figure 3.21. Expression of GFP in PC3 NRE-GFP in 2D and CSC medium as determined 

by flow cytometry and fluorescent microscopy 

 

Figure 3.21. Expression of GFP in PC3 NRE-GFP in 2D and CSC medium as determined 
by flow cytometry and fluorescent microscopy.a) Cells cultured in 2D using complete 
medium. B) Cells cultured in CSC enriches for apoptotic, GFP positive cells. C) CSC 
medium (red), Complete medium (blue) CSC medium enriches for GFP positive cells 
but does not enrich for Nanog expression. Scale bar represents 100µm. Credit: Laura 
Mulcahy, Undergraduate research project thesis, Sheffield Hallam University  
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3.3.4 Characterisation of Nanog promoter-GFP or NanogP8 promoter-GFP vector 

 systems 

As the GFP in the NRE-GFP did not appear to be expressed in response to the presence 

of Nanog protein, a different reporter system was investigated. Within this system the 

promoter of Nanog or NanogP8 was directly placed upstream from GFP instead of the 

NRE.  If transcription factors bind to the promoter region, GFP will be expressed. 

Therefore the readout of these vectors is a prediction of transcription factor 

combinations that drive Nanog gene expression, rather than Nanog protein-driven 

responses as in the lentiviral NRE-CMVmin-GFP vectors. Nanog promoter-GFP and 

NanogP8 promoter-GFP was engineered in the lab of Dr Tom Sayers, NIH, USA to 

identify if Nanog or NanogP8 was expressed in cancer cell lines. NTera2 was used as a 

positive control for parental Nanog expression and SUM159 which probably does not 

express Nanog protein or is below the limit of detection was used as a negative 

control. The CMV MAX-GFP obtained from the NIH, USA was used as a positive control 

for transfection.  

3.3.4.1 Restriction enzyme digests of plasmids: Nanog promoter-GFP, NanogP8 

 promoter-GFP and CMV MAX-GFP   

Confirmation of correct identification of plasmids was performed using SpeI restriction 

enzyme to cut plasmid DNA. This was carried out prior to transfection of NTera2 and 

SUM159 cell lines to confirm identification and expected fragment size of Nanog 

promoter-GFP, NanogP8 promoter-GFP and CMV MAX-GFP. 

Nanog promoter driven-GFP plasmid is 7470bp in length, in its supercoiled form it was 

observed at 4kb. Linearised with SpeI was observed at 7.5kb, consistent with this. 

NanogP8 promoter-GFP is 7040bp in length and when cut with SpeI, it was observed at 

7kb. CMV MAX-GFP is a high-level constitutively active promoter driving GFP as a 

transfection positive control and is 5701bp in length. This plasmid has two restriction 
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sites and as a result there were two products of expected molecular weight. All 

plasmids appeared, to be correct in size and had the correct number of restriction 

sites, therefore these plasmids are likely to be as described. (fig 3.22). 

Figure 3.22. Restriction enzyme digests of Nanog or NanogP8 promoter-GFP and CMV 

MAX-GFP plasmids as determined by gel electrophoresis. 

 

Figure 3.22. Restriction enzyme digests of plasmid after Midi-prep as determined by 
gel electrophoresis. Plasmids containing the promoters of Nanog or NanogP8-GFP and 
CMV MAX-GFP were digested using SpeI to determine if the correct colony containing 
plasmid had been selected. The uncut plasmids all appear in their coiled form and as a 
result these migrate quicker through the gel. The SpeI restriction enzyme recognises 1 
site in Nanog and NanogP8 promoter-GFP and as a result the plasmids were linearised 
and migrated through the gel at the expected molecular weight. The SpeI restriction 
enzyme recognises 2 restriction sites within the CMV MAX-GFP plasmid resulting in 2 
fragments of DNA at the expected molecular weight. Images are representative of 1 
experiment. Images were captured using UVP BioImaging system and analysed using 
LabWorks software. 

N
a

n
o

g
P

ro
m

o
te

r-
G

F
P

 c
u

t 

N
a

n
o

g
P

ro
m

o
te

r-
G

F
P

 u
n

cu
t 

N
a

n
o

g
P

8
 P

ro
m

o
te

r-
G

F
P

 c
u

t 
 

N
a
n

o
g

P
8

 P
rm

o
te

r-
G

F
P

 u
n

cu
t 

C
M

V
 M

A
X

-G
F

P
 c

u
t 

C
M

V
 M

A
X

 G
F

P
 u

n
cu

t 



144 
 

3.3.4.2 Expression of GFP after transfection with plasmids containing the promoters 

 of Nanog or NanogP8 as determined by fluorescent microscopy. 

 

NTera2 cell lines were used as a positive control cell line for Nanog promoter activity 

and the CMV MAX-GFP was used as a positive control for transfection. The SUM159 

cell line is unlikely to express Nanog or NanogP8 mRNA and protein or its expression is 

below the levels of detection. Transfection of the SUM159 cell line with the Nanog or 

NanogP8 promoter-GFP was used as a negative control for Nanog promoter activity.  

SUM159 cell line 'may' express Nanog mRNA derived from the Nanog locus as two 

independent experiments GFP was detected as seen in (fig 3.23 and 3.24).  However 

the low frequency of such cells suggests they are more likely to represent artefacts. 

The NTera2 cell line which ubiquitously expresses Nanog protein failed to show any 

convincing GFP expression after transfection with the Nanog promoter-GFP as only a 

single cell expressed GFP and was observed in 2 independent experiments. No 

expression of GFP from the NanogP8 promoter-GFP reporter was detected in SUM159 

or NTera2 cells after transfection with the NanogP8 promoter-GFP reporter vector 

confirming that these cells do not express NanogP8 mRNA. Transfection efficiency as 

determined by the CMV MAX-GFP reporter was high in the SUM159 cell line, however 

the NTera2 cell line was much harder to transfect resulting in a lower transfection 

efficiency.   
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Figure 3.23. Expression of GFP after transfection with plasmids containing the promoters of Nanog or NanogP8 as determined by fluorescent 

microscopy (a). 

 

Figure 3.23. Expression of GFP after transfection with plasmids containing the promoters for Nanog or NanogP8 as determined by fluorescent 

microscopy. SUM159 and NTera2 transfected with the Nanog promoter-GFP appear to have a single cell that is GFP positive, or an artefact of auto-

fluorescence. No GFP expression was observed after transfection with the NanogP8 promoter-GFP. The CMV MAX-GFP plasmid used as a positive 

control for transfection efficiency was successfully transfected into the SUM159 and NTera2 cell lines. GFP expression was determined using the 

Olympus IX81 inverted fluorescence microscope using the Cell-F software. Images are representative of two independent experiments  
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Figure 3.24 Expression of GFP after transfection with GFP-reporter plasmid containing 

the promoters of Nanog as determined by fluorescent microscopy (b).  

 

Figure 3.24. The expression of GFP in SUM159 cell line after transfection with 
plasmids containing the promoters of Nanog or NanogP8 as determined by 
fluorescent microscopy. SUM159 cell line appeared to express Nanog protein as a 
cluster of cells are GFP positive after transfection with Nanog promoter-GFP. The 
plasmid containing CMV MAX-GFP was used as a positive control for transfection 
efficiency. GFP expression was determined using the Olympus IX81 inverted 
fluorescence microscope using the Cell-F software. Images are representative of two 
independent experiments.   
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3.3.5 Expression of Nanog in breast and prostate cancer cell lines as determined by 

 Western blot analysis. 

 

Reporter cell lines generated to express GFP under the control of the NRE do not 

appear to express Nanog protein, and the vectors designed to induce GFP under the 

control of Nanog or NanogP8 promoters did not produce reliable GFP signal in either 

the positive control cells or SUM159. Western blot analysis was carried out using 

breast and prostate cancer cell lines cultured in 2D to determine if any of these 

express Nanog proteins. Actin was used as a loading control (fig 3.25). 

Nanog protein expression of ~42kDa was detected in both the NTera2 and DU145 cell 

line and a smaller isoform of Nanog <42kDa (potentially the core peptide) was 

detected in the LNCAP cell line. Nanog expression in PC3 and SUM159 cells was at or 

near the limit of detection and MCF7 cells did not appear to express Nanog protein. 
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Figure 3.25 Expression of Nanog in breast and prostate cancer cell lines as determined 

by western blot analysis. 

 

Figure 3.25. Expression of Nanog protein in breast and prostate cancer cell lines as 
determined by Western blot analysis. Cells grown in 2D cell culture were lysed and 
probed for the expression of Nanog protein, and Actin was used as a loading control. 
NTera2 cells express the predicted 42kDa Nanog protein derived from the Nanog gene. 
DU145 cell line express the same molecular weight species of Nanog but at much 
lower levels. The LNCAP cell line expresses a variant species of Nanog protein. Western 
blot analysis is representative of 2 independent experiments. Membrane was imaged 
using the Odyssey® CLx Imaging System and data was analysed using the LI-COR Image 
Studio Software for the Odyssey CLx. 
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3.3.5.1 Optimisation of 2D gel electrophoresis for the identification of Nanog  

 species detected by western blotting. 

 

Nanog expression was detected in NTera2, DU145 and LNCAP cell lines using western 

blot analysis, although a smaller fragment <42kDa which may represent the core 

peptide (unmodified) or a Nanog retrogene (fig 3.25). Two dimensional gel 

electrophoresis (2DGE) was optimised using protein from the NTera2 cell line. 

Initial optimisation experiments showed that the isoelectric focusing of NTera2 lysate 

was not fully optimised as confirmed by the Coomasie Blue staining (fig 3.26) and 

Western blot analysis. The Actin protein signal was slightly elongated at the correct 

molecular weight and the Nanog protein signal was smeared across the membrane 

due to being under focused (fig 3.26). 

Subsequent attempts at isoelectric focusing (fig 3.27) revealed that this method was 

not optimised due to it being under-focused, although Coomasie blue staining was 

faint it was also apparent from the Western blot analysis as the Actin protein was 

again slightly elongated at the correct molecular weight but the Nanog protein was 

split into 2 regions at <pH 5 and 7 (fig 3.27). 

As the Coomasie Blue stain was quite faint due to the low amount of protein loading 

onto the isoelectric focusing strip, the SDS polyacrylamide gels were subjected to silver 

stain to determine if the isoelectric focusing had been optimised. Figure 3.28 shows 

examples of a) under-focused and b) correct isoelectric focussing (fig 3.28). These 

conditions were used for subsequent experiments including 2D Western blotting for 

Nanog protein. 
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2D SDS PAGE followed by Western blot analysis using optimised conditions revealed as 

two individual spots of Nanog in the NTera2 lysate protein sample. Actin was detected 

~pH 5.5 and Nanog protein at ~pH 6.6. 

2D gel electrophoresis and Western blot analysis failed to detect the aberrant-sized 

Nanog protein species that had been observed in the LNCAP or DU145 cell lines by 

Western blotting. Actin was detected at the reported correct pI. 
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Figure 3.26. Optimisation of 2D gel electrophoresis for the identification of Nanog protein 

 

Figure3.26. Optimisation of 2D gel electrophoresis for the identification of Nanog protein. NTera2 protein was subjected to isoelectric focusing to 
identify Nanog and Actin species. The Coomasie stained gel appears to be quite faint in colour and the proteins appear to be under focused as seen 
by the smearing. The Western blot analysis of the membrane confirms that the isoelectric focusing is un-resolved due to the smearing of both Actin 
and Nanog proteins. Membrane was imaged using the Odyssey® CLx Imaging System and data was analysed using the LI-COR Image Studio Software 
for the Odyssey CLx 
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Figure 3.27.Optimisation of 2D gel electrophoresis for the identification of Nanog protein. 

      

Figure 3.27. Optimisation of 2D gel electrophoresis for the identification of Nanog protein. NTera2 protein was subjected to isoelectric focusing to 
identify Nanog and Actin species. The Coomasie stained gel appears to be quite faint in colour and the proteins appear to be under focused. The 
Western blot analysis of the membrane confirm that the isoelectric focusing is un-resolved due to the smearing of both Actin and Nanog proteins 
located at pH 4 and 6. Membrane was imaged using the Odyssey® CLx Imaging System and data was analysed using the LI-COR Image Studio 
Software for the Odyssey CLx 
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Figure 3.28. Optimisation of 2D gel electrophoresis for the identification of Nanog protein. 

         (a)                                                              (b)

 

Figure 3.28. Optimisation of 2D gel electrophoresis for the identification of Nanog protein. NTera2 protein was subjected to isoelectric focusing to 
identify Nanog and Actin species. The  silver stained gel in (a) showed an example of isoelectric focussing being slightly under focused due to 
smearing of protein bands at lower pH values and the higher molecular weight proteins are not fully resolved. b) shows correctly resolved isoelectric 
focussing with single spots of focused proteins.  Membrane was imaged using the Odyssey® CLx Imaging System and data was analysed using the LI-
COR Image Studio Software for the Odyssey CLx  .  

Unresolved Resolved
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Figure 3.29 Optimisation of 2D gel electrophoresis for the identification of Nanog 

protein. 

Figure 3.29. Optimisation of 2D gel electrophoresis for the identification of Nanog 

protein. NTera2 protein was subjected to isoelectric focusing to identify Nanog and 

Actin species. Actin was fully resolved with an isoelectric point at ~5.5, showing a 

charged trail, potentially a posttranslational modified Actin species. The predicted pI of 

Actin is 5.29. Nanog protein appears to be fully resolved with a pI of ~6.6 which is 

consistent with reported pI for this protein.  

 

Figure 3.30. Identification of Nanog species in DU145 and LNCAP cell lines. 

 

Figure 3.30. Identification of Nanog species in DU145 and LNCAP cell lines. DU145 
and LNCAP  protein was subjected to isoelectric focusing to identify Nanog and Actin 
species. Actin was resolved with an isoelectric point at ~5.5, although no charged trail 
was detected. Nanog protein was not detected in the DU145 or LNCAP cell line. 
Membrane was imaged using the Odyssey® CLx Imaging System and data was analysed 
using the LI-COR Image Studio Software for the Odyssey CLx       

DU145                                       LNCAP 
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3.4 Discussion 

3.4.1 Characterisation of the Lentivirally-transduced NRE-GFP and CMV-Min-GFP 

 reporter cell lines 

 

Lentivirus transduced cell line were used to determine if there was any correlation and 

co-localisation between NRE-GFP+ve and CD44, CD24 and CD181 in the breast cancer 

cell lines as determined by flow cytometry.  

All the SUM159 cells cultured in 2D mimicked that of the Parent cells for cell surface 

expression of CD44, CD24 and CD181. In addition, there were no significant differences 

in CD44+/CD181+, CD181+/CD24- phenotype and CD44+/CD24- breast CSC in 2D cell 

culture. The NRE-GFP cell line also mimicked that of the parental cell line when 

cultured in 3D, however the Control cell line did not correlate with the parental cells. 

As these are reporter cell lines, and the Control cells should have an identical 

phenotype to the Parent in both 2D and 3D cell culture, it was surprising to find that 

the Control cell line was phenotypically different in 3D. In particular CD181 expressing 

cells were significantly higher in the control cell line and CD24 was significantly 

downregulated, thus relating to a more aggressive phenotype. In addition CD44 was 

significantly downregulated, and it has been found that CD44 negative cells correlate 

with lymph node metastasis and negative for both CD44 and CD24 confirms a high 

histological grade (Giatromanolaki et al. 2011). The Control cell line cultured in 3D 

appeared to proliferate much quicker, resulting in much larger spheroids. Xu et al, 

(2014) also found that culturing cells in alginate resulted in a change of cancer stem 

related genes in proportion to the size of the spheroids (Xu et al. 2014). Due to the size 

of the Control cells and strong interactions with neighbouring cells, disassociation of 

the spheroids into a single cell suspension may have been difficult due to the tight 
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junctions facilitating robust cell-cell interactions resulting in improper staining of 

antibodies although every effort was made to avoid this.  

As expected there was significantly more GFP in the NRE-GFP reporter cell line than 

that of the untransduced Parent and Control cell lines however there was no 

difference between the GFP/CD44+, GFP/CD24- and GFP/CD181+ phenotype when 

cultured in 3D, therefore the NRE-GFP did not select for a CSC phenotype in 3D cell 

culture.  

3.4.2 Detection of Nanog in SUM159 cell lines 

The SUM159 cell line did not express Nanog mRNA and protein or was below the limit 

of detection when cultured in 2D and 3D. In addition to this, although there is no 

apparent expression of Nanog protein there is a significant amount of GFP expression 

in 2D which surprisingly decreases under 3D cell culture. Previously, it has been found 

that Nanog expression is upregulated in cancer cell lines cultured in 3D cell culture 

(Xue et al. 2015, Fujiwara et al. 2013, Xu et al. 2014). SUM159 NRE-GFP cells cultured 

as 3D spheroids in CSC medium resulted in no induction of NRE-GFP at any time points 

and likely to be no increase in Nanog expression, however there was a significant 

increase in GFP in the Control cells in 3D growth. If these Control cells are able to 

accumulate GFP without Nanog, then presumably this is also possible for the NRE-GFP 

cells, so experiments were performed to elucidate the mechanism of the false positive 

of the NRE-GFP and the induced CMVmin-GFP Control cells. 

3.4.3 Hypoxia  

Since hypoxia is known to induce Nanog expression and can also reduce proteasome 

activity, hypoxia-induced effects on NRE-GFP cells were assessed. A hypoxic 

environment did not induce GFP expression, when cultured for up to 72hrs in the NRE-
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GFP cell line as there were no differences between normoxia and hypoxia but there 

was an increase in GFP expression in both 5% (hypoxia) and 21% (normoxia) but this 

was at the longer time points, possibly due to the cells being more confluent. There 

was no significant increase in GFP in Control cells, however GFP intensity appeared 

higher in the rare GFP positive cells after 48 and 72hrs at 5% O2 as determined by 

fluorescent microscopy. Hypoxia has been previously found to induce Nanog 

expression in cell lines, tumour models and ESC (Hasmim et al. 2013, Zhang et al. 2016, 

Petruzzelli et al. 2014).  

3.4.4 Potential role of the proteasome-Lo phenotype on NRE-GFP and Control cells. 

Since proteasome-Lo is a CSC marker (Pan et al. 2010) and similar assays to these 

reporters are used to report proteasome-Lo CSC (Lagadec et al. 2014) we tested 

whether inhibiting the proteasome, as a mimic of low proteasome activity could affect 

the NRE-GFP and Control cells. To do this, cells were cultured with the proteasome 

inhibitor Bortezomib. When the SUM159 cells were subjected to proteasome 

inhibition, to mimic that of low proteasome activity identified as a potential cancer 

stem cell marker (Vlashi et al. 2013) there was no overt increase in GFP expression in 

the NRE-GFP cell line, however these already highly expressed GFP. However in a 

different batch of NRE-GFP cells that had little GFP expression due to GFP being 

reduced after every passage (<passage 30) GFP was re-expressed when treated with 

20nM of bortezomib. There was also a significant increase in GFP signal in the Control 

cells, and an increased signal vs untreated cell in the parental cells.  Untransduced 

Parental cells were auto-fluorescent shown by fluorescence microscopy and the signal 

was more yellow-green than genuine GFP signal, therefore any apparent GFP signal is 

likely due to these cells containing dead or dying, as it has been found that apoptotic 

cells auto-fluoresce (Hennings et al. 2009, Levitt et al. 2006). This is supported by the 
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absence of green cells by fluorescence microscopy in the parental cells, but presence 

of induced GFP green signal in the Control cells after 72hrs bortezomib treatment. At 

24hrs after bortezomib treatment GFP was expressed in almost all of the Control cells, 

and there was no obvious signs of auto-fluorescence in the Parent cells. Responses 

were weaker at 72 hours, but GFP subsequently shown to be potently induced at 24 

hours in response to 20nM bortezomib. The Control cell line acts by producing low 

basal levels of GFP which was rapidly degraded, and is ideal for reporter assays so that 

GFP does not accumulate and hence GFP correlates with recent promoter activity. This 

basal expression of GFP was increased after proteasome inhibition could be in-part the 

result of some auto-fluorescence as detected by flow cytometry but also GFP 

accumulation mimicking what is observed in breast cancer stem cells with low 

proteasome activity (Vlashi et al. 2013) and microscopy images confirmed the 

presence of green cells. 

Sorting cells based on GFP expression with the notion that the GFP positive cells are 

Nanog driven identifies major flaws with reporter cell lines. The NRE-GFP cells were 

sorted at the NIH, USA using FACS to separate the GFP+ve (Nanog driven) from the GFP 

negative cell populations, however no sorting was carried out on the Control cells as 

under normal conditions, no overt GFP signal was visible. This is a crucial flaw in this 

design as selecting based on GFP may be selecting for cells with low proteasome 

activity or apoptotic cells. Jeter et al (2011) carried out a similar experiment with 

NanogP8 promoter-GFP in PC3, DU145 and LNCAP cell lines however he did not use a 

control (Minimal promoter-driven GFP), and separated the cells based on GFP 

expression prior to expansion and in vivo studies. Jeter et al (2011) did show co-

expression of GFP and Nanog in the LNCAP cell line but failed to show any for DU145 
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and PC3 cell lines. Therefore caution should be taken in interpreting such experiments 

as 'selecting' for proteasome-Lo cells may select for CSC-like cells independently of 

Nanog expression, however the resulting GFP+ve cells may, independently of Nanog, 

represent a more CSC-like phenotype than Control cells.  

3.4.5 Transfection of SUM159 cell line with Nanog or NanogP8 promoter-GFP.  

Transfection of the NTera2 cell line with the Nanog promoter-GFP and NanogP8 

promoter-GFP vectors using the Viromer transfection reagent resulted in a low-

medium transfection efficiency with the CMV MAX-GFP reporter. Using the Nanog 

promoter-GFP reporter, very few cells were observed that looked positive for GFP 

expression therefore Nanog promoter activity. As the NTera2 cell line ubiquitously 

expressed Nanog protein, even though transfection efficiency is low a substantial 

amount of these cells should have been positive. This raises doubts as to whether this 

vector is responding in a manner of which it was designed. The SUM159 cell line was 

easier to transfect as transfection efficiency using the CMV MAX-GFP reporter vector 

was high. Some GFP expression was observed after transfection using the Nanog 

promoter-GFP, suggesting that these may express Nanog protein derived from the 

Nanog locus as a few cells showed some signal however the signal was not 

convincingly green. 

No GFP was detected after transfection using the promoter of NanogP8-GFP in either 

cell line. NTera2 cells only express Nanog protein from the Nanog locus, therefor no 

GFP should have been observed whereas the SUM159 cell line did not appear to 

express any form of Nanog protein, or it is below the levels of detection.  
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3.4.6 Expression of Nanog in prostate and breast cancer cell lines 

The NTera2 cell line used as the positive control expressed Nanog at the mRNA and 

protein level, corroborating earlier work (Jeter et al. 2011a, Liu et al. 2014a, Huang et 

al. 2014). Nanog protein expression was not detected in the PC3 cell line although 

Gong et al, 2012 found that Nanog expression was extremely low in the bulk 

population of cells (Gong et al. 2012). The DU145 cell line did however have more 

expression of the ~42kDa Nanog protein which has been previously identified using 

Western blot analysis (Kawamura et al. 2015) and immunohistochemistry (Jeter et al. 

2009). The LNCAP cell line did not express the ~42kDa Nanog in accordance with Yuan 

et al, 2007 (Gu et al. 2007) but did express the smaller potentially unprocessed form. 

This species has also been identified by Jeter et al, 2009 although this group also 

identified the ~42kDa species in LNCAP cell line (Jeter et al. 2009). The MCF7 cell line 

appeared not to express Nanog protein or it was below the limit of detection as Jeter 

et al, 2011 identified the Nanog protein ~42kDa at very low levels (Jeter et al. 2011a). 

2D gel electrophoresis and Western blot analysis identified Nanog protein at the 

predicted pI in the NTera2 cell line, however previously identified Nanog species 

derived from the DU145 and LNCAP cell lines were undetected using this technique. 

This may be due to alternative posttranslational modifications of the core peptide 

altering its pI or these maybe other Nanog species.    

3.4.7 Concluding remarks 

Using a lentivirus transduced reporter cell line that expresses destabilised GFP in 

response to NRE is not a suitable model to identify the cancer stem cell population due 

to the reliability of reporter systems that rely on destabilised GFP. The results clearly 

show that in the absence of Nanog, the reporter is active and in the Control cells 

(CMV-min-GFP), the reporter can be switched on by altering the proteasome, CSC 
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medium and by hypoxia. Furthermore, the insert on the NRE-GFP which is activated by 

an unknown mechanism, may be periodically silenced in some cell populations. 

Therefore evidence strongly suggests that this reporter is not a reliable model of 

Nanog expression.  
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4 Targeting cancer cells with withanolide 

 derivatives  
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4.1 Introduction 

Recent advances in understanding and identifying the diverse biological factors that 

contribute to cancer development and progression have led to the development of 

specific cancer targeting and gene specific agents. Some of these biological factors may 

be amplified or mutated growth receptors, chromosome amplifications and mutated 

signaling proteins (Arkenau, Carden and de Bono 2008). Selectively targeting these 

processes can eradicate the cancerous cells whilst discriminating against normal cells. 

Many different compounds and biological molecules have been identified for their 

anti-proliferative and death inducing properties in various cancers. 

4.1.1 Targeting breast cancer  

Current therapeutic treatments in breast cancer patients are chemotherapy, in 

addition to hormonal therapy and growth factor signaling inhibition (Blowers and Foy 

2009). Patient prognosis and treatment options are determined by the estrogen (ER), 

progesterone (PR), and human epidermal growth factor receptor 2 (Her-2) receptor 

status (Arkenau, Carden and de Bono 2008). In 70% of breast cancers these are 

positive for ER or PR (Arkenau, Carden and de Bono 2008), however overexpression of 

HER2 in breast cancer indicates a more aggressive and invasive phenotype than Her-2 

low breast cancers and are more susceptible to recurrence (Slamon et al. 1987, Slamon 

et al. 1989). Drugs such as anastrazole, letrozole and exemestane are used in estrogen-

responsive cancer cells as these inhibit estrogen synthesis by blocking aromatase, or 

drugs such as tamoxifen that modulates the estrogen receptor (Early Breast Cancer 

Trialist, Collaborative Group 1998). As HER2 is overexpressed in up to 30% of breast 

cancers due to gene amplification, a monoclonal antibody known as trastuzumab 

(Herceptin) is used to improve survival rates (Slamon et al. 2001). Other targets in 

breast cancer are vascular endothelial growth factor (VEGF) signaling (Miller et al. 
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2005) and tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR) 

and Her-2 receptor (Geyer et al. 2006).  

4.1.2 Targeting Prostate cancer 

Prostate cancer was first recognised as being hormonally driven over 65 years ago 

(Huggins and Hodges 2002) and up until the 1980s the main form of treatment for 

metastatic prostate carcinoma was surgical castration (Pezaro, Mukherji and De Bono 

2012). After this time it was found that using a leutenising hormone releasing hormone 

(LHRH) analogue could achieve the same survival benefit as surgical removal of the 

prostate (Huhtaniemi et al. 1991). Advances in hormonal therapy has seen the use of 

estrogen agonists, LHRH agonists, LHRH antagonists, Anti-androgens (steroidal and 

nonsteroidal), and ketoconazole to induce castration (Hammerer and Madersbacher 

2012). 

Drugs such as Diethylstilboestrol were a first line targeted agents used as estrogen 

agonist as these works to reduce serum testosterone by a negative feedback on the 

hypothalmic-pituatary axis to suppress LHRH (Hammerer and Madersbacher 2012). 

Diethylstilboestrol was an effective therapeutic agent at inducing castration but 

serious concerns were made due to its thrombogenic side effect and increased 

cardiovascular mortality (Hammerer and Madersbacher 2012) although recent 

understanding of the estrogen receptor (ER) and its role in normal prostate epithelium 

and cancer progression has allowed the reevaluation of the role of ERα and more 

importantly the loss of ERβ in prostate cancer (Oh 2002). Since the 1980s many LHRH 

agonists were synthesized as these reduce testosterone levels to that achieved by 

orchiectomy or estrogen agonists (The Leuprodile Study Group 1984). LHRH agonists 

work by down regulating LHRH receptors therefore suppressing Leutenizing hormone 
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(LH) and Follicle stimulating hormone (FSH) and decrease testosterone synthesis 

resulting in testosterone castration levels between 2-4 weeks (Schally 1999, Limonta, 

Montagnani Marelli and Moretti 2001). Unfortunately in the first few days after 

treatment an increase in testosterone (flare) is observed causing unwanted side effects 

such as increased bone pain and acute bladder outlet obstruction in patients with 

advanced prostate cancer (Labrie et al. 1984). A counteractive measure such as 

simultaneous administration with anti-androgens for the first 2 weeks inhibits 

circulating androgen signaling via its receptor (Labrie et al. 1984). LHRH antagonists are 

also used in androgen deprivation therapy as these induce a rapid decrease in LH, FSH 

and testosterone as these bind to the LHRH receptor competitively and do not cause a 

testosterone flare (Mcleod 2003, Trachtenberg et al. 2002). Unfortunately many of the 

LHRH antagonists that are available are deemed unsuitable in clinical settings as these 

have been associated with serious and in some instances life threatening histamine 

mediated side effects (Aus et al. 2005). Anti-androgens used as a monotherapy or in 

combination with LHRH agonists used in androgen depletion therapy can be classified 

based on their chemical structure, either steroidal such as cyproterone acetate or non-

steroidal such as flutamide and nilutamide (Hammerer and Madersbacher 2012).  A 

study of niluatmide has found that it affects progression-free survival in almost 40% of 

patients with metastatic prostate cancer (Decensi et al. 1991) and in the treatment of 

hormone resistant prostate cancer (Desai, Stadler and Vogelzang 2001, Kassouf, 

Tanguay and Aprikian 2003). 
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Figure 4.1 Androgen signaling and inhibitor pathway 
 

 
 

Figure 4.1 Androgen signaling and inhibitor pathway. 1) The hypothalamus releases 
LHRH which when bound to its receptor induces the production and release of (2) LH 
from the pituitary. 3) LH when bound to its receptor at the testes induces the release 
of testosterone which defuses through the membrane of the prostate gland. 4) 
Testosterone can bind to the androgen receptor or be converted to DHT and then 
interact with the androgen receptor for nuclear translocation and the upregulation of 
androgen responsive genes. Another mechanism utilised in cancer is the production 
and conversion of cholesterol within the adrenal gland to androgens for further 
androgen signaling.  Estrogen agonist can work on the release of LHRH at the 
hypothalamus and also inhibit the release of testosterone from the testes. LHRH 
antagonist can down regulate the expression of LHRH receptor whereas LHRH 
antagonist can competitively bind to the LHRH receptor and inhibit LHRH signaling.    

 

Although hormonal manipulation has a significant effect on castrate levels of 

testosterone and clinical and biochemical features, most men go on to develop 

castrate resistance prostate cancer (CRPC) also known as advanced prostate cancer 

after a period of time (Pezaro, Mukherji and De Bono 2012). The consensus for many 

years was that CRPC is androgen independent (Hellerstedt and Pienta 2002), however 
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recent findings have suggested that many patients that have CRPC express androgen 

dependent genes indicating that they still respond to androgens (Schweizer and 

Antonarakis 2012). A mechanism for facilitating the advancement of prostate cancer is 

loss of specificity of the androgen receptor for testosterone and also DHT which has a 

five fold greater affinity for the receptor than testosterone, and the receptor may 

become sensitive to progesterone, estrogen and antiandrogens (Taplin et al. 1995). An 

emerging drug known as Abiraterone has demonstrated positive results in phase III 

clinical trials for the treatment of CRPC as this selectively and irreversibly inhibits 

CYP17, an enzyme responsible for the conversion of pregnenolone to androgens 

(Pezaro, Mukherji and De Bono 2012).  

 

 

 

 

 

 

 

 

 

 

 



168 
 

Figure 4.2 Blockage of androgen synthesis with Abiraterone  

 
Figure 4.2 Blockage of androgen synthesis with Abiraterone. ACTH is a steroidal molecule 
that can be converted into cholesterol and various other steroids by cytochrome P450 
superfamily members. Pregnenolene is the substrate for CYP17, an enzyme with hydroxylase 
and lyase properties. Abiraterone is a synthetically derived steroidal compound that when 
bound to CYP17 inhibits pregnenolene from binding and testosterone and DHT production. 
 
 
 

4.1.3 Limitation of currently used therapeutics in cancer 

In some cases of advanced CRPC, these have acquired the ability through mutation, 

brought about by selective pressure and clonal selection to overcome the castrate 

levels of androgens by upregulation of the androgen receptor to respond to very low 

levels of androgens (Rehman and Rosenberg 2012), upregulation of intra-tumoral 

steroidogenesis to facilitate tumour growth (Montgomery et al. 2008) and 

upregulation of the androgen receptor nuclear coactivators for androgen, target gene 

transcription in low levels of androgens (Gregory et al. 2001). In addition, alternative 

splicing of the Androgen receptor induces a constitutively active protein, independent 
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of hormone levels (Sprenger and Plymate 2014). A translocation of androgen-activated 

TMPRSS2 with oncogenes ERG or ETV1 has also been identified in many prostate 

cancers (Tomlins et al. 2005). In advanced breast cancer and CRPC these become more 

difficult to treat with surgery, radiotherapy and chemotherapy and if metastatic, these 

are incurable. One potential target in later stage disease would be to target the cancer 

stem cell population as these contribute to tumour relapse and therapeutic resistance.  

Discovery of a novel therapeutic agent with a high therapeutic index, that can 

discriminate between normal and benign tissues, malignant or metastatic carcinomas 

would greatly improve treatment options, quality of life and mortality for patients with 

cancer.   

4.1.4 Withanolides 

Withanolides are naturally occurring compounds that are derived from the Solanaceae 

Sp. family of plants and have been traditionally used in Chinese and Ayurveda medicine 

(Singh, et al. 2010). They are steroidal compounds built on an ergostane skeleton of 

C28 in which oxidization of C-22 and C-26 forms a δ-lactone ring on the nine-carbon 

side chain (Glotter 1991) and are chemically called 22-hydroxyergostane-26-oic acid 

26,22-lactone (Mandal, Dutta et al. 2008). To date there are over 350 withanolides 

that have been isolated and identified (Chen, He et al. 2011), and all of these are 

structurally diverse allowing the study of structure-activity, function and biological 

properties (Wang, Tsai et al. 2012).  Withanolides and their derivatives are very 

interesting compounds as these have a diverse array of biological activities both in 

vitro and in vivo such as antimicrobial, insect anti-feedant, anti-inflammatory, 

immunomodulating, anti-stress, radiosensitizing and anti-tumor (Budhiraja, Krishan 

and Sudhir 2000). 
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Figure 4.3. Schematic of withanolide derivatives derived from the Solanaceae Sp. 

 

Figure 4.3. Schematic of withanolide derivatives derived from the Solanaceae Sp. family or chemically modified. The most widely investigated 
withanolide derivative known as Withaferin A structure is comprised of the ergostane skeleton of C28 in which oxidization of C-22 and C-26 forms a 
δ-lactone ring on the nine-carbon side chain. The other derivatives have identical core structures with some additional groups such as hydroxy, 
methoxy and acetyl to different carbon positions. Withanolide derivatives, Withanolide E (WE) and LG-02 used throughout this chapter are 
highlighted with a red box. All compounds were provided by Dr Thomas Sawyers at the National Institute of Health (NIH).  
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Withanolides and some of the derivatives are potent inhibitors of proliferation and 

induce apoptosis in many types of cancers (Kakar et al. 2014, Roy et al. 2013, Szic et al. 

2014). They share a high degree of similarity within the core structure however they 

are each unique, based on subtle changes in their core structure, and their side chains 

and have different biological targets and mechanisms of action. Some anti-cancer 

properties identified are growth inhibition (Kakar et al. 2014) and cell cycle arrest (Szic 

et al. 2014, Das et al. 2014), apoptosis (Wang et al. 2012a, Hahm, Lee and Singh 2014) , 

anti-inflammatory, decrease in invasion (Szic et al. 2014) and metastasis and can also 

target CSC (Kakar et al. 2014).   

4.1.5 Cell cycle control in normal and cancer cells 

The cell cycle is a normal process of cell growth and division carried out by dividing 

cells (Curtis 1983). There are two consecutive processes of cell division which are 

characterized by DNA duplication and segregation of replicated chromosomes into two 

genetically identical cells (Vermeulen, Van Bockstaele and Berneman 2003). These two 

processes are mitosis which includes prophase, metaphase, anaphase and telophase 

and interphase which includes G1, S and G2 phases (Norbury and Nurse 1992, Lajtha, 

Oliver and Ellis 1954). During cell division the cell spends the majority of the time in 

interphase as this process typically takes up to 23 hours, 12 of these hours are spent in 

S phase with the remaining time spent in G1 and G2 phase and only 1 hour in mitosis 

(Alberts, Wilson and Hunt 2015). G1 phase and G2 phase are gap stages in which cells 

are allowed time to grow and are also crucial, in order to monitor the internal and 

external environment (typically growth factor signaling) to ensure conditions are 

favorable for DNA duplication during S phase and mitosis (Nurse 1990, Moreno and 

Nurse 1994). G1 phase is a crucial stage in the cell cycle as cells decide whether they 

will commit to DNA synthesis in favorable conditions, spend a longer time in G1 or go 
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into a specialized resting stage known as G0 in which cells can remain in an un-

proliferative state for days to years or in some non-proliferative cells permanently 

(Vermeulen, Van Bockstaele and Berneman 2003). If the signals for growth are 

apparent the cell will pass through an irreversible commitment point at the end of the 

G1 phase known as the restriction point and enter S phase (Pardee 1974). Other cell 

cycle check points and regulatory transition areas are located at the G2/M transition 

and at the metaphase to anaphase transition in which cells can withdraw from the cell 

cycle if problems are detected within the cell or extracellular environment (Gelfant 

1977, Rieder et al. 1995). 

4.1.6 Cell cycle control system 

In order for cell cycle progression a biochemical switch occurs with a number of 

proteins acting in a binary fashion as the cells goes from interphase to mitosis and 

cytokinesis (Moreno and Nurse 1994, Pardee 1974, Lajtha, Oliver and Ellis 1954). The 

central components of this are cyclin dependent kinases (Cdks) binding tightly with 

their partners known as cyclins (Harper and Adams 2001, Arellano and Moreno 1997). 

Unlike CdKs that are stably expressed in the cell, cyclin levels are altered throughout 

each stage of the cell cycle in order to initiate the next phase (Yang, Hitomi and Stacey 

2006). Increased levels of cyclin protein interacts with Cdk forming a cyclin-CdK 

complex at specific stages, followed by a rapid degradation of cyclin protein which 

further allows cells to progress through the different stages of the cell cycle (Arellano 

and Moreno 1997). In order for the cyclin-Cdk to be fully activated a Cdk-activating 

kinase phosphorylates the complex at the active site, causing a conformational change 

ensuing for cyclin-Cdk phosphorylation of target proteins (Bockstaele et al. 2006, 

Pavletich 1999). Although cyclical changes of cyclin levels are the predominant way of 

controlling Cdk activity other mechanisms are in place during the cell cycle (Bockstaele 
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et al. 2006) such as phosphorylation at the roof of the cyclin-Cdk complex inhibits 

activity. In addition, binding of Cdk inhibitor proteins such as p27, p21 and p16 to the 

complex distorts the structure of the complex and active site rendering it inactive 

(Blain 2008, Hall, Bates and Peters 1995). In vertebrates there are four classes of 

cyclins, namely Cyclin D, E, A and B with three isoforms of cyclin D and 4 types of Cdks 

that are expressed in different stages of the cell cycle (Morgan 1997). If DNA is 

damaged, un-replicated or the chromosome is unattached to the spindle the cell will 

remain in the gap phases or at the Metaphase to Anaphase transition until intracellular 

defects have been rectified (Cohen-Fix and Koshland 1997, Tinker-Kulberg and Morgan 

1999, Musacchio and Salmon 2007). Alternatively the cells will be primed to undergo 

apoptosis (Bartek and Lukas 2001). 
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Figure 4.4. Phases of the cell cycle 

 

Figure 4.4 Phases of the cell cycle as adapted from (Alberts, Wilson and Hunt 2015). 
The cell cycle consists of 2 phases called interphase and mitosis. Interphase consists of 
3 gap phases named G0, G1 and G2 phase in which the cell is deciding whether or not 
to undergo a round of cell proliferation or remain in a gap/resting state temporarily, 
permanently or undergo apoptosis. S phase is where DNA duplication is taking place. 
Mitosis can be further divided into prophase, metaphase, anaphase and telophase. 
Various proteins are responsible for regulating the cell cycle such as cyclin and cyclin 
dependent kinases that drive the cell cycle or inhibitors such as p21, p27 and INK4.  
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Table 4. Cyclin and Cyclin dependent kinases location throughout the cell cycle.  
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As previously mentioned, the cyclin-CdK complexes are responsible for driving the cell 

cycle by phosphorylation of target proteins (Pavletich 1999, Bockstaele et al. 2006). 

During G1 and S phase CDK4-cyclin D1, CDK2-cyclin E, and CDK2-cyclin A complexes, 

differentially inactivates the tumour suppressor protein retinoblastoma (RB) 

(Zarkowska and Mittnacht 1997). pRB is a nuclear phosphoprotein that in its 

hypophosphorylated state interacts with a transcription factor, known as E2F 

(Lundberg and Weinberg 1998) resulting in no transactivation of G1 phase target 

genes, however when pRB is hyperphosphorylated E2F can no longer interact with this 

growth inhibitory complex, facilitating the progression into S-phase of the cell cycle 

(Lees et al. 1993).   
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4.1.7 Apoptosis 

Type 1 programmed cell death (PCD), commonly referred to as apoptosis is a normal 

process required for cellular destruction  (Kerr, Wyllie and Currie 1972) This process is 

imperative during embryogenesis (Lorda-Diez et al. 2015), remodeling of the tissue 

architecture in order to maintain tissue homeostasis (Harada et al. 2004) , proper 

development and functioning of the immune system (Elmore 2007) ageing and in 

many diseased states (Zhang and Herman 2002). Neurodegenerative diseases, 

ischemic damage, autoimmune disorders and in many types of cancer, too much or too 

little apoptosis has occurred resulting in a diseased phenotype (Elmore 2007).  In 

normal conditions when a cell undergoes apoptosis, a cascade of biochemical events 

occurs in order to dispose of unwanted cells and this process is facilitated by extrinsic 

and/or intrinsic signaling. 

4.1.8 Morphology of apoptosis 

In the early stages of apoptosis the morphology of the cell is altered as cell shrinkage 

takes place, cells are smaller in size with the cytoplasm being denser and organelles 

tightly packaged (Kerr, Wyllie and Currie 1972). Pykonosis also occurs at this stage and 

is the most characteristic feature of apoptosis (Elmore 2007). Extensive blebbing of the 

cell membrane precedes pykonosis followed by karyorrhexis and the formation of 

apoptotic bodies. Organelles and DNA are packaged into intact plasma membranes 

(apoptotic bodies) (Elmore 2007) to prevent intracellular components being released 

into the extracellular matrix thus preventing an immune response and secondary 

necrosis for the engulfment and removal by macrophages  (Fadok et al. 2001, Kurosaka 

et al. 2003).  
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Figure 4.5. Morphology of Apoptosis. 

 

Figure 4.5 Morphology of Apoptosis. In a normal cell the nucleus appears regular in 
shape with a dispersed appearance of Hoechst 33342 stain (blue). After apoptotic 
signaling classical nuclear morphological changes are apparent. DNA condenses, and 
blebs, before DNA fragmentation occurs into apoptotic bodies. Finally cell becomes 
permeablised and dies as shown by Propidium Iodide entry (red)   

 

4.1.9 Extrinsic signaling 

Extrinsic signaling is the process in which cells respond to an extracellular stimuli 

binding to a member of the tumor necrosis factor (TNF) receptor gene family (Locksley, 

Killeen and Lenardo 2001). Members of this family have a high degree of similarity as 

these share a cysteine-rich extracellular domain and a cytoplasmic death domain 

consisting of 80 amino acids (Ashkenazi and Dixit 1998). The ligands and their 

subsequent receptors that are responsible for death receptor mediated apoptosis are 

FasL/FasR, TNF-α/TNFR1, TWEAK/DR3, TRAIL/DR4 and TRAIL/DR5 (Chicheportiche et 

al. 1997, Ashkenazi and Dixit 1998, Rubio-Moscardo et al. 2005). Intracellularly, the 

death domain roles are crucial in transmitting the death signal from the surface of the 

cell to the intracellular signaling pathway (Elmore 2007).   

When ligands binds to receptors, this causes them to cluster and recruits adaptor 

proteins to the death domain such as FADD (FasL/FasR) or TRADD then the recruitment 

of FADD and RIP in TNF-α signaling (Hsu, Xiong and Goeddel 1995, Wajant 2002).This 

then becomes a death inducing signaling complex (DISC) that is able to recruit in pro-
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caspase 8 and cause its auto-catalytic activation  (Kischkel et al. 1995).  The catalytic 

activation of caspase-8 at the DISC can then directly cleave and activate executioner 

caspases resulting in a caspase cascade (Wen et al. 2012). 

4.1.10 Intrinsic signaling  

Intrinsic signaling does not require an external stimuli binding to a receptor but a 

diverse array of intracellular signaling molecules that act directly on targets and are 

mitochondrial mediated events. Events that occur could act positively on inducing 

apoptosis such as radiation, hypoxia and toxins or absence of growth factors, cytokines 

and hormones (Shimizu et al. 1996, Dewey, Ling and Meyn 1995, Tesh 2010, Araki et 

al. 1990, Lorenzo and Saatcioglu 2008). Detection of intracellular stimuli within the cell 

causes the inner mitochondrial membrane permeability transition pore to open and 

the loss of membrane potential (Saelens et al. 2004). Cytochrome C, Smac/DIABLO 

serine protease HtrA2/Omi are pro-apoptotic proteins that are released from the 

intermembrane space into the cytosol to activate the caspase dependent 

mitochondrial pathway (Du et al. 2000, Garrido et al. 2006). Caspase-9 accumulation 

and activation is caused due to the binding of Cytochrome C and Apoptotic peptidase 

factor 1 (Apaf-1) thus causing Apaf1 oligomerisation and procaspase-9 at to form the 

apoptosome (Chinnaiyan 1999, Hill et al. 2004). Inhibitor of apoptosis proteins are 

repressed by the release of Smac/DIABLO and HtrA2/Omi from the mitochondria to 

further promote apoptosis (van Loo et al. 2002, Schimmer 2004).   

4.1.11 Role of caspases in apoptotic signaling 

Caspases are found in every cell and in total there have been 14 caspases identified, 

with two thirds of these being involved in apoptosis (Wen, Lin et al. 2012). These have 

been categorized into initiator caspase-2, -8, -9 and -10 executioner caspase-3, -6, and 

-7 and inflammatory caspases-1, -4 and -5. Initiator caspases are present as inactive 



179 
 

zymogens that upon dimerization exhibit proteolytic activity by cleavage of proteins at 

aspartic acid residues, however executioner caspases are present as inactive dimers 

and are only activated by initiator caspase mediated cleavage to form a functional 

mature protein (Rai, Tripathi et al. 2005). As previously stated, initiator caspases-8 and 

-10 are responsible for induction of apoptosis via the extrinsic signaling pathway and 

can directly activate executioner caspases, or the intrinsic signaling pathway for the 

activation of caspase-9 prior to caspase-3, 6 and -7 caspase activation (Chang and Yang 

2000). Executioner caspases differ from initiator caspases in that they work directly on 

the destruction of the cell by the simultaneous cleavage of peptide substrates 

responsible for maintaining cellular integrity (Slee, Adrain and Martin 2001, Walsh et 

al. 2008). 

4.1.12 Cell survival/anti-apoptotic signaling 

In some instances survival factors can suppress apoptosis and drive cell cycle 

progression by interfering with intracellular regulatory factors. Insulin-like growth 

factor-1 and neurotrophins are survival factors that bind to extracellular receptors and 

stimulate the activation of many kinases such as phosphatidylinositol 3-kinase, which 

in turn lead to the activation of a serine/threonine kinase known as Akt. When Akt is 

phosphorylated it becomes activated, and can go on to phosphorylate and inhibit 

other protein functions such as those of pro-apoptotic proteins BAD (Datta et al. 1997) 

and Caspase-9 (Cardone et al. 1998). Inactivation of BAD, renders BAD unable to 

oppose anti-apoptotic protein BCL2 therefore apoptosis does not occur when pAkt is 

present.  Phospho-Akt can also inactivate other proteins that are involved in regulating 

the cell cycle such as GSK-3beta (Zhao et al. 2012). Activated GSK-3beta can 

phosphorylate and inactivate Cyclin D, therefore inhibiting cell cycle progression, 

however if pAkt inactivates GSK-3beta Cyclin D will remain in its active state to drive 
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cell proliferation  (van Weeren et al. 1998). In addition, phospho-Akt can also alter p27 

function as phosphorylation of p27 induces cytoplasmic accumulation and prevents 

nuclear translocation and cell cycle arrest (Liang et al. 2002).  

4.1.13 Autophagy  

Autophagy also known as "cell eating" is an essential process to maintain cellular 

homeostasis in which intracellular components of the cell such as the mitochondria, 

aggregated proteins and other cellular constituents are brought to and degraded by 

the lysosome, recycled and may be reused to make macromolecules or for metabolism 

(Glick, Barth and Macleod 2010). Autophagy requires a number of steps: The 

autophagasome membrane is formed and this then recruits and encloses damaged 

organelles or proteins into the membrane, the membrane then fuses to encapsulate 

intracellular components. The autophagosome then fuses with an endosome-lysosome 

and the lysosome degrades the internal material (Mizushima 2007). A key marker that 

is ubiquitously expressed in mammalian cells and used to identify cells undergoing 

autophagy is that of microtubule-associated protein light chain 3 (LC3) as this 

associates with the membrane of autophagasomes (Kabeya et al. 2000). The 

conversion of LC3-I to LC3-II by a process known as lipidation is imperative for 

elongation of an autophagasome, and due to the correlation between the number of 

autophasomes and the amount of LC3-II, or LC3-I/LC3-II ratio, it is used as a marker for 

autophagic activity (Kabeya et al. 2000).     

Generally speaking autophagy has been identified as a pro-survival response in order 

to recycle intracellular constituents in response to processes such as nutrient 

depravation, irradiation, and hypoxia, (Li, Chen and Gibson 2013b, Wu et al. 2014, Lai, 

Chang and Sun 2016) but can lead to cell death (Guillermo Mariño et al. 2014).  
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4.1.14 Study Aims, Objectives and hypothesis 

The study aim was to assess the anti-tumour effects of withanolide derivatives on cell 

cycle arrest and apoptosis in breast and prostate cancer cell lines with a particular 

emphasis on androgen receptor-dependent signaling in prostate cancer. 

Hypothesis 

Novel Withanolide derivative LG-02 and Withanolide E target breast and prostate 

cancer growth both in 2D and 3D cell culture 

Specific aims and objectives were: 

To compare the anti-proliferative activity of novel Withanolide derivatives vs. 

Withaferin A in breast and prostate cancer cell lines in 2D growth vs. 3D alginate bead 

assay. 

To determine if LG-02 and WE are effective at growth inhibition in hormone 

dependent/independent breast and prostate cancer cell lines. 

To determine if LG-02 and WE are effective at inducing apoptosis and or autophagy in 

hormone dependent/independent breast and prostate cancer cell lines. 

To determine if withanolides have any anti-androgenic properties. 

To identify changes in protein expression in response to withanolide derivatives in 

breast and prostate cancer cell lines. 
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4.2 Materials and Methods 

4.2.1 Cell culture 

4.2.1.1 Withanolide derivatives 

The withanolide derivatives (synthesised at National Cancer Institute, USA) were 

supplied at 10mM in Dimethyl sulfoxide (DMSO) (Sigma Aldrich). Aliquots were made 

up with 5µl 10mM withanolide derivative and 5µl DMSO (1mM) and incubated at -20°C 

for subsequent use. For working solution 10µl of 1mM withanolide derivative was 

added 9.990 ml medium for a 1000nM solution and was serially diluted for all 

concentrations (500, 250, 125, 62.5, 31.3, 15.6, 7.8nM). The control contained 0nM of 

withanolide derivative and 0.1% DMSO (1ul DMSO in 999ml complete medium). 

4.2.1.2 MTS Assay 

Cells were plated into a 96 well plate at 5x104 cells/ well 24hrs prior to withanolide 

treatment. Cell culture medium was removed and cells were treated with 0-1000nm 

withanolide derivatives for 72hrs. In empty cells, medium only was added.  Cell 

viability was carried out using CellTiter 96 AQueous Non-Radioactive Cell Proliferation 

Assay (MTS) (Promega, Southampton) following manufactures instructions and the 

MTS reagent was incubated with the LNCAP cells for 90min. The absorbance from the 

medium only wells was subtracted from the absorbance from control wells and treated 

wells to remove background. Absorbance was read at 490nM on the Wallac Victor2 

(Perkin Elmer).   

4.2.1.3 Crystal Violet Assay  

Crystal violet solution 0.5% was prepared using 0.5g Crystal violet (Sigma Aldrich) and 

dissolved in 25ml Methanol (Fisher Scientific, Loughborough) and 75ml dH2O. 

Cells were plated into a 96 well plate at 5x104 cells/ well 24hrs prior to withanolide 

treatment. Cell culture medium was removed and cells were treated with 0-1000nm 
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withanolide derivatives for 72hrs. Cell culture medium was removed and cells were 

washed twice in 1× PBS, carefully to not dislodge cells. Cells were incubated with 100% 

Methanol for 5min at room temperature. Methanol was discarded and plates left to air 

dry. Cells were incubated with 0.5% Crystal Violet Solution for 20mins at room 

temperature. Crystal Violet Solution was aspirated and washed three times with 

deionised water. 10% Glacial Acetic Acid (Sigma Aldrich) was added for 20mins to 

solubilize crystals. Absorbance read at 560nM on the Wallac Victor2.  

4.2.1.4 Assessment of apoptosis using Nucview 488 Caspase-3 activity assay 

Cells were seeded at 3 x105 cells/well (6 well plate) and left to adhere overnight. Cells 

were treated with 0-1000nM withanolide derivatives as previously described (fig 

4.2.1.1) and incubated at 37°C in a humidified, 5% CO2 atmosphere for 48hrs. The 

Nucview 488 Caspase-3 Assay kit for live cells (Biotium, Cambridge) was performed 

following the manufacturer’s instructions. The Capase-3 inhibitor Ac-DEVD-CHO was 

also used following the manufacturer’s instructions but failed to inhibit Caspase-3 

activity. Caspase-3 activity was detected on the BD FACSCalibur (Becton Dickinson). 

Analysis was carried out using the FlowJo software (Becton Dickinson). Cells were 

imaged using the Olympus IX81 inverted fluorescence microscope to assess cell 

viability using Cell-F software  

4.2.1.5 Cell cycle analysis by Flow Cytometry 

Cells were seeded at 3 x105 cells/well (6 well plate) and left to adhere overnight. Cells 

were treated with 0-1000nM withanolide derivatives as previously described (fig 

4.2.1.1) and incubated at 37°C in a humidified, 5% CO2 atmosphere for 24hrs.  After 

24hrs cell culture medium was removed and placed into a flow cytometry tube 

(Becton-Dickinson). Cells were washed with 1ml of 1×PBS and then placed in a flow 

tube. 300µl of 0.05% Trypsin-EDTA was added to each well and incubated at 37 C until 



184 
 

all cells had detached. Cells were then placed into corresponding flow tube and 

centrifuged at 400g at 4C for 5min to pellet the cells. Supernatant was removed and 

cells were washed in ice cold 1× PBS. Cells were centrifuged and washed again with Ice 

cold PBS and PBS was discarded. Ice cold 80% Ethanol (Sigma Aldrich) was added to 

cells a drop at a time whilst mixing cells to prevent clumping. These were then left for 

48hrs at -20C. Cells were centrifuged at 400g and ethanol was discarded. Cells were 

incubated with 50µg/ml Propidium Iodide and 0.1U/ml RNase (Sigma Aldrich) 

overnight at 4C. Cell cycle analysis was determined using the FACSCalibur and data 

analysis was carried out using FlowJo software. 

4.2.1.6  Western Blot  

20µg of protein lysate was loaded on to a Mini-PROTEAN TGX Precast Gels (BIO RAD) 

and run at 200V for 22min. Following SDS PAGE gels were transferred to a Trans-Blot 

Turbo Transfer System (BIO RAD) following the manufacturer's instructions for 10min. 

Membrane was then incubated in 100% MeOH for <1min, allowed to air dry and then 

briefly incubated again in MeOH. Membrane was then rinsed in dH2O and equilibrated 

in TBS for 1 min. Membranes were incubated with primary antibodies detailed below, 

diluted in 5% w/v BSA in TBS and 0.1% Tween-20 overnight at 4°C on an orbital shaker. 
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Antibody Clone dilution Supplier 

GAPDH Rabbit mAb- D16H11 1:10000 Cell signaling 

Technologies (CST) 

Androgen Receptor 

Rabbit mAb 

EPR1535(2) 1:1000 Abcam 

PSA/KLK3 Rabbit mAb D6B1 1:1000 CST 

p21 Rabbit mAb 12D1 1:1000 CST 

p14 ARF mouse mAb 4C6/4 1:1000 CST 

p27 Kip1 Rabbit mAb D69C12 1:1000 CST 

p53 mouse mAb 1C12 1:1000 CST 

Cyclin B1 Rabbit mAb 4138 1:1000 CST 

Cyclin D1 Rabbit mAb- 92G2 1:1000 CST 

Phospho-Akt Rabbit 

mAb 

d9E 1:2000 CST 

Cdk2 Rabbit mAb 78B2 1:1000 CST 

Cdk4 Rabbit mAb D9G3E 1:1000 CST 

LC3B Rabbit mAb  D11 1:1000 CST 

Caspase-3 Rabbit mAb 9662 1:1000 CST 

Table 5. The antibodies that were used in protein detection after withanolide 

treatment. 

The following day membranes were washed 3×5 min in TBST and incubated in HRP-

conjugated secondary Abs for 1 hour at room temperature. The membranes were 

washed in 3 ×10 min in TBST on an orbital shaker. Membranes were then incubated 

with 6 ml of West Dura Extended Duration Substrate (Thermo Fisher) for 5-7min, 

excess substrate and removed and membranes were placed in a clear plastic wrap and 

were exposed to X-ray film for 30s-2hrs dependent upon protein concentration and 

detection. X-ray film was developed using an automated developing system. 
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Following development membrane was stripped using Restore Western Blot Stripping 

Buffer (Thermo Fisher) for 15mins at room temperature on an orbital shaker, washed 

in TBST and re-probed overnight with primary antibody. 
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4.3 Results 

4.3.1.1 The effect of withanolide derivatives on the LNCAP cell line as determined by 

the  MTS assay. 

 

To assess the growth inhibitory effects of Withanolide derivatives an MTS assay was 

performed after 72hr treatment with a series of withanolide derivatives (Provided 

from Tom Sayers, NCI) to determine the most potent inhibitor of cell proliferation. LG-

02 was the most potent withanolide derivative at inducing growth inhibition in the 

LNCAP cell line with an IC50 value of 28.88nM. IC50 values for LG-28, LG-29, LG-33, WE 

and WFA was 426.1, >1000, 382.6, 116.6 and >1000nM respectively (fig 4.6). 

Figure 4.6. The effect of withanolide derivatives on LNCAP cell line as determined by 
the MTS assay. 

 

Figure 4.6. The effect of withanolide derivatives on LNCAP cell line as determined by 
the MTS assay. The LNCAP cell line was subjected to withanolide derivative treatment 
for 72hr for investigating the most potent growth inhibitor and the relative cell 
number was determined using the MTS assay.  Data was generated in triplicate and 
displayed as two independent experiments. 
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4.3.1.2 Effects of LG-02 and WE on proliferation in breast and prostate cancer 

A crystal violet assay was performed after 72hrs of LG-02 and WE treatment to 

determine which of the withanolide derivative was the most potent inhibitor of breast 

and prostate cancer growth. LG02 and WE has a significant effect on growth inhibition 

in all cell lines as determined by the nonparametric Kruskal-Wallis, Conover Inman test 

(<0.05=*, <0.01=** and < 0.001=***) (fig 4.7). A significant reduction in proliferation of 

SUM159 cells occurred at all doses above 16nM with LG-02 treatment with increasing 

growth inhibition in a dose dependent manner; however growth was only significantly 

inhibited at 1000nM with WE treatment. IC50 was undetermined with both compounds 

in the SUM159 cell line. A significant reduction in MCF7 cell proliferation was observed 

from 16nM (p<0.005) with LG-02 treatment with increasing dose responsive inhibition 

and at all doses above 31nM WE. IC50 values for LG-02 and WE treatments were 

73.57nM and 358.3nM respectively. LG-02 has a significant effect on growth inhibition 

in PC3 cell lines at all does above 16nM (p=<0.05). WE displayed a significant effect on 

growth of PC3 cell line at all doses above 31nM (p<0.005). IC50 was determined for LG-

02 treatment at 146.3nM and 365.3nM for WE in PC3 cells. A significant inhibition in 

growth of DU145 cells was observed at all doses above 61nM for LG-02 treatment 

(p<0.05) and 250nM WE (p=<0.001) and IC50 values are 208.9nM and 537.3nM 

respectively. A significant reduction in growth of LNCAP cells was observed at all doses 

above 16nM (p=<0.05) for LG-02 and 125nM WE (p=<0.001). IC50 was 62.12nM and 

154.8nM. To note, there is relatively good concordance between the MTS (Fig 4.6) and 

crystal violet assay (FIG 4.7) for the LNCAP cell line treated with LG-02 and WE
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Figure 4.7. The effect of LG-02 and WE on relative cell number as determined by the crystal violet assay. 

 
Figure 4.7. Comparison of the phase of cell cycle (control) vs the phase of cell cycle (treated). Breast and prostate cancer cell lines were subjected to 
72hr incubation of 0-1000nM of LG-02 and WE to determine the most potent inhibitor of proliferation and identify the most sensitive cell lines. LG-02 
is clearly more potent than WE at growth inhibition and LNCAP are the most sensitive cell line as determined from the IC50 values. Statistical 
significance was obtained using the nonparametric, Kruskal-Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). All data is represented as 
mean ± SEM and was carried out in triplicate. 
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Cell Line LG-02 IC50 WE IC50 

SUM159 UNDETERMINED UNDETERMINED 

MCF7 73.57nM 358.3nM 

PC3 146.3nM 365.3nM 

DU145 208.9nM 537.3nM 

LNCAP 62.12nM 154.8nM 

Table 6. The IC50  for breast and prostate cancer cell lines after 72hr incubation with 

withanolide derivatives. The IC50 was determined after three independent 

experiments using the Graph Pad Prism software. 

 

4.3.1.3 LG-02 and WE effect on the cell cycle. 

The SUM159, MCF7, PC3, DU145 and LNCAP cell lines were investigated to determine 

if LG-02 and WE induced cell cycle arrest at G1 or G2/M-phase of the cell cycle after 

24hrs treatment.  

LG-02 induced a significant G1-phase accumulation and reduced the number of cells in 

G2/M-phase following treatment with LG-02 at 1000nM (p value <0.001, and p value 

<0.05) in the SUM159 cell line, however no significant differences were found after WE 

treatment (fig 4.8).  

LG-02 induced a significant number of cells in S-phase (p value <0.01) in MCF7 cell line, 

however no differences were observed at G1 or G2/M-phase (Figure 4.9). No 

significant difference in cell cycle accumulations was observed in the MCF7 cell line 

after WE treatment (Fig 4.9). 

 A significant accumulation of PC3 cells in G1-phase of the cell cycle and a reduction in 

cells at G2/M-phase at 250nM of LG-02 treatment, and a reduction of cells in S-phase 
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was also found at 1000nM (p value <0.05 *, <0.01 **, <0.001 ***) (Figure 4.8). A 

similar effect was determined after WE treatment in PC3 cells (Figure 4.10).  

A reduction in DU145 cells in S-phase was determined at 250nM LG-02 and a 

significant increase in cells at G2/M-phase at 1000nM (p <0.05) (Fig 4.11). WE induced 

S-phase depletion of DU145 cells at 1000nM (P <0.05) but no significant difference was 

found in G1 or G2/M-phase (Fig 4.11).  

Cell cycle arrest was most pronounced in the LNCAP cell line as a good correlation 

between dose response and growth inhibition was observed confirming that the 

LNCAP cell line was more sensitive to LG-02 and WE in accordance with the IC50 value 

(Fig 4.12). In particular a G1-phase accumulation was found from 63nM LG-02 and a 

significant reduction in the number of cells in S and G2/M-phase at 250nM (p <0.05, 

0.01) (Fig 4.12). WE induced G1 phase accumulation and reduced the number of cells 

in G2/M-phase at 63nM (p <0.05).  



192 
 

Figure 4.8 The effect of LG-02 and WE on the SUM159 cell line as determined by cell cycle analysis. 

 

Figure 4.8. The effect of LG-02 and WE on the SUM159 cell line as determined by cell cycle analysis. The SUM159 cell line was treated with LG-02 
and WE for 24hr prior to harvesting the cells and supernatant for cell cycle analysis. LG-02 induced a significant amount of G1 accumulation at 
1000nM, however WE appeared to have no significant effect at any concentration. All data is represented as mean ± SEM and was carried out in 
triplicate. Statistical significance was obtained using the nonparametric, Kruskal-Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***).  
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Figure 4.9 The effect of LG-02 and WE on the MCF7 cell line as determined by cell cycle analysis. 

 

Figure 4.9. The effect of LG-02 and WE on the MCF7 cell line as determined by cell cycle analysis. The MCF7 cell line was treated with LG-02 and WE 
for 24hr prior to harvesting the cells and supernatant for cell cycle analysis. LG-02 induced a significant S phase reduction at 1000nM, however WE 
appeared to have no significant effect at any concentration. All data is represented as mean ± SEM and was carried out in triplicate. All data is 
represented as mean ± standard error and was carried out in triplicate. Statistical significance was obtained using the nonparametric, Kruskal-Wallis 
Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). 
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Figure 4.10 The effect of LG-02 and WE on the PC3 cell line as determined by cell cycle analysis. 

 

Figure 4.10 The effect of LG-02 and WE on the PC3 cell line as determined by cell cycle analysis. The PC3 cell line was treated with LG-02 and WE for 
24hr prior to harvesting the cells and supernatant for cell cycle analysis. LG-02 induced a significant amount of G1 accumulation at 250nM with a 
concomitant G2 phase reduction, with a similar effect after WE treatment. All data is represented as mean ± standard error and was carried out in 
triplicate. All data is represented as mean ± SEM and was carried out in triplicate. Statistical significance was obtained using the non-parametric, 
Kruskal-Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). 
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Figure 4.11 The effect of LG-02 and WE on DU145 cell line as determined by cell cycle analysis. 

 

Figure 4.11 The effect of LG-02 and WE on the DU145 cell line as determined by cell cycle analysis. The DU145 cell line was treated with LG-02 and 
WE for 24hr prior to harvesting the cells and supernatant for cell cycle analysis. LG-02 induced a significant reduction in number of cell in S phase at 
250nM and a significant G2/M accumulation at 1000nM (P value <0.05) whereas WE only induced an S phase reduction at 1000nM (P value <0.05). 
All data is represented as mean ± SEM and was carried out in triplicate. Statistical significance was obtained using the nonparametric, Kruskal-Wallis 
Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). 
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Figure 4.12 The effect of LG-02 and WE on the LNCAP cell line as determined by cell cycle analysis 

 

Figure 4.12. The effect of LG-02 and WE on the LNCAP cell line as determined by cell cycle analysis. LG-02 induced a significant amount of G1 
accumulation at 63nM followed by a significant decrease in cells in S and G2/M phases of the cell cycle at 250Nm.A significant G1 accumulation with 
a concomitant G2/M reduction was observed at 63nM WE treatment. All data is represented as mean ± SEM and was carried out in triplicate. 
Statistical significance was obtained using the nonparametric, Kruskal-Wallis Conover Inman. (<0.05 *, <0.01** and < 0.001***). 
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4.3.1.4 Effect of LG-02 and WE effect on apoptosis. 

Cell viability was assessed after 24hrs treatment with LG-02 and WE using Hoechst 

33342 and Propidium Iodide stain on all cell lines except from the SUM159 cell line as 

these cells did not respond to either agent. LG-02 and WE induced <15% apoptosis in 

the MCF7 cells at 1000nM (Fig 4.13). LG-02 appears more potent at inducing apoptosis 

in the PC3 cells than WE treated cells as a significant amount of apoptosis was 

observed at 500nM (p <0.05), however a similar effect was not observed at 1000nM 

(Fig 14). WE had no effect on inducing apoptosis in the PC3 cell line at any 

concentration (Fig 14). LG-02 was more potent at inducing apoptosis in the DU145 cells 

as a significant response was observed at 125nM (p <0.05), similar effects was not 

observed after WE treatment until 250nM (Fig 15). Both withanolides had a similar 

dose response in the LNCAP as a significant value was obtained from 250nM (p <0.01). 

All cell lines displayed an apoptotic dose response although most significant responses 

were at higher doses. The LNCAP cell line however displayed growth inhibition at lower 

doses (Fig 4.16), even in the absence of apoptosis. 
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Figure 4.13 The effect of LG-02 and WE in the MCF7 cell line as determined by Hoechst 33342 
stain and Propidium Iodide. 
 

 
 

 
Figure 4.13 The apoptotic effect of 24hr treatment with LG-02 and WE on the MCF7 cell line 
as determined by Hoechst 33342 stain and Propidium Iodide. MCF7 cell lines were treated 
with 0-1000nM LG-02 and WE for 24hours to asses for apoptotic effects of these compounds. 
Both LG-02 and WE have a significant effect on apoptosis at 1000nM. All data is represented as 
mean ± SEM and was carried out in triplicate. Statistical significance was obtained using the 
nonparametric, Kruskal-Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). Arrows 
indicate apoptotic or dead cells. 
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Figure 4.14 The effect of LG-02 and WE on the PC3 cell line as determined by Hoechst 33342 
stain and Propidium Iodide 
 

 
 

 
Figure 4.14 The apoptotic effect of 24hr treatment with LG-02 and WE on the PC3 cell line as 
determined by Hoechst stain and Propidium Iodide. The PC3 cell lines were treated with 0-
1000nM LG-02 and WE for 24HRS to asses for apoptotic effects of these compounds. LG-02 
induced a significant amount of apoptosis at 500nM although no significant differences were 
observed at 1000nM whereas no apoptotic effects were observed with WE treatment. All data 
is represented as mean ± SEM and was carried out in triplicate. Statistical significance was 
obtained using the nonparametric, Kruskal-Wallis Conover Inman. (<0.05 *, <0.01 ** and < 
0.001 ***). Arrows indicate apoptotic or dead cells. 
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Figure 4.15 The effect of LG-02 and WE on the DU145 cell line as determined by Hoechst 
33342  stain and Propidium Iodide 
 

 
 

 
Figure 4.15 The apoptotic effect of 24hr treatment with LG-02 and WE on the DU145 cell line 
as determined by Hoechst 33342 stain and Propidium Iodide. LG-02 had a significant effect on 
apoptosis from 125nM with a continued dose response, however a significant effect was not 
observed with WE incubation until 250nM. All data is represented as mean ± SEM and was 
carried out in triplicate. Statistical significance was obtained using the nonparametric, Kruskal-
Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). Arrows indicate apoptotic or dead 
cells. 
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Figure 4.16 The effect of LG-02 and WE on the LNCAP cell line as determined by Hoechst 33342 
stain and Propidium Iodide. 
 

 
 

 
Figure 4.16 The apoptotic effect of 24hr treatment with LG-02 and WE on the LNCAP cell line 
as determined by Hoechst 33342 stain and Propidium Iodide. LG-02 and WE had a significant 
effect on apoptosis from 250nM with a continued dose response although LG-02 had more 
late stage apoptosis but similar death overall. All data is represented as mean ± SEM and was 
carried out in triplicate. Statistical significance was obtained using the nonparametric, Kruskal-
Wallis Conover Inman. (<0.05 *, <0.01 ** and < 0.001 ***). Arrows indicate apoptotic or dead 
cells. 
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4.3.1.5 Assessment of Caspase-3 activation by LG-02 and WE 

The Caspase-3 assay was used as a confirmatory test for apoptosis after 24hours 

incubation with LG-02 and WE and detected using the FACSCalibur. No significant 

levels of caspase-3 activity were detected with both withanolides in the MCF7 and PC3 

cell lines as consistent with Figures 4.13, 4.14, 4.17 and 4.18. MCF7 cells did not 

express Caspase-3 therefore no Caspase-3 activation although these cells are able to 

undergo apoptosis through other executioner caspase activity. Caspase-3 assay 

confirmed data generated from the Hoechst 33342 and Propidium Iodide stain in PC3 

cell line (Fig4.18). Caspase-3 was active in the DU145 cell line at 250 and 1000nM of 

LG-02 WE which correlates with previous Hoechst 33342 and Propidium Iodide stain 

(see Figure 4.19). The LNCAP cell line demonstrated a slight increase in Caspase-3 

activity at 1000nM with LG-02 and WE (fig 4.20). 
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Figure 4.17 The effect of LG-02 and WE treatment on the MCF7 cell line as determined by the 
Caspase-3 assay. 

 

 
 

Figure 4.17 The effect of 24hr incubation with LG-02 and WE treatment in the MCF7 cell line 
as determined by the Caspase-3 assay. The MCF7 cell line was treated with 0-1000nM LG-02 
and WE to asses for apoptotic effects of these compounds. Caspase-3 activities could not be 
determined as MCF7 cell line does not express a functional copy this gene. Data is 
representative of two independent experiments. Arrow indicate cell with caspase-3 activity.  
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Figure 4.18 The effect of 24hr incubation with LG-02 and WE on the PC3 cell line as determined 

by the Caspase-3 assay. 

 

 
 

Figure 4.18. The effect of 24hr incubation with LG-02 and WE treatment on the PC3 cell line 
as determined by the caspase-3 assay. The PC3 cell lines were treated with 0-1000nM LG-02 
and WE to asses for apoptotic effects of these compounds. No caspase-3 activity was 
determined with either of the withanolide derivatives. Data is representative of two 
independent experiments. 
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Figure 4.19 The effect of after 24hr incubation with LG-02 and WE treatment on the DU145 
cell line as determined by the Caspase-3 assay. 
 

 

 
Figure 4.19. The effect of 24hr incubation with LG-02 and WE treatment on the DU145 cell 
line as determined by the caspase-3 assay. The DU145 cell lines were treated with 0-1000nM 
LG-02 and WE to asses for apoptotic effects of these compounds. Caspase-3 activity was 
observed at both concentrations of withanolides and appears to be dose responsive at 
increasing concentrations. Data is representative of two independent experiments. Arrows 
indicate cells with caspase-3 activity.  
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Figure 4.20. The effect of after 24hr incubation with LG-02 and WE treatment on the LNCAP 
cell line as determined by the Caspase-3 assay. 
 

 

 
Figure 4.20. The effect of 24hr incubation with LG-02 and WE treatment in LNCAP cell line as 
determined by the caspase-3 assay. The LNCAP cell lines were treated with 0-1000nM LG-02 
and WE to asses for apoptotic effects of these compounds. Caspase-3 activity appears to be 
induced at 1000nM of LG-02 and WE however background levels of caspase-3 were high in 
control cells. Data is representative of two independent experiments. Arrows indicate cells 
with caspase-3 activity.  
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4.3.2 Effects of withanolides on protein expression 

4.3.2.1 Induction of Apoptosis and or Autophagy in prostate cell lines 

Prostate cancer cell lines were investigated for apoptosis and or autophagy activation 

as these were more sensitive to withanolide induced growth inhibition and apoptosis 

than the breast cancer cell lines. Cell lines were incubated with withanolides for 72 

hours prior to cell lysis and western blot analysis.  Caspase-3 appeared to be 

upregulated in the withanolide treated DU145 cell line and was unchanged in the PC3 

and LNCAP cell lines, however no cleaved Caspase-3 was evident confirming that of 

Figures 4.18, 4.19 and 4.20 and further reinforcing that LG-02 and WE mechanism of 

action are growth inhibition particularly at lower doses. The autophagy marker LC3B 

was upregulated in all cell lines after LG-02 and WE treatment and an increase in the 

conversion of LC3B-I to LC3B-II was observed consistent with autophagasome 

formation and autophagy (Fig 4.21). 
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Figure 4.21. The effect of LG-02 and WE on Caspase-3 expression and activity and LC3B 

as determined by Western Blot analysis.  

 

Figure 4.21. The effect of LG-02 and WE on caspase-3 expression and activity and LC3B as 
determined by Western Blot analysis. Prostate cancer cell lines were subjected to withanolide 
derivative treatment for 72 hours and a Western blot analysis was performed to asses for cell 
survival or apoptotic marker. Caspase-3 was upregulated in the DU145 cell line with both LG-
02 and WE however no differences was observed in the PC3 and LNCAP cell lines. Although 
total Caspase-3 (35kDa) was detectable by Western blotting no cleaved Caspase-3 (17kDa) was 
observed. LC3B was upregulated by both withanolide derivatives in all cell lines. GAPDH was 
used as a loading control. Data is representative of two independent experiments. 
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4.3.2.2 The effect of LG-02 and WE in prostate cancer cell lines as determined by 

 Western Blotting. 

 

Proteins responsible for cell cycle regulation were investigated in response to LG-02 

and WE at 500nM after 72hrs in DU145, PC3 and LNCAP cell lines. 

Cyclin D bound to CDK4/6 is responsible for driving the cell through G1-phase of the 

cell cycle and was upregulated in the DU145 cell line with both withanolide treatments 

(Fig 4.22) consistent with Figure 4.11 of the cell cycle analysis of G2/M-phase 

accumulation.  Cyclin D levels were reduced in the PC3 LG-02 treated cells and 

abolished in the LG-02 treated LNCAP cells (fig 4.22) consistent with PC3 cell being 

arrested in the G1 phase of the cell cycle (Fig 4.10), however WE had no effect in the 

PC3 cells and little in the LNCAP cells (fig 4.22). 

Cyclin B expression, when bound to its reciprocal Cdk drives the cells through G2/M- 

phase of the cell cycle, into mitosis and was consistently low in all DU145 samples (fig 

4.22). Cyclin B levels were abolished after LG-02 treatment in both PC3 and LNCAP cell 

lines and reduced after WE treatment (Fig 4.22) consistent with Figure 4.10 and 4.11.  

CDK2 that is constitutively expressed in cells and when bound with Cyclin E drives the 

cells through G1/S-phase of the cell cycle was upregulated in DU145 cells after LG-02 

and WE treatment (Fig 4.22) and also corroborates Figure 4.11 in that these cells pass 

G1-phase of the cell cycle and are stuck in G2/M-phase. CDK2 expression was low in 

the untreated PC3 cells and inhibited after both withanolide treatments (Fig 4.22). No 

effect was observed in the LNCAP cells (Fig 4.22).  
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CDK4 expression when bound to Cyclin E in G1-phase facilitates cell cycle progression 

and was potentially upregulated after LG-02 treatment (Fig 4.22) although no changes 

were observed in the PC3 or LNCAP cell lines (Fig 4.22).  

p14ARF a tumour suppressor protein that indirectly activates p53, was upregulated 

after LG-02 and WE treatment in the DU145 cell line (fig 4.22) blocking the cell in G1 or 

G2 phase of the cell cycle. No expression of p14ARF was found in the PC3 and LNCAP 

cell lines (Fig 4.22) however PC3 cells are p14ARF negative (Creighton et al. 2010).  

p21 is responsible for cell cycle arrest during G1 and G2/M-phase of the cell cycle and 

was induced after LG-02 and WE treatment in all cell lines (Fig 4.22).  

p27 that acts similarly to p21 at inhibiting cyclin-Cdks activity was unchanged in the 

DU145 and PC3 cell lines and upregulated with both withanolides in the LNCAP cell line 

(Fig 4.22).  

The tumour suppressor protein p53 was present and unchanged in the p53 positive 

cell line DU145, and absent in the p53 null cell line PC3 after LG-02 and WE treatment. 

Interestingly, no difference in p53 expression was observed in the LNCAP cells after LG-

02 treatment but was induced after WE treatment (Fig 4.22). GAPDH was used as a 

loading control. 
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Figure 4.22.The effect of LG-02 and WE in prostate cancer cell lines as determined by 
Western Blotting 

 

Figure 4.22 The effect of LG-02 and WE in prostate cancer cell lines as determined by 

Western Blotting. Cell cycle regulatory proteins were probed after 72 hour treatment 

with LG-02 and WE to determine if any of these genes were upregulated or down-

regulated in response to the compounds. Cyclin D was upregulated in the DU145 cells 

after treatment with LG-02 and WE, unchanged in the PC3 treated cells and down 

regulated in LNCAP cells. No change was observed in CDK2 and CDK4 expression after 

incubation with LG-02 and WE in the DU145 and LNCAP cells and CDK2 expression was 

down regulated in the PC3 cells. p14ARF was upregulated in the treated DU145 cells 

but was not expressed in the PC3 and LNCAP cell line. p21 was upregulated in all cell 

lines after treatment with LG-02 and WE. p27 was upregulated in the treated LNCAP 

cell line and unchanged in the DU145 and PC3 cell lines.  No change in p53 expression 

was observed in the DU145 and p53 null PC3 cells after treatment. pAkt was 

upregulated in the LNCAP cells after LG-02 and WE treatment and in the LG-02 treated 

DU145 cells. GAPDH was used as a loading control.   
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4.3.2.3 The effect of incubation of LG-02 and WE in prostate cancer cell lines for 24 

 hours as determined by Western Blotting. 

 

Fig 4.22 shows the effects of WE and LG-02 at 72 hours. To asses changes at earlier 

time points, cells were challenged with WE or LG-02 for 24 hours prior to Western 

blotting.  

p21, p27 and Cyclin D expression was investigated in the PC3 and LNCAP cell lines only 

as data generated from figure 4.22 demonstrated that 500nM of LG-02 and WE was 

sufficient at inducing G1 phase accumulation in as little as 24hr incubation with LG-02 

and WE.  

p21 expression was upregulated in the PC3 and LNCAP cell lines after 24hrs treatment 

with WE. LG-02 and WE did not appear to have any significant effect on p27 expression 

in the PC3 cell line, however both compounds did induce p27 expression in the LNCAP 

cell line. Cyclin D was unaffected in the PC3 cell line with both compounds and was 

inhibited in the LNCAP cell line (fig 4.23). 
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Figure 4.23. The effect of 24 hour incubation LG-02 and WE in prostate cancer cell lines 

as determined by Western Blotting. 

 

Figure 4.23 The effect of 24 hour incubation LG-02 and WE in prostate cancer cell 
lines as determined by Western Blotting. Cell cycle regulatory proteins were probed 
after 24 hours treatment with LG-02 and WE to determine whether these genes were 
upregulated or downregulated in response to the compounds. Data is representative 
of 1 independent experiment. 
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4.3.2.4 Effects of 24 hour treatment of withanolides on androgen responsive genes 

Androgen independent PC3 cells and Androgen responsive LNCAP cells were 

investigated to determine if LG-02 and WE have an effect on the androgen pathway 

particularly the LNCAP cells as these cells have the lowest IC50 value and appeared to 

be the most sensitive cells to the withanolides.  The PC3 cell line is androgen 

independent and as a result does not express the androgen receptor or PSA, therefore 

these cells were negative for these proteins. PSA and Androgen receptor was reduced 

after 24 hours of LG-02 and WE treatment in the LNCAP cells and PSA expression was 

almost abolished by 72 hours (Figure 4.24). GAPDH was used as a loading control. 

 

Figure 4.24. The effect of LG-02 and WE on PC3 and LNCAP cell lines as determined by 

Western Blotting 

 

Figure 4.24. The effect of LG-02 and WE on PC3 and LNCAP cell lines as determined 
by Western blotting. Androgen responsive proteins were investigated to determine 
the effect of the withanolide derivatives on protein expression in the PC3 and LNCAP 
cell lines. Androgen receptor-negative/PSA-negative PC3 cells did not express the 
androgen receptor or PSA.  Data is representative of two independent experiments. 
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4.3.3 The effect of LG-02 and WE on 3D growth and spheroid formation of breast 

and prostate cancer cells as determined by Hoechst 33342 and Propidium Iodide 

 stain. 

 

Due to LG-02 and WE having a similar effect of inducing cell cycle arrest and induction 

of apoptosis in prostate and breast cancer cell lines, these were seeded into alginate to 

assess if growth of spheroids would be inhibited after 7 days of treatment with LG-02 

only.  

LG-02 had an effect on spheroid formation in the SUM159 cell lines at 1000nM, as a 

reduction in the number and size of the spheroids was observed. Similar results were 

observed in MCF7 cells although this was observed from 250nM, and at 1000nM only a 

small population of cells were able to form spheroids (Fig 4.25). The number and size 

of the spheroids from the PC3 cells was reduced from 63nM of LG-02 and WE and no 

spheroids were observed from 250nM of LG-02 (Fig 4.25). Spheroid formation was 

reduced in the DU145 cell line at 250nM LG-02 and was completely inhibited at 

1000nM of both withanolide (Fig 4.25). LNCAP spheroid formation was reduced from 

63nM of LG-02 and ~1% of cells treated with 1000nM LG-02 were able to form a 

spheroid, although these were much smaller in size than the untreated cells.  
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Figure 4.25. The effect of 7 day incubation  on LG-02 on spheroid formation in breast 

and prostate cancer cell lines 

 

Figure 4.25. The effect of 7 day incubation of LG-02 on spheroid formation in breast 
and prostate cancer cell lines. LG-02  was more potent at inhibiting spheroid 
formation in the prostate cancer cell lines as a reduction in the size of spheoids was 
observed >63nM. However the LNCAP cell line was still able to form a single spheroid 
at 1000nM. LG-02 reduced spheroid formation capacity by 1000nM in the MCF7 cell 
line and slowed down growth in the SUM159 cell line. Images are represented of 2 
independent experiments. Scale bar represents 200µm. Arrows indicate spheroids that 
were able to proliferate at the highest dose of LG-02.  
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4.4 Discussion 

4.4.1 Structure function relationship of withanolide derivatives  

LG-02 was the most potent withanolide derivative at inducing growth inhibition in the 

LNCAP cell line with an IC50 of 30-60nM followed by WE at 120-150nM as determined 

by the MTS and Crystal Violet assay. WE and other derivatives except from Withaferin 

A are all 17Beta hydroxywithanolides which changes the spatial position of the lactone 

ring (alpha in WE, beta in Withaferin A), therefore these have very different molecular 

shapes. This is likely to play a role in the biological activity observed. The LG-02 

compound differs from WE as it has an acetate at position 18 which increases 

biological activity whereas LG-29 has a ketone at position 4 that diminishes activity. 

LG-33 also has reduced activity due to the OH at position 4. Therefore minor 

modifications in the basic WE skeleton backbone can have major effects on biological 

effects in vitro.    

4.4.2 Effect of LG-02 and WE in breast cancer cell lines 

4.4.2.1 Effect of LG-02 and WE in SUM159 cell line 

SUM159 cells were the least sensitive of all the cell lines to the treatment with 

withanolides and as a result no IC50 was determined, however a previous report has 

found that these cells are sensitive to WFA with an IC50 value of around 1000nM 

(Antony et al. 2014). At 1000nM of LG-02 there was a significant increase of cells in the 

G1-phase of the cell cycle and a reduction in the number of cells in the G2/M-phase 

which does indicate G1-phase cell cycle arrest.  WE had no effect on the cell cycle as no 

significant changes were observed. In an earlier experiment by Lee et at (2014) found 

that at 2000nM WFA induced G2/M-phase cell cycle arrest, confirming that at lower 

doses LG-02 is more potent at inducing cell cycle arrest. This difference in cell cycle 

arrest is likely due to LG-02 and WFA having different targets of the cell cycle and it has 
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been found that WFA induces securin accumulation found during mitosis, preventing 

DNA separation and cytokinesis (Antony et al. 2014). The SUM159 cells seeded in 

alginate and spiked with 1000nM of LG-02 or WE for 7 days resulted in a significantly 

smaller mammospheres (spheroids). This data is consistent with previous reports of 

WFA targeting the bCSC population by reducing the number and size of spheroids and 

also reducing the CD44high/CD24low/ESA+ fraction although concentrations of WFA were 

much higher (Kim and Singh 2014).  Although the size of the spheroids were much 

smaller than the control, these spheroids may be generated from a true breast CSC, as 

previous findings have found that  stem cells are slower growing than differentiated 

cell types (Moore and Lyle 2011).  

4.4.2.2 Effect of LG-02 and WE in MCF7 cell line  

The MCF7 cell line is extremely sensitive to LG-02 as a significant reduction in growth 

was observed with an IC50 of 73.57nM, however these cells were not as sensitive to 

WE. Currently the most potent withanolide at growth inhibition and inducing apoptosis 

in this cell line is WFA with an IC50 of 576> 1000nM, indicating that LG-02 would be a 

better therapeutic agent than WFA in treating ER breast cancer(Wang et al. 2012a, 

Zhang et al. 2011). Spheroid formation was inhibited in a dose dependent manner with 

LG-02 and WE treatment and Kim et al 2014 also found a similar effect with WFA in the 

size and number of spheroids with similar concentrations. Previous reports have found 

that WFA at nanomolar concentrations was sufficient at reducing the invasiveness of 

MCF7 cells, a characteristic of CSC brought about by interacting and disassembling 

vimentin (Thaiparambil et al. 2011). The mechanism of action of WFA is that the C3 on 

the A ring interacts with Cys328 on the vimentin α-helix inducing vimentin aggregation, 

de-polymerisation at the leading edge and Ser56 vimentin phosphorylation 

(Thaiparambil et al. 2011). As LG-02 and WE share a high degree of similarity, and also 
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contain C3 on the A ring, it could be suggested that these also interact with vimentin, 

reduce invasiveness, and could impart be responsible for spheroid inhibition, although 

this is unlikely as WE does not induce dramatic cell morphology changes as observed 

after WFA incubation (Henrich et al. 2015). To note, spheroid formation was not fully 

abolished as a single cell was able to self-renew and form an individual spheroid, much 

smaller than that of the control but with the potential to proliferate further. Data 

generated from the cell cycle analysis was inconclusive after LG-02 treatment as only a 

significant reduction in cells in S-phase was observed and as a result G1 or G2/M cell 

cycle arrest could not be confirmed, although it did appear to be G2/M arrest no 

significant changes could be found.  Previously, it has also been found that the MCF7 

cell line has a defective G1 and mitotic spindle checkpoint (Morse et al. 2005). WE 

appeared to have no effect on the cell cycle from 0-1000nM concentrations.  

Previously, Lee et al. 2014 had found that 2000nM of WFA induced the MCF7 cell lines 

to undergo G2/M cell cycle arrest (Antony et al. 2014) although Zhang et al 2011 found 

that 500nM was sufficient to induce cell cycle arrest.  At 1000nM of either 

withanolides, MCF7 cells underwent apoptosis as confirmed by the Hoechst 33342 and 

Propidium Iodide stain. Treating cells with 1000nM of WFA for 24hrs resulted in a 

similar amount of apoptosis (Zhang et al. 2011). The caspase-3 assay as expected 

indicated no caspase-3 activation as MCF7 cell lines did not express this gene due to a 

47 base pair deletion located within exon 3 of the CASP-3 gene (Jänicke et al. 1998) but 

have been found to undergo apoptosis after incubating with 5000nM WFA via caspase-

7 activation although this concentration is 5-times greater than that used for LG-02 

and WE (Wang et al. 2012a).  
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4.4.3 Effect of LG-02 and WE in Androgen-independent prostate cancer cell lines: 

PC3  and DU145 

 

The PC3 cells had an IC50 of <500nM after 72hr treatment with both withanolides, 

however currently investigated withanolide derivatives have an IC50 of greater than 

500nM (Aalinkeel et al. 2010, Nishikawa et al. 2015) indicating that LG-02 and WE are 

more potent than the previously investigated withanolide derivatives. LG-02 and WE 

appeared to have a different effect in the PC3 and DU145 cell lines as these were 

found to undergo G1 and G2/M cell cycle arrest respectively, indicating that these 

withanolides have cell specific targets, however previous data has found that WFA 

induces G2/M cell cycle arrest in both cell lines (Roy et al. 2013, Reyes-Reyes et al. 

2013). G1 cell cycle arrest was further confirmed in the PC3 cells due to the up-

regulation of p21, that may potentially bind to and inhibit cyclinD/Cyclin dependent 

kinase activity (Gartel and Tyner 2002).  G1 cell cycle arrest was further facilitated by 

the down regulation of Cdk2 in PC3 cells as this enzyme is crucial in facilitating the 

progression of G1 to S-phase of the cell cycle. Cyclin B is crucial in the M-phase of the 

cell cycle and was also down regulated in the PC3 cells after withanolide treatments 

and corroborates earlier findings after WFA treatment (Roy et al. 2013). Cyclin D, CDK2 

and CDK4 expression are upregulated after LG-02 and WE treatment in the DU145 

cells. The increase in Cyclin D expression facilitates the progression of cells through the 

restriction point and into S-phase. In addition to this there is also an up-regulation of 

p14ARF and p21 after withanolide treatment, further confirming that increased 

expression leads to G2/M cell cycle arrest. Cyclin B levels remain unchanged after 

treatment although Roy et al (2013) found that WFA downregulated Cyclin B although 

concentrations used were greater that 1000nM (Roy et al. 2013). Both withanolides 

have a significant effect on spheroid formation in the PC3 and DU145 cell lines as by 
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1000nM, no spheroid formation was observed. A recent paper by Xu et al. (2015) has 

shown that using a PC3 xenograft model in mice; LG-02 treatment is successful at 

reducing the size of a tumour (Xu et al. 2015). The PC3 cells appeared to undergo 

little/no apoptosis after withanolide treatment, as confirmed by their nuclear 

morphology, the Caspase-3 assay and also Caspase-3 expression whereas the DU145 

cells showed a higher amount (>20%) of apoptosis, Caspase-3 activation using the 

Caspase-3 assay and an increase in Caspase-3 protein expression  consistent with 

previous data of withanolide derivatives (Reyes-Reyes et al. 2013), however the 

primary effect of the withanolides is growth inhibition but may also induce caspase-

independent apoptosis at higher concentrations.  A withanolide derivative known as 

Physangulidine A can compromise the colony forming capacity in the PC3 and DU145 

cells in a dose dependent manner from 2500nM and abolishes all self-renewal 

capabilities at 5000nM (Reyes-Reyes et al. 2013) however LG-02 and WE are 5 times 

more potent than other derivatives at spheroid formation inhibition. PC3 cells are 

negative for the androgen receptor and PSA and are consistent with previous findings 

(Tai et al. 2011). Phosphorylated Akt (pAkt) remains unchanged in the PC3 control and 

withanolide treated cell lines. pAkt is undetectable in the DU145 control, and WE 

treated samples after 72 hours however an upregulation of this kinase is observed 

after 72 hours LG-02 treatment. 

4.4.4 Effects of LG-02 and WE in the Androgen-dependent cell line LNCAP 

The LNCAP cells are extremely sensitive to growth inhibitory and apoptotic effects of 

withanolides, particularly LG-02. This supports previous reports of LNCAP growth 

inhibition induced by LG-02 (Xu et al. 2015) and other withanolide derivatives 

(Minguzzi et al. 2002, Nishikawa et al. 2015). The LNCAP cell line was the most 

sensitive cell line to withanolide derivatives induced growth inhibition however 
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Okuzaki et al, 2015 has found that androgen independent cell lines PC3 and DU145 

were more sensitive to 2000nM WFA, demonstrating that LG-02 and WE may have a 

different/additional target protein to WFA in the LNCAP cells, particularly at lower 

concentrations.  The withanolides had a significant dose dependent effect on spheroid 

formation as the majority of cells remained as individual cells, likely to be cytostatic, 

although a cluster of cells derived from a single cell was able to overcome the cytotoxic 

effects of the withanolides even at the highest concentrations. Using a LNCAP 

xenograft model in mice, LG-02 was successful at reducing the size of a tumour (Xu et 

al. 2015). G1-phase accumulation was observed from 63nM of both withanolides 

characterised by an increase in G1 events and a concomitant reduction of events in S 

and G2/M phase however by 1000nM no significant differences was observed, likely 

caused by the cell cycle being arrested at both G1 and G2/M phase. When treated with 

500nM of withanolides there was a clear decrease in cyclin D and B expression and an 

increase in p21 and p27 expression signifying potential simultaneous G1 and G2/M cell 

cycle arrest. Another report by Yang et al (2006) found that WFA induces p27 

accumulation (Yang, Shi and Dou 2007). A significant proportion of cells were apoptotic 

when treated from 250nM of both withanolides, as determined by their nuclear 

morphology which contrasts with their resistance to WFA induced apoptosis 

(Nishikawa et al. 2015). A substantial reduction in PSA and androgen receptor 

expression was seen after 24 hours of 500nM withanolides treatment and by 72 hours 

almost all expression of PSA was diminished indicating that androgen responsive genes 

are targeted and downregulated. A similar study by Xu et al (2015) determined that 

PSA mRNA was downregulated after incubation with LG-02 using a high-throughput 

gene expression screen (Xu et al. 2015). Down regulation of the androgen receptor in 

LNCAP cells after addition of 5-10µM of WFA (much higher than that used in this 



223 
 

study) was first identified by Yang et al (2007) in which they had found that WFA 

inhibits chymotrypsin like activity in the 26S proteasome (Yang, Shi and Dou 2007). As 

proteasome activity is crucial in androgen receptor transactivation (Lin et al. 2002) 

inhibiting proteasome activity may in part, explain the effects of LG-02 and WE on the 

androgen receptor expression although this is unlikely as Henrich et al (2015) found 

that WFA is a weak proteasome inhibitor and WE has negligible effects on proteasome 

activity (Henrich, Brooks et al. 2015).  PSA expression is transcriptionally activated by 

the androgen receptor therefore a reduction in this receptor would reduce expression 

of PSA (Jia et al. 2003). In addition, PSA has also been found to regulate androgen 

receptor signaling as it controls androgen receptor mRNA and protein levels (Saxena et 

al. 2012). A significant upregulation of pAkt is observed after response to LG-02 and 

WE treatment, likely due to the PI3K/Akt and AR pathway regulating each other by 

reciprocal negative feedback, in which inhibition of any of the pathway leads to 

activation of the other (Carver et al. 2011). A previous report has found that androgen 

deprivation therapy leads to an increase in PI3K and Akt activity, promoting survival, 

androgen independency and castrate resistance prostate cancer (Murillo et al. 2001).   

4.5 Concluding remarks 

LG-02 and WE are the most effective withanolide derivatives at inducing cell cycle 

arrest as compared to previously investigated withanolides, in particular WFA is a 

highly reactive molecule and is generally used at high concentrations. Prostate cancer 

cell lines were much more sensitive to withanolides than the breast cancer cell lines. 

Mechanisms of action of both compounds were predominantly growth inhibition and 

some apoptosis at high concentrations. These compounds also inhibited the 3D 

formation of spheroids in the androgen dependent cell lines but only slowed growth in 

the breast cancer cell line, and a single LNCAP cell was able to overcome cytotoxic 
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effects of these compounds generating a spheroid similar in size to that of the 

untreated sample. This was likely, to be due to an increase in Akt activity, promoting 

cell survival after androgen ablation. The Actual mechanisms of action of LG-02 and 

WE on androgen signaling still unknown but it is more potent in the androgen 

dependent LNCAP cell line at inducing cell cycle arrest. LG-02 could potentially be used 

as a therapeutic in cases of castrate resistant prostate cancer as these are sensitive to 

the growth inhibitory effects and do not rely on PI3K/Akt for survival.  In androgen 

dependent carcinomas LG-02 and WE would have an initial effect on androgen 

signaling but is likely to lead to castrate-resistance prostate cancer and should only be 

used in combination with other compounds that can target the PI3K/Akt pathway. 
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5 General Discussion



226 
 

5.1 Introduction 

Most drug discovery processes rely on cell based assay as these are simple, fast and 

cost effective and avoid large scale, cost intensive animal testing. Cell based assays 

measure cellular responses to external stimuli such as drugs or compounds.  The 

majority of cell based assays use traditional 2D cell culture in which cells are grown as 

a monolayer on a flat, rigid substrate. 2D cell culture does not take into account that in 

vivo, cells are usually surrounded by other cells and ECM components. As a result 2D 

cell culture may give misleading, unreliable and non-predictive data (Birgersdotter, 

Sandberg and Ernberg 2005, Bhadriraju and Chen 2002). In drug discovery, the 

standard process in screening is 2D cell culture, animal models leading onto clinical 

trials however only 10% of compounds progress through clinical development, partly 

due to the data collected from 2D cell culture is altered due to the cells unnatural 

microenvironment (Edmondson et al. 2014). Recently, much of the focus into cell 

based assays is the development of 3D cell culture models as these represent more 

accurately the actual microenvironment where cells reside in tissues and also enriches 

for the CSC population that may be absent when cells are cultured in 2D. 

The first part of this study was to investigate the prostate and breast cancer stem cell 

phenotypes CD44+/CD133+ (Collins et al. 2005) and CD44+/CD24- (Bhat-Nakshatri et al. 

2010, Ghebeh et al. 2013) in 2D, in addition to 'proposed' breast CSC phenotypes 

CD44+/CD181+ and CD181+/CD24-. It was determined that the prostate cell lines had a 

low percentage of cells with the CD44+/CD133+ phenotype. This was not concerning as 

it is expected that the bulk of cancer cells are differentiated and that CSC accounts for 

~1% of the population in tumours or cell lines (Collins et al. 2005, Gong et al. 2012). In 

addition, long-term culture of cancer cell lines in monolayers facilitates selection of the 
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most dominant cell sub-populations, which may not be representative of the slow 

growing CSC (Rowehl et al. 2014). The breast cancer cell line MCF7 had a population of 

<1% of cells with the CD44+/CD24- phenotype, whereas triple negative, highly 

aggressive SUM159 cells had a basal expression of 18%. CD181+/CD44+ and 

CD181+/CD24- phenotype was also investigated in the MCF7 cell line cultured in 2D 

resulting in a 1% and <1% 'proposed' CSC population. Again, the SUM159 had a much 

higher population of cells with the CD181+/CD44+ and CD181+/CD24- phenotypes. 

Prostate and breast cancer cell lines cultured in 3D using alginate did support spheroid 

formation however the DU145 cell line were unable to grow 3D spheroids larger than 

200µm, although these cells remained viable. 3D cell culture was then investigated to 

determine if alginate could enrich for the prostate cancer stem cell phenotype after 14 

days culture in 3D. At this given time point there was no significant increase in cells 

with the prostate CSC phenotype when compared against cells cultured in 2D, 

suggesting that at the optimised time point and concentration, alginate does not 

enrich for a prostate CSC population. In addition, CD44 expression decreased in the 

PC3 and DU145 cell line cultured in 3D. Investigations into the CD44+/CD24- breast CSC 

phenotype of cells cultured in 3D found that there was a 6-fold increase in MCF7 and 

4-fold increases in the SUM159 cell line. The CD181+/CD24- population was also 

significantly increased in both cell lines whereas the CD181+/CD44+ cell population was 

only induced in the SUM159 cell line phenotype. 

Previous studies have found that alginate-based 3D cell culture can enrich for the CSC 

population as an up-regulation of CSC markers have been found in a murine breast 

cancer model (Qiao et al. 2016), hepatocellular carcinoma and head and neck 

squamous carcinoma cell lines cultured in 3D (Xu et al. 2014). This study was the first 
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of its type using alginate as a 3D cell culture tool used to mimic the tumour 

microenvironment in vitro for enrichment of the CSC population in human breast 

cancer cell lines.  

 Although the prostate CSC population was not enriched in 3D, identification of an 

enriched CSC population in breast cancer cell lines set the precedence for further study 

and clarification of the breast CSC population, further supported by previous literature 

confirming this. 

5.1.1 Does Nanog expression correlate with CSC phenotypes? 

Nanog is a transcription factor that regulates self-renewal in embryonic and adult 

tissue specific stem cells (Loh et al. 2006, Boyer et al. 2005) and has also been 

identified in many cancer types (Lipscomb et al. 2007, Hwang, et al. 2013, Lombaerts 

et al. 2006, Cao et al. 2008, Kong et al. 2010, Xie et al. 2010, Zhou et al. 2011, Shan et 

al. 2012, Sun et al. 2013a). Several studies have found that Nanog maintains 

pluripotency in CSC and also offers resistance to chemotherapy agents (Jeter et al. 

2011a), involved in metastasis and invasion and facilitates tumour reoccurrence 

(Wang, Chiou and Wu 2013).  An investigation was carried out using the SUM159 

reporter cell line that had a NRE-GFP reporter incorporated into its genome via 

lentiviral transduction, and was used to determine if NRE-GFP is co-expressed with 

CD44, CD24- and CD181. Preliminary studies revealed that there was no significant 

difference between the NRE-GFP and GFP-ve cell population with any of the CSC 

markers. The SUM159 NRE-GFP cells when cultured in 2D had a basal expression of 

GFP in 34% of the cell population which was significantly downregulated in 3D cell 

culture. Much of the literature investigating Nanog expression has found that Nanog is 

induced in 3D cell culture (Xu et al. 2014) and in hypoxia (Mathieu et al. 2011) that was 
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present in the core of the spheroids. As the other CSC markers in this study were 

induced in 3D it was surprising to find NRE-GFP was not. GFP expression was also 

investigated in the SUM159 cell line cultured in 3D using CSC medium and it was found 

to not induce NRE-GFP expression, however GFP was significantly induced in the 

Control cells (CMVmin-GFP) in the absence of a NRE. Interestingly in a parallel project, 

PC3 NRE-GFP cells that were cultured in CSC medium enriched for GFP expression but 

not Nanog.  Nanog protein expression was investigated using Western blot analysis of 

SUM159 cells cultured in 2D and 3D. Surprisingly Nanog was not expressed at a protein 

level, or was below the limit of detection. This resulted in more questions than 

answers as to what was driving GFP in these cells. PCR was also carried out to 

determine if Nanog or NanogP8 mRNA was expressed and it was determined that 

Nanog does not appear to be expressed at the mRNA level. For both Nanog protein 

and mRNA the NTera2 cell line was used as a positive control confirming that the 

assays worked. With questions still unanswered, subsequent experiments were carried 

out to identify the source of the GFP signal in the NRE-GFP. 

5.1.2 Factors affecting GFP in the NRE-GFP and CMVmin-GFP reporter cell lines 

As the NRE-GFP expressed GFP in the absence of Nanog, investigations into GFP 

inducers was carried out. It was found that hypoxia did not induce GFP expression in 

the SUM159 cell line as no significant differences were observed when compared 

against normoxia, however GFP intensity in the CMVmin-GFP cells resembled that of 

NRE-GFP after 24hr incubation in hypoxia. As GFP was induced in the Control 

(CMVmin-GFP) cell line cultured in CSC medium in the absence of the NRE, it was 

thought that GFP expressed in the NRE-GFP cell line may have been selected based on 

low proteasome activity and not Nanog positivity, since destabilised GFP from the 

construct is degraded by the proteasome keeping basal levels below the limit of 
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detection. Investigations using the proteasome inhibitor bortezomib were carried out 

to mimic low proteasome activity as previous investigations have identified 

proteasomeLo as a marker of CSC (Vlashi et al. 2013). No significant differences were 

observed in the NRE-GFP cell line after 72 hour treatment with bortezomib, however a 

significant increase in GFP was observed in the Control (CMVmin-GFP) cell line and a 

more profound effect after 24 hours. Interestingly a batch of NRE-GFP cells that 

progressively decreased their expression of GFP were identified. Loss of a stem cell 

reporter (NRE-GFP) could be due to a) differentiation of cells (Lin et al. 2005) or b) long 

term culture in 2D may reduce the CSC population (Rowehl et al. 2014)  or c) gene 

silencing due to histone modifications or CpG methylation near the transduced 

reporter vector (Mutskov and Felsenfeld 2004). Irrespective of the mechanism of 

silencing, these cells re-expressed GFP after bortezomib treatment, suggesting that the 

construct was active to a similar level to the CMVmin-GFP control. This data is 

supportive of the notion of reporter cell lines selected on the basis of dsGFP may not 

be selecting for gene of interest but could be due to low proteasome activity  (Pan et 

al. 2010, Lagadec et al. 2014, Munakata et al. 2016) or early stage apoptosis (Dantuma 

et al. 2000). As the NRE-GFP reporter cells were not selected for based on Nanog 

expression these may or may not represent the CSC population and targeting this 

population with novel CSC-targeting agents such as withanolide derivative would be 

unsuccessful based on their phenotype. Using a different reporter vector, the NTera2 

cell line used as a positive control for Nanog expression and the SUM159 cell line as a 

negative control were transfected with vectors containing the Nanog promoter-GFP or 

Nanog-P8 promoter-GFP, in which GFP expression would be in response to Nanog gene 

regulation and not Nanog protein-GFP. This was carried out to optimise the 

transfection protocol, following onto creating other reporter cell lines in order to 
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target and eradicate the CSC population and assay in real time. After transfection, the 

NTera2 and SUM159 cells failed to generate any convincingly GFP positive cells, likely 

due to the poorly designed vectors. Investigations into Nanog or NanogP8 expression 

was then carried out to identify if Nanog is actually expressed in breast and prostate 

cancer cell lines.  

5.1.3 Nanog expression in breast and prostate cancer cell lines 

Nanog appeared to be expressed in the DU145 cells at 42kDa, and a smaller Nanog 

species was detected in the LNCAP cell line. In order to elucidate if these Nanog 

species are derived from the Nanog or NanogP8 locus, 2D gel electrophoresis and 

Western blot were optimised on the NTera2 cell line. The DU145 and LNCAP cell lines 

have previously been found to express NanogP8 (Jeter et al. 2011b, Jeter et al. 2009), 

although Kawamura et al (2015) found that DU145 cells express Nanog and NanogP8 

(Kawamura et al. 2015). Unfortunately, no Nanog species could be detected after 

isoelectric focusing in the DU145 or LNCAP cell lines, likely to be due to a) NanogP8 

protein pI does not fall between the pH 4-7, b) Nanog or NanogP8 proteins have 

differing post-translational modifications not observed in the NTera2 cell line or c) 

Truncated Nanog or NanogP8 proteins altering the pI. Identifying transcription factors 

that regulate NanogP8 expression would offer great knowledge into the mechanism 

that facilitates its expression. To date, there is no literature available that has 

identified transcription factors responsible for NanogP8 expression and little 

convincing evidence of naturally occurring nanogP8 protein.  

As the Nanog positive cell population were not easily identifiable, withanolide 

derivatives that were assumed to target the CSC population could not be used with the 
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NRE-GFP cell lines and preliminary data would be gathered using 2D cell culture and 

progress onto 3D cell culture in un-transduced breast and prostate cancer cell lines. 

5.1.4 Targeting CSC with withanolide derivatives 

Withanolide derivatives are a natural steroidal compound found in Withania 

somnifera, also known as Winter Cherry that possesses anticancer properties. 

Withaferin A has been investigated extensively for its anti-cancer properties (Kakar et 

al. 2014, Roy et al. 2013, Szic et al. 2014) and as a CSC targeting agent (Kakar et al. 

2014). The aim of the final part of the study was to investigate novel withanolides that 

were more potent than Withaferin A and induce growth inhibition and cell death in 

breast and prostate cancer cell lines and eradicate the CSC population that induce 

tumour re-occurrence. In this study it was found that LG-02 and WE were more potent 

growth inhibitors than Withaferin A, in the LNCAP cell line and at higher 

concentrations induced some apoptosis. The SUM159 cell line was the most resistant 

to growth inhibition and an IC50 could not be established. The prostate cancer cell lines 

were more sensitive to LG-02 and WE than the breast cancer cell lines, in particular the 

LNCAP cell line and it is thought that these may target the androgen signalling as a 

previous study using high throughput screening found that LG-02 inhibited PSA mRNA 

transcription (Xu et al. 2015). LG-02 and WE had similar biological targets in vitro 

although LG-02 was the most potent likely due to the acetate at position 18 increasing 

activity. Both compounds induced cell cycle arrest in the prostate cell lines and 

induced the expression of proteins involved in cell cycle arrest in accordance with 

previous reports of proteins targeted using withanolide derivatives, although these 

were used at higher concentrations (Roy et al. 2013, Reyes-Reyes et al. 2013).  LG-02 

was able to inhibit spheroid formation in the PC3 and DU145 cell lines from 250nM 

and slowed the growth in the MCF7 and SUM159 cell line however a single spheroid 
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was able to form in the LNCAP cell line, even at the highest concentration. This may be 

due to pAkt induction in the LNCAP cell line as observed in this study and as a 

secondary proliferative pathway when Androgen response pathways is inhibited 

(Murillo et al. 2001), facilitating growth and potentially leading to castrate resistance in 

this cell line. It is likely that LG-02 may target the CSC population in the PC3 and DU145 

cell lines as 3D growth was inhibited and individual cells were dead or quiescent 

although long term incubation with LG-02 and WE may lead to propagation and 

resistance in remaining cells. 

5.1.5 Conclusion 

In this study it has been shown for the first time that 3D cell culture using alginate can 

enrich for the breast CSC population however this model in not universally applicable 

to all cancer types. 3D cell culture does not enrich for Nanog expression in the SUM159 

cell line, due to Nanog expression being below the limit of detection. It has also been 

demonstrated for the first time that LG-02 and WE were able to target the 

heterogeneous cell population and potential CSC population in the PC3 and DU145 cell 

lines. LG-02 and WE appear to selectively target the androgen response pathway, and 

proteins involved in cell cycle arrest.  In addition, this study for the first time shows a 

decrease in PSA and Androgen receptor in the LNCAP cell line confirming and 

extending Xu et al (2015) that identified mRNA reduction of PSA using high-throughput 

gene expression screen.  
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5.2 Future Directions 

5.2.1 Does the CD44+/CD181+ phenotype represent a CSC population? 

Identification of an increased population of cells with the CD44+/CD181+ phenotype 

using 3D cell culture has identified a population of cells that are potentially more stem 

like and may represent a more universally accepted breast CSC population. A Hoechst 

efflux assay, ALDH1A activity and invasion assay could be carried out to determine if 

this population was representative of the breast CSC population when compared 

against cells with the CD44+/CD24- phenotype. 

5.2.2 Does LG-02 and WE treatment lead to drug resistance or castrate resistance 

cell  populations? 

It has been demonstrated that a small population of LNCAP cells cultured in 3D are 

resistant to LG-02 effects but what has not been established is whether these cells 

acquired resistance to the Withanolides or are these cells representative, or originating 

from a CSC population. Also,  are these androgen-resistant subpopulations emerging 

from androgen-sensitive populations and if so, what are the mechanisms of LG-02/WE. 

Future directions would be to culture the LNCAP cell line on a larger scale for 

subsequent phenotyping for CSC markers. Another experimental design would be to 

culture in charcoal stripped FBS to determine if these cells proliferate in the absence of 

androgens. In addition, pAkt was upregulated in response to LG-02 and WE, probably 

due to the androgen signalling mechanism being impaired offering resistance to this 

compound. Inhibition of the pAkt pathway as a secondary treatment may aid in 

eradicating this population of cells.       

Future work would require re-treatment of isolated cultures of resistant spheroids 

with withanolides and comparing to untreated to determine if the resistant phenotype 

stable or not. Further investigations would be to determine if the cells that repopulate 
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3D spheroids representative of CSCs and  get to the point of a 99.9% kill and study the 

surviving cells that are present in the LNCAP cell line, at 1000nM LG-02. The bulk in the 

spheroid may be differentiated but also resistant, so the spheroid 'originates from a 

CSC' but isn't comprised of them. 

Further investigation would be carried out to determine if withanolide resistance is 

associated with Androgen-resistance. Since resistance was only seen in AR-dependant 

cell line, and clearly AR signalling is down-regulated in Withanolide treatment, as 

would be observed in charcoal-stripping (no androgens) or Bicalutimide treatment, 

then it could be presumed that the resistant cells that emerge are androgen-resistant. 

This is known to occur with the LNCAP and anti-androgens. Given that abiraterone is a 

steroidal structure with some similarities to withanolide derivatives and inhibits 

androgen biosynthesis due to interactions with CYP17 enzyme, LG-02 and WE may 

have a similar mechanism of action. Alternatively, the resistant population could be 

treated with siRNA for the androgen receptor and growth could be monitored to 

determine if this population no longer required androgen signalling via the androgen 

receptor for proliferation.  

If cells are androgen-dependent, it is important to know where the AR-targeted effects 

are. Androgen dependent cells could be treated with LG-02 or WE and investigate for 

blockade of androgen biosynthesis pathways using HPLC. HPLC allows the detection of 

steroids from a sample and could be used to determine if steroid biosynthesis was 

impaired after incubation with withanolide derivatives. If a particular steroid was no 

longer synthesised this would offer further information as to LG-02 and WE 

mechanisms of action as these may target the CYP enzymes (see fig 4.2) that are 

involved in steroid biosynthesis.   
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