
The construction and interrogation of actor based
simulation histories

CLARK, Tony <http://orcid.org/0000-0003-3167-0739>, KULKARNI, Vinay,
BARN, Balbir and BARAT, Souvik

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/17356/

This document is the Accepted Version [AM]

Citation:

CLARK, Tony, KULKARNI, Vinay, BARN, Balbir and BARAT, Souvik (2017). The
construction and interrogation of actor based simulation histories. In: CABANILLAS,
Cristina, ESPAÑA, Sergio and FARSHIDI, Siamak, (eds.) Proceedings of the ER
Forum 2017 and the ER 2017 Demo Track co-located with the 36th International
Conference on Conceptual Modelling (ER 2017), Valencia, Spain, - November 6-9,
2017. CEUR Workshop Proceedings (1979). CEUR-WS, 334-347. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

The Construction and Interrogation of Actor
Based Simulation Histories

Tony Clark1, Vinay Kulkarni3, Balbir S. Barn2, and Souvik Barat3

1 Sheffield Hallam University, UK
2 Middlesex University, UK

3 Tata Consultancy Services Research, India

Abstract Large socio-technical systems are complex to comprehend in
their entirety because information exchanges between system compo-
nents lend an emergent nature to the overall system behaviour. Although
Individual system component behaviour may be known at the outset,
such components may exhibit uncertainty and further exacerbate issues
of a priori prediction of the overall system behaviour. Multi-agent sys-
tems and the use of simulation is a possible recourse in such situations
however, simulation results need to be correctly interpreted so as to
nudge the overall system behaviour towards a desired objective. We pro-
pose a solution wherein the system is modelled as a set of actors ex-
changing messages, a simulation engine producing execution trace for an
actor as its history, and a querying mechanism to identify patterns that
may span across individual actor histories to ascertain property of the
overall system. The proposed solution is evaluated using a representative
sample from real life.

1 Introduction

Organisations and socio-technical systems can be simulated using Multi-
Agent Systems [5,11,10] where such a model of an organisation is con-
structed in terms of independent goal-directed agents that concurrently
engage in tasks, both independently and collaboratively forming an ex-
ecutable model that produce simulation results representing the organi-
sation. A key aspect is analysis of simulation outputs [6]. An important
reason for using agents for simulation is that the systems of interest are
complex, for example because they involve socio-technical features [9]. As
a result, the simulations exhibit emergent behaviour that must be anal-
ysed in a variety of initially unforeseen ways in order to construct models
that explain features of interest. Such analysis may be used to validate
the simulation model by comparing it against observable truth, may be
used to sense-check the results of the simulation, or may be used to guide
modifications to the simulation model so that it better meets the original
requirements.

Our work on simulation has led to the design of a simulation work-
bench built around an actor language [12] called ESL [4]. The language
ESL is used to construct agent-based simulation models that are run to
produce histories. Each history contains a sequence of events produced by
the behaviour of the agents in the simulation and thereby captures their
emergent behaviour. A history is a temporal database of facts describing
the states of, and communications between, agents in the simulation.

The challenge is to provide a suitable technology that allows the tem-
poral database to be interrogated in order to support the sense-making
described above. We describe an approach to the construction and in-
terrogation of simulation histories. History construction is achieved by
extending the standard operational actor model of computation [7] in
order to capture temporal events during simulation execution. History
interrogation is achieved by extending standard logic programming with
temporal operators that are defined in terms of a supplied history con-
taining time-stamped events.

The approach is defined in terms of meta-interpreters for both con-
struction, in section 2, and interrogation, in section 3. The approach has
been implemented by extending the ESL language with history and in-
terrogation features; the implementation is briefly described in section 4
and used to implement and interrogate the simulation of a retail shop.

2 History Construction

An agent-based simulation model consists of agents, each of which has lo-
cal knowledge, goals and behaviour. Such a model can be operationalised
in terms of the actor model of computation whereby each actor has an
independent thread of control, has a private state and communicates with
other actors via asynchronous messages to either update a local variable
or change behaviour.

ESL is a text-based language that compiles to an actor-based VM.
Actor behaviour can be represented using state machines as shown in
figure 1 where figure 1(a) is a state machine representation of the ESL
actor definition in figure 1(b). The rest of this paper will use state machine
representation for actors with transitions between states labelled M[Q]/A

where M is a message, Q is a guard condition, and A is an action. Note that
not all ESL programs can be represented as state machines, however this
is sufficient for the behaviours considered in this paper.

Figure 2 shows a model of actor program states that is suitable to de-
fine the construction of histories. The model is expressed as a collection

(a) Actor Machine

act name(x:Int)::B {

export a; // public interface.

a::Int = 0; // public variable.

b::A = new A(x); // initialised local.

s::State = S0; // state variable.

M1(y::Int) // message handler.

when s = S0 and
a < 10 // message guard.

→ { // message action.

a := a + 1; // update variable.

s := S1; // change state.

b ← M2(y-1); // send message.

b := new A(x+1) // actor creation.

}

M1(y::Int) when s = S1 →
s := s0

}

(b) ESL Actor

Figure 1. Example Actor Behaviour

1 type Id = Int;
2 type Time = Int;
3 type Behaviour = [Handler(Str,[Command])];
4 data Command = Send(Id,Str) | Update(Str) | Block([Command]) | Become(Str) | New(Str);
5 type Queue = [Message(Str)];
6 type Actor = Machine(Id ,[Command],Behaviour ,Queue ,Time);

7 type DB = [Fact(Time ,Command)];

8 type ESL = State(Set{Actor},DB,Time);

Figure 2. An Abstract Model of Actor Programs

of ESL type definitions. All details relating to how variables are man-
aged within an actor has been elided and can be understood in terms of
standard operational models of programming languages. The term State(

a,db,t) represents the state of an executing actor configuration where a is
a set of actors, db is a history database, and t is the current time. We are
interested in specifying how db is constructed through the conventional
operational semantics of actors. This is achieved by defining a single-step
operational semantics: s2=step(s1) where system state s1 performs an ex-
ecution step in order to become state s2. The complete execution of a
system can be constructed by repeated application of step.

It is useful in simulations to be able to refer to global time via a clock.
This can be used to schedule future computation or to allow actors to
perform joint actions. To support the notion of global time, each actor in
our operational model receives a regular Time message where each global
time unit is measured in machine instructions. This mechanism seems
to be fair and, although is not related to real-time, provides a basis for
time that is useful in a simulation. To support this, each actor has an
instruction count that, when reached, halts the actor. When all actors
have been halted, global time is increased, and a message is sent to all
actors.

A history database db is created from an initial configuration of actors
a by repeated application of step until a terminal state is achieved such
that all actors are exhausted and have no pending messages, db=run(a):

isTerminal :: (ESL) → Bool;
isTerminal(State(a,_,_)) = allTerminated(a);

allTerminated :: (Set{Actor}) → Bool;
allTerminated(set{}) = true;

allTerminated(set{a | as}) = isTerminated(a) and allTerminated(as);

isTerminated::(Actor) → Bool;
isTerminated(Machine(_,[],_,[],_)) = true;

isTerminated(_) = false;

run::([Actor]) → DB;

run(a) = repeat(step ,State(a,[],0),isTerminal)

Summarising, a history is a collection of facts of the form Fact(t,f)

where t is a timestamp and f is a term representing an actor execution
step. The next section describes how the histories are interrogated using
a temporal extension to standard relational programming.

3 Interrogation of Histories

Simulations consist of many autonomous agents with independent be-
haviour and motivation. Consequently, system behaviour is difficult to
predict. Furthermore, the highly concurrent nature of the actor model
of computation makes the simulation difficult to instrument in order to
detect situations of interest. Therefore, we propose the construction of
simulation histories as a suitable approach to simulation interrogation.
Given such a history we would like to construct queries that determine
whether particular relationships exist, where the relationships are defined
in terms of the key features of actor computation. Logic programming,
as exemplified by Prolog, would seem to be an ideal candidate for the
construction of such queries, however standard Prolog does not provide
intrinsic support for expressing the temporal features of the histories that
are generated in section 2.

This section describes a variation on standard Prolog that incorpo-
rates both temporal features and simulation histories. The logic pro-
gramming language is presented as a meta-interpreter written in a non-

temporal subset of itself that is a statically typed version of Prolog:

append[T] :: ([T],[T],[T]);

append[T]([],l,l) ← !;

append[T]([x|l1],l2 ,[x|l3]) ←
append[T](l1 ,l2,l3);

length[T] :: ([T],Int);
length[T]([] ,0) ← !;

length[T]([h|t],n) ←
length[T](t,m), n := m + 1;

member[T] :: (T,[T]);

member[T](x,[x|_]);

member[T](x,[_|l]) ←
member[T](x,l);

subset[T] :: ([T],[T]);

subset[T]([] ,[]);

subset[T]([x|l],[x|s]) ←
subset[T](l,s);

subset[T](l,[_|s]) ←
subset[T](l,s);

lookup[V] :: (Str,V,[Bind(Str,V)]);
lookup[V](n,v,[Bind(n,v) | _]);

lookup[V](n,v,[_|env]) ←
lookup[V](n,v,env);

The examples above are standard Prolog rules that have been elaborated
with static type information that is checked by the ESL Workbench before
execution. The rules length and member use parametric polymorphism over
the type T of elements in a list. The rule lookup is parametric with respect
to the type of the bindings in the environment list.

The rules shown above do not reference simulation history facts. In
order to support rules over histories we introduce new rule features based
on temporal logic. The following data type Body describes the elements
that can occur in a rule body:
data Value = Term(Str,[Value]) | Var(Str) | I(Int) | S(Str);

data Body = Call(Str,[Value]) | Is(Str,Value) | Start | End | Next([Body]) | Prev([Body])

| Always ([Body]) | Eventually ([Body]) | Past([Body]) | Forall ([Body],Value ,Value

);

The terms Call and Is represent standard Prolog body elements; all other
elements are extensions to standard Prolog. The extensions all relate to
current time which is the time-stamp associated with the facts in the
history:
type Time = Int;
type Entry = Fact(Time ,Str,[Value]);
type DB = [Entry];

Elements Start and End are satisfied when the current time is 0 and the
end of the history respectively. An element Next(es) is satisfied when the
elements es are satisfied in current time +1, similarly Prev(es) in current
time −1. An element Always(es) is satisfied when the elements es are
satisfied at all times from now, similarly Past(es) all times before now.
Element Eventually(es) is satisfied when es are satisfied at some time in
the future.

Figure 3 defines a meta-interpreter for the history query language.
Given a query q(v1,. . .,vn), a program prog, a database db and a history
end time t, the query is satisfied when call(0,t,db,’q’,[v1,. . .,vn],prog) is
satisfied with respect to the definitions given in figure 3.

The meta-interpreter is based on a standard operational semantics for
Prolog that is extended with features to process the supplied database

1 type Prog = [Rule(Str,[Value],[Body])];
2 type Env = [Bind(Str,Value)];
3

4 rule::(Str,Rule(Str,[Value],[Body]),Prog);
5 rule(n,Rule(n,as,body),[Rule(n,as ,body)|prog

]);

6 rule(n,r,[_|prog]) ← rule(n,r,prog);

7

8 call ::(Time ,Time ,DB ,Str,[Value],Prog);
9 call(time ,eot ,db,n,vs,prog) ←

10 member[Entry](Fact(time ,n,vs),db);

11 call(time ,eot ,db ,n,vs ,prog) ←
12 rule(n,Rule(n,as ,body),prog),

13 length[Value](vs ,l),

14 length[Value](as ,l),

15 matchs(as,vs ,[],vars),

16 trys(time ,eot ,db ,body ,vars ,_,prog);

17

18 eval :: (Value ,Env ,Value);

19 eval(Term(’+’,[left ,right]),env ,I(i)) ←
20 eval(left ,env ,lv), eval(right ,env ,rv),

21 i := lv + rv;

22 eval(Var(n),env ,v) ← lookup[Value](n,v,env);

23 eval(I(i),env ,I(i));

24 eval(S(s),env ,S(s));

25

26 matchs :: ([Value],[Value],Env ,Env);

27 matchs ([],[],env ,env);

28 matchs ([a|as],[v|vs],in,out) ←
29 match(a,v,in,in ’),

30 matchs(as,vs,in ’,out);

31

32 match :: (Value ,Value ,Env ,Env);

33 match(Term(n,vs),Term(n,vs ’),in,out) ←
34 matchs(vs,vs’,in ,out);

35 match(Var(n),v,e,e) ← lookup[Value](n,v,e);

36 match(Var(n),v,env ,[Bind(n,v) | env]);

37 match(I(i),I(i),env ,env);

38 match(S(s),S(s),env ,env);

39

40 derefs :: ([Value],[Value],Env ,Env);

41 derefs ([],[],env ,env);

42 derefs ([v|vs],[v’|vs ’],in ,out) ←
43 deref(v,v’,in,in ’),

44 derefs(vs,vs’,in ’,out);

72deref :: (Value ,Value ,Env ,Env);

73deref(Term(n,vs),Term(n,vs ’),in,out) ←
74derefs(vs,vs’,in ,out);

75deref(Var(n),v,e,e) ← lookup[Value](n,v,e) ,!;

76deref(Var(n),v,env ,[Bind(n,v) | env]);

77deref(I(n),I(n),env ,env);

78deref(S(s),S(s),env ,env);

79

80trys :: (Time ,Time ,DB ,[Body],Env ,Env ,Prog);

81trys(_,_,_,[],env ,env ,prog);

82trys(time ,eot ,db ,[e|es],in ,out ,prog) ←
83try(time ,eot ,db ,e,in ,in’,prog),

84trys(time ,eot ,db ,es,in’,out ,prog);

85

86try :: (Time ,Time ,DB ,Body ,Env ,Env ,Prog);

87try(t,eot ,db,Call(n,vs),in,out ,p) ←
88derefs(vs,vs’,in ,out),call(t,eot ,db ,n,vs’,p

);

89try(eot ,eot ,db,End ,env ,env ,prog);

90try(0,_,db,Start ,env ,env ,prog);

91try(eot ,eot ,db,Next(es),env ,env ,prog) ← !,

false;
92try(time ,eot ,db ,Next(es),in,out ,prog) ←
93time ’ := time + 1;

94trys(time ’,eot ,db,es ,in,out ,prog);

95try(0,eot ,db,Prev(es),env ,env ,prog) ← !,

false;
96try(t,eot ,db,Prev(es),in,out ,prog) ←
97t’ := t - 1, trys(t’,eot ,db ,es,in,out ,prog)

;

98try(eot ,eot ,db,Always(es),env ,out ,prog) ← !;

99try(time ,eot ,db ,Always(es),in ,out ,prog) ←
100trys(time ,eot ,db,es,in ,in’,prog),

101time ’ := time + 1,

102try(time ’,eot ,db,Always(es),in’,out ,prog);

103try(eot ,eot ,db,Eventually(es),in,out ,prog) ←
104!, false;
105try(time ,eot ,db,Eventually(es),in,out ,prog) ←
106trys(time ,eot ,db,es,in ,out ,prog);

107try(time ,eot ,db,Eventually(es),in,out ,prog) ←
108time ’ := time + 1,

109try(time ’,eot ,db,Eventually(es),in,out ,prog

);

110try(0,eot ,db ,Past(es),in,out ,prog) ← !, false
;

111try(time ,eot ,db,Past(es),in ,out ,prog) ←
112trys(time ,eot ,db,es,in ,out ,prog);

113try(time ,eot ,db,Past(es),in ,out ,prog) ←
114time ’ := time - 1,

115try(time ’,eot ,db,Past(es),in,out ,prog);

116try(time ,eot ,db,Is(n,exp),env ,env ,prog) ←
117eval(exp ,env ,v), lookup[Value](n,v,env);

Figure 3. Meta-Interpreter For History Query Language

(the definition of Forall is omitted, but is consistent with standard Pro-
log). The rule call is used to process a body element of the form Call(n,vs)

where n is the name of a fact and vs are the arguments. Conventional Pro-
log processes such a call using the definition of call defined on lines 11 –
16 where a rule named n with an appropriate arity is found in the program
and is supplied with the argument values using matchs.

Figure 3 extends conventional Prolog rule calling by allowing the fact
to be present in the history at the current time (lines 9-10). Therefore, the
facts in the history become added to the facts that can be conventionally
deduced using the rules.

The semantics of the additional types of body elements are processed
by the try rule (lines 89–115) by modifying the value of the current time
appropriately, For example, the rule for Next (lines 91–94) fails if the
end of the history has been reached, otherwise it attempts to satisfy the
elements es after incrementing the current time by 1.

An example rule is customers where customers(cs) is satisfied when cs

is a list of all the customer actor identifiers in the history:

1 customers :: ([Int]);
2 customers ([]) ← end , !;

3 customers(cs) ←
4 forall[actor(a,’customer ’,_)](a,cs ’), next[customers(cs ’’)],
5 append[Int](cs’,cs’’,cs);

Line 2 defines that there can be no customers if we are at the end of the
history. Lines 3–5 define how to extract the customer identifiers from this
point in the history: line 4 uses forall to match all database facts of the
form actor(a,’customer’,_) where this fact has been added to the database
when a new customer actor is created. Then, next is used to advance the
time so that cs’’ are all the customer actors from this point onwards.

4 Evaluation

We have described an approach to constructing and interrogating agent-
based simulation histories. History construction is defined by identifying
the key operational features of the actor model of computation and then
extending an actor interpreter with a database of temporal facts, each of
which is based on a key operational feature. History interrogation is per-
formed by extending a standard Prolog interpreter with language features
for processing the facts in a temporal database. The approach has been
implemented within ESL where we have extend the ESL VM to produce
histories and then integrated a query language, a Prolog VM extended
with features to process histories (as defined in section 3).

This section provides an overview of the implementation, describes a
simulation that produces a history, and shows how the query language
can interrogate the history.

4.1 Implementation

Figure 4. History Implementation

ESL compiles to a virtual machine that is similar to the Java VM
where actors are the equivalent of objects. The ESL VM manages a his-
tory that is automatically updated when actors are created, change be-
haviour, updated and send messages. Given the scale of simulations, it is
important that the history is represented as efficiently as possible, both
for construction and interrogation. Figure 4 shows the Java classes that
are used to implement the history.

Once constructed, a history is interrogated by the ESL query language
that compiles to a VM which is based on a standard Warren Abstract
Machine [15].

In a WAM, Choice-points are represented as pointers into a frame on
a fail stack. The ESL query language VM extended the fail stack with a
new form of fail-frame that indexes the history. For example, a query actor

(a,b,t) relates to actor creation events where a is the unique identifier, b

is the behaviour, and t is the time, any of which may be logic variables.
Therefore the query potentially represents a choice point. The VM creates
a fail-frame corresponding to the choice point and indexes the 0-th fact
that matches the supplied values, if this subsequently fails by returning

to the fail-frame, then the index is incremented. A history is any Java
object that implements the following interface which is used by the call
and fail mechanism within the VM:

1 public interface DB {

2 boolean hasFact(String name ,int arity ,int time ,int index ,Machine machine);

3 Object getFactArg(String name ,int arity ,int time ,int index ,int argNumber ,Machine machine

);

4 int endOfTime ();

5 }

The method hasFact is used by the query VM when performing a call to
determine whether the hitsory database contains a fact corresponding to
the call. The first time this occurs the supplied index is 0. If this succeeds
then the VM constructs a fail-frame that captures the name, arity, time
and the next index: 1. Each time the fail-frame is used for backtracking,
the index is incremented. The method getFactArg is used to extract the
individual fact arguments and subsequently unify them in the query VM.

4.2 Case Study Application

In this paper we use a case study that is based on existing work on agent-
based organisation simulations [13] and as such is seen as a reference
example. The case study will be used to demonstrate the construction
of an agent model that produces a history and the subsequent interroga-
tion via a query. The query is chosen to demonstrate the utility of logic
programming using the ESL query language and will also be analysed
in terms of its efficiency based on the implementation described in the
previous section.

Case study description: A shop provides stock on the shop-floor. Cus-
tomers enter the shop and may browse until they either leave, seek help or
decide on a purchase. Items must be purchased at tills and multiple cus-
tomers are serviced via a queue. Shop assistants may be on the shop-floor,
helping a customer or may service a till. A queueing customer can only
make a purchase when they reach the head of a queue at a serviced till.
A customer who waits too long at an unserviced till, or for whom help is
not available, will become unhappy and leave the shop. The shop would
like to minimise unhappiness. In addition the shop owner has noticed
that stock is going missing. A criminal gang is known to be operating in
the area. Typically they operate by engaging all the assistants in a shop
whilst one of the gang members leaves the shop without paying for the
goods.

An ESL simulation can be modelled using structure and behaviour
diagrams which are variations on class and state machine diagrams re-
spectively. The structure of the shop simulation is shown in figure 5 in

Figure 5. Structure of Shop Actors

which we make the distinction between behaviour types and behaviours.
The difference between these two concepts corresponds to the difference
between software module types and modules in that a behaviour type
is an interface definition and a behaviour provides an implementation of
the interface. There may be many actors that are instances of the same
behaviour.

The model shown in figure 6 organises a shop as a collection of cus-
tomers, assistants and tills. Each till is an actor that is associate with
a sequence of transactions, also represented as actors. Each transaction
may be serviced by sending it a Do message, or may be delayed, by send-
ing it a Wait message. When a transaction is successfully terminated the
corresponding actor will change its behaviour to transacted which means
that it acts as a proxy for the next transaction in the queue.

In addition to normal customers, the simulation represents a special
type of customer called gangMember. These unscrupulous actors are organ-
ised by a gang leader to occupy sales assistants in order that the leader
can steal merchandise. We will not explicitly consider the behaviour of the
gang leader, however we will be interested in examining the simulation
history in order to detect potential gang member behaviour.

Figure 6 shows the behaviour definitions for the shop simulation ac-
tors. The simulation is driven by Time messages and all actors implement
a Time transition for all states; the empty transitions arising from Time are
omitted. Time is used in figure 6(g) to show how customers waiting at a
till can time out and ultimately leave the shop. The value supplied to a

(a) Assistant Behaviour (b) Customer Behaviour

(c) No Transactions Behaviour (d) Transacted Behaviour (e) No Tills Be-
haviour

(f) A Till Behaviour (g) A Transaction Behaviour

Figure 6. Shop Actor Behaviour

transaction is tLim which determines how long a customer is prepared to
wait without a sale being concluded.

Customers who leave the shop because they have waited too long to
be serviced at a till are deemed to be unhappy. the shop is interested in
how to organise its assistants, sales and floor-walking strategies in order
to minimise unhappy customers. Figure 7 shows the ESL Workbench
output from two different simulation configurations. The Workbench can
generate a display based on actor states during the simulation, figure
7 shows the final output. Figure 7(a) shows the result of 10 customers,
5 tills and 3 sales assistants where roughly 75% of the customers are
left unhappy. The number of assistants has been increased to 5 in figure
7(b) where the situation is reversed. note that the simulation has many

(a) Shop with 10 Customers, 5 Tills and 3 Assistants

(b) Shop with 10 Customers, 5 Tills and 5 Assistants

Figure 7. Shop Simulation Output

random elements and therefore each run is different, but the two outputs
characterise the relative differences.

5 Related Work

Simulation of multi agent systems (MAS) is quite close to the problem
we are addressing. Several simulation approaches have been suggested
but none seem to address the querying need. In [2], Bosse et al. present
a generic language for the formal specification and analysis of dynamic
properties of MAS. This language supports the specification of both qual-
itative and quantitative aspects, and therefore subsumes specification lan-
guages based on differential equations. However, this is not an executable
language. In fact, it has been specialised for simulation domain leading
to LEADSTO language[3]. The LEADSTO is essentially a declarative
order-sorted temporal language extended with quantitative notions (like
integer, and real). Time is considered linear, continuous, described by real
values. Dynamics is modelled as direct temporal dependencies between
state properties in successive states. Though quite useful in specifying
simulations of dynamic systems, it does not provide any help in querying
the resultant behaviour. Bosse et al. further propose a multi-agent model
for mutual absorption of emotions to investigate emotion as a collective
property of a group using simulation[1]. It provides mathematical ma-

chinery to validate a pre-defined property over simulation trace. However,
there is no support for temporal logic operators in specifying a property.

Sukthankar and Sycara, in contrast, propose an algorithm to recog-
nize team behaviour from spacio-temporal traces of individual agent be-
haviours using dynamic programming techniques[14]. Though quite close
as regards the solution space, this result lays strong emphasis on team
behaviour thus hinting collaboration. Our proposed machinery is neutral
to the nature of environment - collaborative or competitive or both. Vas-
concelos et al. present mechanisms based on first-order unification and
constraint solving techniques for the detection and resolution of norma-
tive conflicts concerning adoption and removal of permissions, obligations
and prohibitions in societies of agents[16]. Though we too propose Pro-
log based realisation for querying generated histories, our focus is more
quantitative.

6 Conclusion

In this paper, we have sought to address the challenge of analysing simula-
tions that exhibit emergent behaviour for unforseen conditions. Our basic
architectural approach to this problem was to extend our actor based lan-
guage ESL with a Prolog based meta interpreter that is able to execute
queries over simulation histories. The extensions to ESL and the Prolog
variant include new rule features based on temporal logic that reference
simulation history facts that are both global across the system or local to
specific actors within the system. The technology was evaluated using a
reference case study. While we recognise the limitations of such an eval-
uation approach, the case study is sufficiently realistic in generating rich
and complex simulation histories. Our long-term goal for this research is
the construction of robust, scaleable, encompassing technology that com-
plex dynamic decision making situations that deal with uncertainty and
emergent behaviour.

References

1. Tibor Bosse, Rob Duell, Zulfiqar A Memon, Jan Treur, and C Natalie Van Der Wal.
Multi-agent model for mutual absorption of emotions. ECMS, 2009:212–218, 2009.

2. Tibor Bosse, Catholijn M Jonker, Lourens Van der Meij, Alexei Sharpanskykh, and
Jan Treur. Specification and verification of dynamics in cognitive agent models.
In IAT, pages 247–254. Citeseer, 2006.

3. Tibor Bosse, Catholijn M Jonker, Lourens Van Der Meij, and Jan Treur. Leadsto:
a language and environment for analysis of dynamics by simulation. In German
Conference on Multiagent System Technologies, pages 165–178. Springer, 2005.

4. Tony Clark, Vinay Kulkarni, Souvik Barat, and Balbir Barn. Actor monitors for
adaptive behaviour. In Ravi Prakash Gorthi, Santonu Sarkar, Nenad Medvidovic,
Vinay Kulkarni, Atul Kumar, Padmaja Joshi, Paola Inverardi, Ashish Sureka, and
Richa Sharma, editors, Proceedings of the 10th Innovations in Software Engineering
Conference, ISEC 2017, Jaipur, India, February 5-7, 2017, pages 85–95. ACM,
2017.

5. Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design of
organizations in multi-agent systems. In Multi Agent Systems, 1998. Proceedings.
International Conference on, pages 128–135. IEEE, 1998.

6. Paul A Fishwick. Computer simulation: growth through extension. Transactions
of the Society for Computer Simulation, 14(1):13–24, 1997.

7. Carl Hewitt. Actor model of computation: scalable robust information systems.
arXiv preprint arXiv:1008.1459, 2010.

8. Rajesh K Karmani, Amin Shali, and Gul Agha. Actor frameworks for the jvm plat-
form: a comparative analysis. In Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, pages 11–20. ACM, 2009.

9. Tom McDermott, William Rouse, Seymour Goodman, and Margaret Loper. Multi-
level modeling of complex socio-technical systems. Procedia Computer Science,
16:1132–1141, 2013.

10. Geoffrey P Morgan and Kathleen M Carley. An agent-based framework for active
multi-level modeling of organizations. 2016.

11. David V Pynadath and Milind Tambe. An automated teamwork infrastructure for
heterogeneous software agents and humans. Autonomous Agents and Multi-Agent
Systems, 7(1-2):71–100, 2003.

12. Alessandro Ricci, Gul Agha, Rafael H Bordini, and Assaf Marron. Special issue
on programming based on actors, agents and decentralized control. Science of
Computer Programming, 98:117–119, 2015.

13. Peer-Olaf Siebers and Uwe Aickelin. A first approach on modelling staff proac-
tiveness in retail simulation models. J. Artificial Societies and Social Simulation,
14(2), 2011.

14. Gita Sukthankar and Katia Sycara. Simultaneous team assignment and behavior
recognition from spatio-temporal agent traces. In AAAI, volume 6, pages 716–721,
2006.

15. Terrance Swift and David Scott Warren. An abstract machine for slg resolution:
Definite programs. In ILPS, pages 633–652. Citeseer, 1994.

16. Wamberto W Vasconcelos, Martin J Kollingbaum, and Timothy J Norman. Nor-
mative conflict resolution in multi-agent systems. Autonomous Agents and Multi-
Agent Systems, 19(2):124–152, 2009.

