
Constructing and interrogating actor histories

CLARK, Tony <http://orcid.org/0000-0003-3167-0739>, KULKARNI, Vinay,
BARAT, Souvik and BARN, Balbir

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/17355/

This document is the Accepted Version [AM]

Citation:

CLARK, Tony, KULKARNI, Vinay, BARAT, Souvik and BARN, Balbir (2018).
Constructing and interrogating actor histories. In: VALENCIA-GARCÍA, Rafael,
PAREDES-VALVERDE, Mario Andrés, DEL PILAR SALAS- ZÁRATE, María and
ALOR-HERNÁNDEZ, Giner, (eds.) Exploring intelligent decision support systems:
Current state and new trends. Studies in Computational Intelligence (764). Springer,
27-47. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Constructing and Interrogating Actor Histories

Tony Clark

Sheffield Hallam University, UK

Vinay Kulkarni

Tata Consultancy Services Research, India

Souvik Barat

Tata Consultancy Services Research, India

Balbir Barn

Middlesex University, UK

Abstract Complex systems, such as organizations, can be represented as execut-
able simulation models using actor-based languages. Decision-making can be sup-
ported by system simulation so that different configurations provide a basis for
what-if analysis. Actor-based models are expressed in terms of large numbers of
concurrent actors that communicate using asynchronous messages leading to
complex non-deterministic behaviour. This chapter addresses the problem of ana-
lyzing the results of model executions and proposes a general approach that can be
added to any actor-based system. The approach uses a logic programming lan-
guage with temporal extensions to query execution traces. The approach has been
implemented and is shown to support a representative system model.

Introduction

Organizations and systems can be simulated using Multi-Agent Systems [17, 33,
34]. This approach builds a model of an organisation in terms of independent goal-

2

directed agents that concurrently engage in tasks, both independently and collabo-
ratively. Collections of such agents form an executable model that produces re-
sults. Fishwick [18] notes the key features of computer simulation to be model-
ling, execution and analysis of output. An important reason for using agents for
simulation is that the systems of interest are complex, for example because they
involve socio-technical features [32]. As noted in [31]: humans use patterns to or-
der the world and make sense of things in complex situations, and it follows that
pattern-based analysis may be used to analyze an agent-based simulation model.
This chapter addresses the problem of how to create and analyze agent-based sim-
ulations.

 Our work on simulation for decision support [4, 5, 6, 15, 29, 30] has led to the
design of a simulation workbench built around an actor language [36] called ESL
[14]. The language ESL is used to construct agent-based simulation models that
are run to produce histories. Each history contains a sequence of events produced
by the behaviour of the actors in the simulation and thereby captures their emer-
gent behaviour. A history is a temporal database of facts describing the states of,
and communications between, actors in the simulation.

 The research question that we seek to investigate is: what general-purpose
mechanism can be devised to generate actor histories and then analyze them using
temporal queries? Where possible the mechanism should be applicable to existing
actor-based technologies and use standard query languages with minimal exten-
sions. We take a design-based approach to this research by taking an existing
technology and implementing extensions that support the production and analysis
of actor-histories.

The current state of the practice of analysis of simulation results is predominantly
based on the visualization and human interpretation. We propose a programmatic
approach to the construction and interrogation of simulation histories. History
construction is achieved by extending the standard operational actor model of
computation [16, 21] in order to capture temporal events during simulation execu-
tion. History interrogation is achieved by extending standard logic programming
with temporal operators that are defined in terms of a supplied history containing
time-stamped events.

 Our contribution is a pair of general-purpose languages for the construction and
subsequent interrogation of agent-based execution histories. In both cases conven-
tional computational models are extended with novel mechanisms for histories: an
interpreter for actor languages is extended with primitives for history production
and a Prolog meta-interpreter is extended to support history interrogation.

The proposed approach is evaluated in terms of its completeness, viability and va-
lidity. Completeness follows from the universality of the actor model of computa-
tion, from our claim that our actor interpreter generates all key computational
events, and from our claim that the query language can express all queries of in-

3

terest. Viability is demonstrated by our implementation of a simulation workbench
and validity is demonstrated by showing how the implementation supports the
construction and interrogation of a representative simulation. The conclusion dis-
cusses threats to validity, how we plan to address them, and outlines next steps.

Related Work

The use of Multi-Agent Systems (MAS) for system simulation has been explored
by a number of researchers, for example in [10, 13 20, 39, 39], where agent simu-
lation models range from collection of numerical equations to sophisticated behav-
iours encoded using a BDI-based approach. Researchers have developed ap-
proaches for the definition and analysis of simulation properties. In [10], Bosse et
al. present a generic language for the formal specification and analysis of dynamic
properties of MAS that supports the specification of both qualitative and quantita-
tive features, and therefore subsumes specification languages based on differential
equations. However, this is not an executable language like that presented in this
chapter. It has been specialized for simulation and has produced the LEADSTO
language [11] that is a declarative order-sorted temporal language where time is
described by real numbers and where properties are modelled as direct temporal
dependencies between properties in successive states. Though quite useful in spec-
ifying simulations of dynamic systems, it does not provide any help in querying
the resultant behaviour. Bosse et al. further propose a multi-agent model for mu-
tual absorption of emotions to investigate emotion as a collective property of a
group using simulation [9]. It provides mathematical machinery to validate a pre-
defined property over simulation trace. However, there is no support for temporal
logic operators.

 Sukthankar and Sycara propose an algorithm to recognize team behaviour from
spacio-temporal traces of individual agent behaviours using dynamic program-
ming techniques [40], but do not address general behavioural properties arising
from simulations. Vasconcelos et al. present mechanisms based on first-order uni-
fication and constraint solving techniques for the detection and resolution of nor-
mative conflicts concerning adoption and removal of permissions, obligations and
prohibitions in societies of agents [41].

 The tool described in [43] produces static diagrams of agent communication to-
pologies using a society tool. The authors support off-line video-style replay facili-
ties with forward and backward video modes as a powerful debugging aid. How-
ever there is no programmatic mechanism for interrogating the histories.

 Temporal logics have been used to specify the behaviour of MAS [12] and to an-
alyze the specification for properties using theorem proving or model checking.
Our approach uses a similar collection of temporal operators, however we are ap-

4

plying the behaviour specifications post-hoc in order to investigate whether a giv-
en behaviour took place, rather than to express required behaviour or to analyze
properties such as consistency etc.

 The need to analyze agent-based simulations is related to the field of agent-based
system testing. As noted in [42] attempting to obtain assurance of a system's cor-
rectness by testing the system as a whole is not feasible and there is, at present, no
practical way of assuring that they will behave appropriately in all possible situa-
tions. Our approach is intended to be a pragmatic partial solution that is used se-
lectively in collaboration with a domain expert. Queries can be used to test wheth-
er properties exist in particular histories, and could help scope the use of more
formal static methods.

 Using temporal operators to construct queries over databases is a standard ap-
proach. Queries can be encoded in logic [7] or in SQL extensions [3], although as
noted in [26]: Much of real-life data is temporal in nature, and there is an increas-
ing application demand for temporal models and operations in databases. Never-
theless, SQL:2011 has only recently overcome a decade-long standstill on stand-
ardizing temporal features. As a result, few database systems provide any
temporal support, and even those only have limited expressiveness and poor per-
formance. A logic provides increased expressive power over an SQL-like lan-
guage at the cost of requiring a theorem prover or a model checker with the asso-
ciated scalability issues. Our approach, using logic-programming, aims to be more
expressive than SQL whilst addressing scalability.

 Managing temporal data is becoming increasingly important for many applica-
tions [25, 28]. Our work is related to process mining from the event logs that are
created by enterprise systems [35] where queries can be formulated in terms of a
temporal logic and applied to data produced by monitoring real business systems.
Other researchers have proposed adding temporal operators to query languages in
order to process knowledge bases [8]. We have extended these approaches in the
context of simulation histories by showing how to encode them in an operational
query language.

 The nature of agent-based systems leads to high levels of concurrency with an
associated challenge regarding system analysis when behaviour is not as expected.
As reported in [27]: in order to locate the cause of such behaviour, it is essential
to explain how and why it is generated [22]. If histories are linked to source code
then queries can be used as part of an interactive debugger, extending the ap-
proach described in [27]. In conclusion, there have been a number of approaches
in the literature that analyze actor-based systems, some of them are based on histo-
ries, but none provide the expressive power of the language defined in this chap-
ter. Furthermore, we show how any actor-based language can be extended to pro-
duce histories that are suitable for interrogation by queries written in an extended
logic programming language.

5

Actors and Histories

An agent-based simulation model consists of agents, each of which has local
knowledge, goals and behaviour. Such a model can be operationalized in terms of
the actor model of computation whereby each actor has an independent thread of
control, has a private state and communicates with other actors via asynchronous
messages as shown in Fig. 1. For the purposes of this chapter we conflate the terms
agent and actor.

 The key features of the actor computation model are [1, 2, 24]: (1) the creation of
new actors; (2) sending asynchronous messages; (3) updating a local variable; (4)
changing behaviour. The latter allows an actor to adapt by changing the way in
which it responds to messages. The state of an actor can be represented in terms of
its local variable storage (including references to other actors), its thread of execu-
tion, and its message queue. Execution proceeds independently at each actor by

Figure 1: Actor Model of Computation [24]

Figure 2: Features of Actor Behaviour

6

selecting the next message on the queue, using the message to index a suitable
handler in the actor's behaviour description, and proceeding to execute the handler
on the actor's thread. When the execution terminates, it repeats the process by se-
lecting the next message.

 Consider a situation where a customer processes jobs on a machine. The custom-
er submits a job request to a machine that may subsequently result in a notification
that the job has been completed, or that the machine is busy and cannot accept the
job. After accepting a job, a machine may break down causing a delay. A simple
actor model for this situation is shown in Fig. 2(a) where the types Customer and
Machine and the behaviours workingMachine and brokenMachine. A type defines
an interface that may be implemented by many different behaviours, and a behav-
iour is equivalent to a Java class that can be instantiated to produce actors. The
behaviour of a machine is shown in figure Fig. 2(b) and is distributed between the
two behaviour definitions: a machine initially has the behaviour workingMachine
and is Idle. A working machine becomes Busy when it receives a job request, and
may change behaviour to become a brokenMachine. When broken, the Machine
interface is implemented differently and may become working after a period of re-
pair.

 Fig. 2(c) shows an execution history corresponding to the machine and customer
actors. The simulation is driven by messages Time(n) which are generated at regu-
lar intervals, and the history contains the events that are produced at each time in-
terval. The event types are: New(b,i) where i is a unique actor identifier, and b is
the corresponding behaviour; Update(i,n,v) where i is an actor identifier, n is the
name of a state variable, and v is a new value for the variable; Send(s,t,m) rec-
ords a message m being sent from actor s to target t; Consume(i,m) removes mes-
sage m from the head of the message queue for actor i; Become(i,b) records the
change of behaviour of actor i to have behaviour b.

 The machine example demonstrates typical features of actor-based simulation:
time and stochastic behaviour. All actors receive Time(n) messages that drive the
simulation and therefore events can be associated with a specific time, thereby
providing an event ordering within a specific history. The event that causes a ma-
chine breakdown is dependent on a given probability: break, and therefore multi-
ple runs of the same actor model can produce different histories corresponding to
emergent behaviour. Analysis of a history is based on detecting patterns in the se-
quence of events.

7

Constructing Histories

The actor model of computation has been implemented in a significant number of
languages and libraries [23]. The implementations differ in terms of syntax and in
the integration with other language features, however the key aspects of the actor
model are common to all. This section shows how any of these implementations
can be extended to produce histories by defining an actor interpreter that abstracts
away all non-essential features and that has been minimally extended to produce
histories. The interpreter is defined using a functional subset of ESL, which sup-
ports basic data types, simple algebraic data, lists and sets. The latter is used in
conjunction with pattern matching to support non-deterministic set element selec-
tion, which is key to the fairness property of actor systems.

 Fig. 3 shows a model of actor program states: State(a,db,t) is the state of an
executing actor system where a is a set of actors, db is a history database, and t is
the current time. We are interested in specifying how db is constructed through the
conventional operational semantics of actors. This is achieved by defining a sin-
gle-step operational semantics: s2=step(s1) where system state s1 performs an
execution step in order to become state s2. The complete execution of a system
can be constructed by repeated application of step.

 It is useful in simulations to be able to refer to global time via a clock. This can
be used to schedule future computation or to allow actors to perform joint actions.
To support the notion of global time, each actor in our operational model receives
a regular Time message where each global time unit is measured in machine in-
structions. This mechanism seems to be fair and, although is not related to real-
time, provides a basis for time that is useful in a simulation. To support this, each

1 type Id = Int; // Actor identifiers.
2 type Time = Int; // Atomic time units.
3 type Behaviour = [Handler(Str,[Command])]; //Handlers.
4 data Command = // Abstract commands.
5 | Send(Id,Str) // Send a name to a target actor.
6 | Update(Str) // Change a variable.
7 | Block([Command]) // Group of commands.
8 | Become(Str) // Change behaviour.
9 | New(Str); // Create a new actor.
10 | Choice(Set(Command)) // Choice between alternatives.
11 | Consume // Handle next message.
12 type Queue = [Message(Str)]; // Sequence of messages.
13 type Actor = Machine(Id, // Actor's unique id.
14 | [Command], // Instructions on actor thread.
15 | Behaviour, // Actor message handlers.
16 | Queue, // Pending messages.
17 | Time); // Computation steps available.
18 type DB = [Fact(Time,Command)]; // A History of facts.
19 type ESL = State(Set{Actor},DB,Time); // The system state.

Figure 3: An Abstract Model of Actor Programs as an ESL Data Type

8

actor has an instruction count that, when reached, halts the actor. When all actors
have been halted, global time is increased, and a message is sent to all actors.

 An actor is represented as Machine(i,cs,b,q,t) where i is a unique identifier,
cs are machine instructions that are currently executing on the actor's thread of
control, b is the actor's behaviour, q is a message queue, and t is an integer that
represents the number of instructions left to this actor within this global time unit.
The function step is defined:

1 is0::(Actor) -> Bool
2 is0(Machine(i,cs,b,ms,t)) = t=0;
3
4 all0::(Set{Actor}) -> Bool
5 all0(set{}) = true;
6 all0(set{a | as}) = is0(a) and all0(as);
7
8 tickActor::(Actor) -> Actor

1 send::(Int,Str,Set{Actor}) -> Set{Actor}
2 send(a,n,set{Machine(i,cs,b,q,t) | ms}) when i=a =
3 set{Machine(i,cs,b,Message(n):q,t) | ms}
4
5 getHandler::(Str,Behaviour) -> [Command]
6 getHandler(n,[]) = [];
7 getHandler(n,Handler(m,cs):b) = if m=n then cs else getHandler(n,b);
8
9 newState::(Actor,Set{Actor},DB,Time) -> ESL
10 newState(Machine(id,[],b,[],ta),ms,db,t) = State(set{m|ms},db,t);
11 newState(Machine(id,[],b,Message(n):q,ta),ms,db,t) =
12 State(set{Machine(id,getHandler(n,b),b,q,ta-1) | ms},Fact(t,Consume):db,t);
13 newState(Machine(id,Send(target,n):cs,b,q,ta),ms,db,t) =
14 State(set{Machine(id,cs,b,q,ta-1) | send(target,n,ms)},
15 Fact(t,Send(target,n)):db,
16 t);
17 newState(Machine(id,Update(var):cs,b,q,ta),ms,db,t) =
18 State(set{Machine(id,cs,b,q,ta-1) | ms},
19 Fact(t,Update(var)):db,
20 t);
21 newState(Machine(id,Become(var):cs,b,q,ta),ms,db,t) =
22 State(set{Machine(id,cs,getBehaviour(var),q,ta-1) | ms},
23 Fact(t,Become(var)):db,
24 t);
25 newState(Machine(id,New(var):cs,b,q,ta),ms,db,t) =
26 State(set{Machine(id,cs,b,q,ta),Machine(id',[],b',[],100) | ms},
27 Fact(t,New(var))):db,
28 t) where (b',id') = newActor(var);
29 newState(Machine(id,Block(commands):cs,b,q,ta),ms,db,t) =
30 State(set{Machine(id,commands + cs,b,q,ta-1) | ms},db,t);
31 newState(set{Machine(id,Choice(set{c|_}):cs,b,q,ta) | ms},db,t) =
32 newState(set{Machine(id,c:cs,b,q,ta) | ms},db,t)
33 newState(m=Machine(id,Consume:cs,b,q,ta),ms,db,t) = State(set{m | ms},db,t)

Figure 4: Semantics of ESL

9

9 tickActor(Machine(i,cs,b,q,t)) = Machine(i,cs,b,Message('Time'):q,100);
10
11 tick::(Set{Actor}) -> Set{Actor}
12 tick(set{}) = set{};
13 tick(set{a | s}) = set{tickActor(a) | tick(s)};
14
15 step::(ESL) -> ESL
16 step(State(a,db,t)) when all0(a) = State(tick(a),db,t+1);
17 step(State(set{m | ms},db,t)) = newState(m,ms,db,t)

where line 6 detects the situation where all actors have exhausted their execution
resources for the current time unit and line 17 non-deterministically selects an ac-
tor m such that newState performs an execution step for m if that is possible.

Fig. 4 defines function newState that performs a single step of execution for an ac-
tor with respect to the system. It is defined by case analysis on the actor's control
instructions. In the case that the actor has exhausted its control and has no further
messages (line 10) it can do nothing. If the control is exhausted and there is a
pending message (line 11) then the control is updated to become the new message
handler. Otherwise, lines 13-34 show how each command causes the history data-
base to be extended with a fact that is labelled with the current global time. The
operation newActor::(Str)->(Behaviour,Id) is used to create a new actor when
supplied with the name of a behaviour. It is not defined in Fig. 4 but assumes a
global collection of behaviour definitions and allocates a new actor identifier each
time it is called.

 A history database db is created from an initial configuration of actors a by re-
peated application of step until a terminal state is achieved such that all actors are
exhausted and have no pending messages, db=getDB(run(a)):

isTerminal::(ESL) -> Bool;
isTerminal(State(a,_,_)) = allTerminated(a);

allTerminated::(Set{Actor}) -> Bool;
allTerminated(set{}) = true;
allTerminated(set{a | as}) = isTerminated(a) and allTerminated(as);

isTerminated::(Actor) -> Bool;
isTerminated(Machine(_,[],_,[],_)) = true;
isTerminated(_) = false;

getDB::(ESL) -> DB;
getDB(State(_,db,_)) = db;

initState::(Set{Actor}) -> ESL;
initState(a) = State(a,[],0)

run::(Set{Actor}) -> ESL;
run(a) = repeat(step,initState(a),isTerminal);

10

Fig. 5 shows a concrete ESL implementation of the machine from Fig. 2. The ab-
stract implementation, using the language defined in Fig. 3 is as follows:

behaviour workingMachine {
 -> block(update(customer),update(counter))
 Do(c) -> choice(send(c,Busy),block(update(counter),update(customer)))
 Time -> choice(become(brokenMachine),update(counter),send(c,Done))
}
behaviour brokenMachine {
 -> block(update(customer),update(counter))
 Do(c) -> send(c,Busy)
 Time -> choice(become(workingMachine),update(counter))

}

This section has described an abstract operational model for the construction of
actor histories. A history is a collection of facts of the form Fact(t,f) where t is a
timestamp and f is a term representing an actor execution step. The semantics is
defined as an interpreter for an abstract actor language that can be used as the ba-
sis of designing a similar modification to a wide range of concrete languages and
the relationship of the abstract language to ESL has been demonstrated. The next
section shows how the histories produced by the interpreter can be interrogated us-
ing queries that are expressed using logic programming.

Interrogation of Histories

Simulations consist of many autonomous agents with independent behaviour and
motivation. Consequently, the system behaviour is difficult to predict. Further-
more, the highly concurrent nature of the actor model of computation makes the
simulation difficult to instrument in order to detect situations of interest. There-
fore, we propose the construction of simulation histories as a suitable approach to
simulation interrogation. Given such a history we would like to construct queries

act workingMachine(customer::Customer,counter::Int)::Machine {
 customer::Customer = null;
 Do(c::Customer) when counter > 0 -> c <- Busy;
 Do(c::Customer) when counter = 0 -> { counter := 10; customer := c }
 Time(n::Int) when customer <> null and counter > 0 ->
 probably(break) become brokenMachine(customer,10)
 else counter := counter - 1
 Time(n::Int) when customer <> null and counter = 0 -> c <- Done
}

act brokenMachine(customer::Customer,counter::Int)::Machine {
 Do(c::Customer) -> c <- Busy;
 Time(n::Int) when counter = 0 -> become workingMachine(customer,10);
 Time(n::Int) -> counter := counter - 1
}

Figure 5: ESL Implementation of Machine

11

that determine whether particular relationships exist, where the relationships are
defined in terms of the key features of actor computation. Logic programming, as
exemplified by Prolog, would seem to be an ideal candidate for the construction of
such queries, however standard Prolog does not provide intrinsic support for ex-
pressing the temporal features of such histories. We define a typed logic pro-
gramming language and define an extended Prolog meta-interpreter with history
interrogation features.

Typed Logic Programming

A basis for the history query language is a statically typed version of Prolog:

append[T]::([T],[T],[T]);
append[T]([],l,l) <- !;
append[T]([x|l1],l2,[x|l3]) <- append[T](l1,l2,l3);

length[T]::([T],Int);
length[T]([],0) <- !;
length[T]([h|t],n) <- length[T](t,m), n := m + 1;

member[T]::(T,[T]);
member[T](x,[x|_]);
member[T](x,[_|l]) <- member[T](x,l);

subset[T]::([T],[T]);
subset[T]([],[]);
subset[T]([x|l],[x|s]) <- subset[T](l,s);
subset[T](l,[_|s]) <- subset[T](l,s);

lookup[V]::(Str,V,[Bind(Str,V)]);
lookup[V](n,v,[Bind(n,v) | _]);
lookup[V](n,v,[_|env]) <-lookup[V](n,v,env);

The examples above are standard Prolog rules that have been elaborated with stat-
ic type information that is checked by the ESL Workbench before execution. The
rules length and member use parametric polymorphism over the type T of ele-
ments in a list. The rule lookup is parametric with respect to the type of the bind-
ings in the environment list.

 Standard Prolog, as shown above, does not provide support for history interroga-
tion. Histories are temporally ordered facts, so history interrogation will involve
queries that need to express ordering relationships between, what are otherwise,
standard Prolog facts. This suggests that adding temporal operators to Prolog [19]
and integrating the history facts with a Prolog rule database will provide a suitable
basis for interrogation. During execution, a query is at a particular time unit in the
history and can match against any of the facts at that time in addition to matching
against rules in the rule-base. Operators can be used to move forwards and back-
wards in time to adjust the portion of the history that is used to establish facts.

12

Quantification over the time variable to allow queries such as: fact f exists at some
point in the history from this point, and fact f exists at all points in the history be-
fore this point to provide a suitably expressive basis for defining history interroga-
tions with a logic programming framework. The rest of this section defines such a
mechanism.

Meta Representation

This section defines a data representation for logic-programming rules where the
rule-body elements support temporal operators over histories. The data type Body
describes the elements that can occur in a rule body as depicted in Fig. 6. The
terms Call and Is represent standard Prolog body elements; all other elements
are extensions to standard Prolog. The extensions all relate to current time that is
used to index the time-stamp associated with the facts in the history:

type Time = Int;
type Entry = Fact(Time,Str,[Value]);
type DB = [Entry];

Elements Start and End are satisfied when the current time is 0 and the end of the
history respectively. An element Next(es) is satisfied when the elements es are
satisfied at now +1, similarly Prev(es) at now -1. An element Always(es) is sat-
isfied when the elements es are satisfied at all times from now, similarly Past(es)
all times before now. Element Eventually(es) is satisfied when es are satisfied at
some time in the future.

data Value = // Values occurring in rules.
 Term(Str,[Value]) // A term is a named sequence of values.
| Var(Str) // A named logic variable.
| I(Int) // An integer.
| S(Str); // A string.

data Body = // An element in the body of a rule.
 Call(Str,[Value]) // Call a rule, supplying values.
| Is(Str,Value) // Unify a variable with a value.
| Start // The start of the history.
| End // The end of the history.
| Next([Body]) // Move forward one unit of time.
| Prev([Body]) // Move back one unit of time.
| Always([Body]) // Body is true from now on.
| Eventually([Body]) // Body is true at some time from now.
| Past([Body]) // Body is true at some time previously.
| Forall([Body],Value,Value);// All ways in which body is true.

Figure 6: Data Type Definition

13

1. type Prog = [Rule(Str,[Value],[Body])];
2. type Env = [Bind(Str,Value)];
3.
4. rule::(Str,Rule(Str,[Value],[Body]),Prog);
5. rule(n,Rule(n,as,body),[Rule(n,as,body)|prog]);
6. rule(n,r,[_|prog]) <- rule(n,r,prog);
7.
8. call ::(Time,Time,DB,Str,[Value],Prog);
9. call(time,eot,db,n,vs,prog) <- member[Entry](Fact(time,n,vs),db);
10. call(time,eot,db,n,vs,prog) <-
11. rule(n,Rule(n,as,body),prog),
12. length[Value](vs,l), length[Value](as,l),
13. matchs(as,vs,[],vars), trys(time,eot,db,body,vars,_,prog);
14.
15. eval::(Value,Env,Value);
16. eval(Term('+',[l,r]),e,I(i)) < eval(l,e,lv), eval(r,e,rv), i := lv + rv;
17. eval(Var(n),env,v) <- lookup[Value](n,v,env);
18. eval(I(i),env,I(i));
19. eval(S(s),env,S(s));
20.
21. matchs::([Value],[Value],Env,Env);
22. matchs([],[],env,env);
23. matchs([a|as],[v|vs],in,out) <- match(a,v,in,in'), matchs(as,vs,in',out);
24. match::(Value,Value,Env,Env);
25. match(Term(n,vs),Term(n,vs'),in,out) <- matchs(vs,vs',in,out);
26. match(Var(n),v,e,e) <- lookup[Value](n,v,e);
27. match(Var(n),v,env,[Bind(n,v) | env]);
28. match(I(i),I(i),env,env);
29. match(S(s),S(s),env,env);
30.
31. derefs::([Value],[Value],Env,Env);
32. derefs([],[],env,env);
33. derefs([v|vs],[v'|vs'],in,out) <- deref(v,v',in,in'), derefs(vs,vs',in',out);
34. deref::(Value,Value,Env,Env);
35. deref(Term(n,vs),Term(n,vs'),in,out) <- derefs(vs,vs',in,out);
36. deref(Var(n),v,e,e) <- lookup[Value](n,v,e),!;
37. deref(Var(n),v,env,[Bind(n,v) | env]);
38. deref(I(n),I(n),env,env);
39. deref(S(s),S(s),env,env);
40.
41. trys::(Time,Time,DB,[Body],Env,Env,Prog);
42. trys(_,_,_,[],env,env,prog);
43. trys(t,eot,db,[e|es],i,o,p) <- try(t,eot,db,e,i,j,p), trys(t,eot,db,es,j,o,p);
44. try::(Time,Time,DB,Body,Env,Env,Prog);
45. try(t,eot,db,Call(n,vs),i,o,p) <- derefs(vs,vs',i,o),call(t,eot,db,n,vs',p);
46. try(eot,eot,db,End,env,env,prog);
47. try(0,_,db,Start,env,env,prog);
48. try(eot,eot,db,Next(es),env,env,prog) <- !,false;
49. try(t,eot,db,Next(es),i,o,p) <- t' := t + 1; trys(t',eot,db,es,i,o,p);
50. try(0,eot,db,Prev(es),env,env,prog) <- !, false;
51. try(t,eot,db,Prev(es),i,o,p) <- t' := t - 1, trys(t',eot,db,es,i,o,p);
52. try(eot,eot,db,Always(es),env,out,prog) <- !;
53. try(time,eot,db,Always(es),in,out,prog) <-
54. trys(time,eot,db,es,in,in',prog), time' := time + 1,
55. try(time',eot,db,Always(es),in',out,prog);
56. try(eot,eot,db,Eventually(es),in,out,prog) <- !, false;
57. try(t,eot,db,Eventually(es),i,o,p) <- trys(t,eot,db,es,i,o,p);
58. try(time,eot,db,Eventually(es),in,out,prog) <- time' := time + 1,
59. try(time',eot,db,Eventually(es),in,out,prog);
60. try(0,eot,db,Past(es),in,out,prog) <- !, false;
61. try(time,eot,db,Past(es),in,out,prog) <- trys(time,eot,db,es,in,out,prog);
62. try(t,eot,db,Past(es),i,o,p) <- t' := t - 1, try(t',eot,db,Past(es),i,o,p);
63. try(t,eot,db,Is(n,exp),e,e,p) <- eval(exp,e,v), lookup[Value](n,v,e);

Figure 7: Query Language Meta Interpreter

14

Meta Interpreter

Fig. 7 defines a meta-interpreter for the history query language. Given a query
q(v1,...,vn), a program prog, a database db and a history end time t, the query
is satisfied when call(0,t,db,'q',[v1,...,vn],prog) is satisfied with respect
to the definitions given in the program.

 The meta-interpreter is based on a standard operational semantics for Prolog that
is extended with features to process the supplied database (the definition of
Forall is omitted, but is consistent with standard Prolog). The rule call is used to
process a body element of the form Call(n,vs) where n is the name of a fact and
vs are the arguments. Conventional Prolog processes such a call using the defini-
tion of call defined on lines 8-13 where a rule named n with an appropriate arity
is found in the program and is supplied with the argument values using matchs.

 Fig. 7 extends conventional Prolog rule calling by allowing the fact to be present
in the history at the current time (line 8). Therefore, the facts in the history be-
come added to the facts that can be conventionally deduced using the rules. The
semantics of the additional types of body elements are processed by the try rule
(lines 41-63) by modifying the value of the current time appropriately, For exam-
ple, the rule for Next (lines 48-49) fails if the end of the history has been reached,
otherwise it attempts to satisfy the elements es after incrementing the current time
by 1.

 An example rule is customers where customers(cs) is satisfied when cs is a list
of all the customer actor identifiers in the history:

1. customers::([Int]);
2. customers([]) <- end, !;
3. customers(cs) <-
4. forall[new(a,'customer')](a,cs'), next[customers(cs'')],
5. append[Int](cs',cs'',cs);

Line 2 defines that there can be no customers if we are at the end of the history.
Lines 3-5 define how to extract the customer identifiers from this point in the his-
tory: line 4 uses forall to match all database facts of the form ac-

tor(a,'customer',_) where this fact has been added to the database when a new
customer actor is created. Then, next is used to advance the time so that cs’’ are
all the customer actors from this point onwards.

Evaluation

The approach has been implemented as part of the ESL Workbench. ESL is an ac-
tor language that has been designed to support simulations. It has static types and

15

compiles to run on a virtual machine (VM) implemented in Java. We have extend-
ed the ESL VM with features to produce histories and then integrated a query lan-
guage, implemented as a Prolog VM, extended with features to process histories.
This section evaluates the validity of the approach by applying it to a case study.
ESL has been used to construct a number of simulations including an IT service
provider, a research institute, and the effect of the 2016 Indian Demonetisation ini-
tiative. In this chapter we use a case study that is based on existing work on agent-
based organisation simulations [38] involving a shop where customers browse for
items, seek help from assistants, and queue to buy chosen items. Customers be-
come unhappy if they wait too long for help or in a queue, and unhappy customers
leave the shop.

Figure 8: Structure of Shop Actors

Figure 9: Actor Behaviours

16

The shop would like to simulate customer and assistant behavior in order to mini-
mize unhappy customers. The case study will be used to demonstrate the construc-
tion of an agent model that produces a history and the subsequent interrogation via
a query. The query is chosen to demonstrate the utility of logic programming us-
ing the ESL query language and will also be analyzed in terms of its efficiency
based on the implementation described in the previous section.

 The structure of the shop simulation is shown in Fig. 8. and its behaviour is
shown in Fig. 9. A snapshot of the output from ESL is shown in Fig. 10 where 10
customers are mostly unsatisfied (a) and mostly satisfied (b).

 The simulation is driven by Time messages and all actors implement a Time tran-
sition for all states; the empty transitions arising from Time are omitted. Time is
used in figure Fig. 9(g). to show how customers waiting at a till can time out and
ultimately leave the shop. The value supplied to a transaction is tLim which de-
termines how long a customer is prepared to wait without a sale being concluded.

 Customers who leave the shop because they have waited too long to be serviced
at a till are deemed to be unhappy. The shop is interested in how to organize its as-

Figure 10: Shop Simulation Output

1. raid::(Int,[Int]);
2. raid(n,raiders) <-
3. customers(customers), !,
4. subset[Int](raiders,customers),
5. length[Int](raiders,n),
6. findAllHelped(raiders);
7.
8. findAllHelped::([Int]);
9. findAllHelped(raiders) <- allHelped(raiders,t), !;
10. findAllHelped(raiders) <- next[findAllHelped(raiders)];
11.
12. allHelped::([Int],Int);
13. allHelped([],t) <- !;
14. allHelped([c|cs],t) <-
15. update(c,'state',GettingHelp,t),
16. allHelped(cs,t);

Figure 11: Raids: Finding a Pattern in a History

17

sistants, sales and floor-walking strategies in order to minimize unhappy custom-
ers. Fig. 10 shows the ESL Workbench output from two different simulation con-
figurations. Figure Fig. 10(a) shows the result of 10 customers, 5 tills and 3 sales
assistants where roughly 75% of the customers are left unhappy. The number of
assistants has been increased to 5 in Fig. 10(b) where the situation is reversed. Note
that the simulation has many random elements and therefore each run is different,
but the two outputs characterize the relative differences.

 Fig. 11 shows a simple ESL query that interrogates the history produced by the
shop simulation where raid(n,cs) is satisfied when cs is a list of n customer
identifiers where the customers are all receiving help from sales assistants at the
same time. Line 3 queries the history for all the customers and line 4 constructs a
subset of all the customers. The rule subset is defined to allow backtracking
through all the possible subsets, so line 5 will filter the subsets to select just those
of the required length. The rules findAllHelped and allHelped query the history
to ensure that the selected customers are in a GettingHelp state at the same time.
The ESL implementation of the shop simulation can be downloaded as part of the
open-source ESL system1.

Conclusion

 In this chapter we have sought to address the challenge of creating and analyzing
actor-histories. We have shown how to extend a general actor-based language to
produce histories of facts and how to extend a Prolog engine with temporal opera-
tors that can query the histories to establish whether patterns of facts exist. The
proposal has been evaluated by showing that it can support a typical simulation,
and that it can be implemented. Whilst other approaches to agent-based systems
have used temporal operators to specify behaviour, and such operators have been
used to interrogate system traces, use of this approach to analyze agent-based sim-
ulations is novel.

 Whilst we have evaluated the approach in several different ways, the following
issues and threats to validity remain: (Threat-1) The case study that has been used
to evaluate the approach is taken from the literature and we can claim it to be rep-
resentative of a class of simulations. Further work is needed to establish whether
this case study is representative of a sufficiently broad class. (Threat-2) The histo-
ries that are produced by ESL-based simulations are typically intended to reflect
some aspects of a real-world situation. Although the query approach described in
this chapter does not rely on a valid history, in practice there must be some way to
validate the simulation output. One possibility is to model an accepted theory, for
example from social science or organisational management, and to show that the

1 https://github.com/TonyClark/ESL

18

simulation model and its results is consistent with the theory. We intend to inves-
tigate this approach in the context of ESL simulations. (Threat-3) The efficiency
of the approach has been established in the context of the example. This relies on
knowledge of query semantics in order to ensure they are executed efficiently. It
remains to be seen whether this is reasonable and whether efficiency can be im-
proved. (Threat-4) Histories can be very large for long simulation runs. We have
defined a compact implementation format, but further work is required to ensure
that histories are no larger than is required. One option is to pre-process histories
based on partial knowledge of query structures.

 The approach described in this chapter is similar to existing approaches that ana-
lyze system traces, however we go further by defining precisely how the execution
histories are produced and give a complete specification of the query language that
can be used to analyze them. As such the work is novel and solves a problem that
arises with actor-based systems where the behavior is both complex and non-
deterministic. It remains to be seen whether the results meet users needs in terms
of their ability to construct appropriate queries. One option is to be able to display
and compare the results graphically, and this is an area for further work.

References

1. Agha, G.A.: Actors: A model of concurrent computation in distributed systems. Tech. rep.,
DTIC Document (1985)

2. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. Jou
nal of Functional Programming 7(01), 1–72 (1997)

3. Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode, J., Pakala, S.P.: Tem-
poral query processing in teradata. In: Proceedings of the 16th International Conference on
Extending Database Technology, pp. 573–578. ACM (2013)

4. Barat, S., Kulkarni, V., Clark, T., Barn, B.: Enterprise modeling as a decision making aid: A
systematic mapping study. The Practice of Enterprise Modeling - 9th IFIP WG 8.1. Working
Conference, PoEM 2016, Sk¨ovde, Sweden, pp. 289–298.

5. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A simulation-based aid for organisational deci-
sionmaking. 11th International Joint Conference on Software Technologies (ICSOFT 2016) -
Volume 2: ICSOFT-PT, Lisbon, Portugal, July 24 - 26, 2016., pp. 109–116.

6. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A model based realisation of actor model to con-
ceptualise an aid for complex dynamic decision-making. Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development, MODELSWARD
2017, Porto, Portugal, February 19-21,2017., pp. 605–616.

7. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the description logic
dllite. In: International Symposium on Frontiers of Combining Systems, pp. 165–180.
Springer (2013)

8. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over
knowledge bases. Web Semantics: Science, Services and Agents on the World Wide Web
50–70 (2015)

9. Bosse, T., Duell, R., Memon, Z.A., Treur, J., Van DerWal, C.N.: Multi-agent model for mutu-
al absorption of emotions. ECMS 2009, 212–218 (2009)

19

10. Bosse, T., Jonker, C.M., Van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and
verification of dynamics in cognitive agent models. In: IAT, pp. 247–254. Citeseer (2006)

11. Bosse, T., Jonker, C.M., Van Der Meij, L., Treur, J.: LEADSTO: a language and environ-
ment for analysis of dynamics by simulation. In: German Conference on Multiagent System
Technologies, pp. 165–178. Springer (2005)

12. Bulling, N., Van der Hoek, W.: Preface: Special issue on logical aspects of multi-agent sys-
tems. Studia Logica,(Special Issue), 2016 (2016)

13. Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P.: A simple-to-use BDI ar-
chitecture for agent-based modeling and simulation. In: The Eleventh Conference of the Eu-
ropean Social Simulation Association (ESSA 2015) (2015)

14. Clark, T., Kulkarni, V., Barat, S., Barn, B.: Actor monitors for adaptive behaviour. Proceed-
ings of the 10th Innovations in Software Engineering Conference, ISEC 2017, Jaipur, India,
February 5-7, 2017, pp. 85–95.

15. Clark, T., Kulkarni, V., Barat, S., Barn, B.: ESL: an actor-based platform for developing
emergent behaviour organisation simulations. Advances in Practical Applications of Cyber-
Physical Multi-Agent Systems: The PAAMS Collection - 15th International Conference,
PAAMS 2017, Porto, Portugal, June 21-23, 2017.

16. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy of actor mod-
els and their key properties. In: Proceedings of the 6th International Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control, pp. 31–40. ACM (2016)

17. 18. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multiagent systems. In: Multi Agent Systems, 1998. Proceedings. International Conference
on, pp. 128–135. IEEE (1998)

18. Fishwick, P.A.: Computer simulation: growth through extension. Transactions of the Society
for Computer Simulation 14(1), 13–24 (1997)

19. Gaintzarain, J., Lucio, P.: Logical foundations for more expressive declarative temporal logic
programming languages. ACM Transactions on Computational Logic (TOCL) 14(4), 28
(2013)

20. Galland, S., Knapen, L., Gaud, N., Janssens, D., Lamotte, O., Koukam, A., Wets, G., et al.:
Multi-agent simulation of individual mobility behavior in carpooling. Transportation Re-
search Part C: Emerging Technologies 45, 83–98 (2014)

21. Hewitt, C.: Actor model of computation: scalable robust information systems. arXiv preprint
arXiv:1008.1459 (2010)

22. Hindriks, K.V.: Debugging is explaining. In: International Conference on Principles and
Practice of Multi-Agent Systems, pp. 31–45. Springer (2012)

23. Imam, S., Sarkar, V.: Savina-an actor benchmark suite. In: 4th International Workshop on
Programming based on Actors, Agents, and Decentralized Control, AGERE (2014)

24. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a comparative
analysis. In: Proceedings of the 7th International Conference on Principles and Practice of
Programming in Java, pp. 11–20. ACM (2009)

25. Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., F¨arber, F., May,
N.: Timeline index: A unified data structure for processing queries on temporal data in SAP
HANA. In: Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1173–1184. ACM (2013)

26. Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D., F¨arber, F.: Comprehensive and
interactive temporal query processing with sap hana. Proceedings of the VLDB Endowment
6(12), 1210–1213 (2013)

27. Koeman, V.J., Hindriks, K.V.: Designing a source-level debugger for cognitive agent pro-
grams. In: International Conference on Principles and Practice of Multi-Agent Systems, pp.
335–350. Springer (2015)

28. Kruse, R., Steinbrecher, M., Moewes, C.: Temporal pattern mining. In: Signals and Electron-
ic Systems (ICSES), 2010 International Conference on, pp. 3–8. IEEE (2010)

20

29. Kulkarni, V., Barat, S., Clark, T., Barn, B.: A wide-spectrum approach to modelling and
analysis of organisation for machine-assisted decision-making. In: Enterprise and Organiza-
tional Modeling and Simulation - 11th InternationalWorkshop, EOMAS 2015, Held at
CAiSE 2015, Stockholm, Sweden, June 8-9, 2015.

30. Kulkarni, V., Barat, S., Clark, T., Barn, B.S.: Toward overcoming accidental complexity in
organisational decision-making. In: 18th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, Septem-
ber 30 - October 2, 2015, pp. 368–377 (2015)

31 Tony Clark, Vinay Kulkarni, Souvik Barat, and Balbir Barn. Sense-making in a complex and
complicated world. IBM systems journal 42(3), 462–483 (2003)

32. McDermott, T., Rouse, W., Goodman, S., Loper, M.: Multi-level modeling of complex soci-
otechnical systems. Procedia Computer Science 16, 1132–1141 (2013)

33. Morgan, G.P., Carley, K.M.: An agent-based framework for active multi-level modeling of
organizations. In: International Conference on Social Computing, Behavioral-Cultural Mod-
eling and Prediction and Behavior Representation in Modeling and Simulation SBP-BRiMS
2016. Springer (2016)

34. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous soft-
ware agents and humans. Autonomous Agents and Multi-Agent Systems 7(1-2), 71–100
(2003)

35. R¨aim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based understanding
of business processes through temporal logic query checking. In: OTM Conferences, pp. 75–
92. Springer (2014)

36. Ricci, A., Agha, G., Bordini, R.H., Marron, A.: Special issue on programming based on ac-
tors, agents and decentralized control. Science of Computer Programming 98, 117–119
(2015)

37. Santos, G., Pinto, T., Morais, H., Sousa, T.M., Pereira, I.F., Fernandes, R., Prac¸a, I., Vale,
Z.: Multi-agent simulation of competitive electricity markets: Autonomous systems coopera-
tion for european market modeling. Energy Conversion and Management 99, 387–399 (2015)

38. 40. Siebers, P., Aickelin, U.: A first approach on modelling staff proactiveness in retail simu-
lation models. J. Artificial Societies and Social Simulation 14(2) (2011). URL
http://jasss.soc.surrey.ac.uk/14/2/2.html

39. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based simulation plat-
forms. Autonomous Agents and Multi-Agent Systems 30(6), 1050–1071 (2016)

40. Sukthankar, G., Sycara, K.: Simultaneous team assignment and behavior recognition from
spatio-temporal agent traces. In: AAAI, vol. 6, pp. 716–721 (2006)

41. 44. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolution in
multiagent systems. Autonomous Agents and Multi-Agent Systems 19(2), 124–152 (2009)

42. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. J. Artif. Intell.
Res.(JAIR) 51, 71–131 (2014)

43. Divine T. Ndumu, Hyacinth S. Nwana, Lyndon C. Lee, and Jaron C. Collis. Visualising and
debugging distributed multi-agent systems. In Proceedings of the ird Annual Conference on
Autonomous Agents, AGENTS ’99, pages 326–333, New York, NY, USA, 1999. ACM.

