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Abstract 

Stainless steels are a classification of materials that have been available for over 100 

years and over that time manufacturers have created variations on chemical 

composition and manufacturing route, to create materials that meet specific criteria 

set by the consumer.  One type of stainless steel, ferritic, is restricted in applications as 

a result of a reduction in properties, namely toughness, when it is welded as a result of 

grain coarsening in the heat affected zone.  Welding equipment manufacturers are 

constantly incorporating new technologies and capabilities into welding equipment, to 

make welding easier and create better welds, which then gives that manufacturer a 

competitive advantage.  Cold Metal Transfer (CMT) welding is one such innovation and 

is claimed by the manufacturer to be a lower heat input process.  This research project 

examines the effects of this lower heat welding process, on the joining of ferritic 

stainless steels to determine if CMT can reduce the detrimental effects, seen in this 

material, through welding. 

 The research examines the mechanical and metallurgical effects of using the Cold 

Metal Transfer (CMT) welding process to weld various grades of ferritic stainless steel 

including, EN1.4016, EN1.4509, EN1.4521 and EN1.4003 and compares them to welds 

created using a standard Gas Metal Arc Welding (GMAW) technique, with comparisons 

made using tensile testing, hardness testing, impact testing, fatigue testing and 

microstructural characterisation. 

Experimental results show that grades such as EN1.4016 and EN1.4003 are more 

sensitive to the welding process due to a phase change to martensite present within 

the heat affected zone.  Work has been conducted to determine the temperature at 

which ferrite transforms to austenite, prior to transformation to martensite under non 

equilibrium cooling.  Some of the findings from this work included; 

Fatigue testing and microstructural characterisation has shown a benefit in properties 

for using CMT over the conventional GMAW process for the EN1.4003 material. 

A relationship has also been proposed which examines the effect of the percentage of 

fusion zone defects on the fatigue life of the welded joints.   

Overall it was found that there was variation in the voltage and current by 1.9 Volts 

and 15 Amps respectively through a 400mm weld. 

The ALC settings from -30% to +30% affected the net heat input by 6J/mm 

NDT techniques utilised in the study were ineffective at detecting the lack of side wall 

fusion evident in some of the welds. 
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1 Introduction 
 

Welding is a widely used and effective method of joining different components 

together.  There is however no single welding process that will obtain the optimum 

weld in every situation.  Factors such as process applicability, cost, time, access to the 

area to be joined, deposition rate and the service environment of the joint will be 

paramount in selecting the most appropriate joining method, such as welds produced 

on an aftermarket sports exhaust tailpipe, where Gas Tungsten Arc Welding (GTAW) is 

used for the aesthetical appearance or where Resistance Spot Welding (RSW) is not 

used due to the requirement of overlap of the parent materials, which creates the 

crevices for corrosion to initiate and accelerate.  

As fusion welds tend to require a heat source (the exception being friction stir 

welding), there is also an effect on the parent materials as a result of this heat, which 

produces what is commonly known as the Heat Affected Zone (HAZ).  The heat 

affected zone can contain a whole host of differences to that of the base material.  

They can, for example, contain a totally different phase in the microstructure, they 

could contain portions of a different microstructure, the formation of carbides or other 

phases are common within the heat affected zone, there can also be grain coarsening 

within this region.  All of these aspects have the potential to effect the material 

properties in this area, this effect may be an increase or decrease in strength, 

toughness, ductility, hardness or corrosion resistance, sometimes this may be 

beneficial, other times detrimental to the component or structure. 
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Figure 1.  Fusion weld, showing heat affected zone either side of the weld (Magowan & 
Smith, 2010). Arrowed is the detrimental grain coarsening within the HAZ. 

 

One such material type investigated within this research is a group of stainless steel 

grades known as ‘Ferritics’, so named after the ferritic microstructure of the grades 

that fall into this category.  One of the main issues with the welding of ferritic stainless 

steel is a grain coarsening effect within the heat affected zone as seen in Figure 1.  The 

problem with this is the detrimental effect it has on the material properties as 

described later in this report.  Owing to this, ferritic stainless steel does not get used in 

some applications and a more expensive material, such as an austenitic stainless steel 

is selected instead.  Therefore there is a need to reduce or eliminate the detrimental 

effect associated with welding ferritic stainless steels which could allow the 

incorporation of these materials into components or structures and therefore 

potentially reduce the cost or increase the corrosion resistance of the fabricated part. 

Cold Metal Transfer (CMT) is a process developed by an Austrian company (Fronius), 

through a need for a low heat, welding process for the joining of aluminium.  This 

research will attempt to exploit the benefits of the reduced heat input from the CMT 
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welding process to joining ferritic stainless steels, where this has the detrimental 

effects associated with the thermal cycle of the fusion. 

Therefore this research aims to assess the capability of the CMT process when welding 

ferritic stainless steel parent materials and comparing with conventional Gas Metal Arc 

Welding (GMAW), this is to be qualified through assessment of mechanical properties 

and microstructural evaluations.  The use of this process for the joining of ferritic 

stainless steel is limited and therefore this research will expand the body of knowledge 

in this area of welding and if CMT offers significant advantages over the conventional 

welding process, could mean that ferritic stainless steels could replace the use of 

austenitic stainless steels in some applications. 
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2 Literature Review 

2.1 Stainless Steel 

2.1.1 Definition of Stainless Steel 

Stainless steels are a group of materials which, using iron as the primary element, may 

also include other significant additions such as chromium, nickel, and carbon 

depending on the particular type of stainless steel intended.  To be considered 

stainless, the material must contain at least 10.5% chromium (Lippold & Kotecki, 2005) 

as this permits the formation of a chromium rich oxide layer on the surface of the 

material, thereby providing protection from atmospheric conditions.  It must be noted 

that some alloys containing equal or greater amounts of the prescribed chromium 

content will still in fact corrode.  The reason for this is that chromium has a strong 

affinity for carbon and so has a tendency to form carbides, thus, reducing free 

chromium from the matrix and thereby limiting the chromium content available to 

form the passive oxide layer. 

 

2.1.2 History of Stainless Steel 

Making additions of chromium to steel and noting the benefits with regards to 

corrosion performance has been documented from as early as 1821 during 

experiments conducted by Pierre Berthier (Cobb, 2010). This first instance recorded 

gave the development of a 1.5% Cr alloy that was suggested could be suitable for use 

in the cutlery industry.  However the high carbon content reduced the alloys 

formability, so it was not adopted.  This work was conducted as a result of reading 

about trials using additions of chromium to steel to create metallic mirrors that didn't 
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tarnish (Stodart & Faraday, 1822).  In June 1872, J.E.T. Woods and J. Clark obtained 

British Provisional Patent 1932, for  a weather resistant iron alloy that contained 30-

35% chromium and 2% tungsten, the first patent for what would now be considered a 

stainless steel.  

In 1892 high chromium steels were under investigation by Robert A. Hadfield in 

Sheffield, England.  Using relatively high carbon contents (up to 2%) and chromium 

contents up to 16.74%, the materials were rejected as it displayed a reduction in 

corrosion performance under the conditions of the test.  This was due to the 

accelerated corrosion test using a solution of 50% sulphuric acid, utilised by scientists 

of the day, under the common belief, that the media used was representative of 

corrosion in general. 

In 1912 Harry Brearley visited a small arms factory to look at issues with gun barrels, 

his recommendations were to develop a low carbon, high chromium steel.  On the 20th 

August 1913 (Cobb, 2010) Brearley produced a cast which contained 0.24% carbon and 

12.8% chromium and when trying to etch the alloy, to permit microstructural analysis 

he found that this alloy did not etch or etched very slowly (Brearley, 1991) and is 

therefore credited with the invention of ferritic stainless steel (British Stainless Steel 

Association). 

Around the same time that Brearley was experimenting with chromium contents in 

steel above that required to give the self healing layer, it is reported that others were 

also investigating these materials.  The Americans claim that Elwood Haynes, was the 

first person to discover stainless steel and that it was only as a result of Brearley not 

being able to get the patent for the process in England  and that he was successful in 

getting it in the U.S. that meant he was credited with the discovery (Marble, 1921).  
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The French scientist Leon Guillet was examining materials with compositions that 

would now be considered as martensitic grades, whilst another Frenchman, Albert 

Portevin was looking at steels with compositions similar to those now classed as EN 

1.4016 ferritic stainless steel, whilst in 1908 the Krupp Iron Works in Germany had 

produced a chromium nickel steel for the hull of a yacht, the actual composition of the 

steel is not known, however two employees of the Krupp Iron Works, Eduard Maurer 

and Benno Strauss where at the same time as Brearley working on austenitic stainless 

steels (British Stainless Steel Association).  So although there was a significant amount 

of research into these materials, globally, it was Brearley who has been recorded as 

the inventor. 
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2.1.3 Manufacturing Methods of Stainless Steel 

The manufacturing procedure for stainless steel varies according to the product being 

produced and the intended application.  The manufacturing route seen in Figure 2, 

used by Kawasaki, gives a general indication of the processes involved, with the use of 

the Electric Arc Furnace (EAF) being the start of the journey, melting the raw material 

(and potentially recycled materials) and then the molten material is transferred to the 

Argon Oxygen Decarburisation (AOD) plant, where two gases  (argon and oxygen) are 

blown through the molten material to reduce the amount of carbon in the steel.  The 

inert gas is used to lower the partial pressure of carbon monoxide allowing higher 

chromium contents to be in equilibrium with lower carbon contents, the oxygen is 

there to combine with the carbon to form carbon monoxide which can then be 

expelled (Choulet, 1997).  At this point alloying additions may be made or they may be 

made just prior to continuous casting if that is the following route.  If it is, then the 

molten material is poured into the casting machine where it is cast into the desired 

size, cooled and then cut to length.  Some grinding may be conducted to remove 

surface defects prior to hot rolling.  On hot rolling the material is heated to 

temperatures around 1250⁰C and then rolled, initially on a roughing mill where large 

reductions in the thickness can be made.  The steel is then passed through another 

furnace to keep the temperature above the recrystallisation temperature of the steel 

and then rolled again to reduce the thickness further. It is then cooled and coiled 

(ArcelorMittal). 
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Figure 2.  Manufacturing route of stainless steel as utilised at Kawasaki Steel (Ono & Kaito, 
1986). 

The stainless steel can now be annealed to soften the material and then shot blast to 

remove some of the oxide scale and then the steel is pickled to remove the remainder 

of the scale.  To achieve an enhanced surface finish the steel would require further 

processing and that may include cold rolling followed possibly by a anneal and acid 

pickle (ArcelorMittal). 
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2.1.4 Types of Stainless Steel 

Stainless steels are grouped according to the microstructure of the material, which 

gives the following three different classifications: 

• Ferritic  

• Austentic 

• Martensitic 

However there are two other categories of stainless: 

• Duplex 

• Precipitation Hardenable 

There are a multitude of grades in various conditions associated with each type, 

detailed information about which can be found in the following sections, and in  

Table 1. 
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Table 1. Table showing stainless steel grades and chemical compositions (Outokumpu, 2010). 

 

 

Stainless 
Classification 

Outokumpu 
 steel name 

Designation Composition (%) 

EN ASTM C N Cr Ni Mo Others 

Ferritic 

4512 1.4512 409 0.02 - 11.5 0.2 - Ti 

4003 1.4003 S40977 0.02 - 11.5 0.5 - - 

4000 1.4 4105 0.03 - 12.5 - - - 

4016 1.4016 430 0.04 - 16.5 - - - 

4509 1.4509 S43932 0.02 - 18 - - Nb,Ti 

4521 1.4521 444 0.02 - 18 - 2.1 Ti 

Martensitic 

4006 1.4006 410 0.12 0.04 12 - - - 

4006 1.4006 416 0.1 0.04 13 - - S 

4021 1.4021 420 0.2 - 13 - - - 

4028 1.4028 420 0.3 - 12.5 - - - 

4313 1.4313 S41500 0.03 0.04 12.5 4.1 0.6 - 

4548 1.4548 - 0.05 0.07 15.5 4.2 - Mn 

Duplex 

LDX2101 1.4162 S32101 0.03 0.22 21.5 1.5 0.3 5Mn 

2304 1.4362 S32304 0.02 0.1 23 4.8 0.3 - 

LDX2404 1.4662 S92441 0.02 0.27 24 3.6 1.6 3Mn 

2206 1.4462 S32205 0.02 0.17 22 5.7 3.1 - 

4501 1.4501 S32760 0.02 0.27 25.4 6.9 3.8 W, Cu 

2507 1.4410 S32750 0.02 0.27 25 7 4 - 

Austenitic 

4310 1.4310 301 0.1 - 17 7 - - 

4372 1.4372 201 0.05 0.2 17 4 - 7Mn 

4301 1.4301 304 0.04 - 18.1 8.1 - - 

4307 1.4307 304L 0.02 - 18.1 8.1 - - 

4541 1.4541 321 0.04 - 17.3 9.1 - Ti 

4305 1.4305 303 0.06 - 17.3 8.2 - S 

4306 1.4306 304L 0.02 - 18.2 10.1 - - 

4401 1.4401 306 0.04 - 17.2 10.1 2.1 - 

4404 1.4404 306L 0.02 - 17.2 10.1 2.1 - 

4406 1.4406 316LN 0.02 0.14 17.2 10.3 2.1 - 

4429 1.4429 S31653 0.02 0.14 17.3 12.5 2.6 - 
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Figure 3.  Schaeffler diagram with stainless steel grades indicated (Outokumpu, 2010). 

2.1.4.1 Ferritic Stainless Steel 

Ferritic stainless steels are a range of stainless steels that contain low levels of carbon 

and chromium contents from 10.5% to upto 40% (Cortie, 1993) for the super ferritics.  

The American Iron and Steel Institute (AISI) designates the ferritic steels as a part of 

the 400 series of stainless steels (other steels in the 400 series include the martensitic 

types).  With the more commonly used grades such as AISI 409 with a low chromium 
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content, AISI 430 with a medium chromium content and AISI 446 with a high 

chromium content as seen in Table 1. 

The ferritic stainless steels generally have a Body Centred Cubic (BCC) crystal structure 

with a ferritic microstructure from room temperature to the melting point of the 

material.  As this structure only holds small amounts of carbon in solution, carbon is 

generally present in the form of chromium carbide precipitates (Demo, 1982). 

The exception to this is when the gamma loop, as seen on the iron – chromium 

equilibrium diagram in Figure 26 (page 53), extends into the region of the particular 

ferritic alloy in question.   Upon cooling from melting point, this will cause a 

transformation from ferrite to austenite and if the cooling rate is slow enough, back to 

ferrite.  If it isn’t slow enough the transformation will create martensite.  This is 

because austenite is able to hold  considerably more carbon in solution than ferrite 

and so upon a fast cool the carbon has insufficient time to come out of solution and 

martensite forms.  Therefore, in general, unless the gamma loop impinges on the alloy, 

it is not possible to harden a ferritic stainless steel through heating and rapidly cooling.  

The strengthening mechanisms which can occur in ferritic stainless steels, through 

heat treatment are generally not desirable due to the significant reduction in the 

ductility and toughness (Demo, 1982).  

Ferritic stainless steels are generally used in environments that are subjected to fresh 

water and in temperatures upto 650°C.  There are however some grades that are used 

within catalytic convertors operating at higher temperatures than 650°C and some of 

the higher chromium content ferritics are used within the marine industry (Lula, 1989). 
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2.1.4.2 Austenitic Stainless Steel 

Generally the austentic class of stainless steels are within the 300 series of the AISI 

designations.  The grades contain significant proportions of austenite phase, stabilising 

elements, predominantly nickel and carbon, but also manganese and nitrogen, 

amongst others, which allow austenite to be present at room temperature.  Like the 

ferritic grades, this type of stainless steel cannot be hardened via heat treatment, 

regardless of the cooling rate (Lula, 1989). 

The austentic stainless steels have a Face Centre Cubic (FCC) crystal structure (Ashby & 

Jones, 2001) and are therefore less susceptible to a reduction in toughness at low 

temperatures than the ferritic stainless steels.  They are also nonmagnetic when fully 

austenitic, which makes them better suited to environments where magnetic materials 

could be detrimental to the component or structure, such as a mine sweeper or a 

scanning electron microscope (Ashby & Jones, 2001). 

The environments where the materials are commonly employed include service 

conditions subjected to atmospheric corrosion, marine environment, low 

temperatures and high temperatures above 650°C (Lula, 1989). 

 

2.1.4.3 Martensitic Stainless Steel 

The martensitic grades of stainless steel, as can be seen in  

Table 1, are categorised within the AISI 400 series, with the common grades being the 

AISI 410, 420 and 440.  The chromium content is generally in the range of 12-17%, with 

an associated high carbon content of approximately 0.1 to 0.5%, they contain relatively 

few other additions, occasionally silicon for an increased resistance to scale and nickel 
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to maintain the hardenability in some of the higher chromium grades (Colombier & 

Hochmann, 1967)  The crystal structure of the martensitic stainless steel is Body 

Centred Tetragonal (BCT) and is the product of a diffusionless shear transformation.  

During the transformation to BCT there is insufficient time for carbon to move to 

preferred sites within the crystal lattice and so becomes trapped and subsequently 

distorts the crystal lattice.  This distortion of the lattice prevents the occurrence of slip 

which is manifested by increases in the hardness and yield strength, but with 

associated low ductility (Higgins, 2001). 

Unlike both the austenitic and ferritic grades of stainless steel, the martensitic grades 

rely on heat treatment to attain the desired properties of the material, but careful 

control of the furnace atmosphere must be made during these heat treatments as 

martensitic stainless steels can be very susceptible to surface decarburisation (ASM 

Handbook Committee, 1988). 

The martensitic grades are used where the materials require high strength at room 

temperature or maintain strength at high temperature (Lula, 1989). 

 

2.1.4.4 Duplex Stainless Steel 

Duplex stainless steels contain a combination of microstructures, they have ferrite and 

austenite in varying quantities (Colombier & Hochmann, 1967) and therefore a mixture 

of the body centred cubic and face centred cubic crystal structures within the separate 

phases.  This class of materials can offer a compromise between the properties of the 

austenitic and ferritic stainless steels, therefore utilising the benefits of both whilst still 
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subject to the problems of either.  They are also able to exhibit super plasticity, where 

tensile stress is spread out as opposed to localised (Beddoes & Parr, 1999). 

Duplex stainless steels exhibit corrosion resistance to both, localised and uniform 

corrosion, with a good resistance to stress corrosion cracking (Outokumpu, 2012). 

 

2.1.4.5 Precipitation Hardenable Stainless Steel 

Precipitation hardenable stainless steels can have a matrix of any of the three phases 

identified above (ferrite, austenite or  martensite).  However, generally they have a 

matrix of either austenite or martensite, where they are utilised in applications such as 

jet engine frames, turbine blades and surgical blades for the austenitic variants and  

gears, shafts and valves for those grades whose microstructure is that of martensite 

(Lippold & Kotecki, 2005). 

This category of stainless steel can achieve very high tensile strengths above 1520 

N/mm² and is able to do this through the addition of elements which are taken into 

solution and then encouraged to form very small precipitates within the structure that 

act as barriers to dislocation movement (Chakrabarty, 1987).  These materials are used 

in situations where strength is required at temperature (Lula, 1989).   Elements 

commonly used to produce the precipitates include aluminium, molybdenum or 

copper (Beddoes & Parr, 1999). 
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2.1.5 Alloying Additions Used in Stainless Steels 

The various grades of stainless steel include the use of a number of purposefully added 

elements which benefit the steel in different ways.  Details of the main elements used 

in stainless steels are as follows. 

2.1.5.1 Carbon (C) 

A crucial component in stainless steel, but generally maintained at levels below 0.1% 

and when welding stainless steel carbon levels significantly below this are preferred.  It 

provides the steel with strength and is an important addition in the martensitic grades.  

Carbon is a very strong austenite stabiliser but uncontrolled it can combine with other 

elements and reduce the corrosion resistance of the steel (Cunat, 2004). 

2.1.5.2 Chromium (Cr) 

As previously stated the addition of chromium to the steel at levels above 10.5% is 

what provides the self healing protective oxide layer that imparts the improved 

corrosion performance of the material.   It is a ferrite stabiliser and readily combines 

with carbon and nitrogen to form various forms of carbides, nitrides and carbo-nitrides 

(Streicher, 1977).  It is also a key element in the embrittling phases which hinder 

stainless steel, such as sigma phase which is a combination of chromium and iron, but 

it is also present within the Chi and Laves phases (Sigma phase considered later in 

section 2.3.6). 

2.1.5.3 Nickel (Ni) 

The primary function for the addition of nickel is generally to stabilise the austenitic 

phase.  Unlike chromium it does not readily combine with other elements such as 

carbon or nitrogen.  At levels in the range of 8-10% nickel there is a marked reduction 

in the ability of the stainless steel to resist stress corrosion cracking however 
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increasing or decreasing from this range yields a greater resistance to this detrimental 

corrosion mechanism (The Specialty Steel Industry of North America, 2016).  Nickel 

also surpresses the gamma loop seen on the left hand side of the Fe-Cr equilibrium 

diagram (Figure 26). 

2.1.5.4 Manganese (Mn) 

Manganese is added to stainless steels in various quantities, and in general is regarded 

as an austenite stabiliser, with its potency dependant on the nickel content.  The main 

purpose for the addition of manganese is to combine with sulphur and thus prevent 

the formation of a low melting point iron sulphide that, in extreme cases, can cause a 

material to fall apart when the melting point of this iron sulphide is passed, this 

phenomena is commonly referred to as hot shortness (AMG Vanadium Inc., 2009). 

2.1.5.5 Silicon (Si) 

Silicon can provide the steel with a number of benefits including an increase in the 

fluidity of the melt, which can increase the complexity of casting which may be 

produced.  It is primarily added as a deoxidiser within the melting process but can also 

add advantages in terms of oxidation resistance of the resultant alloy, at high 

temperature.  Low levels of silicon have little effect on stabilising either ferrite or 

austenite, however higher levels are reported to stabilise ferrite.  It can combine with 

iron to form iron silicides which can be detrimental to the mechanical properties of the 

steel (Lippold & Kotecki, 2005). 

2.1.5.6 Molybdenum (Mo) 

Molybdenum is a ferrite stabilising element and is added, normally in quantities of 2-

4%, sometimes upto 8% (Cunat, 2004) to increase corrosion resistance of the stainless 

steel.  It can also increase the hot strength of the steel, however this can provide 
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problems when hot working the material.  Molybdenum is also added to some of the 

precipation hardenable series of stainless steels to promote the precipitation reaction 

(Mathers, Precipitation hardening stainless steel : Job knowledge 102, 2016) 

2.1.5.7 Titanium (Ti) 

In a role similar to niobium, titanium is added to combine with the nitrogen and carbon 

within the stainless steel.  The stochiometric  quantity of titanium required to combine 

with the available nitrogen and carbon can be calculated  however as titanium also has 

an affinity for sulphur additional titanium must be added (Galenko & Zhuravlev, 1995). 

2.1.5.8 Niobium (Nb) 

The addition of niobium is used to stabilise the carbon and prevent it from combining 

with the chromium and therefore reducing the amount of chromium to produce the 

passive layer.  The amount of niobium necessary to stabilise the stainless steel can be 

calculated from the following equation; 

Equation 1. Equation showing amount of niobium required to stabilise a stainless steel. 
%Nb ≤ 0.2 + 5 (%C + %N) (Cunat, 2004) 

It is also reported that in ferritic stainless steels the addition of niobium is an effective 

method to increase the high temperature fatigue properties of the material (Stainless 

Steel for Design Engineers, 2014). 

 

2.2 Definition of Welding & Brief History 

Welding can be described as the fusion of two or more pieces of either the same or 

different materials.  When designing a component the designer must account for the 

processing method to ensure the component will endure the entirety of its design life, 
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in the expected service environment.  Welding has increasingly become a prominent 

fabrication method since its inception and allows the manufacture of parts of a 

component at separate sites and facilitates the combination of these parts at its 

intended location, an example of this could be oil pipelines (Easterling, 1992) or 

automotive exhaust systems.  

Although forge welding, as practiced by blacksmiths had been in existence for 

thousands of years, welding, as it is commonly recognised, has its roots when Sir 

Humphy Davy demonstrated the creation of an electrical arc between two carbon 

electrodes, using a battery in 1800 (Cary, The History of Welding, 1998).  This paved 

the way for the development of electrical welding processes, with the first patent for 

an electrical welding technique being applied for in 1864 (Kjellberg, 2004). Gas welding 

was developed and in use before the turn of the 20th century, with the discovery of 

acetylene by Edmund Davy in 1836 it wasn’t until about 1900 when acetylene was 

used for the purposes of cutting and welding (Hobart Institute of Welding Technology, 

1998) 

2.2.1 Fusion Welding Processes 

There are a number of fusion joining processes with variations within each of these 

processes, such as with Gas Metal Arc Welding (GMAW), there are a high number of 

variants including Cold Metal Transfer (CMT) welding.  The differences are broad using 

completely different technologies to achieve the joint. Resistance welding, for 

example, uses the resistance of the material to be joined, to the flow of electricity to 

create sufficient heat to permit local melting of the materials.  Then there are the 

processes that use an arc to create very high local temperatures, allowing melting and 

subsequent fusion.  More specialised high energy processes such as laser beam and 
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electron beam welding can produce welds of extremely high depth to width ratios 

(American Welding Society, 1991).   Figure 4 shows the relative differences in some of 

the processes according to the power density. 

 

Figure 4.  Showing the difference in power densities for various fusion welding processes 

(Lancaster, 1984). 

 

2.2.1.1 Resistance Welding Processes 

Resistance welding processes are a group of welding techniques that utilises the 

materials to be joined, electrical resistance, to produce a heat source which causes 

local melting and therefore coalescence of the faying surfaces and with the application 

of an externally supplied pressure a joint is created (Cary & Helzer, Modern Welding 

Technology, 2005) 
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2.2.1.1.1 Spot Welding 

The average automobile contains somewhere in the region of 3000-4000 spot welds 

(Bayraktar, Kaplan, & Grumbach, 2004).  Spot welding is a resistance welding process 

that utilises resistance heating and pressure to produce a weld (Cary & Helzer, Modern 

Welding Technology, 2005), this process can be observed in Figure 5, with an image of 

a cross section of the resultant weld as seen in Figure 6. 

 

Figure 5.  Schematic of resistance spot welding (Westgate, 2009). 

 

 To conduct a spot weld there is a minimum requirement of the following equipment; 

• A welding transformer 

• A suitable method to produce pressure on the joint 

• A controller 

• An electrode to allow the current to be transferred from the power supply to 

the work piece (Cary & Helzer, Modern Welding Technology, 2005). 

 



22 
 

 

Figure 6. Image showing a resistance spot weld (RSW) (Westgate, 2009). 

Resistance spot welding  has significant advantages which justify its use in, for example 

the automotive industry as it is easily automated  and is a very fast joining process, 

which provides low cost, predominantly autogeneous  joints (Rajput, 2007). The 

process has some disadvantages however, such as; 

• Equipment repair/ maintenance is difficult. 

• Process can only produce lap joints which requires access to both sides of joint 

and adds to cost and weight of component.  

• Equipment costs compared to arc welding equipment, are relatively high. 

• Strength (fatigue and tensile) is relatively low in comparison to joints produced 

using other processes (American Welding Society, 1991). 
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2.2.1.1.2 Seam Welding 

 

 

Figure 7.  Schematic of resistance seam welding (Pires, Louriero, & Bolmsjo, 2006). 

 

 

Figure 8.  Showing resistance seam welding (Westgate, 2009). 

Seam welding as seen schematically in Figure 7 and in practice in Figure 8, is a 

resistance joining process that produces a gas tight continuous weld (EWI, 2016) and 

Welding Force 
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essentially is produced by continuously producing spot welds that are spaced so that 

they enable overlap.  The wheels which act as the electrodes are driven and they also 

exert a force on the materials to be joined. 

2.2.1.2 High Power Density Welding Processes 

These processes use a focused high energy beam to provide the heat for melting of the 

parent/filler materials. 

2.2.1.2.1 Electron Beam Welding (EBW) 

Electron Beam Welding (EBW) uses electrons to generate heat in a component.  A 

basic explanation of the process consists of a technology that enables the release of 

electrons from a source, which are then accelerated away from the source (same basis 

for a simple cathode ray tube, X-ray generation tube or electron microscope column).  

The electrons are then focussed using an electromagnetic lens onto the joint location.  

Interaction with the generated electrons and molecules/atoms between the electron 

generation source and the work piece are limited via the use of a high vacuum.  The 

electrons penetrate into the intended joint location and give up their kinetic energy as 

heat. 

The technique can produce welds with high depth to width ratios and operate at 

speeds up to 12000mm/min.  The low energy input results in minimised distortion and 

shrinkage and it is reported that the technique can produce welds with zero 

contamination (GKN Aerospace, 2016). 

2.2.1.2.2 Laser Beam Welding (LBW) 

The Laser Beam Welding (LBW) process uses a focussed beam of light to vaporise the 

metal at the point of focus.  This, like EBW can give high depth the width ratios, for 
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LBW ratios of 8:1 are possible (for EBW ratios of 30:1 are achievable) with power 

densities in the range of  1010 – 1012 Wm-2 (Kaul, Ganesh, Tripathi, Nandedkar, & Nath, 

2003).   

Laser beam welding can be used to produce autogeneous welds and unlike EBW does 

not need to be conducted under a vacuum and does not create X-rays as a by-product 

as EBW does. It is a process that is easily automated and has the ability to join a wide 

range of materials (American Welding Society, 1991). 

2.2.1.3 Arc Welding Processes 

Arc welding processes are so characterised due to the fact that they utilise an electric 

arc as a means of introducing thermal energy into the process.  This encompasses a 

wide range of welding techniques currently employed in fabrication applications. 

2.2.1.3.1 Manual Metal Arc Welding (MMA) 

Sometimes known as shielded metal arc welding, this is one of the early arc welding 

processes.  A simple set up for the technique can be seen in Figure 9, which consists of 

a power source, which transfers power to the electrode holder via a lead.  The 

electrode holder allows attachment of the consumable electrode.  It must also be able 

to transfer the power from the welding lead to the electrode and be designed in a way 

that allows the operator to manipulate it effectively to carry out the weld.  The 

electrodes consist of a wire coated in a mixture of different materials (predominantly 

non metal) which disassociate under the arc, stabilising it and provide a gas shield 

around it, finally it forms a protective slag on the weld pool, which prevents interaction 

with gases in the surrounding environment. 
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Figure 9.  Diagram of the manual metal arc welding process (Wermac, 2016) 

This process is versatile and the power source does not have to be directly adjacent to 

the welder, the power lead and torch are not cumbersome, which allows good 

flexibility and manipulation of the electrode.  Some considerations with this process 

are the costs of which the majority come from labour.   The material costs are also 

relatively high as only approximately 60% of the weight of purchased electrodes is 

deposited as weld filler.  In part this is due to the flux coating which doesn’t form a 

permanent part of the weld, but also the welder is unable to utilise the entire length of 

the electrode.  The reason for this is that the electrode is getting shorter as the weld is 

being undertaken to the point where the electrode and the heat associated with it gets 

closer to the electrode holder and operator.  To prevent damage to either, the weld is 

stopped prior to the end of the electrode.  One of the other limitations of the 

technique is the stop/start nature of the process due to the reason mentioned above.  

The slag that forms on the surface of the weld needs removing before the weld can be 

re-started.  This in turn increases the time and therefore the labour costs associated 

with this process.  Ineffective removal of the slag may result in slag inclusions (Bax, 

Short, & Bayliss, 1988) within the weld which could present problems with the 

mechanical properties of the joint. 
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2.2.1.3.2 Submerged Arc Welding (SAW) 

Submerged arc welding is an arc welding process that is conducted beneath a granular 

flux, due to this there is not the same fume generation and ultraviolet radiation 

associated with some of the other arc welding processes.  The process, of which a 

schematic can be seen in Figure 10, consists of an automated wire feed system which 

feeds the wire into the granulated flux to the work piece, surrounding the arc the 

granulated flux melts, protecting the resultant weld.   

 

Figure 10.  Diagram showing the submerged arc welding process (The Welding Institute 

Limited, 1995) 

Submerged arc welding is generally conducted as a fully automated process and is able 

to produce welds in the flat and horizontal positions only.  It can traverse at high 

speeds, up to 5040mm/min (American Welding Society, 1991). Also, this process 

produces high deposition rates. 
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2.2.1.3.3 Gas Tunsten Arc Welding (GTAW) 

Gas tungsten arc welding, more commonly referred to as TIG (Tungsten Inert Gas), as it 

is generally conducted using an inert shielding gas. In the UK the gas primarily used for 

the technique is argon, however helium can also be used, which provides an enhanced 

surface cleaning action.  Combinations of the two gases are sometimes utilised. 

 

Figure 11.  Diagram of the gas tungsten arc welding process (Mechanical Engineering, 2016) 

The process seen in Figure 11, consists of a power source, this can be D.C. or A.C. 

depending on material to be welded and a hose which contains the power lead and gas 

piping to the torch.  The torch itself contains the termination of the gas pipe which 

then goes through a diffuser to evenly distribute the protective shielding gas around 

the electrode and resultant arc.  The torch also contains the electrode which is 

electrically coupled to the power lead.  The non-consumable electrodes are 

predominantly tungsten with the addition of other materials such as thorium or 

zirconium.  These additions improve electron emission and arc stability. 

When using A.C. with an argon shielding gas, one half of the cycle provides a cleaning 

action, removing tenacious oxide layers as found on aluminium and magnesium.  The 

other half of the cycle gives the heating action which melts the material and therefore 

allows the potential for fusion to occur.  Therefore A.C. TIG is generally used for the 

http://1.bp.blogspot.com/-xEZOnZmenbA/UOGn11zlXzI/AAAAAAAAAqY/BgOxmsZY-BU/s1600/TIG.png
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welding of aluminium and magnesium and their alloys (American Welding Society, 

1991). 

With D.C. either half of the cycle can be used, however D.C. electrode negative is 

generally used for other materials such as stainless steel (Miller, 2013).   

GTAW lends itself readily to automation although it is skilfully employed as a manual 

process and is one of the few arc welding processes that can be used to produce 

autogeneous welds.  If a filler is required it can be fed in to the joint manually or 

automated feeding mechanisms can be employed. 

 

2.2.1.3.4 Gas Metal Arc Welding (GMAW) 

Gas metal arc welding is a term that encompasses a number of different welding 

techniques that all use an electric arc as the heat source.  They also utilise an 

automatically fed consumable metal electrode and externally supplied shielding gas.   

The process was basically demonstrated in the 1920’s, but it was not applied in the 

commercial environment until 1948, where it was used with an inert shielding gas 

(argon) for use in welding aluminium and so was, and still is, more commonly referred 

to by the name of MIG (Metal Inert Gas) welding (Armao, Byall, Kotecki, & Miller, 

2014).   

2.2.1.3.4.1 Transfer Modes 

There are number of different transfer modes in GMAW, where the type of transfer 

can be dictated by a number of different variables, such as current, shielding gas and 

electrode (BOC, 2007).  The different transfer modes and their various permutations 

can be seen in Table 2. 
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Table 2.  Classification of droplet transfer modes and typical process mode utilised (Izutani, 
Shimizu, Suzuki, & Koshiishi, 2007). 

 

The main transfer modes relevant to this study are the two free flight transfer modes, 

globular and spray transfer and the bridging transfer mode, short circuit transfer.  

These can be seen graphically in Figure 12 and the visual appearance can be seen in 

Figure 13 to Figure 18.  The pulsed arc utilises spray transfer through controlled pulsing 

of the current, which allows this transfer mode to be used in a greater range of 

applications (TWI, 2016). 
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Figure 12.  Diagram showing transfer modes according to arc current (I) and voltage (V) 

(Iordachescu & Quintino, 2008). 

2.2.1.3.4.1.1 Globular Transfer 

Globular transfer is characterised by the molten droplet which forms on the tip of the 

electrode and has a diameter greater than that of the electrode (Izutani, Shimizu, 

Suzuki, & Koshiishi, 2007).  The formation of this size of droplet is through a 

combination of forces acting together, specifically the surface tension of the molten 

drop and the repelling force of the arc.  These forces counter the detaching force 

induced by the electromagnetic pinch effect and gravitational forces (Izutani, Shimizu, 

Suzuki, & Koshiishi, 2007) (Iordachescu & Quintino, 2008).  Transfer is thought to be 

through two modes, the first is drop transfer where the gravitational forces exceed the 

forces exerted by the arc and surface tension and so the droplet detaches and falls 

through gravity to the work piece (Lucas, Iordachescu, & Ponomarev, 2005) (Izutani, 

Shimizu, Suzuki, & Koshiishi, 2007) (Iordachescu & Quintino, 2008).  The second 

transfer mode is termed repelled and occurs at higher currents and predominantly 

when using a carbon dioxide shielding gas (Iordachescu & Quintino, 2008).  When 
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using this gas, the arc is constricted and so concentrates at the lower portion of the 

droplet, which in turn concentrates forces applied by the arc in this region.  This results 

in the droplet being repelled from the work piece (Izutani, Shimizu, Suzuki, & Koshiishi, 

2007).  The droplet may detach and transfer to the work piece with no detrimental 

effect, as seen in Figure 13.  However, it is considered more likely that the droplet will 

short circuit the arc and violently disperse, causing significant spatter, which has 

restricted the use of carbon dioxide in a large number of applications (Linde AG, 2016). 

 

Figure 13. Showing globular transfer (Lucas, Iordachescu, & Ponomarev, 2005). 

 

2.2.1.3.4.1.2 Short Circuit Transfer 

Short circuit or dip transfer occurs at low currents and can be characterised by the 

molten material which forms at the tip of the electrode, coming into contact with the 

molten weld pool (The Welding Institute, 2010).  At the point of contact with the weld 

pool a short circuit is established, the arc is extinguished with a corresponding rise in 

the current.  The bridge between the weld pool and electrode is simultaneously 

attracted to both through surface tension.  Therefore, the portion in the middle which 

thins, has an increased current density and so creates the magnetic pinch which 

becomes sufficient to fracture the molten bridge and so the arc is re established 

(Izutani, Shimizu, Suzuki, & Koshiishi, 2007).  If the rate of current increase is too high, 

then violent separation of the molten bridge will occur which will result in excessive 
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spatter (Smith, 2014).  This cycle can be seen in Figure 14 and images of the short 

circuit transfer seen in Figure 15. 

 

Figure 14. Showing short circuit cycle with effect on current and voltage (ESAB) 

The process cycle occurs in the range of 20 to over 200 times per second.  The 

shielding gas used can have significant influence over the surface tension and short 

circuit duration as well as the characteristics of the arc and levels of penetration (WWS 

Group, 2005). 

 

 

Figure 15. Showing short circuit transfer (Lucas, Iordachescu, & Ponomarev, 2005). 
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2.2.1.3.4.1.3 Spray Transfer 

Spray transfer, as seen in Figure 16, can be characterised as being small droplets being 

transferred to the weld pool through the arc at rates of hundreds of droplets per 

second (Mathison, 2008).  The operating current, for this type of transfer, must be 

above the transition current (influenced by liquid metal surface tension, electrode 

diameter, electrode composition and shielding gas) as indicated in Figure 12, otherwise 

globular transfer will occur with the droplet size significantly larger and transfer 

occurring at rates of a few per second (Lancaster, 1984).  This transfer tends to be 

done using an argon rich shielding gas.  This does not cause restriction of the arc 

column and therefore does not cause repulsion of the molten droplet, and so can 

result in a spatter free joint with narrow penetration (Izutani, Shimizu, Suzuki, & 

Koshiishi, 2007).  As the droplets are accelerated to velocities which are greater than 

gravitational forces, this transfer mode can be used in any position (American Welding 

Society, 1991). 

 

Figure 16.  Showing spray transfer (Lucas, Iordachescu, & Ponomarev, 2005). 
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2.2.1.3.4.1.4 Pulsed Spray Transfer 

One of the limitations to spray transfer is that although it can be used on most metal 

or alloys, owing to the high currents it is not suitable for thin sheets as it would cut 

through them instead of welding them (Rao, 1999).  Pulsing the current as seen in 

Figure 17 overcomes this limitation as the average current is lower than that required 

for spray transfer, but at regular intervals a pulse of current above the transition 

current is applied which is in the spray transfer range. This causes a droplet or droplets 

to detach, as seen in Figure 18, and transfer to the work piece. The pulsing is 

controlled by the power supply.  The use of pulsed spray transfer has also been 

reported to yield grain refinement in the heat affected zone and therefore enhance 

the mechanical properties of the material in this area.   Also with an increased pulse 

frequency it has been observed that there is an associated increase in the weld depth 

to width ratio (Pal & Pal, 2011). 

 

Figure 17.  Pulsed spray transfer graph of current (I) against time (t) for two pulsing cycles 
and images depicting the events for one pulsing cycle (Hackl). 
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Figure 18.  Showing pulsed transfer (Lucas, Iordachescu, & Ponomarev, 2005). 

 

2.2.1.3.4.2 Metal Active Gas (MAG) Welding & Metal Inert Gas (MIG) Welding 

The conventional Gas Metal Arc Welding (GMAW) processes, Metal Active Gas (MAG 

and Metal Inert Gas (MIG) welding, as seen schematically in Figure 19, differ only in 

the shielding gas used, MIG has an inert shielding gas, such as argon and MAG welding 

contains an active gas component, within the shielding gas, such as carbon dioxide in 

argon.  Both of these processes can operate in any of the droplet transfer modes and 

current power supplies allow the combination of GMAW short circuit with variable 

pulse spray transfer cycles, thereby combining the advantages of both (The Welding 

Institute, 2010).   

 

Figure 19.  MIG/MAG process diagram (The Welding Institute, 2010). 
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2.2.1.3.4.3 Cold Metal Transfer (CMT) 

Cold Metal Transfer (CMT) is a relatively new gas metal arc welding (GMAW) process 

developed by an Austrian company called Fronius. 

Initial development into joining steel to aluminium in 1991 began the background work 

to the CMT process (Himmelbauer, 2004).  The idea of retracting the wire as well as 

feeding, as opposed to just feeding, which  is standard on traditional gas metal arc 

welding (GMAW) processes, was first utilised in a technology called spatter free 

ignition (SFI) also developed by Fronius in 1997 (Fronius International GmBH, 2004).  

Following research conducted by the company, to join thin sheet with limited filler 

material (Himmelbauer, 2004), by 2002 the CMT process was a proven technology. By 

2004 the equipment entered the commercial marketplace (Fonius International GmbH, 

2005).   

Cold metal transfer welding is based around the dip transfer process (short circuit 

transfer) where the filler material is transferred to the weld pool through the 

consumable electrode coming into contact with it.  Images showing dip transfer can be 

seen in Figure 15 and Figure 20 (with time frame between images). 

 

Figure 20.  Images showing dip arc transfer (Izutani, Shimizu, Suzuki, & Koshiishi, 2007) 
where the first image (far left) shows the arc and the consumable electrode with a spherical 
molten mass as the end moving toward the work piece as the wire is fed.  The second image 
(centre) shows the consumable electrode in contact with the weld pool, provided the short 
circuit phase.  The third image (far right) shows the transfer of the molten portion of the 
consumable electrode, which eliminates the contact with it and so the arc is re-established. 
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One of the main benefits of CMT is a reduced overall heat input into the joint, which is 

where the term “cold” in the process title originates.  The process is an arc welding 

process and so it is only ‘cold’ in respect to the more conventional arc welding 

processes. 

 

 

Figure 21.  Schematic diagram of the CMT process showing wire motion, arrowed (Fronius 
International GmBH, 2007). 

 

 

Figure 22.  High speed images showing CMT cycle (Fronius International GmbH, 2004).  
Corresponding to the schematic in Figure 21 above. 

 

a b c d 

a b c d 
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Figure 23.  Graphs showing voltage (V)(top) and current (I) (bottom) against time for the 
CMT process (Rosado, Almeida, Pires, Miranda, & Quintino, 2008). 

 

A description of the process is as follows; with the current relatively high, an arc is 

established and a molten drop of metal is formed on the end of the electrode.  The 

wire is fed towards the intended joint, as in a standard MIG/MAG cycle, this is 

represented in ‘a’ of Figure 21, Figure 22 & Figure 23.  As soon as the electrode 

contacts the molten weld pool, a short circuit is created, this is detected by the control 

software and the control system automatically reduces the current as seen as ‘b’ in the 

previously mentioned figures, as can be seen in Figure 14 for the standard GMAW 

process as the short circuit phase initiates the current rises which gives the GMAW a 

higher heat input.  The system then reverses the electrode motion and allows the 

surface tension of the molten weld pool to remove the molten drop on the end of the 

a 

b c 

d 

a 

b c 

d 
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electrode. This gives the process a spatter free transfer and can be seen in ‘c’ on the 

above figures.  Finally the electrode is sufficiently retracted to allow detachment of the 

molten droplet from the end of the electrode.  The short circuit is then broken, the 

control software detects this and so rapidly increases the current and reverses the wire 

motion so that the arc is re-established and the electrode is driven towards the work 

piece as seen in‘d’ in Figure 21 to Figure 23.  This oscillation of the wire can happen at 

up to 70 times per second (Himmelbauer, 2004).   

One of the variables of the CMT process is the ability to vary the short circuiting 

duration of the welding cycle as in b to c in Figure 23.  The variation of this parameter 

can have an effect on the heat input of the process.  By increasing the short circuiting 

duration there will be a reduction in the frequency of filler deposition, but this has 

been found to have very little effect on the amount of materials deposited (Pickin, 

Williams, & Lunt, 2011).  Pickin et al (2011) also found that variation of the Arc Length 

Correction (ALC), the parameter which alters the short circuit duration, from +10% to -

30% alters the duration of the short circuiting phase of the cycle from approximately 

5ms to approximately 10ms, the portion of Figure 23 between 'b' and 'c'.  There was 

not any reported effect from the variation in short circuit phase. 

It was found by Feng et al (2009) in their study on joining aluminium, that when using 

CMT welding it required less current for the same amount of weld deposited in 

comparison to the conventional pulsed MIG process.  Therefore this can allow the use 

of faster welding speeds and a reduced power cost when producing welds using CMT 

welding, it was also found in the same study that by using CMT on 1mm thick pure 

aluminium parent material, the use of CMT reduced the amount of deformation of the 

sheets due to welding (Feng, Zhang, & He, 2009). Research conducted by Elrefaey 
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(2015) also found advantages with welding aluminium materials using CMT over using 

conventional MIG or TIG techniques and identified them as comparable to welds 

created using the friction stir welding process and laser beam welding technique. On 

research conducted examining the use of CMT for welding aluminium to steel, CMT 

welds were created with and without a pulsed arc, with tensile samples created and 

tested for each (Madhavan, Kamaraj, & Vijayaraghavan, 2016).  Although the welding 

of these materials creates an intermetallic compound that normally weakens the joint, 

it was reported in this study that although this intermetallic compound was present in 

small amounts, the tensile tests all failed in the heat affected zone region on the 

aluminium, with the addition of a pulsed current to the CMT cycle increasing the joint 

strength and hardness (Madhavan, Kamaraj, & Vijayaraghavan, 2016).  This was not 

the same found for a study examining the joining of an aluminium alloy (1060) and a 

magnesium alloy (AZ31), where under tensile testing failures were seen in the fusion 

zone along a brittle intermetallic layer that had formed during the welding (Wang, 

Feng, & Wang, 2008). 

Work conducted look at joining Inconel 718 found the welds to be aesthetically similar 

to those conducted using the conventional MIG technique, but with the lower heat 

input of the CMT process provided a reduced HAZ size and reduced residual stress 

levels, in comparison to the traditional MIG welding technique employed (Benoit, 

Jobez, Paillard, Klosek, & Baudin, 2011), therefore for a material more comparable to 

those under examination in this study, there appear to be advantages of CMT over the 

conventional GMA welding techniques. 
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2.2.1.3.4.4 Cold Metal Transfer Advanced 

Welding processes are constantly being developed and the CMT process is no 

different.  The CMT advanced process providing the ability to reverse the poles from 

positive to negative or vice versa during welding.  This is reported to allow higher 

deposition rates (up to 60%) and an enhanced gap bridgability as well as providing an 

ability to reduce the heat input into the weld (Fronius International GmbH, 2009).  This 

then permits the welding of thin materials (0.3mm) and bridging welding gaps as wide 

as 2mm across 2mm thick aluminium based parent materials using an aluminium 

silicon alloy filler material (Fronius UK, 2015). 

 

2.2.1.3.5 Gas Shielding 

The use of a shielding gas is primarily to exclude the atmosphere or more precisely, 

particular elements in the atmosphere (predominantly oxygen and nitrogen) from the 

molten material produced during the process.  Without this shield the formation of 

porosity, oxides and nitrides may take place, causing detrimental effects to joint 

integrity.  Shielding gases may be inert or active.  The active gases contain proportions 

(eg 2%) of an active component (such as carbon dioxide or oxygen) in an inert gas, 

although the use of 100% carbon dioxide as a shielding gas is commonly used in the 

welding of steel.  Different gases impart different properties (for details of the 

properties of some of the common shielding gases refer to Table 3) on the processes 

involved in the welding cycle.  The development of new shielding gas mixtures has 

been with the aim of creating a more stable arc, to reduce fume emissions and/or to 

provide an enhanced molten metal transfer.  All of which may have a positive effect on 

production, consistency and quality (Pires, Quintino, & Miranda, 2007). Subsequent 
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paragraphs will explain the main gases / gas mixtures with the effects on the welding 

process / weld. 

 Argon Carbon 

Dioxide 

Helium Hydrogen Nitrogen Oxygen 

Chemical 

Symbol 

Ar CO2 He H2 N2 O2 

Specific 

Gravity 

(Air=1) 

1.38 1.53 0.1368 0.0695 0.967 1.105 

Density at 

0°C, 1 

atmosphere 

(kg/m3) 

1.78 1.98 0.18 0.090 1.25 1.43 

Ionization 

Potential 

(eV) 

15.7 14.4 24.5 13.5 14.5 13.2 

Thermal 

Conductivity 

(W/m*K) 

16.77 14.92 148.46 168.26 24.11 24.32 

Cubic m/kg 0.604 0.545 6.037 11.986 0.862 0.754 

 

Table 3.  Showing the properties of various shielding gases (Praxair, 2005). 
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2.2.1.3.5.1 Argon 

Argon is an inert gas which is approximately 1.4 times denser than air, as can be seen 

in Table 3, which makes it extremely good at shielding welds in the down hand position 

and is extensively used in pure form to join non ferrous materials such as aluminium, 

titanium and copper.  In the UK it is the predominant shielding gas for GTA welding of 

these materials (BOC UK, 2010).  The low ionization potential of argon, creates a 

stable, constricted, high density arc which results in a narrow penetration profile 

(Praxair, 1995). 

2.2.1.3.5.2 Helium 

Helium, another inert gas has a density of 0.169kg/m3 (AIR LIQUIDE, 2009) against air 

which has a density of 1.202kg/m3 (AIR LIQUIDE, 2009) at 15°C making it lot lighter 

than argon and therefore higher flow rates are required to afford the same levels of 

shielding.  Welding with helium creates a hotter weld and due to the high thermal 

conductivity results in a broad weld profile with reduced penetration when used on 

stainless steel joints (Armao, Byall, Kotecki, & Miller, 2014).  

2.2.1.3.5.3  Argon / Helium 

It is common practice for shielding gases to be mixtures of two or more gases such as 

with a combination of 70% Ar and 30% He as recommended by Air Products (Air 

Products, 2017) for the joining of aluminium.  The combination of argon and helium is 

used to combine the advantages of each for example when joining aluminium, 

magnesium or their alloys, argon improves arc stability and the cleaning action 

provided by the arc and helium is said to improve wetting and weld metal coalescence 

(ESAB, 2002).  For welding stainless steel the addition of helium to argon, enhances the 
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fluidity of the weld pool, which increases the penetration.  It also permits the use of 

faster welding speeds (Linde AG, 2012). 

 

2.2.1.3.5.4 Argon / Oxygen 

The addition of small quantities, such as 2% of oxygen to the argon based shielding gas 

creates a more stable arc.  It also increases the speed at which molten droplets are 

transferred to the weld pool, reducing the amount of current required for spray 

transition and lengthens the duration for which the weld pool is molten and therefore 

effects weld penetration as a result (Praxair, 1995).  However for stainless steel welds 

due to the oxidising effect, the weld bead will appear grey. 

2.2.1.3.5.5 Argon / Carbon Dioxide 

The use of pure argon tends to create an erratic arc and also a greater likelihood for 

undercut.  The addition of small amounts of other elements reduces this effect.  

Carbon dioxide can be added in quantities of 3 to 25% to argon and produces a 

noticeable difference in the arc characteristics, and eliminates the problem of 

undercut afforded by pure argon.  The addition of carbon dioxide also increases the 

“wettability” of the weld bead (Filho, Ferraresi, & Scotti, 2010), giving a greater 

amount of penetration than just argon alone.  The use of argon/carbon dioxide mixes 

tends to be used for applications where the desired transfer mode is short circuit 

transfer.  However, it is also suited for operating in spray and pulsed transfer modes 

(American Welding Society, 1991).  It was reported by Zielinska et al (2009) that the 

addition of carbon dioxide to the argon shielding gas promotes a globular transfer 

mode, which can be seen in Figure 24, where the addition of 15% CO2 to the argon 

shielding gas changes the transfer mode from spray to globular.  This was found not to 
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be as stable as the spray arc transfer mode at the same currents without the addition 

of the carbon dioxide. 

 

Figure 24. Showing effect on transfer mode of carbon dioxide addition to argon shielding gas 

(Zielinska, et al., 2009). 

2.2.1.3.5.6 Carbon Dioxide 

The use of carbon dioxide as a shielding gas has been widely applied in combination 

with gas metal arc welding processes.  Carbon dioxide is the only active gas that can be 

used without combination to an inert gas.  The use of the gas for shielding in welding 

applications tends to be in the joining of carbon and low alloy steels and provides the 

ability to weld at higher speeds, enhanced penetration and with reduction in cost to 

the shielding afforded by argon. 
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2.2.1.3.6 Arc Efficiency and Heat Input 

One of the measures of a welding process is the heat input, that being the amount of 

heat that is being used to produce the weld.   The calculation for heat input begins 

with calculating the arc energy using Equation 2;  

Equation 2.  Equation to calculate arc energy. 

Arc Energy (J/mm)  =
𝐕𝐈

𝐯
       

 

Where; 

V = Voltage used (V) 

I = Current used (A) 

v = Traverse speed of welding torch (mm/s) 

 

With a calculation of arc energy, the heat input maybe calculated using Equation 3;  

 

Equation 3. Equation to calculate weld heat input. 
Heat Input (J/mm) = ηAE (British Standards Institution, 1998) 

Where; 

η = Process efficiency (0.8 for GMAW) (British Standards Institution, 1998) 

AE = Arc Energy (J/mm) 

  

The arc energy is simply the energy put into the welding process, per unit length of 

weld.  However not all of the energy from the arc is transferred to the work piece, as 

some is lost from the sides of the arc, making the process less than 100% efficient.  

Therefore the amount of losses which occurs during the process must be quantified so 

that adjustments can be made to give an accurate value of the heat input.  The value 
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as specified by British Standards for the GMAW processes is 0.8 (British Standards 

Institution, 1998). 

Work conducted by DuPont and Marder (1995) found that the arc efficiency for the gas 

metal arc welding process varied and with measured values of 0.84 they had a 

tolerance of ±0.04.  Therefore potentially the process efficiency could be higher by 

10%, with a process efficiency of 0.88 rather than the 0.8 stated within the British 

Standard. 

Work has also been undertaken to assess the process efficiency of a number of the 

variant gas metal arc welding processes including the cold metal transfer process.  The 

conclusions were that the process efficiency of CMT was 0.85 and that it was not too 

dissimilar to the standard GMAW process tested. (Pepe, Egerland, Colegrove, Yapp, 

Leonhartsberger, & Scotti, 2011)  This then means that calculated heat inputs based on 

the process efficiency values given in the British Standard will appear lower than they 

actually are.  It was also found that welding in a groove, such as with vee butt joint 

preparation for example, increased the process efficiency to around 0.9, this is thought 

to be due to less radiant heat being lost from the arc as it would have been absorbed 

by the walls of the material.  This then may mean that when welding thicker sections 

with a wider gap, there is an increase in the process efficiency and therefore when 

calculating the heat input with either the value stated in the British Standard or one 

from recent research, may still yield inaccuracies in the values obtained. 
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2.3 Welding Stainless Steel 

The integration of different materials into one component allows the part to take on 

the advantages of certain materials, whilst reducing or eliminating the effects of the 

disadvantages.  Stainless steels can offer a vast array of properties to a component or 

structure, such as enhanced corrosion resistance, enhanced mechanical properties, 

wear resistance and aesthetical appearance.  The cost of stainless steel may make it 

economically unviable to produce the entire component or structure from the material 

and this creates the need to find suitable technologies to allow the integration of this 

classification of materials into components and structures. 

Various welding techniques have filled this requirement well and have allowed the 

combination of stainless steel with a whole host of different materials.  Greater control 

of the welding process has allowed a greater consistency of weld.  In particular 

advances in the electronic systems within welding equipment has allowed automated 

manipulation of certain parameters through the welding cycle and the instigation of 

welding robots have permitted greater consistency in the torch traverse speeds and 

distance to work piece.  Investigations into the as welded metallurgical properties of 

the materials have permitted identification of problems associated with welding 

different materials.  The following information highlights the main problems that may 

be encountered whilst welding stainless steels, the effects of which may be a reduction 

in corrosion resistance, alteration of mechanical properties or simply affecting the 

aesthetics of the part. 
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2.3.1 Grain Growth 

One of the main problems associated with the welding of ferritic stainless steels is the 

issue around grain growth in the heat affected zone as can be seen arrowed in Figure 

25.  This grain growth reduces the toughness in this area and therefore in certain 

service environments could lead to failure in situations where an unwelded material 

would not fail.   

 

Figure 25.  Image showing grain growth in GMA welded ferritic stainless steel (Magowan & 
Smith, 2010). 

Grain growth during the welding of ferritic stainless steel arises as the parent material 

adjacent the weld is heated up to temperatures above 955⁰C .  Heating above this 

temperature allows the ferritic grains to grow (Lakshminarayanan, Shanmugam, & 

Balasubramanian, 2009).  The longer they are held in this region and the higher the 

temperature held in this region, the larger they can grow.  There are certain actions 

that may be taken to minimise this growth such as the inclusion of carbide and nitride 

stabilising elements, (boron, aluminium, vanadium and zirconium) which essentially 

pin grain boundaries and hence minimise the ability of the grains to grow 

(Lakshminarayanan, Shanmugam, & Balasubramanian, 2009).  There is also the effect 

in ferritic stainless steels of allowing some transformation to austenite at elevated 



51 
 

temperatures as this also reduces grain growth.  However, without controlled cooling 

this can lead to other problems as discussed in 2.3.3. 

 

2.3.2 Sensitization 

Sensitization occurs in both austenitic and ferritic stainless steels and dramatically 

reduces the corrosion resistance of the material in aggressive environments.  The 

problem arises during the welding cycle as temperatures in excess of 900⁰C provides 

sufficient energy to allow carbon to migrate through the grain to the grain boundary 

and form carbides.  These carbides are predominantly with the chromium in the form 

of M23C6 or M7C3 (Amunda & Mridha, 2011).  This leaves the area adjacent to the grain 

boundary denuded of free chromium, the element which gives stainless its protective, 

self healing, chromium oxide layer.  Therefore this prevents the protective layer 

forming at this grain boundary and so leaves an area that is unable to resist attack 

from a corrosive media. 

The techniques employed to reduce or eliminate the detrimental effects of 

sensitization include controlling the interstitial elements in the material, 

predominantly carbon and nitrogen.  It is these elements which combine with the 

chromium and therefore reduce the levels of this element necessary for passivation.  

The addition of stabilising elements has been successfully used, with additions of 

elements such as titanium, vanadium, niobium, tantalum, yttrium and zirconium, being 

added to the material during manufacture of the steel.  These elements then form 

stable carbides or nitrides and essentially reduce the amount of carbon within the 

material that is free to form carbides with the chromium (Amunda & Mridha, 2011). 
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Another method is via controlling the heat input and cooling rate of the welding 

process.  It has been found that low heat inputs yield fast cooling rates during the early 

part of the thermal cycle which produces fully ferritic structures.  This however gives a 

structure super saturated with carbon and therefore results in the formation of 

carbides and nitrides at the grain boundaries.  As the cooling rates are high, it also 

prevents any reverse diffusion of the chromium back to any depleted regions.  It has 

been claimed that higher heat inputs are critical in managing sensitization in ferritic 

stainless steels as it provides a slower cooling rate which allows the chromium to 

redistribute to areas of lower concentrations and essentially desensitize itself (Amunda 

& Mridha, 2011). 

 

2.3.3 Formation of Secondary Phases 

The thermal cycle induced within the parent material during welding raises the 

temperature to its melting point immediately adjacent to the weld and the 

temperature gradually diminishes with distance, the further away from the edge of the 

fusion zone.  The speed of cooling is relatively fast, which, in some instances, prevents 

certain microstructural phases forming.  One such instance of this is with certain 

grades of ferritic stainless steel.  The microstructure that is not completely ferritic from 

room temperature to melting temperature, and there is the appearance of what is 

commonly referred to as the gamma loop.  An example of an iron-chromium 

equilibrium diagram can be seen in Figure 26 with the loop apparent on the left hand 

side extending from the y-axis between 912 & 1394°C. 
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Figure 26.  Iron-Chromium equilibrium diagram (Computational Thermodynamics Inc., 2011). 

 

 

Figure 27. Part of Iron - Chromium equilibrium diagram showing effects of carbon and 
nitrogen on the shape and size of the gamma loop (Deddoes, Parr, & Hanson, 1999). 
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One of the difficulties of using equilibrium diagrams such as that seen in Figure 26, is 

that they are binary diagrams.  They only display the relationship between the 

variation of the two elements shown within the diagram and make no consideration 

for the variation of additional elements present within the material.  For stainless 

steels the manipulation of the composition is extremely important for example 

increasing the carbon content of martensitic stainless steels permits the 

transformation strengthening crucial for these materials.  Using the same element for 

another example, an increased quantity of carbon within a ferritic stainless steel 

significantly increases the extent by which the gamma loop extends across the 

equilibrium diagram.  This effect can be observed in Figure 27, where the effects of 

carbon and nitrogen are shown on the size and shape of the gamma loop.  With low 

levels of interstitials the loop does not extend beyond twelve percent chromium.  

However, when relatively small increases are made with carbon and nitrogen, the loop 

extends to alloys containing nearly thirty percent chromium.  The significance of this is 

that the gamma loop is a region where the ferritic material transforms to austenite.  

This has the associated crystal structure change from body centred cubic to face 

centred cubic and a volume contraction as a result.  This is sometimes used by material 

engineers to the advantage of the material during welding as is restricts grain growth, 

however, it can hinder the properties of the material.  Austenite, the structure formed 

within the gamma loop, has a strong affinity for carbon and is able to hold significantly 

more carbon in solution than can be accommodated in ferrite.  For a 17% chromium 

ferritic stainless steel, it is reported that 0.15 wt% of carbon is soluble in ferrite at 

1400°C, which rapidly reduces to 0.03 wt% on cooling down to 1000°C.  In contrast the 

solubility of carbon in austenite of a 17% chromium stainless steel at 1200°C is 0.32 

wt% (Lippold & Kotecki, 2005).  The cooling part of the welding cycle, without 
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externally applied retardation, can be extremely fast and therefore non equilibrium.  

As a result of this, for a ferritic stainless steel that has a proportion of austenite within 

the microstructure, the austenite does not have sufficient time for the diffusion 

required to allow the transform to ferrite and carbide as predicted on the equilibrium 

diagram.  Therefore other diagrams are used to predict microstructures formed under 

non equilibrium cooling conditions such as Time Temperature Transformation (TTT) 

diagrams.  One such example of this is proposed by Warmelo et al (2007) and can be 

seen in Figure 28.  Although the proposers identified it as a Continuous Cooling 

Transformation (CCT) diagram, it is in fact a TTT diagram as the x-axis is time base and 

not cooling rate.  From the diagram (Figure 28) proposed by Warmelo et al (2007), it 

looks to be possible to miss the transformation to austenite and therefore 

subsequently unable to transform to martensite, if the cool was quick enough (1-2 

seconds to 1050°C), this is described but with no validation of the mechanism for how 

this process occurs.  This would indicate that within a HAZ, there could be regions close 

to the fusion zone that have experienced temperatures in excess of 1200°C that cool 

quick enough to maintain a ferritic structure, this would be clearly identifiable within a 

HAZ. 
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Figure 28.  Time Temperature Transformation diagram for delta ferrite to austenite in the 
high temperature HAZ (Warmelo, Nolan, & Norrish, 2007). 

 

 Therefore the carbon gets trapped in solution and forms the phase martensite, which 

has a body centred tetragonal structure which can have a detrimental impact on 

mechanical properties and can result in premature failure by hydrogen induced 

cracking (Lippold & Kotecki, 2005).   Work undertaken by Zheng et al (2010) identified 

that the correct balance between ferrite forming and austenite forming elements was 

important to prevent martensite formation in low carbon, 12% chromium stainless 

steels.  They found that identification of the ferrite factor was important; 

Equation 4.  Equation to determine the ferrite factor (Zheng, Ye, Jiang, Wang, Liu, & Wang, 
2010) 

Ferrite Factor (FF) = Cr+6Si+8Ti+4Mo+2Al+4Nb-2Mn-4Ni-40(C+N)  

The research identified that when the FF is above 9.0, there would be little martensite 

within the high temperature heat affected zone, but as the FF decreases the amount of 

martensite increases, with 90% martensite content when the FF is reduced to 7.62. 
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2.3.4 Solidification Cracking 

Solidification cracking is caused through the inability of the weld material to withstand 

the forces acting upon it as it solidifies (TWI Ltd, 2009).  In the case of stainless steels 

this failure mode tends to be more of a problem for austenitics rather than ferritics 

and furthermore the inclusion of ferrite within the austenitic matrix reduces the 

susceptibility to this type of cracking. 

 

Figure 29.  Diagram showing mechanics of shrinkage cracking (University of Ljubljana, 2000) 

The mechanics of this type of cracking stems from a solidification front where the 

strains imposed on the final portion of metal to solidify are sufficient to pull the 

material apart.    Contributing factors to this type of problem are thought to include 

weld bead size and shape, degree of restraint on the joint, physical properties of the 

materials, such as shrinkage rates and compositional contents, in particular impurities 

such as phosphorous and sulphur (TWI Ltd, 2009), (Shankar, Gill, Mannan, & 

Sundaresan, 2003). 
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Research conducted by Kujanpaa et al (1979) investigated the potential of shrinkage 

cracking based on the composition of the weld material and produced a predictive 

diagram often referred to as the Suutala diagram.  The Suutala diagram as seen in 

Figure 30 shows that the risk of cracking is reduced with low levels of sulphur and 

phosphorus and also as the Creq / Nieq ratio is increased above a particular level 

(approximately 1.5).  This is representative of the shift in the solidification behaviour 

from primary austenite, to primary ferrite and so the susceptibility to the cracking type 

shows a dramatic decrease even at high impurity levels.  

 

Equation 5.  Equation to determine the chromium equivalent. 
Creq = Cr + 1.37Mo + 1.5Si +2Nb + 3Ti  

Equation 6. Equation to determine the nickel equivalent. 
Nieq = Ni + 0.31Mn + 22C + 14.2N + Cu 

Figure 30.  Suutala diagram for predicting susceptibility to shrinkage cracking from weld 
metal composition (Kujanpaa, Suutala, Takalo, & Moisio, 1979). 
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2.3.5 475°C Embrittlement 

Iron Chromium alloys containing 15 – 70wt% Cr can be affected by this type of 

embrittlement phenomena.  To become embrittled through this mechanism the 

material must be held at a temperature in the range of 400°C to 550°C.  Theories as to 

how this embrittlement occurs are not agreed by all, however the predominant theory 

is that it is due to the formation of a coherent precipitate.  Materials within the 

prescribed compositional range that were held at temperatures below 550°C were 

found to form a chromium rich ferrite (alpha prime) and an iron rich ferrite (alpha) 

(Williams & Paxton, 1982). The time held at the aging temperature before the material 

becomes embrittled was found to vary according the composition of the material, in 

particular the chromium content.  Higher chromium stainless steels become embrittled 

within a shorter period, although at a higher temperature, than the lower chromium 

containing stainless steels.  For low to medium chromium stainless steels, the material 

needs to have been held at temperature in excess of 100 hours before the mechanism 

was detectable, although higher chromium steels exhibited a loss of ductility and 

toughness after shorter durations.  The addition of carbide forming elements, such as 

molybdenum, niobium and titanium have been found to speed up the embrittlement.  

This may be as a result of the fact that they free up the amount of chromium available 

and so effectively raise the chromium content of the stainless steel that can combine 

with other elements (Lippold & Kotecki, 2005). 

There are reports that the embrittlement effect, termed 475°C, brought about due to 

the formation of alpha prime results in an effect of the materials resistance to attack 

by corrosive media.  This is thought to be as a result of the selective attack being 

directed at the iron rich ferritic phase, although this may be as a result of a reduction 
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in the free chromium content that is available to form the self healing passive oxide 

layer.   

A remedy to the embrittlement is through heat treatment in the range of 550-600°C 

for a short period.  Holding at these temperatures for excessive durations will 

encourage the onset of the detrimental sigma phase embrittlement, as discussed in 

section 2.3.6. 

 

2.3.6 Sigma Phase Embrittlement 

Sigma phase embrittlement affects iron – chromium alloys containing chromium 

contents in the range of 20 to 70wt% in environments held at temperatures within the 

range of 500 -800°C.  As with the 475°C embrittlement, materials with higher 

chromium content's have an increased risk of this type of formation at lower times 

(typically a few hours).  Steels with less than 20% chromium  requires exposure in the 

critical temperature range for hundreds of hours before effects are observable.  

Examples of sigma phase can be seen in Figure 31 and Figure 32, etched using a 

modified Murikami’s reagent (Vandervoort, Colour Metallography - Film Formation 

and Interference Techniques, 2004). 
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Figure 31.  Use of modified versions of Murakami's reagent to colour delta ferrite and sigma 
phase in stainless steel welds. (a) Delta ferrite coloured blue and brown in an austenitic 
matrix in type 312 stainless steel weld metal (as-welded) using modified Murakami's reagent 
(30 g sodium hydroxide, 30 g potassium ferricyanide, 100 mL water, at 100 °C, or 212 °F, for 
10 s). The arrow points to a slag inclusion in the weld nugget. (b) Sigma phase formed in a 
type 312 stainless steel weld (from the delta ferrite phase) by aging at 816 °C (1500 °F) for 
160 h. Sigma was coloured green and orange by etching with Murakami's reagent (10 g 
sodium hydroxide, 10 g potassium ferricyanide, 100 mL water) for 60 s at 80 °C (175 °F). The 
magnification bars are 20 μm in length (Vandervoort, Colour Metallography - Film Formation 
and Interference Techniques, 2004). 
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Figure 32. Image showing Sigma phase (Vandervoort, Examination of Microstructures, 2003). 

 

2.3.7 High Temperature Embrittlement 

Exposure to temperatures above approximately 0.7 of the steels melting temperature 

(°K) results in an embrittlement phenomenon known as High Temperature 

Embrittlement (HTE).  As the temperatures involved for the instigation of this form of 

embrittlement are so high, it is rarely experienced through service conditions.  The 

temperatures involved are above those recommended, in particular, for ferritic 

stainless steels.  The manifestation of this type of embrittlement is far more likely to 

come from the processing of the component/material.  In particular it is likely induced 

through welding as a result of the temperatures involved in the thermal cycle.  

The susceptibility to high temperature embrittlement is primarily governed by 

composition and grain size.  The mechanics of embrittlement are through the 

formation of chromium rich carbides, nitrides or carbonitrides, where precipitates may 

form in the grains or on the grain boundaries.  The location of these precipitates also 

has influence over the reduction in properties through this type of phenomenon.  It 
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must be noted that stabilised grades do not form this type of embrittlement as easily 

as the non-stabilised grades. 

2.3.8 Liquation 

Liquation is an issue that presents more of a problem within the austenitic grades of 

stainless steel than ferritic.  During welding liquation cracking can occur within the 

heat affected zone or in the weld itself.  Within the heat affected zone this type of 

cracking is produced as a result of liquid films being produced at grain boundaries in 

partially melted regions.   Mitigation from this form of cracking can be made by 

increasing the amount of ferrite that is formed in this region, reduction of the impurity 

levels in the stainless steel, reducing the grain size and reducing the heat input during 

the welding procedure.  In welds, the resulting cracks are formed as a result of 

segregation and are more common in multipass welds due to the repeated thermal 

cycling.  This allows the lower melting point materials that form on the grain 

boundaries, to melt and then form cracks upon solidification. 

2.3.9 Impurity Elements 

Certain elements have detrimental effects on stainless steel materials, the most 

prominent of these are phosphorous and sulphur.   

2.3.9.1 Phosphorus 

Phosphorus is an element that has been linked with a reduction in the corrosion 

resistance of a stainless steel and reported to have effect on increasing the likelihood 

of cracking during the welding process (DuPont, Microstructural Development and 

Solidification Cracking Susceptibility of a Stabilised Stainless Steel, 1999).  In stainless 

steel it is recommended to have phosphorus levels less than 0.003% (Mathers, 

Welding of Austenitic Stainless Steel: Job Knowledge 103, 2016). 
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2.3.9.2 Sulphur 

Sulphur is sometimes intentionally added to improve the machinability of the material, 

although it can result in a detrimental effect on the corrosion resistance of the 

material and may create problems when welding some of the grades (Lippold & 

Kotecki, 2005).  As with phosphorus there is a recommendation to keep sulphur levels 

to less than 0.003%, however it has been reported that when sulphur levels get really 

low (<0.005%) the weld profile changes to a broader profile with less penetration, 

whereas when levels are above 0.010%, the weld is narrower with deeper penetration 

(Mathers, Welding of Austenitic Stainless Steel: Job Knowledge 103, 2016). 

 

2.3.10 Liquid Metal Embrittlement 

Liquid metal embrittlement or penetration is a phenomenon that occurs when 

stainless steel is in contact with a liquid metal such as zinc or copper (Bailey, 1994).  

The penetration occurs through the wetting of the molten material on the grain 

boundaries as can be observed in Figure 33.  This results in the flowing of the media 

down the grain boundaries and essentially creating a crack, which weakens the 

material.  Even if penetration does not completely pass through the 

material/component it could still dramatically affect the integrity of it under various 

loading conditions.  The importance of this potentially damaging mechanism, whilst 

joining is that the integration of stainless steels into various components and 

structures may result in the contact of stainless with copper.  For example if the joint is 

to brazed using a copper braze material. 
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Figure 33.  Image showing liquid copper which has penetrated down the grain boundaries of 
an AISI 304 austenitic stainless steel (Magowan S. , 2006). 

 

The process is often exacerbated by the presence of a stress, be that in the form of an 

externally applied stress or residual stresses present within the material. 

Determination of the presence of liquid metal penetration is made through 

microstructural observation where either destructively samples are taken, prepared 

and examined for the presence of the phenomena or the sample can be prepared in 

situ, normally to a high quality finish with optical examination and the use of replicas 

to determine any evidence of liquid metal penetration (The Welding Institute Ltd.).  

Mechanically, the presence can be found through tensile testing, where in particular, a 

reduction in elongation , could be an indication of the liquid metal having penetrated 

the base metal (Burgin, 2008).  Alternatively, tables exist which show classic material 

couplings which have resulted in liquid metal embrittlement.  However, these are not 

definitive or exhaustive. 
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2.3.11  Stainless steel summary 

 

The ferritic stainless steel grades are restricted in use due to the reduction in 

mechanical properties as a result of welding.  Those particularly sensitive to welding 

are the non-stabilised grades such as the EN1.4016 and EN1.4003, which are 

susceptible to the formation of martensite as well as grain coarsening.  Therefore due 

to the environments these materials may operate in it is imperative that the 

mechanical properties are well understood, including the tensile, hardness, impact and 

fatigue properties.  

 

2.4 Fatigue 

Fatigue is a failure mechanism resulting from some form of cyclic loading regime.  This 

loading may not necessarily be in the traditional sense, of a load applied and then 

removed, but in the case of thermal fatigue could be as a result of cyclic stresses from 

the expansion and contraction as a structure undergoes multiple heating/cooling 

cycles.  This could be as seen in the service environment for a typical engine block 

whilst in this same structure there will be con rods and cam/crankshafts, valves and 

pistons, all subject to more standard cyclic loading mechanisms; however these are all 

operating in contrasting environments, where temperature, corrosion products, 

abrasive particles will all influence the ability to succumb to a fatigue failure.  An 

automotive suspension spring, although not subject to elevated temperatures will 

have a varied life being exposed to different corrosion products, the loading 

mechanism will be different for every spring depending on how the vehicle is loaded 

and the road surface and speed. 
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There are many failure mechanisms for materials and fatigue is a key one of these that 

accounts for a high proportion of failures.  For some components this can be as high as 

80% of failures accountable to a fatigue failure mechanism (Wirsching, 1983).  The 

problem with fatigue as a failure mechanism is that there can be a whole host of 

factors that can influence a material or components susceptibility to fatigue failure.  

This can be from the material itself, to the alloying content, surface condition or 

geometry of a component as well as loading conditions, all of these can have a 

significant influence. 

 

2.4.1 Fatigue Testing 

The testing of a material or component which will operate under a fatigue regime, 

requires the load to be cycled.  The loading sequence used for this can vary,  Figure 34 

shows some of the fatigue cycles that can be imposed.   Figure 34 (a) gives an example 

of the tension/compression cycle, the material is initially in tension for the first portion 

of the cycle, increasing in stress until σmax is reached, then the stress is reduced over a 

period of time, whereby the sample is subjected to a compressive stress until reaching 

σmin where the compressive stress is removed, returning the stress state to zero and 

completing a full cycle.  For the tension/tension loading ( Figure 34(b)) the sample 

remains in tension for the entire cycle.  Alternatively it could be 

compression/compression where the sample would be under compression for the 

complete cycle.  The spectrum loading conditions (Figure 34c) are more attributed to a 

real component in a service environment, such as an automotive suspension spring. 
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 Figure 34.  Showing different fatigue cycles. (NDT Resource Centre, 2016) 

Mathematically a stress cycle is defined as σm ± σa (with tension stresses being positive 

and compressive stresses negative), therefore: 

Equation 7. Equation to determine the maximum fatigue stress. 
𝝈 𝐦𝐚𝐱 =   𝝈𝒎 +  𝝈𝒂 

Equation 8.  Equation to determine the minimum fatigue stress. 
𝝈 𝐦𝐢𝐧 =  𝝈𝒎 −  𝝈𝒂 

Equation 9.  Equation to determine the mean fatigue stress. 

𝝈𝒎 =  
𝝈 𝐦𝐚𝐱 + 𝝈𝒎𝒊𝒏

𝟐
 

Equation 10.  Equation to determine the fatigue stress range. 
𝑺 = 𝟐𝝈𝒂 = 𝝈 𝐦𝐚𝐱 − 𝝈𝒎𝒊𝒏 

Equation 11.  Equation to determine the fatigue stress ratio 
𝑹 =  𝝈𝒎𝒊𝒏 𝝈𝒎𝒂𝒙⁄  

Where: 
σm = Mean stress 
σa = Alternating stress 
σmax = Maximum stress 
σmin = Minimum stress 
S = Stress range 
R = Stress ratio 

(Pook, 2007) 

(a) (b) 

(c) 



69 
 

2.4.2 Different types of fatigue testing 

There are a number of different methods for fatigue testing a material or component 

but most fall under three categories; reversed direct stress, reversed plane bending 

and rotating bending (Frost, Marsh, & Pook, 1974).  Although there are other types 

such as alternating torsion and combined stress (Fatigue Testing, 1986).  

It has been found that the fatigue properties can vary across the aforementioned 

testing types with the fatigue limit varying by as much as 30% (Frost, Marsh, & Pook, 

1974), therefore it is vitally important that the fatigue testing that is undertaken is in 

the form that closely resembles that which would be experienced under service 

conditions as this allows a better understanding of how the material or component 

would react in this environment and therefore permit a more accurate prediction of 

fatigue life and therefore a more effective design. 

Further to this the type of fatigue test can be broken down into high cycle or low cycle 

fatigue testing.  The generally accepted differentiation between the two, in terms of 

cycles would be anything below 104 cycles would be classed as low cycle and anything 

above 105 cycles classed as high cycle fatigue testing.  As can be seen this is not a clear 

definition if the number of cycles should fall between 104 and 105 cycles then by this 

definition it could be either.  In practice the differentiation is made as to whether the 

material is elastic or plastic under the dominant component of strain (Fatigue Testing, 

1986) with low cycle fatigue testing inducing loads that are within the plastic region 

and high cycle, loads that are within the elastic region of the material. 

Reporting of high and low cycle fatigue tests are generally conducted in different ways, 

with an example of the presentation of low cycle fatigue seen in Figure 35 whereby the 

data presented is the plastic strain range, as determined by the hysteresis loop 
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produced under testing against the number of cycles and high cycle fatigue seen in 

Figure 36, where it is a plot of stress against number of cycles. 

 

Figure 35.  Presentation of data from low cycle fatigue testing (KTH, 2003) 

 

 

Figure 36.  Showing S-N curve typical reporting of high cycle fatigue data (eFUNDA, 2016). 

The determination of fatigue properties for a material can be extremely costly and 

time consuming and therefore methods have been developed to ascertain this 

information through the use of statistical theory.  One such technique is the method 
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called Staircase Fatigue Testing, sometimes referred to as the up and down method 

(Grove & Campean, 2007).  

The basis for staircase fatigue testing, is that statistically speaking the independent 

variable associated with a fatigue test is the stress at which it was tested, the 

discussions being that at the start of the test, the stress is known and the number of 

cycles to failure is unknown, but once the test is complete the life is known, leaving the 

stress as the variable.  Realistically, the stress is not the independent variable, but 

rather the formation and growth of a crack. As it isn't possible to test samples under a 

fixed cycle to failure regime, which would allow determination of a mean strength and 

standard deviation, the staircase fatigue method and other probit methods have been 

created to allow such information to be determined (Frost, Marsh, & Pook, 1974). 

Within the staircase fatigue testing process a sample is subjected to a particular stress 

level for a predetermined number of cycles.  If the sample fails prior to the required 

life, then the next sample is tested at a stress level increment below.  The particular 

increment relates to an expected level of the standard deviation (International Council 

on Combustion Engines, 2009).  If the sample survives the pre-set life then the test is 

stopped, the sample removed and the next sample tested at an increment level above. 

This is continued for a number of samples, Grove and Campean (2007) suggest 12 to 

20 samples, however the creators of this analysis suggested the sample size needed to 

be 40 to 50 (Dixon & Mood, 1948).  Research conducted later determined that even 

with a sample size of 5 to 10 samples, the analysis is reliable (Brownlee, Hodges, & 

Rosenblatt, 1953).  It is considered that the more samples tested the greater the 

reliability of the data, therefore a sample size of 25 is normally suggested (Frost, 

Marsh, & Pook, 1974). 
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2.4.3 Fatigue Failure Mechanisms 

 

 

Figure 37. Showing three stages of crack growth rate (Engineers Edge, 2016). 

When looking at fatigue failure it must be noted that the fatigue mechanism is not a 

linear process and can be broken into three distinct regions as shown in Figure 37.  The 

portion of the graph to the left of ∆Kth is below the threshold of stress levels for a crack 

to grow under fatigue or the crack growth is so slow it is impossible to measure.  Stage 

I gives a positive growth of a crack, however the actual determination of this point can 

be variable and sensitive to metallurgical variations (Pook, 2007). Stage II is the linear 

portion of the graph and the largest, which indicates stable crack growth.  This portion 

of the graph can be modelled using the Paris equation (ASM International, 2008); 
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Equation 12. Paris equation to model crack growth. 
𝒅𝒂

𝒅𝒏
= 𝑪(∆𝑲)𝒎  (inch/cycle)  

Where; 

a = crack size (inches) 

n = number of cycles 

C = constant 

m = constant 

∆K = stress intensity parameter range 

 

Within the stage III portion of the graph the crack growth speeds up and eventually a 

tensile overload failure will occur. 

 

Fatigue crack initiation, stems from plastic deformation of the grains, through the 

process of slip.  This process can occur at lower loads than the yield stress of the 

material and results in the formation of microcracks within the grain.  The process of 

slip occurs on favourably orientated planes at the maximum shear stress, which under 

uniaxial tension is 45°.  It must be considered that slip takes place on a number of 

parallel planes resulting in extrusions and intrusions at the sample surface as shown in 

Figure 38. Eventually these stress concentrators create a crack to form which 

subsequently travels transgranular as the slip lines go through the grains (Pook, 2007).  

Eventually the stress field at the crack tip dominates and then the crack growth 

direction changes from 45° to perpendicular to the principle stress, this is the point 

when the crack changes from stage I to stage II as seen in Figure 37 and then the crack 

growth process changes to a continual blunting and sharpening as seen in Figure 39.  

This process then creates a distinguished surface with regular peaks and valleys as can 
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be seen in Figure 40, these are known as striations and can only be observed at high 

magnifications.  It is considered that each striation is related to each fatigue cycle 

(ASM International, 2008), however it has been reported that this is not always the 

case and one striation may be as a result of a number of cycles, in the order of tens of 

thousands (Gross & Lampman, 1996). 

 

 

 

 

 

 

 

 

 

Figure 38. Figure showing 
persistant slip bands. (NDT 
Resource Centre, 2016) 
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Figure 39.  Showing fatigue crack propagation (Key to Metals AG, 2005) 

 

 

Figure 40.  SEM image showing fatigue striations (ASM International, 2008). 

 

 

2µm 
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2.4.3.1 The Effect of the Environment on Fatigue Life 

The environment in which the fatigue is experienced can have significant impact on the 

properties of the material.  The fatigue properties of a material under vacuum can be 

different to those in normal atmospheric conditions.  The reason for this is reported to 

be that the growth rates of cracks is smaller under a vacuum, with reported levels for 

crack initiation being 1 to 2 orders of magnitude slower under vacuum than in air 

(Lukas, 1996).  Therefore as reported by Frost et al (1974) preventing the atmosphere 

from reaching the specimen surface can increase fatigue properties.  As well as gas 

interactions there is also the potential for chemical interaction thereby transforming 

the fatigue from a mechanical induced failure to one that also has some chemical 

assistance, this may be as simple as humidity levels in the atmosphere, where it has 

been shown on some aluminium alloys that the fatigue strength is lower when the 

humidity levels are higher (Frost, Marsh, & Pook, 1974).  With the introduction of 

other environments such as an aqueous substance that may not corrode the material 

under a static condition, due to a protective layer that forms, for example in the case 

of stainless steel in an oxygen containing atmosphere, under fatigue conditions this 

layer may be broken allowing the corrosive media to react with the underlying 

material and therefore cause cracks to develop and propagate at lower stress levels 

than those operating within normal air environment without the additional chemical 

element (Frost, Marsh, & Pook, 1974). 

Temperature has been found to have a significant effect on the fatigue properties, 

with testing conducted on a number of different materials  at cryogenic temperatures 

and the results found a general improvement in retarding the crack growth in the near 

threshold region (McEvily, 1996).  Research conducted on some titanium allows found 
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that the fatigue properties were improved at elevated temperature (175°C) rather 

than at room temperature (25°C), and this was identified as being in part due to crack 

closure (Albertson, Stephens, & Bayha, 1997).  Other research (Lim, Jeong, & Keum, 

2003) identified that with a P92 Steel, up to a particular temperature there was no 

change in the fatigue properties however once a critical threshold temperature was 

exceeded then the fatigue performance of the material rapidly decreased. 

 

2.4.3.2 Surface Condition 

The surface condition of the material is paramount to fatigue initiation as it is 

considered that fatigue crack initiation in a metal is at the surface (Pook, 2007).  

Therefore the surface condition plays an important role in the fatigue life of a material.  

Firstly the surface profile is an important factor, as described in 2.4.3 the initial crack 

on a smooth surface initiates from the extrusions and intrusions as a result of 

dislocation motion, therefore by creating essentially coarser extrusions and intrusions 

through having a rougher surface can have a significant effect on the fatigue life of a 

material.  In work conducted by Bayoumi and Abdellatif (1995) it was found that there 

was a significant decrease in the fatigue life when the surface finish was modified from 

0.45µm Ra to a value of 1.8µm. 

Stress at the surface also has an effect on the fatigue life of the material.  Compressive 

stresses at the surface, induced by shot peening or a softened/hardened layer through 

a decarburisation process or carburisation process effects the ability for cracks to form 

at the surface layer (Pook, 2007).  Research conducted by Mirzazadeh and Plumtree 

(2012) found that the effects associated with shot peening were varied, in certain 

instances tested, it had positive, neutral and negative effects on fatigue properties, 
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whereas the general consensus with processes such as shot peening is that it is 

beneficial in the enhancement of fatigue properties of a material (Battelle-Columbus, 

1996) through the introduction of residual compressive stresses into the surface of the 

material. 

 

2.4.4 Key factors affecting fatigue performance of welds 

There is general agreement about the factors that affect the performance of a weld 

under fatigue conditions and the effect of each is something which comes under 

discussion, however these factors are: 

• Applied stress amplitude 

• Mean and residual stresses 

• Material properties 

• Geometrical stress concentrators 

• Size and location of welding defects 

(Lawrence, Dimitrakis, & Munse , 1996) 

 

One of the factors that can affect the fatigue life of welds is the angle between the 

parent material and the weld reinforcement, Harris and Syers (1979) present data that 

demonstrates the effect of the angle between the two and how that affects the fatigue 

strength (see Figure 41).  As can be seen a decrease in angle and therefore a greater 

stress concentrator, has a detrimental effect on the fatigue properties of the material.  

The two conditions shown, one for a machined surface and one which has a mill scale 
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on the surface have a parallel effect for this change in angle which demonstrates that 

although the surface finish has an effect of its own, the change in angle effects both in 

the same way and at similar rates.  The study examined the effects on fatigue strength 

exceeding 2x106 cycles for the change in reinforcement angle and it was shown that 

for a machined plate, reducing the angle from 180° to 120° reduces the fatigue 

strength by approximately 67%, therefore a flatter weld bead enhances the fatigue 

properties of the material. 

 

Figure 41.  Showing relationship between parent/weld interface angle and fatigue strength 
(Harris & Syers, 1979). 

 

Another component that has been identified as having a significant role in the fatigue 

life of a weld is the defects present within the weld.  This is not just constrained to 

defects themselves but the size, shape and concentration of these defects as these 

traits can all play a significant part in the life of a component under cyclic loading 

conditions.  Results from investigations looking at the effect of defect length and the 
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percentage of defects within butt welds shows a negative correlation on fatigue 

properties.  For the defect length, the presence of the defect, reduces the endurance 

limit of the weld, this reduction is greater with a larger defect (Lieurade, 2008).   

In work conducted by Ashcroft (2008), on Cold Metal Transfer welded joints, the same 

was found.  In this work the angles where measured and subtracted from 180°, which 

is why in this work a seemingly opposite trend is seen in Figure 42.  Therefore the 

increase in angle measured from the parent to the weld reinforcement (in this instance 

the root penetration) is shown to give a benefit in terms of the fatigue life of the 

component, with a change in 20° changing the number of cycles to failure from 50,000 

to over 2,000,000 (test was stopped at 2 million cycles). 

 

Figure 42. Graph showing relationship between penetration root angle and fatigue life for 
similar thickness CMT welds (Ashcroft, 2008). 
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Figure 43. 9—S–N curves of the investigated specimens with different maximum pore 
volumes (PV) for A1Si7Mg0.3 (Tijani, Heinreitz, Stets, & Voigt, 2013) 

 

Figure 44. Fatigue test results for defect-free and defective 6mm high strength steel parent 
specimen (Ottersbock, Leitner, Stoschka, & Maurer, 2016) 
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In the study reported by Tijani et al (2013) there was an examination of the volume of 

defects within an aluminium alloy and the effect it had on the endurance limit.  This 

work can be seen in Figure 43 where 3 different defect percentages were tested, pore 

volumes of <0.5, 0.5-2 and 2-4mm3.  The results from this were that increasing the 

percentage of defects within the material had a negative impact on the subsequent 

fatigue properties.  Other work (Ottersbock, Leitner, Stoschka, & Maurer, 2016) 

conducted on 6mm thick, high stength steel welds with and without defects also 

identified a reduction in the fatigue properties when defects were present, as seen in 

Figure 44. 

 

2.4.5 Models for fatigue life prediction 

In work conducted by Ashcroft (2008) looking at Cold Metal Transfer welded joints, the 

following model was proposed to predict the fatigue life of these joints based on a 

relationship between the weld root angle and the number of cycles to failure. 

 

Equation 13.  Ashcrofts model for fatigue life prediction against root angle. 

𝜽 = −𝟏. 𝟑 ∗ 𝟏𝟎−𝟓 𝒙 + 𝟒𝟏. 𝟗𝟖       

Where, 

θ = angle at root penetration (°) 

x = fatigue life in cycles 
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2.5 Summary of the Literature 

As have been discussed there are a number of different welding techniques that have 

advantages and disadvantages and a wide range of parameters within each of those 

processes that can have effect on the integrity of the final joint.  One quantifiable 

measure  of a weld is with the heat input, as this can have a considerable effect on the 

final joint in particular the HAZ.  The arc efficiency factor has been questioned 

previously which ultimately may skew results if CMT is more efficient that MAG 

welding however the determination of this is outside the scope of this research.   

The effects of porosity in the weld has been shown to reduce the fatigue life of a 

component and relationships have been drawn between weld root angles and fatigue 

endurance and these issue will be of interest in this research. 

The use of ferritic stainless steels is limited due to the detrimental effects associated 

with welding, such as a reduced toughness owing to grain growth in the HAZ, phase 

transformations in the lower alloy content grades, reduction in corrosion resistance, 

therefore with a welding techniques such as CMT that in principle induces less heat 

into the joint, should therefore minimise the detrimental effects associated with the 

heat.  The following work investigates the welding of ferritic stainless steel using the 

CMT process and compares with the MAG welding process. 
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3 Experimental Procedure 

The following section describes the, materials and equipment used and procedures 

followed for the research conducted. 

3.1 Materials Used in the Research 

A number of materials have been used for the purposes of this research.  The parent 

materials used were all ferritic stainless steels as seen in Table 4.  However other 

materials have also been used for the weld consumables and for the shielding gas, 

these are described below, and the chemical compositions for the materials can be 

seen in Table 6. 

3.1.1 Parent Materials 

A list of the parent materials and thicknesses used in this work can be seen in Table 4 

and the mechanical properties for the grades in Table 5. 

Material Grade Thickness (mm) 

1.4016 1.5 

1.4016 2 

1.4509 2 

1.4521 1.5 

1.4003 3.8 

1.4003 5.8 

Table 4. Materials and thicknesses used in the research. 
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Table 5.  Mechanical properties of ferritic stainless steels at room temperature (Outokumpu, 
2011). 

 

Material C (%) Mn (%) Si(%) Cr(%) Ni(%) Nb(%) Mo(%) 

1.4016 0.018 0.315 0.248 17.216 0.232 0.046 0.098 

1.4509 0.002 0.483 0.558 19.893 0.334 0.3 0.062 

1.4521 0.013 0.512 0.457 19.526 0.29 0.28 1.087 

1.4003 0.010 1.42 0.27 11.0 0.4 - - 

Table 6.  Chemical analysis data of the parent materials used within the project. 

3.1.2 Welding Filler Materials 

The filler material recommended for the joining of ferritic stainless steel and therefore 

used in the research included: 

1.0mm diameter AISI 308L-Si 

1.2mm diameter AISI 308L-Si 

Both of these wires are of the same chemical composition and this analysis can be 

seen in Table 7, the material is an austenitic stainless steel. 

Element C  Cr Si Ni Mn 

Composition 

(%) 

0.02 20 0.85 10.5 1.8 

Table 7. Composition of AISI 308L-Si filler material (Avesta Welding, 2006). 
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3.1.3 Shielding Gas Used in the Project 

High purity shielding gas mixtures used in the work included: 

1% Oxygen, 99% Argon 

2% Oxygen, 98% Argon 

2% Carbon Dioxide, 98% Argon 

 

3.2 Comparison Trial between CMT & MAG Welds in Different Grades and 

Thicknesses 

Pulsed Metal Active Gas (MAG) welds were produced at the Outokumpu research 

facility in Tornio, Finland.  Parent material from the same batch as shown in Table 6, 

was sent to the ACES welding laboratory at Sheffield Hallam University to allow 

comparable welds to be produced using the Cold Metal Transfer (CMT) process, with 

and without pulsed arc.   

Stainless steel grades used in the trials were 1.4016 (1.5mm thick), 1.4509 (2mm thick) 

and 1.4521 (1.5mm thick). The filler wire used in all cases was 1mm diameter, 308L.  

The shielding gas used in the manufacture of the CMT welds for this part of the work, 

was argon with 2% oxygen and the joint gap was held constant at 0.5mm.  All MAG 

welds were produced using a shielding gas of argon with 2% CO2 and the joint gap set 

between 0.5 and 1mm.   
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3.3 CMT Welding Trials to Examine the Effect of Variation of Welding Gap & 

Speed to Reduce Heat Input 

In Gas Metal Arc Welding (GMAW) the filler wire and parent materials, under the 

power of the arc, melt and fuse together.  The welding gap therefore will have an 

effect on the amount of energy required to achieve sufficient melting of the parent 

material to ensure full penetration.  The smaller the welding gap the more parent 

material will need to be melted.  Additionally published data states that variation of 

the torch angle affects the level of penetration within a weld and that welding 

backhand (with the electrode directed away from the direction of travel) will increase 

the penetration of the weld (American Welding Society, 1991) possibly allowing a 

reduction in the heat input of the joint to be made.  Accordingly a trial was conducted 

at Sheffield Hallam University, using 2mm thick, 1.4016 material and followed up using 

2mm thick 1.4509, to determine the minimum heat input achievable with different 

joint gaps and torch angles, whilst still maintaining complete penetration of the joint.  

The amount of parent material available allowed trials at three different welding gaps, 

values of 1mm, 1.15mm and 1.25mm were chosen.  Torch angles of 15° lead 

(forehand) and 15° drag (backhand - described within the report as -15°) were used.  

Based on earlier experience, welds were produced at differing torch traverse speeds of 

762, 1016 and 1270 millimetres per minute and the welding power adjusted in an 

attempt to maintain penetration, whilst minimising the power used to produce the 

joint. 
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3.4 Trial to Determine the Consistency of Welds Produce Using CMT Process 

As the effect of the CMT variables is not well known a trial was conducted to allow 

assessment of these and determine the effect on changing variables would have on 

the consistency of the weld.  The shielding gas used for all welds produced in this trial 

was Argon with 1% O2 and the filler wire was 1mm diameter 308L Si. 

A 2.5m x 1.25m sheet of 2mm thick, 1.4016 was marked out into sections 200mm long 

X 120mm wide for sectioning and each coupon was identified in terms of orientation 

and position relative to the uncut sheet.  This allowed the sheets to be welded back to 

the same piece they were originally joined to, prior to sectioning.  The reason for this 

was to eliminate any variations which may occur across the plate in terms of 

dimensions, microstructure and or composition. 

Assessment was made of the effect and consistency of a number of parameters which 

can be seen in Table 8.  These settings were determined for the wire feed speed by the 

power used to produce similar fully penetrated welds in previous work (Magowan S. , 

2010), with the 3.5m/min, wire feed speed, having provided sufficient power to 

produce a fully penetrating weld.  The 4.5m/min, was set as a base as it was found in 

previous work that this level of power consistently provides fully penetrating welds 

and the 5.5m/min to allow comparison when providing too much power.  At these 

settings the torch angle was set to drag (-15°), the pulse correction and arc length 

correction set to zero and the traverse speed set to 1.016m/min, as can be seen in 

Table 8.  For the rest of the trials the variation in parameters had the wire feed speed 

set to 4.5m/min as this then allowed the effect of changes in each variable to be 

identified.  
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 Wire Feed Speed Arc Length 

Correction 

Pulse 

Correction 

Traverse 

Speed 

Torch 

Angle 

Setting 

 

 

 

Variable 

Slow  Average Fast Min Max Min Max Slow Fast +15 

Wire Feed 

(m/min) 

3.5 4.5 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 

Traverse 

Speed 

(m/min) 

1.016 1.016 1.016 1.016 1.016 1.016 1.016 0.762 1.27 1.016 

Arc Length 

Correction 

0 0 0 -30 +30 0 0 0 0 0 

Pulse 

Correction 

0 0 0 0 0 -5 +5 0 0 0 

Torch 

Angle o 

-15 -15 -15 -15 -15 -15 -15 -15 -15 +15 

Table 8.  Table showing variation of each of the ten settings used in the CMT consistency trial 
(Boulding, The Effects of Parameters and Consistency of Cold Metal Transfer Welded Ferritic 
Stainless Steel Joints, 2012). 

 

For each of the settings six welds were produced, with the exception of the traverse 

speed setting at 1.27m/min, where only five welds were made and the ALC setting at -

30 where seven welds were produced.  The reason for the variation in number of 

welds was to permit data logging equipment to be used whilst welding. 

One of each of the welds, for each setting was monitored during the welding, using a 

fully calibrated Arc Logger Ten (ALX) weld data logger, serial number 0138 

manufactured and subsequently calibrated by The Validation Centre, Great Yarmouth. 
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Calibrations of this type of equipment last only for 6 months. Parameters that are 

recorded through the use of this equipment include: 

• Voltage (V) (via connection to the machine circuitry) 

• Current (A) (inductance from the earth return lead) 

• Traverse speed (mm/min) (sensor connected to traverse equipment) 

• Wirefeed speed (m/min) (sensor connected to filler wire between reel and 

push rollers) 

 

The welds were then sectioned, with a targeted six samples from each weld, the 

sampling position can be seen in Figure 45 identified by the red lines. 

 

 

Figure 45.  Sectioning of weld plan, sections taken at 10mm, 40mm, 70mm, 110mm, 140mm 
and 170mm. Green arrow shows welding direction (Boulding, The Effects of Parameters and 
Consistency of Cold Metal Transfer Welded Ferritic Stainless Steel Joints, 2012). 

 

Each sample was then microstructurally assessed with measurements made of, Heat 

Affected Zone (HAZ) width, weld cap height and width and grain size in the HAZ.  There 

was also a visual assessment made of the level of penetration at the root of the weld. 
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3.5 EN1.4003 CMT/MAG Welding Comparison Trial Comparing 

Microstructure and Mechanical Properties. 

A trial was created on the basis of comparing the effects on the parent material of 

welding with CMT and welding using the MAG technique.  CMT welds were optimised 

at Sheffield Hallam University on the 3.8mm & 5.8mm thick EN1.4003 grade material.  

The MAG welds for optimisation were created by Outokumpu Tornio, Finland and 

assessed at Sheffield Hallam University.  The comparison MAG welds were then 

replicated at Sheffield Hallam University, using the optimised parameters identified 

previously. 

The parameters used for all these welds can be seen in Table 9.  For the CMT 

equipment the Pulse correction factor is a unit less parameter, which can be varied 

from -5 to +5, adjustment from the lower value to higher value increases the peak 

current of the pulsed current. 
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Samples Pulsed Torch 

Traverse 

Speed 

(mm/s) 

Plate 

gap 

(mm) 

Current 

(A) 

Voltage 

(V) 

Wire 

Feed 

Speed 

(m/min) 

Arc 

Length 

Correction 

(%) 

Pulse 

Correction 

CMT 

3.8mm 

Yes 8 1.4 144 19 5 10 +5 

CMT 

5.8mm 

Yes 6 1.9 161 20 5.8 10 +5 

MAG 

3.8mm 

Yes 6.92 1 214 23.5 7.3 -30 +5 

MAG 

5.8mm 

Yes 7.97 1.88 229 24.3 7.8 -30 +5 

Table 9.  Welding parameters used in the EN1.4003 CMT/MAG comparison trial. 

3.6 HAZ Thermal Cycle Simulation Trials 

To identify key temperatures and times at temperature, where microstructural 

changes take place for the EN1.4003 material a series of trials was conducted which 

involved heating 25mm X 25mm X 5.8mm samples up to particular pre-determined 

temperatures in an attempt to identify the temperature at which phase change from 

ferrite to austenite began to occur and also the temperature and time for a given 

temperature at which grain growth was detected. 

Samples were loaded into a muffle furnace at temperatures ranging from 700°C to 

1200°C and held from times of 20 mins, to 6 hours followed by a quench.  The specific 

temperatures can be seen in Table 10. 
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Temperature (°C) Duration (mins) Cool 

700 20 WQ 

700 30 WQ 

740 120 WQ 

747 20 WQ 

750 30 WQ 

750 120 WQ 

758 20 WQ 

760 30 WQ 

760 120 WQ 

769 20 WQ 

770 30 WQ 

770 120 WQ 

779 20 WQ 

780 30 WQ 

790 20 WQ 

790 30 WQ 

800 20 WQ 

800 30 WQ 

800 120 WQ 

800 120 Furnace cool 

800 360 30°C/hour 

850 30 WQ 

900 20 WQ 

900 30 WQ 

900 360 30°C/hour 

910 30 WQ 

920 30 WQ 

930 30 WQ 

940 30 WQ 

950 30 WQ 

1000 20 WQ 

1000 30 WQ 

1000 360 30°C/hour 

1100 20 WQ 

Table 10. Showing heat treatment temperature, durations and method of cooling for 
samples of 5.8mm thick EN1.4003 (where WQ = Water Quenched). 
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Once key temperatures were identified, following hardness testing and microstructural 

evaluation (microstructure and grain size) showed a change to that of the parent,  then 

a number of non-standard Charpy impact specimens (5.8 x 10 x 55mm) were subjected 

to the same heat treatment cycle and then subsequently tested to identify the effect 

on impact properties.  The samples had to be non-standard as the thickness of the 

parent material limited one of the dimensions, therefore the standard size of 10 x 10 x 

55mm could not be created. 

3.7 Process for the Creation of all CMT Welds & MAG Welds created at 

Sheffield Hallam University using EN1.4003 Grade Stainless Steel Parent 

Material in 3.8 & 5.8mm Thicknesses 

Following the welding consistency trials and the trials to optimise process parameters, 

the welds created for the research were consistently produced in terms of the 

procedures and equipment used, this information is described below. 

3.7.1 Description of the Welding Test Coupon  

The weld coupons used for the welding trials were 120mm wide and either 200mm or 

400mm long, with the weld being made in the longer dimension as per Figure 46.  The 

rolling direction was maintained parallel to the 120mm dimension on all welds 

produced at Sheffield Hallam University.   
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3.7.2 Equipment Used to Create the Welds and Monitor the Welding 

Parameters 

The information that follows details the equipment used during the manufacture and 

monitoring of the welds created during the work.  The tractor and track combination 

was used for the work conducted on the thinner grades of stainless and the robot arm 

was used for the work conducted on the 3.8 and 5.8mm thick materials. 

Rolling direction 

Weld 

400mm 

120m

Figure 46. Schematic of parent plate size and setup for all CMT & MAG welded samples 
the plate length was either 400mm as indicated above, or 200mm. 
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3.7.2.1 CMT 

 

Figure 47.  Showing the CMT welding equipment at Sheffield Hallam University. 

The Cold Metal Transfer (CMT) welding equipment comprises of a power source as 

seen in Figure 47 as (a), a wire feed unit (b) the remote pendant that permits the user 

to alter the parameters and create welding programs (c), the wire buffer which allows  

excess wire to be accommodated in the hose leading to the torch (d) the torch pack 

which has the incorporated motor to drive the wire forwards and backwards (e) and 

the welding nozzle and contact tube (f). 

b 

c 

a 

d

e 

f 
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3.7.2.2 Tractor/Track 

 

Figure 48.  Image showing tractor and track used to traverse the welding torch. 

The welding tractor and track as can be seen in Figure 48 with the welding torch 

attached, allows the user to set a traverse speed so that upon releasing the clutch, the 

tractor would move along the track at the predetermined speeds.  This facilitiates the 

manufacture of welds at predetermined traverse speeds.  The traverse speed range of 

the equipment was from 0mm/min up to a maximum of 1270mm/min.  The angle of 

the torch was readily adjusted via the clamping mechanism to the tractor and for this 

element of the research was altered from -15⁰ to +15⁰ in the orientation of the weld. 
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3.7.2.3 Robot Arm 

 

Figure 49.  Image showing ABB robotic arm used in some of the CMT and MAG welding trials. 

 

The ABB IRB1600-5/1.45 robot arm seen in Figure 49, links up to the CMT welding 

equipment so that within the program of the robot it can call up the welding settings 

when required.  The software used for the control of the robot is ABB Robotware 

version RW5.11_0160.  The robot has a 1.45 metre reach and can support a welding 

torch up to 5kg, with welding speeds upto 1.8m/second, it can maintain an accuracy of 

+/- 0.05mm (ABB, 2007). 
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3.7.2.4 ALX - Weld Monitoring 

 

Figure 50.  Welding set up showing ALX weld monitoring equipment (Boulding, The Effects of 
Parameters and Consistency of Cold Metal Transfer Welded Ferritic Stainless Steel Joints, 
2012). 

The Arc Log Ten (ALX) weld monitoring equipment, by the Validation Centre, as seen in 

Figure 50, allows the user to monitor a range of welding parameters throughout the 

weld duration.  The wire feed speed is monitored by an attachment which fits within 

the wire feed unit of the CMT equipment, a wheel is attached to the tractor which 

monitors the speed of the torch traverse and voltage and current are monitored via an 

attachment in the wire feeding unit and around the earth return lead respectively.  

This then allows post weld analysis of these parameters including pulsed current 

information.   

Within the welding and consistency trials one of the welds for each of the welding 

conditions was monitored using the ALX equipment, for each of the parameter 

settings. 
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3.7.2.5 Sample Positioning and Securing 

 

Figure 51. Showing clamping arrangement for holding the parent material in place whilst 
welding. 

 

3.7.3 Heat Input 

Calculated values of heat input were made using the following equation: 

Equation 2.  Equation to calculate arc energy. 

Arc Energy (J/mm)  =
𝐕𝐈

𝐯
       

Where; 

V = Voltage used (Volts) 

I = Current used (Amperes) 

v = Travel of welding torch (mm per second) 

 

From the calculation of arc energy, the heat input is calculated by using the equation 

below (British Standards Institution, 1998);  

 

Equation 3. Equation to calculate weld heat input. 
Heat Input (J/mm) = ηAE  

Where; 

η = Process efficiency (0.8 for GMAW) (British Standards Institution, 1998) 

AE = Arc Energy (J/mm) 
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3.8 Non Destructive Examination 

Radiographic equipment, Xograph Bucky Star with a Canon LANMIX CDXI-50G detector 

was used to assess CMT welds, in a bid to identify defects within them.  This was used 

on initial CMT welds created using 3.8mm & 5.8mm EN1.4003.  The parameters used 

for these inspections were: 

Distance from source: 115cm 

for 3.8mm welds: 80kV & 50mAs 

for 5.8mm welds: 80kV & 40mAs 

From one of the test radiographs a complete assessment was made destructively to 

assess the suitability of the technique for the identification of defects within these 

welds. 

 

 

 

 

 

 

 

 

 



102 
 

3.9 Microstructural Evaluation of all Welded Samples 

Microstructural evaluations were made on samples throughout the work, the following 

section describes the procedure for the preparation of the welds to produce these 

samples. 

3.9.1 Sectioning of As-Welded Samples 

Sectioning of samples throughout the work varied according to the thickness of the 

material.  Samples required for mechanical tested were water jet cut to eliminate any 

heat being put into the material during this stage of the preparation.  Materials for 

metallurgical examination at 2mm thick and under were first sectioned using a 

mechanical shear and then samples for examination were extracted using a Beuhler 

AbrasiMet  precision cutting machine. 

Materials thicker than 2mm, had sections milled or water jet cut from the weld and 

then sections were cut from these more manageable pieces using the Beuhler 

AbrasiMet precision cutting machine. 

The samples taken were cross sections of the weld and were less than 30mm long to 

enable them to fit into the hot mounting press for mounting in conductive bakelite. 

3.9.2 Hot Mounting of Welded Cross Sections 

Hot mounting was achieved using a Beuhler SimpliMet 2000 and a conductive Bakelite.  

The mould size for the hot mounting was 30mm diameter and the cycle time was 4 

minutes heating and 4 minutes cooling.  Immediately after removing from the hot 

mounting press, the sample identification was engraved on the reverse of the 

mounted sample.  The temperatures involved in hot mounting are up to 190°C and as 
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it is below tempering temperatures of the material would not be considered to have 

any significant detrimental effect on the materials involved in this work. 

3.9.3 Grinding/Polishing of Welded Cross Sections 

The grinding and polishing was conducted in the laboratories at Sheffield Hallam 

University on Beuhler Alpha Beta grinder polishing stations.  The route adopted 

included grinding using a P120 silicon carbide paper to ensure the sample was flat, 

then subsequent operations to gradually reduce the level of deformation in the sample 

through P400, P600 and finally P1200 silicon carbide papers.  All these stations had 

water projected onto the platen to keep the sample cool and remove the grinding 

debris. 

Polishing was conducted on identical equipment to the grinding, however a pad 

impregnated with a diamond paste was used with first 6μm maximum particle size, 

then after cleaning with a detergent and water, another pad containing a diamond 

paste with a maximum particle size of 1μm.  In both cases the sample was contra-

rotated on the pad to eliminate any directionality.  Following the final stage the sample 

was cleaned using water and detergent and then dried with the aid of a solvent 

(industrial methylated spirits). 
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3.9.4 Etching of the As-Polished Welded Cross Sections 

A number of etchants were tried with these samples, however due to the significant 

difference in parent material composition and that of the filler material, for a number 

of the etchants tried (electrolytic 10% Oxalic, 50% Hydrochloric acid, 50% ammonium 

peroxide immersion)there was over etching in the ferritic material and under etching 

in the weld.  Therefore the main etchant used to reveal the microstructure of the 

welds and component materials was glyceregia as this was found to give an even etch 

across the parent and weld materials.  The chemical composition for manufacture of 

this etchant can be seen in Table 11.  The mode of etching with this etchant is via 

swabbing and the etchant must be made fresh and not stored.  After a period of use, 

generally between 30 minutes and one hour, the etchant will begin to discolour and 

the etchant properties will degrade (see Figure 52) . 

Chemical Quantity (ml) 

Glycerol 60 

Hydrochloric Acid 40 

Nitric Acid 20 

Table 11.  Showing chemical composition to make 120ml of glyceregia. 

The manufacture and use of this etchant should be conducted under an appropriate 

extraction hood and the chemicals should be measured and mixed with glycerol first, 

then the hydrochloric acid is added and mixed and then slowly the nitric acid is added 

whilst mixing to prevent varying concentrations.  It is also a requirement when 

undertaking etching that suitable Personal Protective Equipment (PPE) is worn, which 

should include safety spectacles, chemical resistant gloves and to that protective 

clothing is worn that covers all exposed skin. 
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Figure 52. Images showing fresh glyceregia (left) and glyceregia following approximately 1 
hours use (right) where it requires disposal. 
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3.9.5 Optical Examination of Welded Cross Sections 

Optical assessments were made of the welds, using a Leica DM2500 reflected light 

microscope, connected to Beuhler Omnimet 9.0 image analysis software (seen in 

Figure 55) and a number of the features where abled to be quantified for analysis.   

Measurements were made of the HAZ width, the weld height and weld cap width as 

seen in Error! Reference source not found..  Calibration of the measuring system was u

ndertaken using a calibrated slide with a 1mm total line length and graduated marks 

every 10µm as can be seen in Figure 54. 

 

Figure 53. Schematic of weld cross section showing measurements made on optical 
examination 

 

Grain size assessments, against ASTM E112, were also made in the coarsest region of 

the HAZ to assess, and allow comparison of, the most severe of this structurally 

affected area. 

Weld cap width 

HAZ width 

Weld height 
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Figure 54.  Image showing calibration of measurement capability of DM2500 optical 
measuring system. 

 

 

Figure 55. Leica DM2500 optical microscope, connected to Buehler Omnimet 9.0 image 
analysis software. 
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3.9.6 Infinite Focus Microscope Examination of Weld Profiles on Untested 

Fatigue Samples 

The Infinite Focus Microscope (IFM), which is a confocal microscope manufactured by 

the Austrian company, Alicona, was used to give 3D surface profilometry of the weld 

cap and root prior to fatigue testing, so that information relating to the weld profile 

could be assessed against fatigue performance.  The parameters used for the scans can 

be seen in Table 12. 

Objective Lens G4 5X 

Exposure 24.3ms 

Contrast 0.38 

Vertical resolution 5.77µm 

Lateral resolution 14.02µm 

Table 12.  Table showing parameters for scans performed on the IFM 

From each scan, of each side of the weld, a number of measurements were made 

relating to the angle of the change in section from the parent material to the weld cap 

or weld root. 

3.10 Mechanical Evaluation of Welds 

A means of quantitively assessing the welds produced was through assessment of 

various mechanical properties, these included micro and macro hardness testing, uni 

axial tensile testing, impact testing and fatigue testing. 

3.10.1 Hardness Testing 

Hardness testing was conducted using a Wilson Vickers hardness testing machine, with 

loads that can be varied from 1kg to 30kg and a Buehler microhardness testing 

machine, which is capable of using loads as low as ten grams up to one thousand 
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grams (1kg).  Unless otherwise specified tests were conducted using a 1kg load for the 

microhardness testing.  Macrohardness testing was conducted using either 10 or 20kg 

loads. 

Microhardness surveys were conducted on the cross section of selected welds with 

indents taken at 0.5mm intervals 4mm either side of the weld centre line and then 

1mm intervals thereafter.  This regime was conducted at the top, middle and bottom 

of the cross section as shown in Figure 56. 

 

Figure 56.  Schematic of hardness testing survey positions. 

3.10.2 Tensile Testing of Welded Samples 

Tensile testing was conducted in line with BSEN ISO 6892 using an Instron 3369 dual 

column benchtop 50kN tensile testing machine and controlled via the Instron Bluehill 

software (Instron).  Sixteen tensile tests were conducted from each parent metal 

thickness for both the CMT and MAG welded plates and values of yield strength, 

maximum tensile strength and elongation were recorded.  The 'dogbone' specimens as 

seen in Figure 58 were water jet cut with the addition of an abrasive media, to 

minimise any changes to the microstructure.  This process did create a taper on the 

width of the samples, by upto 1mm and so the largest value measured was used in the 

calculations.  The weld caps were left intact for the tests. 
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3.10.3 Impact Testing of Welded and Heat Treated Samples 

Non-standard size Charpy impact specimens, with the size being the thickness of the 

plate x 10 x 55mm, manufactured to ASTM E45 were tested for both MAG and CMT 

welded plates.  The root of the notch placed within the coarsest region of the HAZ, to 

determine the area with the greatest effect from the welding process.  Samples were 

also manufactured from unwelded plate, that were subsequently subjected to a 

thermal cycle to replicate that experienced in the heat affected zone during the 

welding cycle. Impact testing was conducted on the fully calibrated Instron Dynatup 

9250 drop tower impact test machine as seen in Figure 57.  

 

Figure 57. Instron Dynatup 9250 impact test machine. 
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Figure 58. Showing the sampling of impact (left), microstructural (middle) and tensile specimens (right) from the welded sheet. 
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3.10.4 Fatigue Testing of As-Welded Samples 

Fatigue testing was undertaken using an ESH Servo-hydraulic mechanical test machine, 

as seen in Figure 59, with a Rubicon control interface.  The fatigue testing had a pull-

pull characteristic and therefore went from zero load to tension and back to zero load 

and followed the staircase method and the frequency used was 6Hz. 

The samples were 45mm wide and 220mm long, the weld cap was not removed for the 

tests and the weld orientation was 90° to the loading direction.  The diagram showing 

how fatigue samples were removed from the welded sheet can be seen in Figure 60. 

 

  

Figure 59. ESH Fatigue  testing machine.



113 
 

 

Figure 60.  Showing the sampling of fatigue specimens from the as-welded sheet. 
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3.10.5 Staircase Fatigue Testing Procedure and Equations 

The staircase testing regime, as discussed previously was used to provide statistically 

valid data for the mean load and standard deviation.  The procedure begins with an 

estimation of the fatigue load and a series of sequential tests conducted, if the sample 

survived the pass criteria of 2 million cycles then the next sample was increased by a 

specific load, if it failed then it was reduced by the same amount. This continued until 

an indication of the range of the testing loads was ascertained for each series then the 

samples in each of the two series were tested (CMT welds & MAG welds). 

For the CMT series, the tests where started at 46kN and the step increments were 

0.5kN.  For the MAG series the tests were started at 35.5kN and the step increments 

were 3kN. 

The results are entered into a table similar to Table 13 which then provides the data to 

calculate the mean fatigue strength, convergence factor (if the convergence factor falls 

between 0.3-1.2 then the results are statistically valid), standard deviation and 

standard error for the mean fatigue load, the calculations for which are determined 

using Equation 14 to Equation 17. 

  Sample 1 2 3 4 5 6 7 Number of Using LFE as N 

Load kN Step (i)                Runouts (r)  Failures (f) iN i²N 

L3 3         X     0 1 3 9 

L2 2   X   O   X   1 2 4 8 

L1 1 O   O       O 3 0 0 0 

L0 0               0 0 0 0 

                          

                  Σr Σf ΣiN Σi²N 

                  4 3 7 17 

Table 13.  Table used to collect the staircase fatigue testing data also provides information 
necessary for calculations to determine mean fatigue load. 
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Calculated Mean Fatigue Load (kN):              χ = Pd +d (
𝑨

𝑵
 ± 

𝟏

𝟐
 )  

When N= failure + 
1

2
, when N= runout - 

1

2
  

Equation 14. Equation to calculate mean fatigue load 

               

Convergence Factor:      = (
(𝐍 ×𝐁) −𝐀𝟐

𝐍𝟐 )  

>0.3 or <1.2 for statistical validity 

Equation 15. Equation to calculate convergence factor     
  

Standard Deviation (kN):         𝒔 = 𝟏. 𝟔𝟐𝟎 ×𝒅 (
(𝑵 ×𝑩) −𝑨𝟐

𝑵𝟐 + 𝟎. 𝟎𝟐𝟗) 

Equation 16. Equation to calculate standard deviation 

         

Standard Error for Mean Fatigue Load (kN):       sx = 
𝒔

√𝑵
 . 𝒈 

Equation 17. Equation to calculate standard error for mean fatigue load 

Where; 

χ =  Mean fatigue load (kN) 

s =  Standard deviation (kN) 

Po =  Total load for step 0 (kN) 

N =  Total number of Least frequent Events (LFE) - failure or runout 

d =  Step divide/load interval (kN) 

A =  Σi * Ni 

B =  Σi
2 * Ni 

i =  Step number 

g =  1.15 (Nordeberg, 1973)             
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3.11 Compositional Analysis of Parent Materials Used in the Study 

It was important to have the capability to determine the composition of the materials 

in use throughout the research, this enabled the comparison with analysis supplied or 

stated on supply of the materials used. 

3.11.1 Optical Emission Spectrometry 

Compositional data was analysed using a Spectromax optical emission spectrometer, 

this allowed the complete composition to be determined, including the lighter 

elements such as carbon and nitrogen. 
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4 Experimental Results 

The following section shows results gained from the research. 

4.1 Materials Characterisation of the Parent Materials Used in the Study 

Each of the materials utilised in the work were first characterised in the as received 

condition to allow the comparison with the material after it has been subjected to the 

thermal input as a result of the welding thermal cycles. 

All the parent materials used in the project work would be expected to have a fully 

ferritic microstructure, when examined, in the as received condition. 

4.1.1 EN 1.4003 Grade Stainless Steel 

 

Figure 61.  Etched microstructure of 3.8mm thick EN1.4003 used in the study showing an 
equiaxed fully ferritic structure (Etched in Glyceregia). 
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Figure 62.  Etched microstructure of 5.8mm thick EN1.4003 used in the study showing an 
equiaxed fully ferritic structure (Etched in Glyceregia). 

EN 1.4016 Grade Stainless Steel 

 

Figure 63.  Etched microstructure of the EN1.4016 material used in the study showing an 
equiaxed fully ferritic structure (Etched in Glyceregia). 



119 
 

4.1.2 EN 1.4509 Grade Stainless Steel 

 

Figure 64.  Etched microstructure of the EN 1.4509 material used in the study showing an 
equiaxed fully ferritic structure (Etched in Glyceregia). 

4.1.3 EN 1.4521 Grade Stainless Steel 

 

Figure 65.  Etched microstructure of the EN 1.4521 material used in the study showing an 
equiaxed fully ferritic structure with carbides arrowed (Etched in Glyceregia). 
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4.2 Initial Comparison of Requisite Heat Input for MAG and CMT Welds on 

EN1.4016, EN1.4509 & EN1.4521 Ferritic Stainless Steel Parent Materials. 

Table 14 shows the welding parameters and subsequent heat inputs for welds 

manufactured using Cold Metal Transfer, with and without pulsed arc and welds 

produced using conventional Metal Active Gas welding process. All welds were 

consistent in terms of length and the aim was to produce a fully penetrating weld. 

Joint 

Type 

Identification 

No. 

Material Voltage 

(V) 

Current 

(A) 

Welding 

Speed 

(mm/min) 

Arc 

Energy 

(kJ/mm) 

Heat 

Input 

(kJ/mm) 

CMT 702852 1.4016 19.2 136 1270 0.123 0.099 

CMT+P 702852 1.4016 20.3 107 1016 0.128 0.103 

MAG 702852 (1) 1.4016 21.01 101.32 1080 0.118 0.094 

MAG 702852 (2) 1.4016 21.15 98.81 900 0.139 0.111 

CMT 794895  1.4509 19.8 138 1016 0.161 0.129 

CMT+P 794895 1.4509 20 107 1016 0.126 0.101 

MAG 794895 (4) 1.4509 23.16 116.68 800 0.203 0.162 

MAG 794895 (5) 1.4509 22.47 116.80 1080 0.146 0.117 

CMT 781436 1.4521 20 137 1270 0.129 0.104 

CMT+P 781436 1.4521 21.2 107 1016 0.134 0.107 

MAG 781436 (1) 1.4521 21.42 94.92 900 0.136 0.108 

MAG 781436 (2) 1.4521 20.83 93.21 1080 0.108 0.086 

Table 14.  Showing some of the welding parameters and calculated heat inputs. 

The graph seen in Figure 66 shows the weld cap width, heat affected zone width and 

the heat input for the welds made using the CMT process and the MAG welding 

process. 
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Figure 66.  Graph comparing calculated heat input, weld bead and heat affected zone width 
of MAG and CMT welded joints. 

Microstructural evaluations made on the EN1.4016 samples showed a phase change 

within the HAZ this can be seen in Figure 67 which was made on sample 702852 CMT.  

The other grades of stainless welded remained fully ferritic in the HAZ. 

 

Figure 67.  Image taken within the HAZ of the CMT welded EN1.4016 material, showing 
martensite (red arrow) at the grain boundaries. 

The image seen in Figure 67 shows martensite forming at the grain boundaries 

following the thermal cycle experienced in the heat affected zone of the parent 

material (EN1.4016).  Therefore a partial transformation has been made during the 
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thermal cycle into an austenitic phase, which under the fast cooling conditions 

experienced during welding the transformation has changed to martensite and not 

ferrite. 

Figure 68 & Figure 69 shows the hardness profiles across the weld cross section for 

each of the welds made on the EN1.4016 grade parent material and prepared with 

approximately 1mm of material removed.  The welds made using the conventional 

MAG welding techniques (Figure 68) have a reduced consistency to those produced 

using CMT and the maximum hardness levels reach a level 100HV higher. 

 

 

Figure 68. Comparison of the 1.4016 MAG weld/HAZ middle hardness profiles. 
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Figure 69.  Comparison of the 1.4016 CMT weld/HAZ middle micro hardness profiles. 
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4.3 The Effect of Heat Input on Weld/HAZ Shape & Size, Penetration Levels 

and HAZ Grain Size, using CMT 

Sample Average 

Width 

of HAZ 

(µm) 

Average 

Area of 

Weld 

Metal 

(mm2) 

Average 

Height 

of Weld 

Bead   

(mm) 

Average 

Width 

of Weld 

Bead   

(mm) 

Average 

Angle of 

Weld 

Bead 

(0) 

Average 

Perimeter 

of Weld 

Bead 

(mm) 

Average 

Grain 

Size in 

HAZ 

(ASTM)  

Average 

Grain 

Size in 

Parent 

Metal 

(ASTM) 

Weld 

Penetration 

Sufficient 

   

Pure 

CMT 

0.06 

KJ/mm 

339 4.32 2.39 3.58 124.62 9.21 4.4 6.5 NO 

    

Pure 

CMT 

0.07 

KJ/mm 

698  5.07 2.58 3.70 125.02 9.27 4.1 7 NO 

    

Pure 

CMT 

0.08 

KJ/mm 

778  7.00 2.84 5.54 135.09 10.35 3.4 6.4 NO 

    

Pure 

CMT 

0.09 

KJ/mm 

1002 7.99 3.51 5.09 128.97 10.39 2.6 7.3 YES 

    

Pure 

CMT 

0.10 

KJ/mm 

1036 10.24 3.95 4.47 124.52 10.55 1.9 7.1 YES 

    

Pure 

CMT 

0.11 

KJ/mm 

1048 10.35 3.73 5.67 121.57 10.50 1.6 6 YES 

          

Table 15 Summary of weld/HAZ dimensions for pure CMT welded samples with 
increasing net heat input. 



125 
 

Sample Average 

Width 

of HAZ  

(µm) 

Average 

Area of 

Weld 

Metal 

(mm2) 

Average 

Height  

of Weld 

Bead 

(mm) 

Average 

Width 

of Weld 

Bead      

(mm) 

Average 

Angle 

of Weld 

Bead 

(o) 

Average 

Perimeter 

of Weld 

Bead 

(mm) 

Average 

Grain 

Size in 

HAZ 

(ASTM)  

Average 

Grain 

Size in 

Parent 

Metal 

(ASTM) 

Weld 

Penetration 

Sufficient 

   

CMT 

Pulsed Arc 

0.06 

KJ/mm 

532.2  3.92 2.46 3.47 134 9.63 4.9 6.9 NO 

    

CMT 

Pulsed Arc 

0.07 

KJ/mm 

687.6  4.76 2.57 3.77 125 10.1 4.3 7 NO 

    

CMT 

Pulsed Arc 

0.08 

KJ/mm 

741.6  5.22  3.18 3.79 141 10.15 3.4 6.6 NO 

    

CMT 

Pulsed Arc 

0.09 

KJ/mm 

935 5.38 3.16 4.26 134 10.23 3.1 6.4 NO 

    

CMT 

Pulsed Arc 

0.10KJ/mm 

1033  6.65 3.50 4.55 141 10.30 2.4 6.5 YES 

    

CMT 

Pulsed Arc 

0.11 

KJ/mm 

1042 8.14  3.52 5.42 146 10.44 2.3 7.8 YES 

          

Table 16. Summary of weld/HAZ dimensions for CMT with pulsed arc welded samples with 
increasing net heat input. 
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Figure 70. Showing effect of heat input on HAZ width for pure CMT and CMT with Pulsed arc 
welded samples, EN1.4016 parent material. 

 

 

Figure 71. Showing effect of heat input on grain size  for pure CMT  and CMT with pulsed arc 
welded samples, EN1.4016 parent material. 
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Figure 72. Line scan of interface between AISI 430 parent metal and AISI 308L weld 
metal. 
 

Table 15 and Table 16 with Figure 70 to Figure 71 show the effect of the welding heat 

input on the heat affected zone width and the heat affected zone grain size. 
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 Stainless Steel 

Weld Metal AISI 308L  
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Parent Metal AISI 430  

Stainless Steel 
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Elemental Map of HAZ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73. Elemental Map of parent metal and weld metal interface for AISI 430 parent material and 308LSi filler. 
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4.4 Trial to Examine the Effects of Variation in the Welding Gap, Torch 

Traverse Speed and Torch Angle using 2mm Thickness EN1.4016 and 

EN1.4509 Parent Materials. 

 

It can be seen in Figure 74 and Figure 75 the effects on the heat input for a fully 

penetrating weld through increasing the torch traverse speed and increasing the 

welding gap (spacing between the parent plates).  Figure 76 & Figure 77 show the heat 

input required to produce a fully penetrating weld varies according to the speed and 

torch angle.  Figure 78 shows the weld cross section with the right hand side of the 

image showing the weld and HAZ of a high heat input and the left hand side of the 

image, a weld subjected to a lower heat input, with the subsequent difference in the 

HAZ grain size and width. 

 

Figure 74. Graph showing forehand (15°) welds produced using 1.4016 material at 1mm, 
1.15mm and 1.25mm joint gaps and 762, 1016 & 1270 mm/min welding speeds, categorised 
according to whether weld penetration was achieved. 
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Figure 75. Graph showing forehand (15°) welds produced using 1.4509 material at 1mm, 
1.15mm and 1.25mm joint gaps and 762, 1016 & 1270 mm/min welding speeds, categorised 
according to whether weld penetration was achieved. 

 

 

Figure 76.  Graph showing the effect of torch angle on achieving penetration of welds 
produced using grade 1.4016 parent material, using a 1mm joint gap, at different welding 
speeds. 
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Figure 77.  Graph showing the effect of torch angle on achieving penetration of welds 
produced using grade 1.4509 parent material, using a 1mm joint gap, at different welding 
speeds. 

 

 

Figure 78.  Image showing the effect of heat input on weld and HAZ dimensions.   The left 
hand weld cross section of 2mm thick, CMT+P welded, 1.4016 material with heat input of 
0.113 kJ/mm and the right is the same material and welded using the same process but with 
a net heat input of 0.060 kJ/mm. 
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4.5 Trial to Determine the Consistency of the Welding Parameters and 

Subsequent Welds with the CMT Welding Process 

Table 18 shows the results from an inspection of the cross section of the welds to 

identify if the welds had sufficient penetration, for welds produced with a variation in 

one parameter, therefore in most cases for each variation in parameter, 6 welds were 

created and from each of these welds six areas along that weld were examined. 
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Setting Run 
Number 

Voltage 
(V) 

Current 
(A) 

Velocity 
(mm/min) 

Heat Input 
(J/mm) 

3.5m/min Wire Feed 290 19.7 77 1016 71.67 

291 19.9 77 1016 72.40 

292 20.4 75 1016 72.29 

293 19.5 78 1016 71.87 

294 19.2 79 1016 71.67 

295 19.9 78 1016 73.34 

4.5m/min Wire Feed 296 20.5 92 1016 89.11 

297 20.6 94 1016 91.50 

298 21.5 85 1016 86.35 

299 21 89 1016 88.31 

300 21.4 85 1016 85.95 

301 19.6 97 1016 89.83 

5.5m/min Wire Feed 302 21.9 99 1016 102.45 

303 21 110 1016 109.15 

304 20.6 112 1016 109.02 

305 20.6 114 1016 110.96 

306 20.8 114 1016 112.04 

307 20.8 114 1016 112.04 

ALC -30 308 19.3 98 1016 89.37 

309 19.4 101 1016 92.58 

310 19.5 101 1016 93.06 

311 19.2 99 1016 89.81 

312 19.3 101 1016 92.11 

313 19.3 101 1016 92.11 

338 19.4 102 1016 93.50 

ALC +30 314 20.1 91 1016 86.43 

315 20.2 91 1016 86.86 

316 20.2 91 1016 86.86 

317 20.3 91 1016 87.29 

318 20.2 90 1016 85.90 

319 20 96 1016 90.72 

PC -5 320 19.3 82 1016 74.78 

321 19.4 81 1016 74.25 

322 19.3 81 1016 73.87 

323 19.2 82 1016 74.39 

324 19.2 81 1016 73.48 

325 19.2 88 1016 79.83 

PC +5 326 20.8 106 1016 104.18 

327 21.2 102 1016 102.18 

328 21 103 1016 102.20 

329 21.2 102 1016 102.18 

330 21 102 1016 101.21 

331 20.8 106 1016 104.18 

Trav 0.762 332 20 94 762 118.42 

333 20.1 95 762 120.28 

334 20 92 762 115.90 

335 20.1 93 762 117.75 

336 20.1 94 762 119.01 

337 19.9 97 762 121.59 

Trav 1.27 339 19.9 94 1270 70.68 

340 19.9 92 1270 69.18 

341 19.8 93 1270 69.58 

342 19.8 91 1270 68.08 

343 19.9 97 1270 72.94 

Trav 1.016 TA+15 344 19.9 93 16.93 87.45 

345 20.1 94 16.93 89.28 

346 20 94 16.93 88.83 

347 19.9 95 16.93 89.33 

348 19.9 101 16.93 94.97 

349 19.9 97 16.93 91.21 

Table 17.  Table showing actual readings and calculated heat inputs for each weld produced 
on the trial. 
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Weld 

Run 

No. 

1 2 3 4 5 6  

 

Weld 

Run 

No. 

1 2 3 4 5 6 

Wire 

Feed 

3.5m/

min 

290       

Pulse 

Correction 

(PC) setting 

-5 

320       

291       321       

292       322       

293       323       

294       324       

295       325       

Wire 

Feed 

4.5m/

min 

296       

Pulse 

Correction 

(PC) setting 

+5 

326       

297       327       

298       328       

299       329       

300       330       

301       331       

Wire 

Feed 

5.5m/

min 

302       

Trav 

0.762 

m/min 

332       

303       333       

304       334       

305       335       

306       336       

307       337       

ALC -

30 

308       

Trav 1.27 

m/min 

       

309       339       

310       340       

311       341       

312       342       

313       343       

338              

ALC 

+30 

314       

Trav 

1.016 

m/min 

(TA +15) 

344       

315       345       

316       346       

317       347       

318       348       

319       349       

Table 18.  Showing assessments of the extent of penetration of the filler metal for each 
sample examined (Boulding, The Effects of Parameters and Consistency of Cold Metal 
Transfer Welded Ferritic Stainless Steel Joints, 2012). For colour coding PTO. 
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 Full Penetration Example 1 (Figure 79) 

 Not Fully Penetrated Example 2 (Figure 80) 

 Misaligned Parent Example 3 (Figure 81) 

Table 19.  Showing key to assessments made on penetration (Boulding, The Effects of 
Parameters and Consistency of Cold Metal Transfer Welded Ferritic Stainless Steel Joints, 
2012). 

 

Figure 79.  Example 1, showing a fully penetrated weld (Boulding, The Effects of Parameters 
and Consistency of Cold Metal Transfer Welded Ferritic Stainless Steel Joints, 2012). 

 

Figure 80.  Example 2, showing an incomplete penetrated weld (Boulding, The Effects of 
Parameters and Consistency of Cold Metal Transfer Welded Ferritic Stainless Steel Joints, 
2012). 

 

Figure 81.  Example 3, showing misaligned parent/penetration to one side (Boulding, The 
Effects of Parameters and Consistency of Cold Metal Transfer Welded Ferritic Stainless Steel 
Joints, 2012). 
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Table 19  and Figure 79 to Figure 81 show the key to the colour coding seen in Table 

18.  The weld cross sections shown in Figure 79 to Figure 81 are representatives of the 

different categories highlighted, with the first being a fully penetrating weld, the 

second showing a weld with a lack of root penetration and the third, where the parent 

plate is misaligned.  In all cases the parent material was a 2 mm thick EN1.4016 grade 

ferritic stainless steel.   

4.5.1 Power  Setting 

The welds were created in a synergic mode and therefore the wire speed, voltage and 

current are all linked.  Adjustment of power is made through variation of the wire feed 

speed, an increase in wire feed speed increases the power levels, a decrease in the 

wire feed speed decreases the power.  The following three graphs (Figure 82 to Figure 

84) shows the effects of varying the power levels in the welding process on the heat 

affected zone width, they also show the consistency of the measurements made from 

weld to weld and at various distances along each of the welds.  There appears to be a 

variation in the measurements from weld to weld and also along the length of the 

plate.  It is also worth noting the increase in HAZ width as a result of increasing the 

power. 
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Figure 82.  Graph showing the width of the HAZ for each of the CMT welds conducted at 
3.5m/min (average net heat input 72.2 J/mm) on EN1.4016 grade parent material. 

 

 

Figure 83.  Graph showing the width of the HAZ for each of the CMT welds conducted at 
4.5m/min (average net heat input 88.5 J/mm) on EN1.4016 grade parent material. 
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Figure 84.  Graph showing the width of the HAZ for each of the CMT welds conducted at 
5.5m/min (average net heat input 109.3 J/mm) on EN1.4016 grade parent material. 

 

 

Figure 85.  Graph showing the current and voltage trace for the CMT weld conducted at 
3.5m/min on EN1.4016 grade parent material. 
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Figure 86.  Graph showing the current and voltage trace for the CMT weld conducted at 
4.5m/min on EN1.4016 grade parent material. 

 

 

Figure 87.  Graph showing the current and voltage trace for the CMT weld conducted at 
5.5m/min on EN1.4016 grade parent material. 
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The ALX data seen in Figure 85 to Figure 87 shows the change in the cycle through 

variation of the power setting.  So at the lower power setting the CMT cycle contains 5 

pulses.  In the medium power setting used in the work the CMT cycle contains 6 pulse 

peaks and the higher power setting used in the work had 7 pulse peaks. 

4.5.2 Traverse Speed 

The following two graphs ( Figure 88 & Figure 89 ) show the variation measured in the 

HAZ width  for each of the sections examined in each of the welds created, with the 

torch traverse speed at 0.762m/min and 1.27m/min.  The faster speed welds showing 

a reduced HAZ width. 

 

Figure 88.  Graph showing the width of the HAZ for each of the CMT welds conducted at a 
traverse speed of 0.762m/min (average net heat input 118.3 J/mm) on EN1.4016 grade 
parent material. 

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

0 1 2 3 4 5 6 7

W
id

th
 (

µ
m

)

Section Number

332

333

334

335

336

337

Weld Run



141 
 

 

Figure 89.  Graph showing the width of the HAZ for each of the CMT welds conducted at a 
traverse speed of 1.27m/min (average net heat input 69.6 J/mm) on EN1.4016 grade parent 
material. 

4.5.3 Torch Angle 

The following two graphs (Figure 90 & Figure 91) show the effect on the HAZ from 

varying the angle of the welding torch to pointed toward the direction of travel (+15°) 

to pointing away from the direction of travel (-15°).  It can be noted that the HAZ width 

appear more consistent with a push angle, but with a drag angle there is a reduction in 

the width of the HAZ. 
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Figure 90.  Graph showing the width of the HAZ for each of the CMT welds created using a 
torch orientation +15° to the direction of traverse on EN1.4016 grade parent material. 

 

 

Figure 91.   Graph showing the width of the HAZ for each of the CMT welds created using a 
torch orientation -15° to the direction of traverse on EN1.4016 grade parent material. 
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4.5.4 Arc Length Correction 

Variation in arc length correction as seen in Figure 92 & Figure 93 has an effect on the 

consistency of the HAZ widths and also changing the ALC from +30 to -30 increases the 

HAZ width and increases the average net heat input from 87.3J/mm to 91.8 J/mm.   

 

Figure 92.  Graph showing the width of the HAZ for each of the CMT welds conducted with 
an ALC value of -30 on EN1.4016 grade parent material. 
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Figure 93.  Graph showing the width of the HAZ for each of the CMT welds conducted with 
an ALC value of +30 on EN1.4016 grade parent material. 

 

The ALX data presented in Figure 94 & Figure 95 shows a change to the short circuit 

phase duration as a result of the change in the ALC adjustment.  Changing the ALC 

parameter from -30 to +30 decreases the short circuit duration phase. 
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Figure 94.  Graph showing voltage and current trace for a CMT weld conducted with an ALC 
of -30 on EN1.4016 grade parent material. 

 

 

Figure 95.  Graph showing voltage and current trace for a CMT weld conducted with an ALC 
of +30 on EN1.4016 grade parent material. 
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4.5.5 Pulse Correction 

Within the welding programme when welding with a pulsed current is the Pulsed 

Correction (PC), this variable is unit-less and can be altered from -5 to +5.  Variation of 

the Pulse Correctionfrom -5 to +5 increases the width of the HAZ but doesn't show any 

change in the consistency of the HAZ widths, this is seen in Figure 96 & Figure 97.  

Figure 98 & Figure 99 show the ALX data for the change in PC and as can be seen, there 

is an increase of over 100 amps in the peak pulse current going from a PC setting of -5 

to +5, there is also an effect on the duration of the short circuit phase, with the PC 

parameter at +5, showing a longer short circuit duration. 

 

Figure 96.  Graph showing the width of the HAZ for each of the CMT welds conducted with a 
PC of -5 on EN1.4016 grade parent material. 
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Figure 97.  Graph showing the width of the HAZ for each of the CMT welds conducted with a 
PC of +5 on EN1.4016 grade parent material. 

 

 

Figure 98.  Graph showing the current and voltage trace for a CMT weld conducted with a 
pulse correction of -5 on EN1.4016 grade parent material. 
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Figure 99.  Graph showing the current and voltage trace for a CMT weld conducted using a 
pulse correction of +5 on EN1.4016 grade parent material. 
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4.6 Comparison of CMT Welded and MAG Welded EN 1.4003 Parent Material 

in 3.8mm & 5.8mm Thicknesses 

 

Figure 100.  CMT weld cross section of the 5.8mm thick EN1.4003 grade parent material 

 

Figure 101.  Lack of side wall fusion in CMT weld produced using the 5.8mm thick EN1.4003 
grade material. 

4.7 CMT/MAG 1.4003 Comparison Trial 

The following section reports the results from the trial comparing the CMT and MAG 

welding processes using EN1.4003 grade ferritic stainless steel.  Initial assessments 

were made of the welds using radiography to try and identify defects in the welds.  

Subsequently presented are the results from destructive mechanical assessments that 

were made including tensile, impact, fatigue tests and microstructural examination. 

500µm 

100µm 250µm 
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4.7.1 Non Destructive Examination and Destructive Validification 

 

Figure 102.  Showing radiograph for test weld that was sectioned to destructively examine, 
with identification of indications observed through examination of the radiograph and 
suggested possibility of defect type.  Red arrows showing spatter, blue arrows showing gas 
porosity and yellow arrows showing indications of a lack of side wall fusion. 

 

Excess 

penetration 
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Figure 103.  showing section 7 of the weld, the three pieces of spatter circled (Robinson, 

2014) 

Section Defect(s) Observed 

1 Lack of side wall fusion 

2 Excess penetration 

3a Excess penetration 

3b Lack of side wall fusion 

3c Lack of side wall fusion 

4a Gas porosity & Lack of side wall fusion 

5a Gas porosity 

6a Lack of side wall fusion 

6b Lack of side wall fusion 

7a Lack of side wall fusion 

7c Spatter 

7d Spatter 

8b Lack of side wall fusion 

8c Gas porosity & Lack of side wall fusion 

9a Gas porosity & Lack of side wall fusion 

9b Lack of side wall fusion 

9c Gas porosity & incomplete penetration 

Table 20. Table showing defects observed through microstructural examination of EN1.4003 
5.8mm thick CMT welded plate.  The sample identification numbers in the left hand column 
are based on those presented in Figure 102. 
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Figure 104.  Lack of side wall fusion in root of section 1a of CMT welded 5.8mm thick 
EN1.4003 (Robinson, 2014). 

 

 

Figure 105.  Showing gas porosity in section 5a of CMT welded 5.8mm thick EN1.4003 
(Robinson, 2014).  
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Figure 106.  Gas porosity (left) lack of side wall fusion (right) in section 9a of CMT welded 
5.8mm thick EN1.4003 (Robinson, 2014). 
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4.7.2 Comparison of Microstructural Analysis of CMT & MAG Welds in 

3.8mm Thick EN1.4003 Parent Material 

As has been discussed the low level of chromium within this grade of stainless steel 

means during welding a portion of the parent material adjacent the weld experiences 

temperatures sufficient to cause microstructural changes, such as a phase change to 

martensite and with an increase in temperature grain coarsening also occurs. 

Therefore within the welded EN1.4003 material, it would be expected to observe an 

area of the HAZ, next to the fusion zone with a martensitic structure and a coarsened 

grain size as this area will have been subjected to temperatures up to the melting point 

of the material.  As the distance increases away from the fusion zone, the 

temperatures experienced will be reducing and therefore there would be a component 

of the HAZ that has reached temperatures sufficient to change the microstructure but 

not high enough to cause grain coarsening.  Moving further away from the fusion zone, 

there wouldn't be sufficient heat to cause any change to the parent material and 

therefore this area is as the parent material supplied and falls outside of the HAZ. 

Any change within the parent as a result of the thermal input of welding is the HAZ. 

The following section examines and quantifies the effects on the microstructure within 

the HAZ for welds created in the 3.8mm thick EN1.4003 parent materials for welds 

created using CMT and welds created using the MAG process. 

 

Welding Process Average Grain 
Coarsened HAZ 
Width (µm) 

Average Total HAZ 
Width (µm) 

Average Grain 
Diameter (µm) 

CMT 1067 4447 93 

MAG 1184 4727 117 

Table 21.  Showing average measured values for the HAZ in the coarse region and the entire 
HAZ width and the grain size taken in the course region of the HAZ of 3.8mm thick EN1.4003 
grade parent material. 
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Figure 107.  Image showing weld (top right) and HAZ , which has two distinct regions, the 
first next to the weld (red arrow) has a martensitic structure and grain coarsening, the 
second region of the HAZ (orange arrow) has a martensitic structure but without any grain 
coarsening and then the blue arrow indicates unaffected parent material of 3.8mm thick 
EN1.4003 parent, CMT welded sample 25.10 (etched in glyceregia). 

 

 

Figure 108. Image showing weld (top right) and grain coarsened with martensite HAZ (mid 
image) and martensite HAZ (bottom left) of 3.8mm thick EN1.4003 parent, CMT welded 
sample 25.10 (etched in glyceregia) 
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Figure 109.  Image showing weld (top left) and HAZ , which has two distinct regions, the first 
next to the weld  has a martensitic structure and grain coarsening (red arrow), the second 
region of the HAZ (orange arrow) has a martensitic structure but without any grain 
coarsening and then the blue arrow indicates unaffected parent material of 3.8mm thick 
EN1.4003 parent, MAG welded sample 30.7 (etched in glyceregia). 

 

Figure 110. Image showing weld (top left) and twin region HAZ (mid image & bottom right) 
of 3.8mm thick EN1.4003 parent, MAG welded sample 30.7 (etched in glyceregia). 
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4.7.3 Tensile Data of CMT and MAG Welded Joints 

Sample ID 

0.2% Proof 
Strength 
(MPa) 

Maximum Strength 
(MPa) 

Elongation 
(%) 

Failure 
Location 

25.1 354 488 21 Parent 

25.2 354 485 19 Parent 

25.3 362 490 21 Parent 

25.4 364 489 21 Parent 

25.5 358 483 21 Parent 

25.6 352 479 21 Parent 

25.7 360 485 21 Parent 

25.8 362 487 21 Parent 

26.1 369 490 21 Parent 

26.2 367 492 21 Parent 

26.3 364 490 21 Parent 

26.4 370 493 21 Parent 

26.5 364 490 21 Parent 

26.6 369 493 23 Parent 

26.7 369 492 21 Parent 

26.8 371 493 21 Parent 

Average 363.0 488.7 21  

Standard 
Deviation 6.1 4.0 0.7 

 

Coefficient of 
Variation 1.68% 0.82% 3.33% 

 

Table 22.  CMT 3.8mm EN1.4003 Tensile results. 
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Sample ID 

0.2% Proof 
Strength 
(MPa) 

Maximum Strength 
(MPa) 

Elongation 
(%) 

Failure 
Location 

M28.9* 326 483 9 Spatter 

M28.10 345 489 20 Parent 

M28.11 349 488 20 Parent 

M28.12 350 489 19 Parent 

M28.13 349 491 20 Parent 

M28.14 353 487 20 Parent 

M28.15 349 487 19 Parent 

M28.16 348 489 20 Parent 

M30.9 361 488 17 Parent 

M30.10 361 491 19 Parent 

M30.11 364 493 19 Parent 

M30.12 364 493 19 Parent 

M30.13 361 489 19 Parent 

M30.14 364 495 17 Parent 

M30.15 363 494 17 Parent 

M30.16 355 494 19 Parent 

Average 355.7 490.5 18.9  

Standard 
Deviation 7.0 2.7 1.1 

 

Coefficient of 
Variation 1.97% 0.55% 5.82% 

 

Table 23. MAG 3.8mm EN1.4003 Tensile results. (* sample M28.9 not included in calculations 
as failed next to spatter). 

 

 0.2% Proof Strength Maximum Strength Elongation 

T Test - P value 0.004 0.162 9.174E-07 

Table 24. Statistical T.Test P values comparing the data for the 3.8mm thick CMT and MAG 
welded tensile data. 
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Sample ID 

0.2% Proof 
Strength 
(MPa) 

Maximum Strength 
(MPa) 

Elongation 
(%) 

Failure 
Location 

50.9 312 447 26 Parent 

50.10 307 441 13 Weld 

50.11 307 441 21 Parent 

50.12 308 445 27 Parent 

50.13 312 450 26 Parent 

50.14 310 446 29 Parent 

50.15 315 455 30 Parent 

50.16 312 446 30 Parent 

52.1 309 447 24 Parent 

52.2 314 451 27 Parent 

52.3 309 447 30 Parent 

52.4 310 448 30 Parent 

52.5 314 453 26 Parent 

52.6 315 453 30 Parent 

52.7 312 450 29 Parent 

52.8 313 454 27 Parent 

Average 311.2 448.4 26.6  

Standard 
Deviation 2.7 4.2 4.4 

 

Coefficient of 
Variation 

0.87% 0.94% 16.54%  

Table 25.  CMT 5.8mm EN1.4003 Tensile results. 
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Sample ID 

0.2% Proof 
Strength 
(MPa) 

Maximum Strength 
(MPa) 

Elongation 
(%) 

Failure 
Location 

M1.1 279 381 7 Weld 

M1.2 297 410 9 Weld 

M1.3 318 459 23 Parent 

M1.4 317 458 23 Parent 

M1.5 311 441 10 Weld 

M1.6 314 455 21 Parent 

M1.7 312 416 7 Weld 

M1.8 315 422 7 Weld 

M11.1 274 345 4 Weld 

M11.2 307 430 7 Weld 

M11.3 318 463 23 Parent 

M11.4 316 462 24 Parent 

M11.5 314 419 7 Weld 

M11.6 316 445 9 Weld 

M11.7 318 447 9 Weld 

M11.8 312 391 6 Weld 

Average 308.6 427.8 12.3  

Standard 
Deviation 13.6 33.5 7.5 

 

Coefficient of 
Variation 

4.41% 7.83% 60.98%  

Table 26.  MAG 5.8mm EN1.4003 Tensile results. 

 0.2% Proof Strength Maximum Strength Elongation 

T Test - P value 0.466 0.021 2.724E-07 

Table 27. Statistical T.Test P values comparing the data for the 5.8mm thick CMT and MAG 
welded tensile data. 
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4.7.4 Impact Results of CMT and MAG Welded Joints 

Sample ID Impact Strength (kJ/m2) 

25.11 757 

25.12 724 

25.13 724 

25.14 2928 

25.15 789 

26.11 954 

26.12 724 

26.13 1086 

26.14 789 

26.15 757 

Average 1023 

Standard Deviation 680 

Coefficient of variation (%) 66 

 Table 28. Impact test results for CMT welded 3.8mm thick EN1.4003. 

Sample ID Impact Strength (kJ/m2) 

M28.2 1283 

M28.3 329 

M28.4 1349 

M28.5 1480 

M28.6 855 

M30.2 2204 

M30.3 921 

M30.4 954 

M30.5 296 

M30.6 362 

Average 1003 

Standard Deviation 602 

Coefficient of variation (%) 60 

 Table 29.  Impact test results for MAG welded 3.8mm thick EN1.4003. 

T Test - P value 0.945957 

Table 30. Statistical T.Test P values comparing the data for the 3.8mm thick CMT and MAG 
welded impact data. 
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Sample ID Impact Strength (kJ/m2) 

5.1 776 

5.2 733 

5.3 668 

5.4 841 

5.5 1078 

52.11 603 

52.12 884 

52.13 625 

52.14 754 

52.15 517 

Average 748 

Standard Deviation 161 

Coefficient of variation (%) 21 

 Table 31.  Impact test results for CMT welded 5.8mm thick EN1.4003. 

 

Sample ID Impact Strength (kJ/m2) 

M1.11 797 

M1.12 560 

M1.13 1272 

M1.14 1078 

M1.15 625 

M11.1 711 

M11.2 754 

M11.3 474 

M11.4 625 

M11.5 560 

Average 746 

Standard Deviation 250 

Coefficient of variation (%) 34 

 Table 32.  Impact test results for MAG welded 5.8mm thick EN1.4003. 

 

T Test - P value 0.981952 

Table 33. Statistical T.Test P values comparing the data for the 5.8mm thick CMT and MAG 
welded impact data.
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4.7.5 Fatigue Results 

The following section presents the staircase fatigue results for welds produced by the CMT welding process and the MAG welding process in 

the 3.8mm thick EN1.4003 parent material.  The staircase produced from the testing conducted on the CMT welded samples didn't give a 

statistically valid result, the tests conducted on the MAG welded samples did. 

  Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Number of Using LFE as N 

Load kN Step (i)                                                            Runouts (r)  Failures (f) iN i²N 

46.5 10       X                                                   0 1 0 0 

46 9 X   O   X                                                 1 2 9 81 

45.5 8   O       X       X   X                                   1 3 8 64 

45 7             X   O   O   X   X                             2 3 14 98 

44.5 6               O           O   X                           2 3 12 72 

44 5                                 X                         0 1 0 0 

43.5 4                                   X                       0 1 0 0 

43 3                                     X               X     0 2 0 0 

42.5 2                                       X           O   X   1 1 2 4 

42 1                                         X   X   O       O 2 2 2 2 

41.5 0                                           O   O           2 0 0 0 

41                                                                     

                               

Σr Σf ΣiN Σi²N 

                               

11 19 47 321 

Figure 111. Staircase Fatigue results for the CMT welded samples. 
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Step Divide: 0.5kN 

Least Frequent Event:  Runouts 

Calculated Mean:                 x = 41.5 +0.5 (
47

11
 - 

1

2
 ) 

                  x = 43.386 kN 

Convergence Factor:      = (
(11 ×321) −472

112
) 

      = 10.926 

Standard Deviation:              s = 1.620 ×0.5 (
(11 ×321) −472

112 + 0.029) 

                s = 8.873 kN 

Standard Error for Mean:            sx = 
8.873

√11
 .1.15 

               sx = 3.076 kN 

Line Load:     = 964.13 N/mm

 

Figure 112.  Graph to show fatigue load range for CMT welded 3.8mm thick EN1.4003 (red 
line indicates the pass criteria of 2 million cycles). 
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  Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Number of Using LFE as N 

Load kN Step (i)                                                    Runouts (r)  Failures (f) iN i²N 

38.5 3           X           X   X   X                   0 4 12 36 

35.5 2 X       0   X   X   0   0   0   X       X   X   0 5 6 12 24 

32.5 1   X   0       0   0               X   0   0   0   6 2 2 2 

29.5 0     0                               0             2 0 0 0 

26.5                                                             

                           
Σr Σf ΣiN Σi²N 

                           
13 12 26 62 

Figure 113. Staircase Fatigue results for the MAG welded samples. 
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Step Divide: 3.0kN 

Least Frequent Event:  Failures 

Calculated Mean:                 x = 29.5 +3 (
26

12
 + 

1

2
 ) 

                  x = 37.5 kN 

Convergence Factor:      = (
(12 ×62) −262

122 ) 

      = 0.472 

Standard Deviation:              s = 1.620 ×3 (
(12 ×62) −262

122 + 0.029) 

                s = 2.435 kN 

Standard Error for Mean:           sx = 
2.435

√12
 .1.15 

               sx = 0.808 kN 

Line Load:     = 833.33 N/mm

 

Figure 114. Graph to show fatigue load range for MAG welded 3.8mm thick EN1.4003 (red 
line indicates the pass criteria of 2 million cycles). 
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4.7.6 Bulk Effect of Fusion Defects on Fatigue Properties 

The following section examines the effects of defects such as porosity, lack of fusion 

and insufficient penetration on the fatigue properties of the welds.  Therefore the 

fracture surfaces of a number of welds following fatigue testing, were examined, the 

percentage of defects within the fracture surface were determined and then related 

back to the fatigue data.  The defects were not analysed by type against the fatigue 

data, but as a collective. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 115.  Image showing a lack of side wall fusion (arrowed). 

Figure 116.  Image showing a lack of root penetration (arrowed) 

Figure 117.  Image showing weld porosity (arrowed). 
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Figure 118.  SEM image showing a region with a lack of fusion and the areas where analysis 
 was made. 

Figure 119. Graph of element analysis spectrum 3 

Figure 120. Graph of element analysis spectrum 4. 
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Figure 121.  Graph showing the effect of defect area of the fracture face against number of 
cycles to failure for CMT welded samples. 

 

 

Figure 122.  Graph showing the effect of defect area of the fracture face against the number 
of cycles to failure for each of the tested loads on CMT welded samples. 
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Figure 123. Graph showing the effect on gradient of the % defects within the fracture surface 
against the number of cycles survived for each load, therefore as the load is increased the 
gradient also increases on the EN1.4003 parent CMT welded samples. 

 

 

Figure 124. Graph showing the effect on gradient of the % defects within the fracture surface 
against the number of cycles survived for each load, with the result for 46kN removed, 
therefore as the load is increased the gradient also increases on the EN1.4003 parent CMT 
welded samples 
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4.7.7 Comparison of Weld Angle with Fatigue Results 

This aspect of the work reviews possible relationships between the angle between the 

parent and weld material at the root of the weld against the fatigue results to 

determine if there is a relationship between the angle and fatigue properties as has 

been determined in the literature (section 2.4.4, page 78).  

Where the data was available for the defects within the fracture surface, this has been 

annotated onto the graphs as this potentially skews the data, which does appear to 

show a correlation.
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Figure 125.  Showing plan of the weld cap of a MAG welded sample, red line showing location for one of profiles taken. 
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Figure 126. Profile trace for weld cap of MAG welded sample as seen in Figure 125.
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Figure 127.  Showing IFM 3D scan of the weld cap of a MAG welded sample. 
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Figure 128. Showing plan of the weld root of a MAG welded sample, red line showing location for one of profiles taken. 
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Figure 129. Profile trace for weld root of MAG welded sample as seen in Figure 128. 
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Figure 130. Showing IFM 3D scan of the weld root of a MAG welded sample. 
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The following graphs depict the number of each cycles survived by the samples that 

were subjected to the particular load.  The graphs do show some correlation between 

the weld angle and the number of cycles survived for each of the loads, shown by an 

increase in the number of cycles survived as the root angle increases, which is giving a 

flatter bead.  The pass criteria was 2 million cycles therefore once the sample 

exceeded this value the test was stopped.  Where the information has been 

determined the percentage of defects within the fracture surface has been identified. 

 

 

Figure 131.  Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 46 kN 
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Figure 132. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 45.5 kN 

 

 

Figure 133. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 45 kN 
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Figure 134. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 44.5 kN 

 

 

Figure 135. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 44 kN 
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Figure 136. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 43.5 kN 
 

 
Figure 137. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 43 kN 
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Figure 138. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 42.5 kN 

 

 

Figure 139. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 42 kN 
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Figure 140. Graph showing weld root angle against the number of cycles before failure for 
the CMT welded samples fatigue tested at 41.5 kN 

 

 

Figure 141.  Showing the root angle against number of cycles for the CMT welded samples. 
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Figure 142. Graph showing weld root angle against the number of cycles before failure for 
the MAG welded samples fatigue tested at 38.5kN 

 

 

Figure 143. Graph showing weld root angle against the number of cycles before failure for 
the MAG welded samples fatigue tested at 35.5kN 
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Figure 144. Graph showing weld root angle against the number of cycles before failure for 
the MAG welded samples fatigue tested at 32.5kN 

 

 

Figure 145. Graph showing weld root angle against the number of cycles before failure for 
the MAG welded samples fatigue tested at 29.5kN 
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Figure 146. Showing the root angle against number of cycles for the MAG welded samples. 
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700°C 20 min soak 

 

Figure 147. Image showing fully ferritic microstructure of sample subjected to 700°C 20 min 
soak water quench as seen in the as received EN1.4003 material 

 

 

Figure 148. Image Showing fully ferritic microstructure of sample subjected to 700°C 20 min 
soak water quench as seen in the as received EN1.4003 material. 
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800°C 20 min soak 

 

Figure 149. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
sample subjected to 800°C 20 min soak water quench similar to the microstructure in the 
region of the HAZ furthest from the fusion zone of welds on a EN1.4003 grade material. 

 

 
Figure 150. Image showing ferritic and martensitic microstructure (250 HV10) of sample 

subjected to 800°C 20 min soak water quench similar to the microstructure in the region of 
the HAZ furthest from the fusion zone of welds on an EN1.4003 grade material. 
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900°C 20 min soak 

 

Figure 151. Image showing martensitic microstructure of EN1.4003 sample subjected to 
900°C 20 min soak water quench. 

 

 

Figure 152. Image showing martensitic microstructure (277 HV10) of EN1.4003 sample 
subjected to 900°C 20 min soak water quench. 
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1000°C 20 min soak 

 

Figure 153.  Image showing martensitic microstructure with some grain growth of EN1.4003 
sample subjected to 1000°C 20 min soak water quench, this is similar to what would be seen 

in the region of the HAZ closest to the fusion zone. 
 

 
Figure 154. Image showing martensitic microstructure with some grain growth of EN1.4003 

sample subjected to 1000°C 20 min soak water quench, this is similar to what would be seen 
in the region of the HAZ closest to the fusion zone. 
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1100°C 20 min soak 

 

Figure 155. Image showing martensitic microstructure and grain growth of EN1.4003 sample 
subjected to 1100°C 20 min soak water quench, this is similar to what would be seen in the 

region of the HAZ closest to the fusion zone. 
 

 
Figure 156. Image showing ferritic and martensitic microstructure and grain growth of 

EN1.4003 sample subjected to 1100°C 20 min soak water quench, this is similar to what 
would be seen in the region of the HAZ closest to the fusion zone. 
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747°C 20 min soak 

 

Figure 157. Image showing ferritic microstructure of EN1.4003 sample subjected to 747°C 20 
min soak water quench, as would be seen in the unaffected parent material. 

 

 

Figure 158. Image showing ferritic microstructure of sample subjected to 747°C 20 min soak 
water quench, as would be seen in the unaffected parent material. 
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758°C 20 min soak 

 

Figure 159. Image showing ferritic microstructure of an EN1.4003 sample subjected to 758°C 
20 min soak water quench as would be seen in the unaffected parent material. 

 

 

Figure 160. Image showing ferritic microstructure of an EN1.4003 sample subjected to 758°C 
20 min soak water quench as would be seen in the unaffected parent material. 
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769°C 20 min soak

 

Figure 161. Image showing ferritic microstructure (light areas) with martensite (dark areas) 
at the grain boundaries of an EN1.4003 sample subjected to 769°C 20 min soak water quench, 

this would be typical of a microstructure seen in the HAZ at its furthest distance from the 
fusion zone. 

 

 
Figure 162. Image showing ferritic microstructure with martensite at the grain boundaries of 
an EN1.4003 sample subjected to 769°C 20 min soak water quench, this would be typical of a 

microstructure seen in the HAZ at its furthest distance from the fusion zone. 
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779°C 20 min soak 

 

Figure 163. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 779°C 20 min soak water quench. 

 

 

Figure 164. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 779°C 20 min soak water quench. 
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790°C 20 min soak 

 

Figure 165. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 790°C 20 min soak water quench. 

 

 

Figure 166. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 790°C 20 min soak water quench. 
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800°C 2 hour soak Water Quench 

 

Figure 167. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
800°C 2 hour soak water quench. 

 

 

Figure 168. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
800°C 2 hour soak water quench. 
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770°C 2 hour soak Water Quench 

 

Figure 169. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 770°C 2 hour soak water quench. 

 

760°C 2 hour soak water quench

 

Figure 170. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 760°C 2 hour soak water quench. 
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750°C 2 hour soak water quench 

 

Figure 171. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
EN 1.4003 sample subjected to 750°C 2 hour soak water quench. 

 

740°C 2 hour soak water quench

 

Figure 172. Image showing ferritic microstructure of an EN 1.4003 sample subjected to 740°C 
2 hour soak water quench. 
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800°C 2 hour soak Furnace Cool 

 

Figure 173. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
800°C 2 hour soak Furnace cool to determine the effect of time at temperature. 

 

 

Figure 174. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
800°C 2 hour soak Furnace cool to determine the effect of time at temperature. 
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800°C 6 hour soak 30°C/Hour cool rate 

 

Figure 175. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 800°C 6 hour soak 30°C/hour cool rate. 

 

 

Figure 176. Image showing ferritic (light areas) and martensitic (dark areas) microstructure of 
an EN1.4003 sample subjected to 800°C 6 hour soak 30°C/hour cool rate. 
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1000°C 6 hour soak 30°C/Hour cool rate 

 

Figure 177. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
1000°C 6 hour soak 30°C/hour cool rate grain coarsening also evident. 

 

 

Figure 178. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
1000°C 6 hour soak 30°C/hour cool rate, grain coarsening also evident. 
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900°C 6 hour soak 30°C/Hour cool rate 

 

Figure 179. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
900°C 6 hour soak 30°C/hour cool rate, grain coarsening also evident. 

 

 

Figure 180. Image showing martensitic microstructure of an EN1.4003 sample subjected to 
900°C 6 hour soak 30°C/hour cool rate, grain coarsening also evident.
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Figure 181.  Figure showing microstructures of samples subjected to a hold for a time at a temperature.
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4.8.1 Effect of Thermal Cycles on the Mechanical Properties and Grain Size 

of the EN1.4003 Grade Stainless Steel 

The following graphs show the effects on grain size, impact properties and hardness of 

EN1.4003 being exposed to high temperatures as this provides a greater 

understanding of the effects of the microstructural changes that drive these 

properties, have on the HAZ of a weld using this grade of material. 

 

Figure 182.  Graph showing effect of peak temperature on hardness (HV10). 
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Figure 183.  Graph showing effect of peak temperature on grain size. 

 

Figure 184.  Graph showing effect of grain size on material toughness. 
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Figure 185.  Graph showing effect of different thermal cycles on impact properties. 

 

 

Figure 186.  Graph showing effect of various thermal cycles on hardness. 
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Figure 187.  Graph showing effect of various thermal cycles on grain size. 
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5 Discussion 

5.1 Microstructural Materials Characterisation 

The microstructural characterisation of the parent materials used in the study showed 

the structures that would be expected for each of the grades used.  Therefore as can 

be seen in Figure 61 to Figure 65 the parent materials show a fully ferritic 

microstructure with equi-axed grains. The only evidence of directionality comes from 

the consistent orientation of the carbides as seen in Figure 65. 

5.2 Initial Comparison of Required Heat Input for MAG and CMT On 

EN1.4016, EN1.4509 & EN1.4521 Ferritic Stainless Steel Parent Materials. 

The results obtained were based on a relatively small set of samples under laboratory 

conditions and it is possible that both the MAG and CMT welding parameters were 

capable of further optimisation.  The trials did identify the importance of the joint fit 

up.  

There was a presumption at the commencement of the work that the CMT+P process 

would offer the advantage of a reduction in spatter and, more importantly, potential 

for a reduction in net heat input, which would be relevant to microstructural control in 

ferritic stainless steel joints. 

The  results from this element of the work indicated that the cold metal transfer 

process, with and without pulsed arc, offered no apparent benefit with regards to the 

net heat input when compared with MAG welding when joining the 1.5mm thick 

materials and under the conditions of test.  This is also indicated by the analysis of the 

HAZ grain size, where the CMT welded 1.5mm thick 1.4016 & 1.4521 materials had 
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larger average grain sizes, within the coarsest zones, when compared with the results 

from the MAG welded joints.  However it needs to be taken into account that only 

limited material was supplied with the MAG welds to allow the production of the 

comparator CMT welds and so full optimisation was not possible on the welds 

produced.  

The measurements made of the heat affected zone width through optical assessment, 

on samples in the etched condition, appear to be confirmed, in most cases, by the 

hardness profiles.  The exception to this is the MAG welded 1.4016 (702852 1) as seen 

in Figure 68 where the hardness in the 20mm span does not return to the base 

hardness that is apparent on the other joints produced using the same  parent 

material.  These measurements were checked to confirm the findings.  It is likely that 

there was some other difference in that area of the plate, possibly compositional 

difference, which could be difficult to check as techniques such as XRF are unable to 

determine carbon levels and carbon is one of the key elements that can affect the 

hardness of a stainless steel, it may also have been as a result of additional cold work.  

This would have been evident prior to welding if tests had have been conducted 

before the weld was made.  It may have been possible that there was cold work 

induced in the material due to restraint from the clamping mechanism and the thermal 

expansion/contraction associated with the welding process, but this is highly unlikely 

as the clamping was consistent across all the samples welded and therefore this would 

have been observed in multiple samples and not just the one. 

Indications from this work suggest that the CMT process may be of benefit for thicker 

materials.  When the cold metal transfer welds produced using the 1.4509 (2mm thick) 

material are compared, in coarse grain size, with the MAG controls, the grain size for 
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the CMT/CMT+P are ASTM 3.5 and 3.6 respectively.  The same material/thickness 

combination joined using the MAG process had measured grain sizes, made in the 

same locations, of ASTM 3.0 & 3.1, with net heat inputs of 0.129 & 0.101 kJ/mm for 

the CMT/CMT+P, the MAG welds had heat inputs of 0.162 & 0.117 kJ/mm. 

5.3 Effect on Microstructure and Weld Dimensions of Heat Input Using 

Pulsed Arc with CMT on EN1.4016 2mm Thick Parent  

The purpose of this aspect of the work was to assess the effect on weld dimensions 

and microstructure through variation of the heat input, using CMT welding, with and 

without a pulsed arc.  Therefore welds were produced at predefined parameter 

settings to give specific heat inputs.  As can be seen in Table 15 & Table 16 as the heat 

input increases, so does the average width of the heat affected zone, this is to be 

expected as with an increase in energy into the joint would increase the area that is 

affected by this energy.  It has also been observed with these results that in the case of 

the CMT with the additional pulsed arc, as the heat input increases, the parent to weld 

cap angle increases, which therefore means that the weld cap is getting flatter.  This 

trend was not observed in the results for the pure CMT welds.  The power levels and 

therefore the heat input was at the same level, as the welds created using the 

additional pulsed arc, but the pure CMT welds had a consistent angle across all the 

power settings.  This indicates that the weld pool had a reduced wettability, which 

would indicate the temperature was lower than that with the addition of the pulsed 

arc. 

The grain size measurements made in the parent material give an ASTM grain size of 

approximately 7.  The results show that in the HAZ there is a significant change in this 
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grain size and that as the heat input is increased the coarser the grain size in the HAZ 

becomes.  Additionally between the process with and without pulsed arc, it was found 

that without pulsed arc the grain coarsening effect is greater, indicating that the HAZ 

had experienced higher temperatures for longer.  Although it was noted that with pure 

CMT there was acceptable levels of root penetration at a lower heat input than with 

the additional pulsed arc at 0.09 kJ/mm (Table 15 & Table 16).  Therefore from this it 

can be determined that although the amount of energy that is put into the joint has a 

pronounced effect on the penetration and HAZ, it is not just about the heat input, but 

the way the heat is applied that also has influence on the microstructure in the HAZ 

and therefore subsequent properties of the joint.  This is because with the addition of 

a pulsed arc, the levels of high energy are cycled therefore the material has sufficient 

time to cool between cycles and so the thermal energy is reduced and therefore the 

material either side of the weld was not at sufficient temperatures high enough or long 

enough to cause the same growth of the grains. 

It can also be observed from the line scans (Figure 72) that there is no obvious 

segregation of elements and that the difference across the interface is just down to 

the difference in the composition of the filler material compared with the parent.  The 

austenitic filler material is used as it doesn’t have the same detrimental effects 

associated with reduction in toughness and manifest of an acicular phase as the 

austenitic material is a single phase from room temperature to melting point and also 

the material has an FCC crystal structure so isn’t susceptible to the reduction in 

toughness in the same way that a ferritic stainless steel is during welding.  Therefore is 

a good filler material to use to determine the effects on the parent materials. 
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5.4 Trial to Examine the Effects of Variation in the Welding Gap, Torch 

Traverse Speed and Torch Angle on the Heat Input Required to Give a 

Fully Penetrating Weld using 2mm Thickness EN1.4016 and EN1.4509 

Parent Materials. 

The first part of the trial made attempt to examine the relationship between weld gap 

and weld speed and the ability to produce fully penetrating welds, with identification 

of the heat input associated with the welds for both a EN1.4016 and EN1.4509 grade 

material.  Weld penetration was assessed through a visual inspection of the completed 

weld.  It can be seen through examination of Figure 74 & Figure 75 that three welding 

gaps were tested, 1mm, 1.15mm and 1.25mm and these were welded at three 

different welding speeds, 762, 1016 & 1270mm/min.  It can be seen that for both 

materials there is advantage to increasing the welding gap size, this relates back to 

Pepe et al (2011) who identified that it may be more efficient when welding in a gap.  

Also increasing the torch traverse speed to reducing the required heat input to 

complete a fully penetrating weld.  Also subsequently variation of the torch angle from 

15° to -15° has a significant effect on the ability to produce a fully penetrating weld at 

lower heat inputs in the EN1.4016 material as can be seen in Figure 76, but this was 

not as clear when looking at the results for the welding tests conducted on the 

EN1.4509 grade material (Figure 77) although the effect of increasing the traverse 

speed can be observed.  

The use of gap and welding speed variations produced welds in 2mm 1.4016 & 1.4509 

with calculated heat inputs significantly lower than those achieved by comparable 

MAG welds in 1.4509 in the main comparison programme (Table 14).  From this work 

images have been taken which show the effect on heat affected zone microstructure 

of a reduced heat input (Figure 78).  For the welds calculated to have a lower heat 
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input, the extent of grain coarsening and width of the affected region is seen to be 

significantly lower than the samples with a higher measured heat input. 

The results from the welding gap/speed trial indicate that increasing the torch traverse 

speed results in the expected reduction in the heat input into the joint, Figure 74. This 

trend can also be observed for all  joint gaps, (with the exception of the 1.4016 grade 

using the 1.25mm joint gap at 1270 mm  per minute welding speed where it was not 

possible with the limited material to achieve a joint with complete penetration). This is 

consistent with difficulties in bridging the weld gap at 1.25mm so clearly this problem 

is exacerbated at higher traverse speeds.   Further work undertaken on the effect of 

traverse speed indicated that speeds up to the maximum available at the time at 

Sheffield Hallam University, were towards the upper end of the spectrum for providing 

the ability to decrease the heat input, whilst still maintaining a fully penetrating weld.  

Welds were produced at speeds of 2200mm/min with complete penetration at TPS 

weldtech, Bilston; however they could not consistently be replicated. 

The results obtained from trials conducted with variation on the torch position for the 

1.4016 grade material indicates that for this material there is a distinct benefit to using 

a drag angle i.e. the direction of the torch is opposing the direction of travel.  As can be 

seen in Figure 76, by altering the torch to weld backhand (drag), allowed fully 

penetrating welds to be completed with a reduced calculated heat input, than those 

produced using a 15° lead angle ("lead" is when the torch angle is in the same direction 

as the direction of travel).  Which is as would be expected from the literature 

(American Welding Society, 1991), which identifies that welding backhand gives a 

narrower more penetrating weld than back hand, which is considered to give a wider, 
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but shallow weld profile. This behaviour was not observed in the trials conducted on 

the 1.4509 grade material. 

Grade EN 1.4016, may be more sensitive to the effect of heat in-put and therefore 

more useful for examining the impact of changes in heat in-put on the microstructural 

profile.  The chemical composition of this material makes it likely that, during welding 

thermal cycles, it will form small quantities of austenite, which are then transformed 

to martensite instead of ferrite because of the fast cooling rates. 

The trials conducted, varying welding gap, welding speed and torch angle suggested 

that there was scope for further optimisation of the welding conditions.  For example, 

further variation in torch position (i.e. altering the lead or drag angle) may allow a 

reduction or increase in the net heat in-put in its own right but may also influence the 

optimum size of the gap and the welding speed.     

5.5 Trial to Determine the Consistency of the Welding Parameters and 

Subsequent Welds with the CMT Welding Process 

The consistency trials conducted on the EN 1.4016 grade 2mm thick ferritic stainless 

shows that measured (grain size, HAZ width etc) and recorded (welding information) 

data does not give the same values each time that measurement were undertaken or 

recorded.  This variation could be down to human error in measurements.  With some 

of the measurements, in particular the heat affected zone width, there is no definitive 

point to measure to.  The changes in this region can be quite gradual and therefore 

deciding on the exact location of the end of this transition is difficult to assess. For this 

reason the edge of the HAZ was deemed to be at a point where the microstructure 

returned to the as received condition.  The grain size measurements are conducted in 
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such a way as to capture the coarsest grains within the heat affected zone.  This is 

determined by the operator making the assessments and so subject to errors, but this 

was considered the best way of capturing this information as it allowed quantitative 

assessment of the grains most likely to reduce the properties of the joint overall.  That 

said the coarsest grains contained within the heat affected zone, as a rule, tend to be 

located close to the weld fusion zone, which is due to this area reaching higher 

temperatures than those experienced further away from the fusion zone 

(Lakshminarayanan, Shanmugam, & Balasubramanian, 2009) and are generally under 

the weld cap.  The fact that they are under the weld cap potentially provides two 

benefits, the first is that the cross section in this area is increased to greater than that 

of the parent material owing to the reinforcement on the weld cap.  The second, is 

that the filler material used was austenitic, therefore the enhanced grain size in the 

HAZ can reduce the toughness of the steel, through reducing the number of barriers 

(grain boundaries) to the movement of dislocations, but the filler could compensate 

for this reduction in properties, due to the austenitic filler having a Face Centred Cubic 

(FCC) crystal structure (Ashby & Jones, 2001) that allows the mechanism of ductility, 

dislocation motion, across a greater number of slip systems, than the Body Centred 

Cubic (BCC) ferritic stainless steel parent material.  Consistency with these 

measurements was maintained through the same operator making them.   

5.5.1 CMT Power Setting 

The variation in power setting was done via the wire feed adjustment as all welds were 

conducted using a synergic programme.  This automatically adjusts the power settings 

when the filler material and thickness and shielding gas are inputted into the 

equipment.  Therefore, it was found that increasing the power has a profound effect 
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on the heat input of the weld, and increasing the power level, increased the heat 

input, with an associated decrease with a reduction in power level.  The consistency of 

the average values from run to run at the same settings varied.  Variations in both the 

measured average value for current and voltage changing by up to 15 amps and 1.9 

volts respectively which is as a result of the CMT control software means that if there 

is a variation in the energy going in to the material there is bound to be a related 

variation to the structure and mechanical properties caused through the input of this 

heat. 

The increase in power had the associated increase on the measurements made of the 

weld cap width, HAZ width and weld cap height.  It was found that the weld cap width 

increased approximately 700µm for every 1m/min increase in the wire feed speed.  

There was a similar increase also seen for the HAZ width and weld cap height.  The 

weld cap height is unsurprising since there was an increase in the amount of wire that 

was being fed towards the joint it is expected that the weld cap would be either taller, 

wider or both. 

The consistency of the measured data from the microstructural measurements made 

varied from run to run, as a rule the pattern was similar for each of the HAZ width 

measurements made on each run.  Furthermore there would be the expectation that 

toward the end of the run the HAZ width would increase, due to the heat build-up, but 

there was no clear evidence of this occurring. 

The investigation also revealed that an increase or decrease of the wire feed setting, 

affected the number of pulses per CMT cycle.  With the 3.5m/min having 5 pulses per 

CMT cycle, the 4.5m/min setting having 6 pulses per CMT cycle and the 5.5m/min 

having 7 pulses per CMT cycle.  So not only is there an increase in the base power, but 
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also there is an increase in the number of short bursts of high power inputted into the 

joint, which will have the associated effects on the microstructure of potentially an 

extended HAZ and enlarged grain size. 

5.5.2 Arc Length Correction 

The variation permitted in the arc length correction function ranges from a value of -30 

to +30 and was found to have an effect on the HAZ width.  The consistency of the HAZ 

width, reduced by changing the ALC to -30 as when the ALC is set to +30 the results are 

relatively consistent as can be seen in Figure 92 & Figure 93.  The heat input was found 

to alter slightly through the extremes of this parameter, with a value of -30 showing a 

higher value than that with an arc length correction of zero. This again was slightly 

higher than that with an arc length correction of +30, however the total difference was 

calculated to be approximately 6 J/mm between the two extremities of variation for 

this parameter. 

When examining Table 18, it can be seen a greater number of welds are produced with 

complete penetration when the arc length correction is set at -30, which may be due 

to the extended period in the short circuit phase of the cycle as discussed by Pickin et 

al (2011).  There may also be a benefit from the slight additional heat that this setting 

affords the joint. However it may be as a result of the difference in arc length that this 

parameter potentially affords.  The welds created at the increased levels of arc length 

correction have a high concentration of welds with penetration bias to one side.  This 

may again be as a direct result of the change in arc length and the ability of deviation 

of the arc that is facilitating this bias in the weld.  This may be due to slight changes in 

magnetic field as the parent material is magnetic, the filler isn't and therefore slight 

variations in dilution could affect the orientation of the arc relative to the torch and 
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work piece.  The longer the arc, the greater effect the deviation will have which 

potentially explains why this is not seen at ALC of -30, where the length of the arc is 

shorter.   

The measurements made under the optical microscope also provide similar results.  

When the arc length correction factor is set at -30 there is a slight increase in the 

measured heat affected zone width and weld cap width and height.  At both the other 

settings for this parameter (0 and +30) there was not a distinct difference between the 

measured heat affected zone or weld cap dimensions, between the two.  This suggests 

that for this material grade, thickness combination the parameter needs to be adjusted 

to below 0 to produce a fully penetrating weld. 

One of the interesting things to note from this parameter setting is that measurements 

made along each of the weld runs are fairly consistent giving a relatively flat line when 

the +30 arc length correction is used.  With the -30 setting the welds were found to be 

less consistent then the +30 not just weld to weld but also across the weld. 

5.5.3 Pulse Correction 

The pulse correction parameter on the CMT equipment has adjustability from -5 to +5, 

this is a unit less parameter.  When the correction was set at -5, the heat input was 

calculated to be approximately 74 J/mm.  When set to zero the calculated heat input 

was determined to be approximately 88 J/mm and when at +5 the heat input was 

found to be approximately 102 J/mm. Therefore there appears to be a linear increase 

in the heat input when altering this setting.   It was found through this study that the 

reason for this is because the variation of this parameter varies the power of each of 

the pulses.  Increasing the pulse correction increases the voltage and current of each 
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of the pulses within the CMT cycle and therefore gives the increase/decrease in the 

heat input. 

Examination of Table 18 shows that a pulse correction factor of -5 does not produce 

one part of the weld examined, on any of the welds produced with this setting, with 

complete penetration and is therefore a product of insufficient heat into the weld.  

When the setting is at 0, there are a number of places in the weld where the 

penetration is insufficient but the majority of the welds show penetration to one side.  

However this is consistent across most of the weld sections examined therefore from 

the 31 sections, only one had suitable penetration (9 were identified as not having 

suitable penetration) and so it is unlikely that achieving a consistently fully penetrating 

weld is possible with these settings even if the penetration was not bias to one side. 

There is a significant increase in the measured values of the width of the heat affected 

zone for the welds with a pulse correction of +5, with values increasing as much as 

1.5mm from those measured from welds created with a -5 pulse correction setting.  It 

is likely however that these results are as a result of the low heat input and therefore 

lack of penetration of the welds created at -5 pulse correction.   

As there is such a dramatic effect from variation of this parameter it would be 

interesting to repeat this trial but with variation at increased wire feed settings as they 

would have an increased number of pulses per CMT cycle and therefore the variation 

of the pulse correction should have notable variation across the whole range from -5 

to +5. 



221 
 

5.5.4 Traverse Speed 

The heat input formula as seen in Equation 3, as seen on page 47, which is essentially 

the power divided by the traverse speed means that there is expected to be a 

significant difference in the heat input by variation of the traverse speed.  Variations 

conducted in a separate trial within this study have shown that there is the possibility 

of reducing the heat input into a weld through increasing the speed of traverse.  The 

variation in heat input through the change in traverse speed from 0.762 to 1.27m/min, 

results in a change of up to 50 J/mm from approximately 120 J/mm for the slower 

traverse speed to 70 J/mm for the faster traverse speed.   

The welds created utilising a slower traverse speed produced a significant proportion 

of fully penetrated welds as compared to the faster speeds which only yielded portions 

of a weld run with complete penetration, as seen in Table 18. 

The heat affected zone as would be expected is significantly larger for the slower 

traverse speed that with the faster traverse speed (Figure 88 & Figure 89), with a 

difference between the two of approximately 0.5 to 1mm.  It was observed that the 

reduction in speed also provides a more consistent weld along the length of the run 

and also reasonable consistency from weld to weld.   

The limitation of traverse speed was in the case of these trials of no apparent benefit 

as at the upper range assessed the welds were incomplete in terms of penetration. 

5.5.5 Torch Angle 

The variation in torch angle was made from a push angle of approximately +15° to a 

drag angle of approximately -15°.  The calculated heat input showed that changing 

between the two resulted in a difference, with a marginal increase through using a 
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push angle.  The reason for this is, at this time, unknown and may simply be as a result 

of the limited number of readings as the range between the two overlap.  It could be 

that as with a push angle there is a flatter bead and therefore an increased time 

duration to contact with the weld pool and therefore an increase in the open circuit 

part of the CMT cycle. 

There are also a higher number of incompletely penetrated welds with push angle and 

at the same time a higher number of completely penetrated welds than those welds 

conducted utilising a -15° torch angle.  This goes against the concept of a certain 

requirement of heat input to provide a fully penetrating weld for certain 

materials/thickness combination, or alludes that other factors need to be taken into 

account when calculating the net heat input of a weld as variation of the torch angle 

does not in itself add any energy, but directs it either at the newly made weld (pull) or 

away from the weld (push), but has a significant effect on the penetration and 

geometry of the weld and therefore may influence the efficiency of the process. 

The measurements made on the optical microscope show that with a torch angle of 

+15° (push angle), the heat affected zone is approximately 0.5mm larger, than the 

results from the examinations taken from the welds produced using a -15° torch angle.  

This then confirms work done previously in this study where drag angles produce a 

thin and deep weld profile, whereas a push angle yields a wide and shallow weld 

profile.  This shallow profile produces a wider weld reinforcement and a wider HAZ. 

5.5.6 ALX Data 

The arc logging equipment provided the ability to monitor the weld as it was being 

produced, with readings taken of current, voltage, traverse speed and wire feed speed 

at a rate of 3000 data capture points per second, throughout the duration of the 
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monitored weld.  This enabled the identification of the number of pulses per CMT 

cycle as identified earlier in this discussion and was easy to determine through 

examination of the trace of voltage and current against data point as seen in Figure 85 

to Figure 87, where the peaks of each pulse can easily be determined.  It is also been 

observed from these graphs that the effect of the pulse correction is to increase the 

current of the pulse.  Therefore when the pulse correction is set to -5, the current for 

each of the pulses is approximately 280 amps, with the pulse correction set at 0 and +5 

the currents are 340 amperes and 400 amperes, respectively.  There also appears to be 

an increased duration between the last pulse within a CMT cycle and the first pulse of 

the next, as the pulse correction value in increased.  The reason for this could be that 

with an increased pulse correction, there is the determined increase in pulsing current, 

which in turn would be increasing the amount of material that is melted and projected 

to the joint and therefore increases the arc length and so the time required for the 

electrode tip to make contact with the weld pool. 

This theory is substantiated when the traces for the arc length correction parameters 

were altered, as similar differences can be observed with these results.  When 

variation of the arc length correction parameter is made a similar effect can be seen on 

the graph where the time duration between the last pulse of the CMT cycle and the 

voltage drop through detection of short circuit.  This effect is probably that which 

provides the slightly higher calculated heat input when the arc length correction is set 

to -30, than at +30. 
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5.6 Comparison of Microstructure and Mechanical Properties for CMT 

Welded and MAG Welded EN 1.4003 Parent Material in 3.8mm & 5.8mm 

Thicknesses 

Initial CMT welds created using the EN1.4003 parent material in the 3.8mm and 

5.8mm thicknesses revealed a number of problems in the welding of these thicker 

materials, in comparison to the work conducted on the thinner materials, less than 

2mm.   

 

Figure 188. CMT weld cross section of the 5.8mm thick EN1.4003 grade parent material 

 

Figure 188 shows a microstructural cross section of one of these welds and as can be 

seen in the image, there are four distinct regions associated with the weld.  There is 

the fusion zone in the middle where the filler and a portion of the parent materials 

have mixed together and then subsequently fused during the welding process to 

create the joint.  Either side of this is the first part of the HAZ, the lighter zone adjacent 

the fusion zone.  In this area there are two notable effects associated with exposure to 

500µm 
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the welding thermal cycle.  Firstly there is a significant grain coarsening effect evident 

in this area as discussed by Lakshminarayanan et al (2009) and secondly there has 

been a phase transformation, so that the ferrite has transformed to austenite upon 

heating and then as the material cools, the austenite doesn't have sufficient time to 

transform back to ferrite as the cooling rate was too high, therefore there is the 

transformation to martensite, which will increase the hardness and strength of this 

region in contrast to grain coarsening which will have the opposite effect.  Both of 

these changes with have a detrimental effect on the impact properties of the joint. 

The next region moving away from the fusion zone is the second part of the HAZ, 

which doesn’t have any grain coarsening but does show the transformation to 

martensite and therefore the associated effects of this phase in terms of the increase 

in hardness and strength, with a reduction in the impact properties of the material.  

Beyond this zone the microstructure is that of the parent material, therefore there are 

no notable changes as a result of the welding thermal cycle.  Work previously 

undertaken by Zheng et al (2010) described the Ferrite Factor (Equation 4) being 

important in determining the likely microstructure of low carbon, 12% chromium 

stainless steels, with indication that a ferrite factor above 9.0 would yield virtually 0% 

martensite in the structure and a ferrite factor of 7.62 would give 90% martensite in 

the structure, the EN1.4003 grade material utilised within this research has a ferrite 

factor of 7.78, therefore the heat affected zone is predicted to have a high proportion 

of martensite within it, which has been observed. 

The images seen in Figure 101  show another potentially detrimental feature identified 

within the weld that only became evident following sectioning and examination of the 

weld cross section.  This was the lack of side wall fusion, which is apparent towards the 
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root of the weld.  This is where the weld material hasn't had sufficient energy to melt 

and fuse with the parent material and although in this particular instance is relatively 

small, it can create a stress concentrator and therefore reduce the fatigue properties 

of the joint.  

5.6.1 Non Destructive Examination - Radiography 

To try and identify defects within the welds prior to subsequent processing, a number 

of the welds were analysed using radiography.  Another technique that would have 

been a potential option for this type of testing would have been Ultrasonic Inspection 

(UI), however at 5.8mm thick was on the lower limit for the UI equipment available to 

be able to inspect.  An attempt was made to use the UI equipment to inspect the 

5.8mm thick welds but was unsuccessful in identifying any defects. 

Through a basic visual examination of the welds certain features could be identified 

without the use of radiography, such as spatter, undercut, a lack of root penetration 

and excessive penetration.  However it was the internal unseen defects that were of 

interest for these inspections.  Therefore one plate that had been used for the 

optimisation of the radiographic inspection parameters, was then subject to a 

destructive examination. 

As can be seen in Figure 102 the radiograph with the identified known defects and 

suspected defects were identified and then sections were taken at the specific 

locations as identified in the figure, for the microstructural examination. 

It can be seen through the course of this examination that the weld contained a 

number of unseen defects that weren't identified on the radiograph as well as those 

that were.  A key issue identified whilst undertaking the examination was that there 
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were a number of sections where a lack of side wall fusion was identified upon the 

destructive examination, as seen in Figure 104.  Due to the small size and orientation 

of these defects they were unable to be detected with the equipment used for the 

radiographic inspections, therefore it was decided that radiography was not an 

appropriate technique for the examination of the welded sheets as it didn't enable 

differentiation between good and bad welds. 

5.6.2 Microstructural Comparison for Welds Created Using the CMT Welding 

Process and MAG Welding Process Using 3.8mm Thick EN1.4003  

Microstructural evaluation was made on the welds created using the 3.8mm thick 

EN1.4003 parent material, images of the welds can be seen in Figure 189 & Figure 190. 

 

Figure 189. .  Image showing weld (top right) and HAZ , which has two distinct regions, the 
first next to the weld (red arrow) has a martensitic structure and grain coarsening, the 
second region of the HAZ (orange arrow) has a martensitic structure but without any grain 
coarsening and then the blue arrow indicates unaffected parent material of 3.8mm thick 
EN1.4003 parent, CMT welded sample 25.10 (etched in glyceregia). 
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Figure 190. .  Image showing weld (top left) and HAZ , which has two distinct regions, the 
first next to the weld  has a martensitic structure and grain coarsening (red arrow), the 
second region of the HAZ (orange arrow) has a martensitic structure but without any grain 
coarsening and then the blue arrow indicates unaffected parent material of 3.8mm thick 
EN1.4003 parent, MAG welded sample 30.7 (etched in glyceregia). 

 

In both images the fusion zone can be seen followed by the area of the HAZ with the 

grain coarsening and martensitic microstructure, then next to this is the HAZ with 

martensite at the grain boundaries, but no change to the grain size from that of the 

parent material, and then there is the transition point where the heat from the weld 

didn't reach sufficient temperatures to alter the microstructure and so it reverts back 

to the structure of the parent material.  The first observation is with the difference in 

the net heat inputs of these welds.  The CMT net heat input is calculated to be 

273.6J/mm and the MAG net heat input calculated to be 581.4 J/mm.  Therefore with 

such a significant difference in the heat input there would be an anticipated difference 

in the affect this has on the HAZ, in terms of the extent of grain coarsening and the 

width of the HAZ as discussed by Lakshminarayanan et al (2009) where they identified 

that the greater temperatures or extended time at temperature would increase the 

grain coarsening effects. 
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With examination of Table 21, it can be seen that there is a difference between the 

welds created for each process, with an increase  in the width of the MAG weld, HAZ 

that contains grain coarsening by an average of approximately 120µm, and the MAG 

HAZ width overall is increased by approximately 280µm, this reduction in HAZ size was 

also noted by Benoit et al (2011) in their research on welding Inconel 718 using the 

CMT process.  The grain size, within the HAZ of the MAG weld over the CMT, going 

from ASTM 3.9 for the CMT weld, to ASTM 3.2 for the MAG weld.   

Therefore the increase in the width of the HAZ of the MAG welds and the increase in 

grain size, compared to the CMT welds should yield a detrimental effect on the 

toughness of the joints as the increased grain size reduces the resistance to crack 

propagation through reducing the number of grain boundaries that hinder the 

movement of dislocations.  The increase in HAZ width also means that the martensitic 

phase that manifests on the grain boundaries, will also have a damaging effect on the 

impact properties. This will be discussed in 5.7. 

5.6.3 Comparison of Tensile Data for Welds Created Using the CMT Welding 

Process and MAG Welding Process Using 3.8mm & 5.8mm Thick 

EN1.4003 

The following section, discusses the results gained from tensile testing welds created 

using the CMT welding process and welds that have been created using the 

conventional MAG welding process.  This evaluation has been made on two different 

thicknesses of parent material, 3.8mm thick and 5.8mm thick EN1.4003. 
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5.6.3.1 Comparison of Tensile Data for CMT Welds and MAG Welds in 3.8mm 

EN1.4003 

As can be seen in Table 5, the tensile properties for this material is expected to be a 

minimum yield point of  320 MPa, tensile strength of 450 MPa with a minimum 

elongation value of 20% (Outokumpu, 2011).  The results achieved for the 3.8mm 

thickness, CMT welded samples (Table 22) were for the most part in excess of these 

values, with one exception and that was for sample 25.2, which only had an elongation 

value of 18.6%.  There was no apparent difference noted in the sample to explain this 

result in comparison with the other samples and the yield and tensile strength were 

within the range of the results achieved for the other specimens that were testing.  All 

of the specimens tested for the CMT welded 3.8mm thick samples, failed within the 

parent material.  Some of these failures were close to the HAZ region, but the majority 

were well into the parent material and not close to the HAZ, which was something 

noted in the work conducted by Madhavan et al (2016) in their research looking at 

joining aluminium and steel using the CMT welding process.  It would be expected that 

the strength in the outer area of the HAZ (furthest from the weld) would be enhanced 

due to the formation of the acicular phase present in that area as seen in Figure 107, 

which would explain why there were no failures in the HAZ region, the areas where 

coarsening of the grain size had occurred were protected by the increased cross 

section of the weld cap, which they lay underneath.   

The tensile results for the 3.8mm EN1.4003 parent material welding using the 

conventional MAG process as seen in Table 23 doesn't have such consistency in the 

results.  Sample M28.9 achieved a reduced yield strength in comparison to the rest of 

the tests conducted for this process at the 3.8mm thickness, but more significantly the 

elongation was approximately half the value of the lowest of the rest of these samples, 
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at 8.6%.  It was noted for this sample that the failure initiated in the parent material 

next to a piece of spatter.  The remainder of the samples all failed in the parent 

material, although were noted to have all failed close to the HAZ.  These tensile tests 

also demonstrated a similar yield point to those created using the CMT process, but 

there was a greater variation and an overall reduction in the average elongation values 

from 21% for the CMT welds to 18% for the MAG welds and a slight associated 

increase in the tensile strength to that of the CMT welds.   

5.6.3.2 Comparison of Tensile Data for CMT Welds and MAG Welds in 5.8mm 

EN1.4003 

For the tensile tests conducted on the 5.8mm thick material welded using the CMT 

process, the elongation values (Table 25) are above the specification identified in Table 

5 with the exception of sample 50.10, where the value was 12.9%.  On this sample the 

tensile test failed within the weld region and the fracture surface revealed regions that 

lacked fusion through the welding process, the interesting point to note was that it 

didn't affect the yield strength or tensile strength values for this sample.  Two other 

samples were also noted to have cracking in the weld region following testing, even 

though failure was in the parent material away from the weld in both instances 

(samples 50.11 & 52.1) and both of these demonstrated a slightly reduced elongation 

value.  A high proportion of these tests didn't meet the specification for the material in 

terms of tensile strength and all of them failed to meet the requirements for yield 

strength. 

The tensile samples testing the properties of the MAG welded 5.8mm thick material 

(Table 26) had a greater amount of variability to the data, with again none of these 

samples meeting the minimum criteria for yield strength.  A number of the samples 
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met the minimum tensile strength requirements however only five of the samples 

failed in the parent material (M1.3, M1.4, M1.6, M11.3, M11.4), with the remainder 

failing in the weld and a number of instances of evidence showing a lack of fusion 

observed in these which indicated that the welds were not optimised and therefore to 

the likelihood is that they would need an increase in the power to ensure the fusion in 

the root of the weld is achieved.  This increase in the heat input into the weld would 

have a more pronounced effect on the detrimental effects associated with welding this 

material 

There was also no removal of the weld cap or any excess penetration in the root, 

therefore the weld itself and any of the HAZ between the cap and root will have had an 

increase in cross sectional area, which isn't accounted for in the strength 

measurements as just the parent cross sectional areas were used for these 

calculations.  Therefore with the additional cross section in the weld area, reduced the 

likelihood of failure in this region, with a sound weld.  Although this test was useful in 

comparing the two welding processes, failures within the weld themselves have only 

manifested due to welding defects, rather than providing the ability to differentiate 

between microstructural differences that are created as a result of the different 

welding processes.  For the welds created using both processes in both thicknesses 

there appears to be some advantage to the results seen for the CMT welds as at the 

3.8mm thickness the difference is marginal, with slightly better results for the CMT 

welds.  With the thicker parent material joints it is evident that the joints in all cases 

aren't complete and this is having a significant effect on the properties, in particular, 

the elongation values. 
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5.6.4 Impact Results From 3.8mm & 5.8mm Thick EN1.4003 MAG/CMT 

Comparison 

The manufacture of the impact specimens was made to establish the effects of 

microstructural change in the most severely affected part of the HAZ, closest to the 

weld, therefore during manufacture the root of the notch was put in this area.  The 

samples made from the 3.8mm material, using the CMT welding process, showed a 

relatively consistent energy absorption values as can be seen in Table 28 , whereas the 

samples in the same thickness created using the MAG welding process has a lot more 

variation in the results (Table 29)  with energy absorption  as low as 9 Joules (sample 

M30.5), which is likely as a result of the increased heat input in the creation of the 

MAG welds over those using the CMT process.  This would then increase the 

detrimental effects of grain coarsening in the HAZ area and therefore reduce the 

toughness of the weld. 

The impact specimens tested that were made by both the MAG and CMT processes 

(Table 31 & Table 32), didn't show any discernible differences, the averages for the 

results from the two different processes were the same and the range of results was 

similar.  When this is taken into account that the parent material energy absorption 

value was tested to be approximately  180 Joules in the 5.8mm thickness, then it can 

be seen that the effects associated with the acicular phase and grain coarsening , that 

restricts the use of these grades of stainless steel is quite severe on the impact 

properties of the material at an average of 34.7J for the samples that were CMT 

welded and 34.7J for samples that were MAG welded in the 5.8mm thick EN1.4003 

parent material.   
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5.6.5 Fatigue Results From 3.8mm Thick EN1.4003 MAG/CMT Comparison 

The staircase fatigue testing undertaken on the CMT welded sample and the MAG 

welded samples in EN1.4003, 3.8mm thick parent material displays some differences in 

the fatigue properties of the joints created using the two different processes.  The CMT 

welded samples tested had a higher mean fatigue load at 43kN, but the convergence 

factor at over 10 means that the results are not statistically valid and carry a high 

standard deviation.  This testing regime would have likely been enhanced and 

statistically more accurate had the step divide been more appropriate. The 0.5kN step 

used was too small and although on the initial tests conducted and at the start  of the 

staircase it appeared to be appropriate, the results suggest it wasn't. 

The staircase fatigue tests conducted on the MAG welded 3.8mm thick EN1.4003 

material gave results that were statistically valid with a convergence factor of 0.472 

and therefore between 0.3-1.2, the step divide used for these was at a more 

appropriate level.  However to compare the welds created by the two processes 

through fatigue, none of the MAG welded samples tested above 35.5kN reached the 

pass criteria of 2 million cycles whereas all the tests conducted in the CMT staircase 

that exceeded 2 million cycles were tested above 41.5kN, essentially 2 steps up on the 

MAG staircase where samples met the pass criteria. 

The difference in line load for samples produced using CMT and those produced using 

MAG welding are also significantly different, CMT welded samples have a line load of 

964N/mm and MAG welded samples 833N/mm.  Therefore comparing the results from 

the two processes, there is a significant difference between the fatigue properties of 

the CMT welds and the MAG welds, with the CMT process producing joints with 

enhanced fatigue properties.  This may be as a result of the slight difference in the 
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grain size within the coarse region of the HAZ as identified in section 5.6.2 or there 

may have been some influence from an increased level of defects within the MAG 

welds.  

5.6.6 Effect of Weld Defects on the Fatigue Properties of 3.8mm Thick 

EN1.4003 Parent Material 

The work looking at the effect of defects on the fatigue properties of the materials, on 

initial macroscopic evaluation of the fracture surfaces displayed the same defects that 

were seen in the non-destructive and subsequent destructive evaluation as discussed 

in section 5.6.1.  Work was then conducted to assess the extent of the defects 

apparent on the fracture surface of a number of samples that had undergone fatigue 

testing and failed prior to the pass criteria of 2 million cycles. 

Therefore the three prominent defects that were seen on the fracture surfaces 

included, a lack of side wall fusion (Figure 115) with SEM analysis made in Figure 118 

to Figure 120, a lack of root penetration (Figure 116) and gas porosity (Figure 117).  For 

the purposes of this element of the work, differentiation wasn't made of the type of 

defects as a proportion of the overall defective aspect of the fracture surface, however 

there is the consideration that due to the shape of some of the defects there may be a 

greater effect on the fatigue properties of the material.  Gas porosity, due to its form 

within the material of being spherical, is likely to have a reduced impact on the fatigue 

properties than a defect with a high aspect ratio perpendicular to the fatigue load axis, 

such as with a lack of root penetration. 

Examination of Figure 121 shows exponential decay in the results for the plot of 

percentage area of defects on the fracture surface against the number of cycles to 

failure.  With all of the samples tested with a  defect area, on the fracture surface 
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above 2%, none of the samples survived above 600,000 cycles, just over a quarter of 

that required against the 2 million cycle pass criteria.  These findings relate to the work 

of Tijani et al (2013) who also found relationships between the percentage of defects 

in a material and the number of cycles to failure under fatigue loading conditions. 

In Figure 121 there is no account taken for the actual load which the samples were 

subjected to therefore in Figure 122, there is the information relating to the load 

which the sample was tested under.  From this data it can be seen that some of the 

samples that have relatively low defects observable on the fracture surface and yet 

have still failed at a low number of cycles, have in fact been tested at a higher load 

level and therefore would be expected to have a reduced life under fatigue testing 

conditions.  An interesting observation from this figure, is that,  where there are 

multiple results at the same loading criteria, there appears to be a correlation between 

the number of cycles to failure and the percentage of defects measured on the 

fracture surface, for each of the testing loads.  When the gradient for the number of 

cycles to failure against percentage area of defects on the fatigue for each is plotted 

against the load, there is a correlation which can be seen in Figure 123.  This, 

confirming the work that Ottersbock et al (2016) undertook, shows that as the fatigue 

load is increased and or the area of defects containing within the weld are increased 

there is a reduction in the number of cycles the weld can be subjected to before 

failure.  But as the load is increased the presence of defects has a more significant 

impact on the fatigue life of the component. 
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5.6.7 Effect on Fatigue Properties of the Parent Metal to Reinforcement 

Weld Angle 

There appears to be a correlation, as seen by Ashcroft (2008) between the root angle 

and the number of cycles to failure from looking at the results altogether (see Figure 

141), for all the samples that passed two million cycles, the angle of the root was as a 

minimum 128 degrees.  There was a great deal of variation within this data and some 

of this was likely as a result of defects within the joints as discussed in section 5.6.6.  

One of the key parameters in the prediction of fatigue life is the load and when 

examining the graphs for the angles/cycles at each load (Figure 131 to Figure 140) , 

there would be the expectation from work conducted by Harris and Syers (1979) that  

as the load is increased the sensitivity to the angle would increase, however the results 

do not indicate this to be the case and it would be recommended for future work to 

assess the content of defects evident on the facture surfaces for all the samples. 

 

5.7 Heat Treatment Trial To Identify Key Temperatures At Which 

Microstructural Changes Occur And The Effect of Time On These 

Changes. 

The thermal cycle experienced during the welding process has extremely rapid heating 

and cooling rates associated with it as a result of very high arc temperatures and a high 

thermal conductivity common to metals.  In an attempt to try and simulate the 

thermal cycle the trial was devised to identify the point at which temperatures are 

sufficient to create microstructural change, such as that seen in the heat affected zone 
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and then identify the effects of the change on the impact properties and hardness of 

the material. 

It is well established in the literature (Lippold & Kotecki, 2005) that the microstructural 

response to a thermal cycle is not just dependant on temperature, but also time and 

therefore whilst the trial conducted wasn't an exact replication of the thermal cycle 

that was experienced during the manufacture of a weld, it allows some comparisons to 

be drawn between observable microstructural features within a heat affected zone, 

the likelihood of the temperature reached in this area and then the effect of this on 

the mechanical properties. 

It can be seen when comparing the image for the sample that had been subjected to 

700°C for 20 minutes (Figure 147) to the image of the material in the un-heat treated 

state (Figure 62) that there is no observable difference between them in terms of 

microstructure.  This is the same for all the heat treated samples, held for 20 mins at 

temperature, right up until the temperature gets to approximately 770°C (Figure 161) 

where the microstructure changes from a fully ferritic structure to one that contains 

ferrite and martensite.  Associated with this, as can be seen in Figure 182 there is an 

increase in the hardness from below 150HV10 to 165HV10 as a result of the presence of 

the harder martensite. 

When the samples are held for longer (2 hours), the martensitic phase can be seen 

appearing in the structure on samples exposed to temperatures of 750°C followed by a 

water quench, as seen in Figure 171, with the same cycle applied at 740°C (Figure 172) 

the structure remains ferritic which means at this time/temperature combination the 

transformation to austenite does not take place. 
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As the temperature is increased, then as is the quantity of martensite within the 

microstructure and subsequently the hardness which increases from the parent 

material value of 150 HV10, increasing up to approximately  281 HV10 at 900°C and then 

as can be seen in Figure 186, the hardness reaches its maximum level of 340 HV10 

which varies according to how long the sample has been left at temperature, for the 

samples left for 20 minutes, the hardness is not as high as for those samples that were 

left for 30 minutes, this could be that 20 minutes at temperature, may not give 

sufficient time for elements, particularly carbon, to go into a solid solution, therefore 

reducing the hardening effect associated with a fast cool.  When looking at the results 

for the samples that have been left for 360 minutes there is a slightly softer material 

and this will be because holding at the elevated temperatures longer, will permit a 

greater amount of grain coarsening and also the slower cool afforded to these 

samples, will reduce the amount of carbon that is trapped in solution and therefore 

the strain on the structure that gives the increase in hardness associated with 

martensite.   This reduction on the hardness properties may be as a result of the high 

temperature embrittlement that affects these materials when subjected to 

temperatures in excess of 900°C, with the additional time allowing the diffusion of 

carbon to form the detrimental carbides and carbo-nitrides as discussed in section 2.3. 

The other observable trend with the results is that the grain size of ASTM 8, remains 

constant up to 900°C where the sample that was held for an extended period of 360 

minutes, showed a significant increase in the grain size, going from the ASTM 8, to 

ASTM 5 (Figure 187), this is not in agreement with work conducted by 

Lakshminarayanan et al (2009) who reported that temperatures above 955°C needed 

to be achieved for grain coarsening.    For the samples held at shorter durations (20 
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and 30 mins) the samples needed to be at higher temperatures, 940°C - 1000°C to 

have a noticeable effect on the grain size, which then when comparing to the welding 

process, which experiences temperatures up to the melting point of the material, 

would suggest that for the grain coarsening observed in the heat affected zone, may 

occur as a result of the higher temperatures experienced during welding (up to the 

melting point of the material) rather than the specific temperatures identified in this 

study.  It also must be noted that with the simulations made in this element of the 

work, it was not possible to replicate the heating rates and superheating which will 

have effect on the weld and HAZ. 

A number of nonstandard impact specimens (5.8 x 10 x 55mm) were created and heat 

treated to the same parameters identified through the microstructural work and then 

tested to determine the effect on the impact properties of the various microstructural 

changes identified.  As can be seen in Figure 185 the impact properties of the material 

that have undergone no microstructural change is at around 200J.  When there is the 

introduction of martensite within the structure this reduced the toughness of the 

samples down by approximately 30%.  When there was not only the martensite within 

the structure but also grain growth associated with the higher temperatures,  then the 

energy absorbed by the specimens dropped to less than 10 J in some instances.  The 

effect associated with the martensitic structure, is likely as martensite is a brittle phase 

and therefore doesn't absorb much energy when a crack is propagating through it.  

The grain coarsening reduces the number of grain boundaries that hinder the motion 

of dislocations and therefore reduce the toughness of the material. 
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6 Conclusions 
 

The research has examined and compared the CMT welding process against the 

conventional GMAW process using ferritic stainless steel and after a review of the 

literature and analysis of the results from the work conducted within this research the 

following conclusions can be made; 

6.1 Research on thin grades (<2mm) of ferritic stainless steel welded using 

CMT & MAG techniques 

• Increasing the heat input increases the width of the HAZ  

• When CMT welding the addition of a pulsed arc, which gives an increase in the 

heat input, resulting in a flatter weld reinforcement 

• With the use of just CMT, without a pulsed arc, it was found to yield a larger 

grain size within the HAZ 

• Pure CMT was found to produce fully penetrating welds at a lower heat input 

than welds produced with the additional pulsed arc 

• The overall heat input has a significant effect on the penetration and HAZ 

characteristics and it was found that it wasn't just the energy that is put into 

the weld that controls the weld characteristics, but how that energy is applied 

e.g. torch angle, pulsed current, torch traverse speed, weld gap as there may 

be a variation in the efficiency of the arc energy. 

• Greater welding gaps create bridgeability issues at higher torch traverse speeds 

• Drag torch angle produces fully penetrating welds at lower heat inputs than 

leading angles possibly due to the filler being directly toward previously heated 

materials. 



242 
 

• Grade EN1.4016 is more sensitive to the thermal cycle associated with welding 

than EN1.4009 

• The measured power levels of the welds monitored varied by up to 15 amps 

and 1.9 volts for the same set level using the CMT process 

• The variation in ALC between -30% and +30% was calculated to give a 

difference of approximately 6J/mm to the net heat input 

• An ALC setting of -30 gave a greater amount of penetration than when the 

setting was at +30 

• The pulse correction function increases the energy levels of the pulses within 

the welding cycle to allow incorporation of short bursts of higher energy. 

6.2 Grade EN1.4003 3.8mm and 5.8mm thick material welded using CMT and 

MAG techniques 

• The HAZ of a weld using EN1.4003 grade parent material has 2 distinct regions, 

the first closest the fusion zone has a martensite content and grain coarsening 

and further away from the fusion zone, martensite alone 

• NDT techniques utilised within the research were insufficient to detect the lack 

of side wall fusion evident in the samples following destructive examination 

• Tensile tests conducted on the 3.8mm thickness, welding using CMT, 

demonstrated 100% joint efficiency 

• Tensile tests conducted on the 5.8mm thickness materials produced using each 

of the welding techniques did not produce welds that consistently 

demonstrated 100% joint efficiency 
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• Average values for the impact tests conducted on samples welded using each 

of the techniques were comparable and therefore no discernible difference 

could be noted between the effect on toughness 

• Fatigue results for CMT shows enhanced properties over the MAG welded 

samples for 3.8mm thick EN1.4003 grade material likely due to a reduced effect 

on the heat affected zone and a reduced number of defects within the weld. 

• Under fatigue testing, no sample that had the fracture surface examined 

survived 2 million cycles with a defect area greater than 2% of the fracture 

surface 

• There was found to be a relationship between the number of cycles to failure at 

a particular load and the percentage of the defect area measured on the 

fracture surface, which shows the greater the fatigue load the more sensitive 

the material becomes to the defect content 

• The weld root angle was >128° for all fatigue tested samples that exceeded 2 

million cycles 

• At temperatures in excess of 750°C microstructural change is observed from 

ferrite to ferrite and martensite for simulated heat treated samples 

• The hardness levels associated with martensite in the microstructure of the 

simulated heat treated samples increase up to 900°C 

• Grain coarsening was observed in the heat treated samples at 900°C after being 

held at this temperature for 360 minutes. An increase in temperature above 

900°C was required to observe any grain growth for reduced holding times. 

• The reduction in impact properties as a result of martensite in the structure 

was measured to be approximately 30% for simulated heat treated samples 
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• Impact tests made on simulated heat treatment samples with grain coarsening 

and a martensite content were found to reduce the toughness by 

approximately 95% 

 

7 Further Work 
 

Following a review of the work undertaken, suggestions for further work are 

highlighted below: 

• Explore the modification of other welding parameters, such as shielding gas, 

the use of a backing gas, welding wire or edge preparation on the production of 

welds to eliminate the lack of side wall fusion, seen in a number of welds 

produced in this study. 

 

• As part of this work, two thicknesses (3.8mm & 5.8mm) of EN1.4003 grade 

stainless steel were subject to assessment, testing of the 5.8mm thick material 

requires completing as time limitations prevented this occurring within this 

project. 

 

• The results from the CMT 3.8mm thick EN1.4003 parent material, under fatigue 

testing didn't produce statistically valid results, therefore for an enhanced 

comparison, it is suggested that these tests be repeated using a different step 

divide. 

 

• Increase the analysis on defects within the failed fatigue samples to provide a 

greater data set and allow comparison between CMT and MAG welded joints. 

 

• Explore options of NDT techniques for the identification of small defects within 

welds or optimise radiographic parameters to this end. 

 

• Compare CMT with other 'low heat input' GMAW processes that have been 

brought to market. 

 

• Continue work on heat treatment to explore the temperatures at which the 

acicular phase first manifests, perhaps using EBSD for phase identification. 
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• Explore the effect of CMT, compared to conventional GMAW on grades of 

ferritic stainless more sensitive to embrittlement phenomena. 
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9 List of Equipment 
 

ABB IRB 1600-5/1.45 Robot Arm 
ABB 
Daresbury Park 
Warrington 
Chesire 
WA4 4BT 
http://new.abb.com/uk 
 
Arc Logger Ten (ALX)  
The Validation Centre Limited 
Unit 9 Sinclair Court, 
Faraday Road 
Great Yarmouth 
Norfolk 
NR31 0NH 
www.tvcalx.co.uk 

Cold Metal Transfer (CMT) welding equipment 
(Fronius TransPulsSynergic 4000 CMT unit, controlled using a Fronius RCU 500i control 
unit) 
Fronius U.K. Limited 
Maidstone Road 
Kingston 
Milton Keynes 
MK10 0BD 
United Kingdom 
http://www.fronius.co.uk 
 
Infinite Focus Microscope (IFM) 
Alicona Imaging GmbH 
Dr.-Auner-Strasse 21a 
8074 Raaba/Graz, Austria 
http://www.alicona.com 
 
Radiography Equipment 
(Xograph Bucky Star with a Canon LANMIX CDXI-50G detector) 
Xograph Healthcare 
Xograph House 
Ebley Road 
Stonehouse 
Gloucestershire 
GL10 2LU 
UK 
http://www.xograph.com 
 
 

http://new.abb.com/uk
http://www.tvcalx.co.uk/
http://www.fronius.co.uk/
http://www.alicona.com/
http://www.xograph.com/
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Sample Preparation Equipment for metallographic inspection & Hardness Test 
equipment 
(Abrasimet precision cutting machine, SimpliMet 2000 hot mounting press, Alpha Beta 
grinder/polishing stations, Wilson Vickers Hardness Testing machine and Beuhler 
microhardness test machine) 
Beuhler 
Warwick Manufacturing Group  
IMC Building  
University of Warwick  
Coventry  
CV4 7AL  
United Kingdom 
www.buehler.co.uk 
 
Tensile Testing and Impact Testing Equipment 
(Instron 3369 dual column 50kN tensile machine & Dynatup 9250 drop tower impact 
machine) 
Instron 
Coronation Road, 
High Wycombe, 
Buckinghamshire, 
HP12 3SY 
United Kingdom 
http://www.instron.co.uk 
 
Fatigue Equipment/controller 
Denison Mayes Group 
Unit 14 Enterprise Park Ind Estate, 
Beeston,  
Leeds  
LS11 8HA 
http://www.denisonmayesgroup.com 
 

http://www.buehler.co.uk/
http://www.instron.co.uk/
http://www.denisonmayesgroup.com/

