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A NATURAL BOUNDARY FOR THE DYNAMICAL ZETA

FUNCTION FOR COMMUTING GROUP

AUTOMORPHISMS

RICHARD MILES

Abstract. For an action α of Zd by homeomorphisms of a compact
metric space, D. Lind introduced a dynamical zeta function and conjec-
tured that this function has a natural boundary when d > 2. In this
note, under the assumption that α is a mixing action by continuous au-
tomorphisms of a compact connected abelian group of finite topological
dimension, it is shown that the upper growth rate of periodic points is
zero and that the unit circle is a natural boundary for the dynamical
zeta function.

1. Introduction

Since the definitive work of Artin and Mazur [1], the dynamical zeta func-
tion ζT of a single transformation T has been studied extensively in various
contexts. For example, if T is a smooth map with sufficiently uniform hy-
perbolic behaviour, Manning [10] shows that ζT is rational. In contrast,
Everest, Stangoe and Ward [7] give a simple example of a compact group
automorphism T for which ζT has a natural boundary at the circle of con-
vergence. For an ergodic automorphism T of a compact connected abelian
group of finite topological dimension, there is strong evidence [2] to suggest
that ζT is either rational or admits a natural boundary.

For a Zd-action α generated by d commuting homeomorphisms of a com-
pact metric space X, a dynamical zeta function was introduced by Lind [9].
For n ∈ Zd, let αn denote the element of the action corresponding to n.
Denote the set of finite index subgroups of Zd by L. For any L ∈ L, let
[L] = |Zd/L| and let F(L) denote the cardinality of the set of points x ∈ X
for which αn(x) = x for all n ∈ L. The dynamical zeta function of α is
defined formally as

ζα(z) = exp

(∑
L∈L

F(L)

[L]
z[L]

)
.

If d = 1, L = {nZ : n > 1} and the definition of ζα agrees with the one given
by Artin and Mazur for a single transformation. Lind studies several key
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examples and, assuming that F(L) is finite for all L ∈ L, shows [9, Th. 5.3]

that ζα has radius of convergence e−g(α), where g(α) is the upper growth rate
of periodic points, given by

g(α) = lim sup
[L]→∞

1

[L]
log F(L).

It is important to note that the upper growth rate of periodic points g(α)
need not coincide with the growth rate of periodic points obtained by replac-
ing [L]→∞ with min{||n|| : n ∈ L \ {0}} → ∞ in the definition above. In
many natural situations, the latter limit h(α) coincides with the topological
entropy of the system [8, Sec. 7]. In general, 0 6 h(α) 6 g(α), and Lind
gives an example [9, Ex. 6.2(a)] with h(α) = log 3 and g(α) = log 4. Fur-
thermore, Lind conjectures [9, Sec. 7] that for a Zd-action with d > 2, the

circle |z| = e−h(α) is a natural boundary for ζα and that ζα is meromorphic
inside this circle. The main result of this note is the following.

Theorem 1.1. Suppose X is a compact connected abelian group of finite
topological dimension and α is a mixing Zd-action by continuous automor-
phisms of X. If d > 2, then g(α) = 0 and the unit circle is a natural
boundary for ζα.

This confirms Lind’s conjecture in a setting which includes, for example,
the well-known Z2-action generated by multiplication by 2 and by 3 on
the solenoid dual to Z[16 ], any mixing action generated by finitely many
commuting toral automorphisms, and all of the mixing entropy rank one
actions on connected groups considered in [6]. In addition, and somewhat
surprisingly, Theorem 1.1 also shows that g(α) = 0 in our setting. This
result is obtained via an upper estimate for F(L) obtained using techniques
from [12] and a theorem of Corvaja and Zannier [5] concerning bounds on
quantities related to greatest common divisors for rings of S-integers. Hence,
we obtain the stronger result that the circle of convergence for ζα is actually a
natural boundary for the function. The other main ingredient in the proof of
Theorem 1.1 is the fundamental theorem of Pólya and Carlson which states
that a power series with integer coefficients and radius of convergence 1 is
either rational or has the unit circle as a natural boundary (see [3], [14]
and [16]). Before turning to the proof of the main result, we consider a
familiar example.

2. Periodic point counts for the ×2× 3 example

Since any abelian group is a Z-module, the maps x 7→ 2x and x 7→ 3x are
homomorphisms of the torus T. The most natural compact abelian group X
for which both these maps are automorphisms, and for which there is a pro-
jection X � T that commutes with both the maps, is the Pontryagin dual
of Z[16 ]. Hence, the two maps generate a Z2-action on this one-dimensional
solenoid.
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a b c Fa,b,c a b c Fa,b,c a b c Fa,b,c a b c Fa,b,c
1 0 1 1 6 5 1 1 9 4 1 1 11 8 1 1
1 0 2 1 1 0 7 1 9 5 1 1 11 9 1 1
2 0 1 1 7 0 1 1 9 6 1 1 11 10 1 1
2 1 1 1 7 1 1 1 9 7 1 1 1 0 12 1
1 0 3 1 7 2 1 1 9 8 1 1 2 0 6 1
3 0 1 1 7 3 1 1 1 0 10 1 2 1 6 1
3 1 1 1 7 4 1 1 2 0 5 1 3 0 4 1
3 2 1 1 7 5 1 1 2 1 5 1 3 1 4 7
1 0 4 1 7 6 1 1 5 0 2 1 3 2 4 1
2 0 2 1 1 0 8 1 5 1 2 1 4 0 3 1
2 1 2 1 2 0 4 1 5 2 2 1 4 1 3 1
4 0 1 1 2 1 4 1 5 3 2 1 4 2 3 1
4 1 1 5 4 0 2 1 5 4 2 1 4 3 3 5
4 2 1 1 4 1 2 1 10 0 1 1 6 0 2 1
4 3 1 1 4 2 2 5 10 1 1 1 6 1 2 1
1 0 5 1 4 3 2 1 10 2 1 11 6 2 2 7
5 0 1 1 8 0 1 1 10 3 1 1 6 3 2 1
5 1 1 1 8 1 1 5 10 4 1 1 6 4 2 1
5 2 1 1 8 2 1 1 10 5 1 1 6 5 2 7
5 3 1 1 8 3 1 1 10 6 1 1 12 0 1 1
5 4 1 1 8 4 1 1 10 7 1 1 12 1 1 5
1 0 6 1 8 5 1 5 10 8 1 1 12 2 1 1
2 0 3 1 8 6 1 1 10 9 1 1 12 3 1 1
2 1 3 1 8 7 1 1 1 0 11 1 12 4 1 1
3 0 2 1 1 0 9 1 11 0 1 1 12 5 1 5
3 1 2 1 3 0 3 1 11 1 1 1 12 6 1 1
3 2 2 7 3 1 3 1 11 2 1 1 12 7 1 1
6 0 1 1 3 2 3 1 11 3 1 23 12 8 1 13
6 1 1 1 9 0 1 1 11 4 1 1 12 9 1 5
6 2 1 1 9 1 1 1 11 5 1 1 12 10 1 1
6 3 1 1 9 2 1 1 11 6 1 1 12 11 1 1
6 4 1 1 9 3 1 1 11 7 1 1

Table 1. Periodic point counts Fa,b,c for subgroups param-
eterized by integers a, b and c for the ×2× 3 example.

The subgroups of index n in Z2 may be parameterized using non-negative
integers a, b, c, where ac = n, 0 6 b 6 a− 1, and

L = L(a, b, c) = 〈(a, 0), (b, c)〉

is the corresponding subgroup of index n (for a more thorough explanation
of this form originally due to Hermite, see the next section). For this exam-
ple, the number of periodic points for rectangular subgroups (that is, those
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with b = 0) was considered by Ward [17], whose focus was periodic point
distribution. In general, we have

Fa,b,c = F(L(a, b, c))

= |{x ∈ X : 2ax = x and 2b3cx = x}|
= | ker(x 7→ (2a − 1)x) ∩ ker(x 7→ (2b3c − 1)x)|.

Since the intersection of the kernels in the expression on the right is a finite
closed subgroup of X, by Pontryagin duality (see [8, Sec. 7]), it follows that

Fa,b,c =

∣∣∣∣ Z[1/6]

(2a − 1, 2b3c − 1)

∣∣∣∣ = gcd(2a − 1, 2b3c − 1).

Using the resulting greatest common divisor, Fa,b,c has been calculated for
all subgroups of index at most 12 in Z2 in Table 1. Heuristically, potential
growth in Fa,b,c appears to be slow in relation to [L] = [L(a, b, c)] = ac. In
particular, in the next section, we will show that

lim sup
[L]→∞

1

[L]
log F(L) = 0.

Thus, the dynamical zeta function for this action has radius of convergence 1.
This also means that the unit circle is a natural boundary for the function
(see Lemma 3.3).

3. Proof of Theorem 1.1

The standard tools from commutative algebra used to study an action α
of Zd by continuous automorphisms of a compact abelian group X are de-
scribed in Schmidt’s monograph [15] (see also Einsiedler and Lind’s pa-
per [6] which is useful here). A key observation is that the Pontryagin dual

of X, denoted M = X̂, becomes a module over the Laurent polynomial
ring Rd = Z[u±11 , . . . , u±1d ] by identifying application of the dual automor-
phism α̂n with multiplication by un = un1

1 · · ·u
nd
d , and extending this in a

natural way to polynomials.
When X is connected and has finite topological dimension (that is, X

is a solenoid), M is a subgroup of a finite-dimensional vector space over Q
and we may use the method of canonical filtration described in Method 4.4
of [12]. Doing so, we obtain a chain of submodules

{0} = M0 ⊂M1 ⊂ · · · ⊂Mr = M

and natural module embeddings

Rd/pi ↪→Mi/Mi−1 ↪→ Ki,

where pi ⊂ Rd is a prime ideal, and Ki is an algebraic number field which
is the field of fractions of Rd/pi, 1 6 i 6 r. The list p1, . . . , pr comprises
all associated primes of M (note that repetitions are permitted in the list).
Let P(K) denote the set of all places (both finite and infinite) of an algebraic
number field K, and let P0(K) be the set of finite places. We always assume
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that the places of an algebraic number field are normalized so that the Artin
product formula holds. For each i, let

Si = {v ∈ P0(Ki) : | · |v is unbounded on Rd/pi},

and note that Si is finite as Rd/pi is finitely generated as a ring over Z.
Define a homomorphism χi : Zd → K×i by the composition of n 7→ un

and the natural quotient map Rd → Rd/pi. Then χi(n) is an Si-unit for
all n ∈ Zd and the mixing hypothesis implies that χi is injective (see [15,
Th. 6.5]). To proceed, we shall make use of the following result due to
Corvaja and Zannier [5].

Theorem 3.1 (Corvaja and Zannier [5]). Let S be a finite set of finite places
of an algebraic number field K. Then given any ε > 0, there are only finitely
many pairs of multiplicatively independent S-units ξ, η that do not satisfy
the inequality∏

v∈P(K)

max{1,min{|ξ − 1|−1v , |η − 1|−1v }} < max{H(ξ), H(η)}ε,

where H(·) =
∏
v∈P(K) max{1, | · |v} denotes the absolute Weil height.

Let ε > 0 be given and let || · || denote the supremum norm. Since each χi
is injective, applying the theorem above, there exists a constant A = A(ε)
such that for any linearly independent j,k ∈ Zd with max{||j||, ||k||} > A,
and all 1 6 i 6 r, we have∏
v∈P(Ki)

max{1,min{|χi(j)−1|−1v , |χi(k)−1|−1v }} < max{H(χi(j))H(χi(k))}ε

and hence also∏
v∈Pi

min{|χi(j)− 1|−1v , |χi(k)− 1|−1v } < max{H(χi(j)), H(χi(k))}ε, (1)

for any Pi ⊂ P0(Ki) with |χi(j)|v = |χi(k)|v = 1 for all v ∈ Pi. For each i,
define

Pi = {v ∈ P0(Ki) : | · |v is bounded on Mi/Mi−1}
and note that since {χi(n) : n ∈ Zd} ↪→ Mi/Mi−1, we have |χi(n)|v = 1
for all v ∈ Pi and all n ∈ Zd (so (1) holds with Pi defined in this way). A
straightforward adaption of [12, Lem. 4.5] also gives the following.

Lemma 3.2. Let L ∈ L. Then for any non-zero j,k ∈ L

F(L) 6 F(〈j,k〉) 6 C
r∏
i=1

∏
v∈Pi

min{|χi(j)− 1|−1v , |χi(k)− 1|−1v },

where C is a constant depending only on M .

Before attempting to combine the lemma above with (1), we need a more
concrete description of the elements of L. This is provided by the Hermite
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normal form of an integer matrix [9, Th. 4.1]. Any L ∈ L has a unique
representation as the image of Zd under a matrix of the form

TL =


a1 b12 b13 . . . b1d
0 a2 b22 . . . b2d
0 0 a3 . . . b3d
...

...
...

. . .
...

0 0 0 . . . ad


where am > 1 for 1 6 m 6 d, 0 6 bmn 6 am − 1 for m + 1 6 n 6 d and
a1a2 · · · ad = [L]. Whenever [L] > Ad, we have max{a1, . . . , ad} > A, and
by taking two appropriate basis vectors in Zd and multiplying these by TL,
it follows that there exist linearly independent j,k ∈ L such that

A < max{||j||, ||k||} 6 [L].

Furthermore, since the Weil height is submultiplicative, Lemma 3.2 and (1)
can be combined to show that there is a constant B > 1, depending only on
the homomorphisms χi, 1 6 i 6 r, such that

F(L) < CBεmax{||j||,||k||} 6 CBε[L],

whenever [L] > Ad. Therefore,

g(α) = lim sup
[L]→∞

1

[L]
log F(L) < ε logB,

and since ε was arbitrary, it follows that g(α) = 0. Hence, ζα has radius of
convergence 1. To show that the circle of convergence is a natural boundary
for ζα, we use the following application of the Pólya–Carlson theorem.

Lemma 3.3. Suppose ζα has radius of convergence 1 and d > 2. Then ζα
admits the unit circle as a natural boundary.

Proof. We proceed similarly to the conclusion of [9, Ex. 3.4], with some slight
modifications, as follows. Suppose for a contradiction that ζα is rational,
that is

ζα(z) =
ω
∏k
i=1(1− λiz)∏l

j=1(1− µjz)
for some ω, λ1, . . . , λk, µ1, . . . , µl ∈ C. Some straightforward calculus then
shows ω = 1 and ∑

L∈L:[L]=n

F(L) =

l∑
j=1

µnj −
k∑
i=1

λni . (2)

Since ζα is analytic inside the unit disk, we must have |µj | 6 1 for 1 6 j 6 l.
Furthermore, as ζα is the exponential of a convergent power series inside
the unit disk, we must also have |λi| 6 1 for 1 6 i 6 k. Hence, (2) gives∑

L∈L:[L]=n F(L) 6 k + l. Since F(L) > 1 for all L ∈ L, this implies that

the number of subgroups L ∈ L with [L] = n is at most k + l for all n > 1.
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Since this is obviously not the case when d > 2, this gives the required
contradiction.

Hence, ζα is irrational with radius of convergence 1 and since the Taylor
series for ζα has integer coefficients [9, Cor. 5.5], the result now follows from
the theorem of Pólya and Carlson. �

4. Concluding remarks

Clearly, the generality of Theorem 1.1 is far from that of Lind’s Conjec-
ture described in the introduction. In particular, the algebraic Zd-actions
considered here all have zero entropy. Without classical results such as the
Polya–Carlson theorem, which requires g(α) = 0, or gap theorems, estab-
lishing the existence of a natural boundary can be difficult. For a single
automorphism T with ζT irrational, this problem is explored in detail in [2].

It is also interesting to see that, together with Rudnick, Corvaja and
Zannier themselves applied their result [4, Th. 2] in a way related to our
calculations here, motivated by problems in quantum dynamics.

Finally, note that for algebraic Zd-actions on solenoids, other perspec-
tives involving dynamical zeta functions can be fruitful. For example, the
zeta functions of individual elements of the algebraic Zd-actions considered
here are shown to be intimately linked with expansive subdynamics in [11]
and [13].
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