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Abstract 

In this work, the structural features and sensor response toward ammonia of a three dimensional 

(3D) SWCNTs material covalently functionalised with 1,6-diethynylpyrene were studied. The 

target SWCNTs hybrid material was prepared by the reaction of azido substituted SWCNTs with 

the 1,6-diethynylpyrene containing double terminal alkyne groups via the azide-alkyne Huisgen 

cycloaddition (Click) reaction. The structure of the 1,6-diethynylpyrene compound was 

determined by different spectroscopic methods such as FT-IR, 
1
H-NMR, MALDI-TOF mass, 

fluorescence and UV–Visible, while its SWCNT-Pyrene 3D hybrid material was characterized 

by FT-IR, Raman, UV-Visible spectroscopies and thermogravimetric analysis. The morphology 

of the hybrid films was investigated by scanning electron microscope (SEM). The sensing 

performance of the SWCNT-Pyrene 3D hybrid material was studied against low-concentrations 

of NH3 in the range of 0.1-40 ppm by measuring changes in the films' conductivity at different 

levels of relative humidity. The reversible electrical sensor response toward ammonia was 

observed both in the case of SWCNT and SWCNT-Pyrene 3D hybrid films however the 

response values of SWCNT-Pyrene 3D hybrid film were higher than those of SWCNT. 

 

 

 

 

 

 

 

Keywords: 3D Carbon nanomaterials; Pyrene; Covalent functionalization; Chemiresistive 

sensors; Ammonia vapour.   



3 
 

1. Introduction 

About 80% of commercially produced ammonia (NH3) is used in fertilizers, with the 

remainder used in a variety of applications such as plastics, synthetic fibers and resins, 

pharmaceuticals, explosives, refrigeration, and household cleaners [1]. Ammonia is the most 

common indoor air pollutant; it is a great pollution source to environment and harmful to human 

health [2]. Ammonia is known to be potentially associated with chronic diseases such as asthma, 

severe respiratory tract inflammation and lung diseases [3, 4]. Since ammonia is a low boiling 

compound and volatile, it is very important to develop sensitive devices to detect gaseous NH3 

molecules. 

With the rapid development of nanotechnology, hybrid materials play vital role in these 

new technologies due to the synergetic combination of two or more components, in order to 

develop different kinds of functional materials possessing distinctive electrical, optical, or 

mechanical properties [5]. Moreover, functioning of carbon nanotubes (CNTs) are feasible for 

use in different type of sensors, especially for gases and chemical vapors due to their high 

electrical conductivity, large surface area and ease of functionalization with different chemical 

groups [6]. Various research groups have focused on studying and improving the response of 

CNT-based sensors, however, pristine CNTs have some disadvantages, which include their poor 

solubility and dispersibility as well as the low recovery at room temperature [7]. Until today, 

SWCNTs have shown sensitivity toward gases such as NH3, NO2, H2, CH4, CO, SO2, H2S, H2O2 

and O2 [8-11]. Researchers have focused on a wide variety of functional groups to be attached 

either covalently or non-covalently to the CNTs in order to develop CNT-based sensors that are 

more specific and selective to certain gases or chemical analytes [12]. Carbon nanotubes can be 

converted to 3D structures such as in the case cross-linked polymers. It is desirable to stack two-

dimensional (2D) SWCNT networks to a three-dimensional (3D) architecture because sensitivity 

and responsivity can improve by incorporating and exposing more nanotubes to gas molecules 

[13]. 
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Aromatic compounds such as conjugated polymers, porphyrins and pyrene derivatives, are 

commonly attached to CNT surfaces via π-π interaction. Pyrene and its derivatives have been 

shown to be adsorbed to the CNT surface through a π-π interaction and the resulting 

nanocomposites are used as building blocks for bonding proteins, polymers and other molecules. 

In addition, pyrene and its derivatives are well known for their high sensitivity to the local 

environment [14]. Pyrene has large aromatic system and has been demonstrated to have very 

high affinity to the surface of CNTs [15]. The formation of Cu (I) -catalyzed 1,2,3-triazoles by 

efficient coupling of alkyne to pyrene and azide functional MWCNTs has been found to be 

efficient and very stable and well defined for the coupling of the MWCNTs and the photoactive 

molecule. On the other hand, because the triazole ring can participate in the hydrogen bonding, 

the nanoconjugate coupling of pyrene–MWCNTs shows remarkable solubility and stability in 

aqueous solvents [14]. 

In this work, the sensing properties of SWCNTs covalently functionalised with 1,6-

diethynylpyrene (Fig. 1) toward ammonia were determined. The obtained 3D network structure 

is thought to provide improved adsorption skeleton for more ammonia molecules. The SWCNTs 

hybrid materials were prepared by the reaction of azido substituted SWCNTs with the 1,6-

diethynylpyrene containing double terminal alkyne groups via azide-alkyne Huisgen 

cycloaddition (Click) reaction. The structure of the 1,6-diethynylpyrene compound was 

determined by different spectroscopic methods such as FT-IR, 
1
H-NMR, MALDI-TOF mass, 

fluorescence and UV–Visible. Its SWCNT-Pyrene 3D hybrid material was characterized by FT-

IR, Raman and UV-Visible spectroscopies and thermogravimetric analysis. The morphology of 

the hybrid films was investigated using scanning electron microscopy (SEM). The electrical 

response of SWCNT-3D hybrid material towards low concentration of ammonia (0.1-40 ppm) 

was demonstrated. 

 

2. Experimental details 
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2.1. Materials 

All the reagents and solvents were of reagent grade quality. Sodium L-ascorbate was purchased 

from Alfa Aeser. SWCNT, pyrene, bromine, PdCl2(PPh3)2, trimethylamine, K2CO3 and ICl   

were purchased from Aldrich. Sodium azide and copper(II) sulfate pentahydrate were supplied 

from Merck. SWCNT–N3 was prepared as reported in our recently published work [16]. 

 

2.2. Synthesis 

2.2.1. Preparation of 1,6-diethynylpyrene 

1,6-Diethynylpyrene was prepared as suggested in the work of Ohshita et al [17]. FT-IR 

(νmax/cm
-1

) 3294 (C≡H), 3052 (Ar CH), 2097 (C≡CH), 1182 (Ar C=CH); UV–Vis (THF) λmax 

nm: 340, 360, 380 and 393. 
1
H-NMR (CDCl3) δ= 3.59 (s, 2H, HC≡C), 8.11 (d, J=9.18 ppm, 4H, 

ArH), 8.15 (d, J=7.85 ppm, 2H, ArH), 8.59 (d, J=9.11 ppm, 2H, ArH); 
13

C-NMR (CDCl3) δ= 

82.51 (C≡C), 83.04 (C≡C), 117.28, 122.39, 125.11, 126.31, 128.30, 129.56, 130.54, 131.65; MS 

(MALDI-TOF) m/z: Calc. for C20H10: 250.29. Found: 250.23 [M]
+
. 

 

2.2.2. Preparation of SWCNTs-Pyrene 3D Hybrid structure 

30 mg (0.079 mmol) of 1,6-diethynylpyrene was dissolved in 2 mL DMF and then sonicated for 

15 min at room temperature. Meanwhile, 5 mg SWCNT–N3 was suspended separately in 3 mL 

DMF and sonicated for 30 min at room temperature. The 1,6-diethynylpyrene solution was then 

added to the SWCNT–N3 suspension dropwise. 1.0 mol% Copper(II) sulfate pentahydrate and 

5.0 mol% sodium L-ascorbate were added to this suspension as catalysts at room temperature 

and the resulting mixture was kept at 60 
o
C for 24 h. Finally, the reaction mixture was 

centrifuged twice with water, ethanol and dichloromethane in sequence and dried in vacuum. 

FTIR ν/cm
-1

: 3289 (CH triazole ring), 3070 (Aromatic CH), 1576 (C=C), 1180 Ar (C=C) 
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Figure 1. (A) The synthesis routes of 1,6-diethynylpyrene and covalently 1,6-diethynylpyrene 

bonded SWCNT-Pyrene 3D hybrid material (B) Proposed 3D structure of the target materials. 

 

2.3. Deposition of thin films and their characterization  

(A) 

(B) 
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Thin films of the hybrid were deposited by drop casting of their suspensions in dichloromethane. 

The average thickness of the deposited films, estimated by spectroscopic ellipsometry (Woolam 

M-2000V
TM

 rotating analyser spectroscopic ellipsometer) was about 100 nm.  

 

2.4. Characterization techniques 

The structure of the 1,6-diethynylpyrene compound was determined by different spectroscopic 

methods such as FT-IR, 
1
H-NMR, MALDI-TOF mass, fluorescence and UV–Visible. The novel 

SWCNT-Pyrene 3D hybrid material was characterized by FT-IR, Raman and UV-Visible 

spectroscopies, thermogravimetric analysis and scanning electron microscopy (SEM). FT-IR 

spectra were recorded on a Perkin Elmer Spectrum 100 spectrophotometer. Raman spectra were 

recorded with a Triplemate, SPEX spectrometer equipped with CCD detector in back-scattering 

geometry. 40 mW line of Ar-laser at 488 nm was used for the spectral excitation. 
1
H-NMR 

spectrum of 1,6-diethynylpyrene with tetramethylsilane (TMS) as an internal standard was 

recorded on a Varian 500 MHz spectrometer. The mass spectrum of this compound was recorded 

by a Matrix Assisted Laser Desorption Ionization (MALDI) BRUKER Microflex LT using 2,5-

dihydroxybenzoic acid (DHB) as matrix. UV-visible spectrophotometer (Varian 50-scan UV–

visible) in the range of 190-1100 nm was used to measure the absorption spectra. The 

morphology of the synthesized hybrid material was determined by FEI-Nova scanning electron 

microscopy (SEM) with high magnification (160,000X) and high voltage (10kV). High-

resolution transmission electron microscopy (HRTEM) images were obtained using a JEM-2010 

instrument at an accelerating voltage of 200 kV. The 3D hybrid films were prepared by 

evaporating a drop of hybrid dispersion in dichloromethane on a 200 mesh copper grid covered 

with a ‘‘holey’’ carbon film. Thermo-gravimetric analyses (TGA) were carried out using a 

Mettler Toledo STAR
e
 Thermal Analysis System at a rate of 10

o
C min

−1
 in nitrogen flow of 50 

mL min
−1

. Brunauer–Emmett–Teller (BET) surface area was measured using N2 
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adsorption/desorption at 77 K on a Quantachrome Instruments. Samples were pre-treated at 

150°C for 3 h under vacuum prior to nitrogen physisorption measurements. 

 

2.5. Sensor Properties 

The sensing performance of the films was studied against ammonia in the concentration range 

0.1-40 ppm, diluted with air. Pure commercial ammonia gas was used as an analyte source. Air 

was used as the dilution and carrier-gas source. The films were deposited onto platinum 

interdigitated electrodes (DropSens, G-IDEPT10) to test their conductivity changes upon 

interaction with the gaseous ammonia. The electrodes have the following dimensions; gap 

between digits is 10 μm; number of digits is 125x2 with a digit length of 6760 μm; cell constant 

is 0.0118 cm
-1

. The electrical resistance of the films was measured using Keithley 236 

electrometer by applying a constant dc voltage of 10 V. Before starting any measurements, the 

films were held for 10 min under air flow until the resistance reached a steady state value. NH3 

gas (0.1-40 ppm) was then diluted with air and injected into the measurement cell. All gas 

sensing measurements were carried out at the temperature of 22 
o
C. For humidity measurements, 

the wet carrier gas was prepared by bubbling the carrier gas through distilled water. The relative 

humidity (RH) inside the measurement cell was controlled with a commercially available 

humidity meter (МPЕ-202.013). 

 

3. Results and Discussion 

3.1. Spectral characterization of the materials 

The 
1
H NMR spectrum of the 1,6-diethynylpyrene showed well-resolved bands as revealed in 

Fig. 2. The signal belonging to the ethynyl CH proton was observed at 3.59 ppm as a single 

peak. The aromatic protons were observed at 8.11, 8.15 and 8.59 ppm as doublet peaks. 
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Figure 2. 
1
H NMR spectrum of 1,6-diethynylpyrene derivative in CDCl3. 

 

The MALDI-TOF mass spectrum of the 1,6-diethynylpyrene showed molecular ion peak 

at m/z = 250.23 as [M]
+
 supporting the proposed structure of this compound (Fig. 3).  

 

Figure 3. MALDI-TOF spectrum of 1,6-diethynylpyrene compound. 
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Fig. 4 shows FT-IR spectra of free 1,6-diethynylpyrene, SWCNT-N3 and covalently 

bonded SWCNTs-Pyrene 3D hybrid. The 1,6-diethynylpyrene compound exhibited vibration 

peaks at 3294 and 2097 cm
-1

 assigned to H-C≡C- and R-C≡C-R stretching vibrations. On the 

other hand, the substitution of the -N=N=N groups to SWCNTs was identified with observation 

of a peak at 2100 cm
-1

 for -N=N=N (azide) vibration in the FT-IR spectrum of SWCNTs-N3. 

The ≡CH peak for 1,6-diethynylpyrene and -N=N=N peak for SWCNT-N3 in the FT-IR spectra 

of these compounds disappeared after formation of the covalently bonded SWCNTs-Pyrene 3D 

hybrid material (Fig. 4). Additionally, the vibration peak for CH stretching of triazole ring was 

observed at 3289 cm
-1

 which provides a further proof for the functionalization of SWCNTs with 

1,6-diethynylpyrene group. On the other hand, a small peak for N=N=N (azide) vibration in the 

FT-IR spectrum of SWCNTs-Pyrene 3D hybrid material was observed because the azide groups 

remain at the end of the material. 

 

Figure 4. FT-IR spectra of 1,6-diethynylpyrene, SWCNTs-N3 and SWCNT-Pyrene 3D hybrid 

material. 
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Raman spectrum of SWCNT-Pyrene 3D hybrid is compared to that of pristine SWCNT 

as shown in Fig. 5. The ratio of intensities of the radial breathing modes (RBM), disorder (D) 

mode and graphite mode (G) are used to monitor carbon nanotubes functionalization [18]. The 

spectrum of SWCNT contains the typical disorder mode D at about 1344 cm
-1

, and the G band at 

1590 cm
-1

. In the case of SWCNT-Pyrene 3D hybrid the D mode shifts to 1339 cm
-1

 while the G 

mode shifts to 1583 cm
-1

. Comparison of the SWCNT-Pyrene 3D spectrum with the spectrum of 

pyrene derivative shows that the characteristic vibrations of pyrene moiety are shifted noticeably 

due to interaction with SWCNT. The ratio of the D band to the G band (ID/IG) has a value of 

0.045 in the spectrum of pure SWCNT, while ID/IG value is 0.060 in the SWCNT-Pyrene 3D 

spectrum. 

 

 

 

 

 

 

 

 

Figure 5. Raman spectra of pristine SWCNT and SWCNT-Pyrene 3D hybrid in the range 90-

1700 cm
-1

. 

 

The RBMs of SWCNT in the range of 158-304 cm
-1

 (Fig. 5) correspond to a distribution of 

SWCNT diameters in the range from 0.7 to 1.4 nm [19-20]. In the spectrum of SWCNT-

Pyrene 3D hybrid the RBMs at 179, 200, 225, 256, 284 and 302 cm
-1

 of SWCNT are shifted 

to 184, 202, 205, 229, 259, 287, 305 cm
-1

 and their intensities noticeably decrease. All these 

changes give clear indication to the functionalization of SWCNT with pyrene molecules. 
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While 1,6-diethynylpyrene compound is soluble in DMF, SWCNTs-Pyrene 3D hybrid 

material exhibited good dispersion in this solvent. UV–visible absorption spectra of 1,6-

diethynylpyrene and its hybrid material are shown in Fig. 6. The spectrum of the 1,6-

diethynylpyrene showed characteristic absorption in the bands at 340, 360, 380 and 393 nm in 

DMF. 

 

 

 

  

 

 

 

Figure 6. Optical absorption spectra of 1,6-diethynylpyrene compound and SWCNT-Pyrene 

3D hybrid in DMF. 

 

In the absorption spectra of SWCNT-Pyrene 3D hybrid, the broad peak with the 

maximum at 382 nm and the shoulder around 465 nm is shifted to higher wavelength 

compared to the bands of 1,6-diethynylpyrene. This change might be ascribed to the 

interaction between SWCNTs and pyrene derivative.  

 

3.2. Thermogravimetric analysis of the hybrid material 

Thermogravimetric analysis (TGA) was used to estimate the amount of 1,6-diethynylpyrene 

molecules covalently anchored on the surface of the carbon nanomaterials (Fig. 7). The TGA 

data shows a loss of weight about 4.32% for pristine SWCNTs, 10.52% for SWCNT-N3, 22.02% 

for SWCNTs-Pyrene 3D and 99.48% for 1,6-diethynylpyrene at 700 °C. The loss of weight 

observed for pristine SWCNTs between 200 °C and 700 °C may be due to the destruction of the 
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residual amorphous carbon still present in the nanotubes as well as the decarboxylation of the 

oxidized species. Weight loss due to the functional groups on SWCNTs is estimated to be 6.20 

and 11.50 % for SWCNT-N3 and SWCNTs-Pyrene 3D, respectively. The number of the azide 

groups or 1,6-diethynylpyrene molecules on the carbon nanomaterials was calculated as 

described in the literature [21]. The number of azide functional groups in SWCNT-N3 was 

estimated as 1 per 53 carbon atoms. A real ratio of the amount of 1,6-diethynylpyrene molecules 

covalently anchored on the surface of the nanotubes was 11.56% (11.50%/99.48%). It is 

estimated that the per 160 carbon atoms on SWCNT-Pyrene 3D hybrids contained one 1,6-

diethynylpyrene molecule according to the calculation of ((88.44%x250.29)/(11.56%x12)). 

 

Figure 7. Thermogravimetric analysis of SWCNT-Pyrene 3D hybrid material in comparison 

with pristine SWCNT, SWCNT-N3 and 1,6-diethynylpyrene. 

 

3.3. Microscopic characterisation of the hybrid material 

The morphology of the hybrid films was investigated by scanning electron microscopy (SEM). 

SEM images of SWCNT and SWCNT-Pyrene 3D films deposited by drop casting of their 

suspension in DMF are presented in Figs. 8a and 8b. SWCNT-Pyrene 3D hybrids demonstrate 

different surface morphology compared to bare SWCNT. The SWCNTs clearly exhibit nanotube 

features on the surface (Fig. 8a), while SWCNT-Pyrene 3D hybrids demonstrate a tendency to 
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form larger aggregates (Fig. 8b), which can be connected with covalent pyrene bridges between 

adjacent carbon nanotubes. HRTEM image of SWCNT-Pyrene 3D (Fig. 8(c)) shows a porous 

assembly of cross-linked carbon nanotubes with pores 1–2 nm in diameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. SEM images of the films of SWCNT (a), SWCNT-Pyrene 3D hybrid (b) and HRTEM 

image of SWCNT-Pyrene 3D hybrid (c). 

 

3.4. Brunauer–Emmett–Teller (BET) analysis  

Brunauer–Emmett–Teller (BET) surface area was measured using N2 adsorption/desorption at 77 

K. The BET surface area of both the pristine SWCNTs and SWCNT-Pyrene 3D hybrid material 

were measured and the results were compared for determination of the effect of 3D pyrene 

hybrid structure on the surface area. While the surface area of pristine SWCNTs was found 835 

m
2
g

-1
, this value increased to 991 m

2
g

-1
 for SWCNT-Pyrene 3D hybrid material. According to 
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BET results, SWCNT-Pyrene 3D hybrid material has more surface area than pristine SWCNTs 

resulted more NH3 adsorption. 

 

3.5. Sensor properties 

Gas detection study was carried out for thin films of SWCNT and SWCNT-Pyrene 3D films 

deposited by drop casting onto glass substrates with interdigitated Pt electrodes. The resistance 

value of the obtained hybrids was around 26 kΩ for SWCNT-Pyrene 3D, which is slightly higher 

than that measured for pristine SWCNT layers (~20 kΩ).  

Fig. 9 demonstrates a typical sensor response (R-Ro)/Ro, where Ro is the baseline resistance of 

the sensor layer of SWCNT or SWCNT-Pyrene 3D hybrid. Injection of NH3 gas into the 

chamber leads to a noticeable increase of the films resistance. This type of response is typical for 

various SWCNT hybrids obtained by covalent and non-covalent functionalization with metal 

phthalocyanines and other molecules possessing p-type conductivity. Reversible sensor response 

was observed both in the case of SWCNT and SWCNT-Pyrene 3D hybrid films. The normalized 

sensor response vs NH3 concentration is given in Fig. 10. The sensor response of SWCNT-

Pyrene 3D hybrid film was more than 9 times higher than that of the pristine SWCNT on 

exposure to 10 ppm NH3. It is suggested that the linking groups in SWCNT-Pyrene 3D hybrids 

prevent formation of close packing of SWCNT in bundles and therefore make the diffusion and 

penetration of NH3 molecules inside the 3D structure easier. The exposure area becomes larger 

in the case of 3D hybrids. On the other hand the aromatic linking groups result in the formation 

of common aromatic system and therefore facilitate charge transfer between neighbor nanotubes 

which can also lead to an enhancement of the sensor response.  

The response time is almost the same for SWCNT-Pyrene 3D and pristine SWCNT sensors and 

varies from 5 to 15 s in dependence on the NH3 concentration. The recovery time for the sensor 

based on SWCNT-Pyrene 3D hybrid increased from 4 to 20 s when ammonia concentration 

increased from 0.5 to 10 ppm. The value of the recovery time for SWCNT-Pyrene 3D films is 2 
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times higher on the average than that for the pristine SWCNT films, however the value is still 

good for gaseous detection; e.g. for ammonia detection with the concentration of 10 ppm it is 

equal to 20 s in the case of SWCNT-Pyrene 3D film, while a value of ca. 10 s is observed for the 

pristine SWCNT film (Fig. 9) for the same gas concentration. The minimal detected 

concentration of NH3 in the case of SWCNT films was found to be 10 ppm while that for 

SWCNT-Pyrene 3D was 0.5 ppm.  

 

 

 

 

 

 

 

Figure 9. Normalized sensor response of the films of SWCNT-Pyrene 3D (a) and pristine 

SWCNT (b) vs NH3. 

 

 

 

 

 

 

 

 

Figure 10. Normalized sensor response vs NH3 concentration. 
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To investigate selectivity of the investigated films change in the resistance of both 

pristine SWCNT and SWCNT-Pyrene 3D films was measured in the presence of ammonia (10 

ppm), carbon dioxide (100 ppm), ethanol (500 ppm), toluene (500 ppm), dichlorobenzene (5000 

ppm), chloroform (2000 ppm) and NO2 (0.5 ppm) at room temperature. The interaction of the 

sensing films with these analytes leads to the increase of the resistance of SWCNT and SWCNT-

Pyrene 3D films. A comparative plot of the responses given by the sensor layers to ammonia, 

carbon dioxide, NO2 and volatile organic compounds is shown in Fig. 11. SWCNT-Pyrene 3D 

film shows higher sensitivity to carbon dioxide and volatile organic compounds compared to 

pristine SWCNT. At the same time its sensitivity to ammonia is noticeably higher compared to 

the other investigated analytes. This fact makes this material promising for the detection of 

ammonia in the presence of these analytes.  
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Figure 11. Responses of pristine SWCNT and SWCNT-Pyrene to ammonia (10 ppm), carbon 

dioxide (100 ppm), ethanol (500 ppm), toluene (500 ppm), dichlorobenzene (5000 ppm), 

chloroform (2000 ppm) and NO2 (0.5 ppm). 

 

The interference effect of oxidizing gases has also been studied using NO2 as an example. In 

contrast to NH3, CO2 and volatile organic compounds the introduction of NO2 (0.5-5 ppm) to the 

gas cell leads to a decrease in the resistance of the CNT based gas sensor as demonstrated in Fig. 
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12 where the sensor is shown to exhibit a strong response towards NO2. The recovery time is 

much longer than in the case of ammonia vapors; the resistance does not reach the initial 

baseline value when the experiments are carried out at room temperature. The problem of 

recovery of SWCNT-based sensors upon interaction with NO2 were also highlighted by J. Li et 

al. [8] and was explained by the higher bonding energy between SWCNTs and NO2. This issue 

makes it difficult for the detection of NH3 in the presence of such oxidizing gas as NO2, however 

SWCNT-Pyrene 3D films can be used for the selective detection of ammonia in the presence of 

reducing gases and volatile organic compounds.  

 

 

 

 

 

 

 

Figure 12. Normalized sensor response of the film of SWCNT-Pyrene 3D toward NO2. 

 

The other important interfering analyte in the ammonia monitoring is water vapor. Some 

theoretical modeling and experimental data show that the H2O molecule has the same reducing 

effect of NH3 in the interaction with carbon nanotubes, yielding a charge transfer to CNTs [22]. 

These charge transfer effects both in the case of H2O and NH3 lead to an increase in the 

resistance of the CNT based gas sensor [23-24], hindering the selective detection of ammonia 

molecules. To evaluate this interference effect, the sensor performance of SWCNT Pyrene 3D 

hybrid films was studied at different humidity. The measurements were repeated in the same way 

in the presence of the relative humidity (RH) of 40 and 70%. The response curves of SWCNT-
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Pyrene 3D films to ammonia vapor at the concentration range of 0.5-2 ppm, measured at 

different RH are given in Fig. 13. 

 

Figure 13. Normalized sensor response of SWCNT- Pyrene 3D films vs NH3 measured at RH of 

0 (a), 40 (b) and 70% (c). 

 

Fig. 13 shows that the initial conductivity of SWCNT-Pyrene 3D film increases with the increase 

of the RH. The value of the sensor response to dry NH3 vapour and to NH3 vapour at the RH 

40% is almost the same, whereas it decreases in 1.6-2 times with increasing the RH to 70%. The 

main reason for the decrease in sensitivity appears to be a competitive sorption of ammonia and 

water molecules on the surface of the sensing layer.  

The sensor reliability is also demonstrated by the reproducibility and stability exhibited by the 

active film. The reproducibility of SWCNT-Pyrene 3D films was tested by repeating the 

measurements of their response to ammonia (10 ppm) no less than 30 times. It was shown that 

the film response was almost constant confirming the reproducibility of the sensor films. The 

relative standard deviation between the repeated measurements was estimated to be 1.9 %. In 

order to determine the long-term stability of sensors based on SWCNT-Pyrene 3D films, the 

sensor response of the same film to ammonia was monitored every 3 days over a period of one 

month; films subjected to such continuous exposure of 10 ppm ammonia over this prolonged 
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period have retained 95% of their initial resistance demonstrating highly acceptable sensor 

stability.  

 

Conclusions 

In this work, ammonia gas sensing devices based on SWCNT covalently functionalised  

with 1,6-diethynylpyrene have been successfully fabricated as three dimensional (3D) network 

structure for the first time. Electrical sensor response of SWCNT-Pyrene 3D hybrid material 

toward low concentrations of ammonia (0.1-40 ppm) has been demonstrated. It was shown that 

the SWCNT-based material covalently functionalised with 1,6-diethynylpyrene exhibits an 

increase of the sensor response toward NH3. The detection limit of SWCNT films was found to 

be 10 ppm while that of SWCNT-Pyrene 3D is 0.5 ppm. The sensing performance of SWCNT-

Pyrene 3D hybrid material was also studied by measuring changes in the films' conductivity at 

different relative humidity values. It was shown that the value of the sensor response to dry NH3 

vapour and to NH3 vapour at the RH 40% is almost the same; however it decreases by 1.6-2 

times with increasing RH to 70%. SWCNT-Pyrene 3D films are shown to be promising active 

layers for the selective detection of ammonia in the presence of reducing gases and volatile 

organic compounds.  
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Figure Captions 

Figure 1. (A) The synthesis routes of 1,6-diethynylpyrene and covalently 1,6-diethynylpyrene 

bonded SWCNT-Pyrene 3D hybrid material (B) Proposed 3D structure of the target materials. 

Figure 2. 
1
H NMR spectrum of 1,6-diethynylpyrene derivative in CDCl3. 

Figure 3. MALDI-TOF spectrum of 1,6-diethynylpyrene compound. 

Figure 4. FT-IR spectra of 1,6-diethynylpyrene, SWCNTs-N3 and SWCNT-Pyrene 3D hybrid 

material. 

Figure 5. Raman spectra of pristine SWCNT and SWCNT-Pyrene 3D hybrid in the range 90-

1700 cm
-1

. 

Figure 6. Optical absorption spectra of 1,6-diethynylpyrene compound and SWCNT-Pyrene 

3D hybrid in DMF. 

Figure 7. Thermogravimetric analysis of SWCNT-Pyrene 3D hybrid material in comparison 

with pristine SWCNT, SWCNT-N3 and 1,6-diethynylpyrene. 

Figure 8. SEM images of the films of SWCNT (a), SWCNT-Pyrene 3D hybrid (b) and HRTEM 

image of SWCNT-Pyrene 3D hybrid (c). 

Figure 9. Normalized sensor response of the films of SWCNT-Pyrene 3D (a) and pristine 

SWCNT (b) vs NH3. 

Figure 10. Normalized sensor response vs NH3 concentration. 

Figure 11. Responses of pristine SWCNT and SWCNT-Pyrene to ammonia (10 ppm), carbon 

dioxide (100 ppm), ethanol (500 ppm), toluene (500 ppm), dichlorobenzene (5000 ppm), 

chloroform (2000 ppm) and NO2 (0.5 ppm). 

Figure 12. Normalized sensor response of the film of SWCNT-Pyrene 3D toward NO2. 

Figure 13. Normalized sensor response of SWCNT- Pyrene 3D films vs NH3 measured at RH of 

0 (a), 40 (b) and 70% (c). 
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