
Validating directed graphs by applying formal concept
analysis to conceptual graphs

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456> and POLOVINA,
Simon <http://orcid.org/0000-0003-2961-6207>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/16869/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ANDREWS, Simon and POLOVINA, Simon (2017). Validating directed graphs by
applying formal concept analysis to conceptual graphs. In: The IJCAI-17 Workshop
on Graph Structures for Knowledge Representation and Reasoning (GKR 2017 @
IJCAI), Melbourne, Australia, 19-25th August.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Validating directed graphs by applying Formal

Concept Analysis to Conceptual Graphs

Simon Andrews and Simon Polovina

Conceptual Structures Research Group, Communication and Computing Research
Centre | Department of Computing, Sheffield Hallam University, Sheffield, UK

s.andrews@shu.ac.uk, s.polovina@shu.ac.uk

Abstract. Although tools exist to aid practitioners in the construction
of directed graphs typified by Conceptual Graphs (CGs), it is still quite
possible for them to draw the wrong model, mistakenly or otherwise.
In larger or more complex CGs it is furthermore often difficult–without
close inspection–to see clearly the key features of the model. This paper
thereby presents a formal method, based on the exploitation of CGs as
directed graphs and the application of Formal Concept Analysis (FCA).
FCA elucidates key features of CGs such as pathways and dependencies,
inputs and outputs, cycles, and joins. The practitioner is consequently
assisted in reasoning with and validating their models.

1 Introduction

A directed graph–or “digraph”–is a graph whose edges have direction and are
called arcs [7,9]. Arrows on the arcs are used to encode the directional informa-
tion: an arc from vertex A to vertex B indicates that one may move from A to
B but not from B to A. Such graphs for example are used in computer science
as a representation of the paths that might be traversed through a program, or
in higher-level conceptual models where concepts are related to each other by
relations that gain additional semantics (i.e. meaning) by defining the direction
between the source and target concepts. A classic illustration is a cat that sits
on a mat [14]. In this simple example ‘sits-on’ is the semantic relation where the
direction goes from cat to mat and not vice versa.

CGs (Conceptual Graphs) are digraphs that enable modellers to express
meaning in a form that is logically precise whilst being humanly readable, and
serve as an intermediate language for translating between computer-oriented
formalisms and natural languages [11,15]. CGs graphical representation thereby
serve as a readable, but formal specification language for systems design or other
practitioners using this approach [8]. CGs are however drawn by hand. Although
tools such as CoGui1 and CharGer2 exist to assist the practitioner in creating
a well-formed CG that adheres to the prescribed grammar and syntax, there is
no guarantee that a model created using CGs is correct in terms of its validity.

1 http://www.lirmm.fr/cogui/
2 http://charger.sourceforge.net/

The modeller may have a misconception of the system being modelled or may
simply make mistakes in its construction–things that still conform to the syntax
and grammar but result in an invalid model.

It can be difficult to explore and validate a large and complex CG by in-
spection. It is this problem that this paper begins to address by providing an
automated method whereby key features of CGs are captured, reported and
visualised. The modeller would thus be assisted in exploring and validating
their CGs. The method makes use of the inherent direction of Concept-Relation-
Concept triples in CGs to transform these triples into binary relations and thus
expose them to Formal Concept Analysis (FCA) [6]. The process is automated
in a tool called CGFCA and has two stages; firstly parsing a CG file (in the ISO
common logic cgif format [15]) to extract the CG triples and secondly, convert-
ing these triples into corresponding binary relations that accentuate the directed
pathways in the original CG, as described next in section 2. The triples-to-
binaries function is carried out using an implementation of the Triples2Binaries

algorithm, specifically described in subsection 2.1.

2 Transforming CG digraphs: triples into binary relations

If triples are extracted from a CG in the form Source Concept → Relation →

Target Concept, each such triple can easily be represented as a corresponding
binary relation i.e. Source Concept-Relation, Target Concept. Where the Tar-
get Concept then becomes a Source Concept for a following Relation, this can
be captured in additional binary relations, where the original Source Concept-
Relation is paired with subsequent Target Concepts. To illustrate the source-

Fig. 1. Simple CG Fig. 2. FCL for Simple CG

target structure, figure 1 shows a simple CG with the CG Concepts, [Cat],
[Mat] and [Colour: Grey]. [Cat] and [Mat] are linked by the CG Rela-
tion (sits-on) and [Mat], [Colour: Grey] are linked by (has-attribute).
(In simple English, the CG describes a cat that sits on a grey mat.) We can
say that the target concept [Mat] is dependent on the source concept-relation

pair [Cat]→(sits-on) and the target concept [Colour:Grey] is dependent on
its source concept-relation pair [Mat]→(has-attribute) (or alternatively, the
source concept-relation pair [Cat] → (sits-on) results in the target concept

[Mat] and the source concept-relation pair [Mat]→(has-attribute) results in
the target concept [Colour: Grey]). The CG triple ([Cat], (sits-on), [Mat])
can be converted into the binary relation ([Cat]-(sits-on), [Mat]). Likewise
the CG triple ([Mat], (has-attribute), [Colour: Grey]) can be converted
into the binary relation ([Mat]-(has-attribute), [Colour: Grey]). There is
also a binary relation between [Cat] and [Colour: Grey] indirectly through
[Cat]-(sits-on). Hence [Colour: Grey] also depends (indirectly) on [Cat],
which is of course sitting on that mat.

Simple CG Cat sits-on Mat has-attribute

Cat

Mat ×

Colour : Grey × ×

Fig. 3. The simple CG as a cross-table

The set of binary relations can be simply represented in a cross-table and fig-
ure 3 shows the corresponding cross-table for this simple example, with rows rep-
resenting CG Concepts and columns CG Source Concept-Relations. The cross-
table is known as a Formal Context in FCA, so by converting CGs into these
binary relations, FCA can then be applied. Figure 2 displays the resulting Formal
Concept Lattice (FCL). This approach was derived after we compared it with
Wille’s mapping of CGs to FCA (‘Concept Graphs’) in an earlier study [3, 16].

2.1 A triples-to-binaries algorithm

Figure 4 is an algorithm, Triples2Binaries, that along with its subroutine Ad-

dBinary (Figure 5), converts a set of triples, T , into a corresponding set of
binaries, B , exploiting the direction in the triples as explained above. It is a
generalised form of the CGtoFCA algorithm previously presented [3]. Whilst its
application to CGs is the focus of this paper, the more general form makes it
applicable to directed triples obtained from any source, including UML, RDF,
OWL, Entity Relation Diagrams and linked data. Triples2Binaries also includes
some refinements not present in CGtoFCA, namely; improved efficiency by skip-
ping repeated binaries and the ability to detect cycles. The main algorithm,
Triples2Binaries, simply iterates through the set of triples, T , sending each
triple, (a, b, c) to the subroutine AddBinary where the corresponding binary
((a, b), c) is added to the set of binaries, B . Line 2 of AddBinary skips any re-
peated binaries. Line 4 performs a second iteration of the set of triples to detect
indirect binaries in line 5: given two triples, (a, b, c) and (i , j , k), if c = i there
is an indirect link and thus AddBinary is called recursively to add the resulting

begin1

foreach (a, b, c) ∈ T do2

AddBinary(a, b, c);3

end4

Fig. 4. Triples2Binaries(T)

begin1

if ((a, b), c) /∈ B then2

B ← B ∪ {((a, b), c)}3

foreach (i , j , k) ∈ T do4

if c = i then5

if a = k then6

CycleDetected !7

AddBinary(a, b, k)8

end9

Fig. 5. AddBinary(a, b, c)

binary ((a, b), k) and repeat the process to detect further indirect relations. Line
6 provides the test for the presence of a cycle: if a source, a, becomes its own
target, k , (directly or indirectly) then a cycle is present. It can be determined by
an implementation of the algorithm what exactly is to be done at this point; for
example, to report or document the cycle in some way. Note that the algorithm
does not use the detection of a cycle as a terminating condition for the recur-
sion - the algorithm is allowed to complete the cycle and add the corresponding
binary. It is the test for repeated binaries in line 2 that does the termination for
cycles, thus preventing an endless loop. This is because the subsequent binary
following the completion of the cycle will be a repeat.

3 Highlighting key features of a CG

When the CGFCA software implementation3 of CGtoFCA parses a CG cgif it
creates a set of CG Source Concept, Relation, Target Concept triples (corre-
sponding to the set of triples, T , in the Triples2Binaries algorithm, above).
Once the set of triples has been created the implementation of Triples2Binaries
in CGFCA creates the set of binaries as described above, in the form of an FCA
formal context and outputs the corresponding cxt file. During the triples-to-
binaries process, CGFCA detects and reports the following CG features: Inputs,
outputs and cycles. The formal context output by CGFCA can then be visualised

3 https://sourceforge.net/projects/cgfca/

as a Formal Concept Lattice (FCL) using an appropriate tool, such as Concep-
tExplorer (ConExp)4 or as a Formal Concept Tree using In-Close [1, 2]. Such
visualisations clearly highlight further CG features e.g. cycles and co-referent
joins. The CG features are described in the following sub-sections, together with
the way they are highlighted by CGFCA and their respective FCL.

3.1 Paths and Dependencies

Figure 6 and 7 respectively illustrate the CG and FCL for the dependencies de-
scribed earlier in a larger example–as well as two paths–between the source con-
cept [Person: Simon] and the target concept [City: London]. As well as the
intermediate target concepts that in turn become source concepts (i.e. [Coach:
#564] and [Hotel: OpenSky]), this example shows CG referents, namely Si-
mon, #564, OpenSky and London. ([Colour: Grey] from figure 2 was also a
CG concept with a referent.) The referents are instances of their respective type
label in the CG concept e.g. London is a referent of the type label City, and #564
the numeric identifier for a Coach that in the context of figure 6 could be read
as the number of the coach that goes to London. In addition to the direct de-

Fig. 6. Paths and Dependencies CG Fig. 7. Paths and Dependencies FCL

pendencies such as [Hotel: OpenSky]) on [Person: Simon]-(books) there are
indirect dependencies detected in accordance with AddBinary line 4 described
earlier in subsection 2.1. These are: a) [City: London]) on [Person: Simon]-
(books), and b) [Person: Simon]-(travels-to) through the other path that
has the intermediate concept [Coach: #564]. The starting (or input) concepts
and ending (or output) concepts are usefully displayed by the CGFCA software
i.e. Input concepts: ”Person: Simon”. Output concepts: ”City: London”. In simple
terms, Simon’s trip to London depends on travelling there by coach and booking
into the OpenSky hotel. Of course in this still-simple example this knowledge can
be gleaned from the CG alone thereby obviating the need for CGFCA. However

4 http://conexp.sourceforge.net/

it is more likely that these patterns will appear in larger CGs where it is not so
evident, perhaps unknowingly as they are drawn by hand and obfuscated by the
size of the larger model. CGFCA and the consequent computer-generated FCL
will highlight within such digraphs the ‘diamond’ looking patterns that represent
multiple pathways thus alerting their existence–hence validity–to the modeller.

3.2 Cycles

It is natural that digraphs may contain one or more cycles. Figure 8 and 9 re-
spectively illustrate an example of a CG and FCL that is a cycle. Note that this

Fig. 8. CG that is a cycle Fig. 9. FCL of cycle

example is similar to the previous paths and dependencies example in figure 6
and 7. This time the direction of the hotel booking path goes in the opposite
direction, thus creating the cycle. The renaming of the relations i.e. location
to location-of and books to booked-by correctly reflect the new direction. It
is common however to name or use relations that cause cycles to occur inadver-
tently such as possibly in this example. A cycle may of course be desired, but
the modeller will in any event be alerted to its validity by the FCL (here figure
9) in accordance with AddBinary line 6 described earlier in subsection 2.1. The
CGFCA output highlights why the figure 9 lattice looks as it does: Cycle involv-

ing ”Hotel: OpenSky” ”Person: Simon” ”Coach: #564” ”City: London”. There are

no input concepts. There are no output concepts.

3.3 Joins

Figure 10 and 11 respectively illustrate the CG and FCL for concepts that are
co-referent. Co-referents occur when concepts have the same referent, which in

Fig. 10. CG with coferent concept Fig. 11. FCL with coferent concept

this case is Gywn in Pet and Cat. Where a source and target concept are directly
linked by more than one relation, the associated relations are in effect co-referent.
This behaviour is highlighted by figure 12 and 13. The CGFCA parser detects

Fig. 12. CG with coferent relations Fig. 13. FCL with coferent relations

co-referent CG Concepts and co-referent CG Relations and because they refer
to the same object or instance it joins the concepts and relations automatically.
Furthermore it concatenates the concept type or relation labels, using ‘;’ as the
delimiter. This is evident in the FCL for figure 11 (i.e. Pet;Cat) and 13 (i.e.
sleeps-on;sits-on;prefers). This approach is akin to the maximal common
subtype in CGs (or intersection); thus Gywn is a) a Pet Cat, and b) sleeps, sits
on, and likes the Mat5.

Another common error (particularly in larger or more complex models) is to
give different types the same referent by mistake. Take for example the CG figure
12. In that figure let’s change [Mat: Gwyn’s] to [Mat: Gwyn], assuming that it
was mistyped by the modeller in the first place. As a result, [Mat: Gwyn] will
inadvertently join with the [Cat: Gwyn] and [Pet: Gwyn] CGs from figure 10.
Figure 14 shows the CGs for this scenario including the mistake, and figure 15
demonstrates the result. Now Gwyn is not only a Pet Cat but a Mat too! And
Bumbles sleeps-on, sits-on and prefers Gwyn as a Mat (rather than Gwyn’s Mat)
while Gwyn sits on another Mat, all of which is nonsensical as the FCL reveals.

5 Note Mat here has a latent referent, in accordance with CGs theory; hence we can
simply refer to it through the definite article ‘the’.

Fig. 14. CG with coferent relations Fig. 15. Mistakenly Joined CGs FCL

Like the previous pathways and cycles examples, the practitioner is immediately
presented with a need to reason with and validate their models.

3.4 Real Examples

Previous work has illustrated earlier versions of CGFCA’s value in the business
modelling domain [12]. A comprehensive, non-specific domain reference example
is planned in an extended version of this paper, along with other CG features.
Nonetheless the simple examples presented here show how digraphs can be val-
idated through Triples2Binaries as exemplified by CGFCA.

4 Concluding Remarks and Further Work

As well as providing validation, the FCL representation of CGs are arguably more
readable. Arcs in a CG can lead in any direction and in a large, complex CG it
can be difficult to trace and compare pathways through it, even more so where
there are co-referent links. All FCL pathways are aligned in a top-to-bottom
(inputs to outputs), hierarchical manner and co-referents can be automatically
joined to make more apparent their connections and place in the graph.

Future work will develop the representative exemplar as a worked example
as stated above; a worthwhile endeavour given the value demonstrated by this
paper. The exemplar will include n-ary as well as binary relations. Furthermore
since we have set the context as validating digraphs through triples to binaries
rather than just CGs, further work includes directed triples modelled by prac-
titioners in UML, RDF, OWL, Entity Relation Diagrams and linked data as
alluded to earlier.

CGFCA originated with a comparative study to Wille’s Concept Graphs as
stated earlier [3, 16]. CGFCA–thus Triples2Binaries–is however now at a level
of maturity that it can be usefully compared more widely with other FCA ap-
proaches to triple-based structures, such as Relational Concept Analysis (RCA),

EL-Implications and Graph-FCA [4,5,13]. Extensive comparative studies in this
arena already exist, pre-CGFCA [10]. A thread of further work is therefore re-
quired to discover the comparative benefits of each approach, perhaps leading to
how they may best work together in validating directed graphs through FCA.

References

1. Simon Andrews. In-close2, a high performance formal concept miner, pages 50–62.
Conceptual Structures for Discovering Knowledge. Springer, 2011.

2. Simon Andrews and Laurence Hirsch. A tool for creating and visualising formal

concept trees, volume 1637 of CEUR Workshop Proceedings, pages 1–9. 2016.
3. Simon Andrews and Simon Polovina. A Mapping from Conceptual Graphs to For-

mal Concept Analysis, pages 63–76. Conceptual Structures for Discovering Knowl-
edge. Springer, 2011.

4. Franz Baader and Felix Distel. A Finite Basis for the Set of EL-Implications

Holding in a Finite Model, volume 4933 of Lecture Notes in Artificial Intelligence,
pages 46–61. Springer, 2008.

5. Sébastien Ferré and Peggy Cellier. Graph-FCA in Practice, pages 107–121. Springer
International Publishing, Cham, 2016.

6. Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathematical foun-

dations. Springer Science & Business Media, 2012.
7. Frank Harary. Structural models: An introduction to the theory of directed graphs.
{John Wiley & Sons Inc}, 1965.

8. Pascal Hitzler and Henrik Scharfe. Conceptual Structures in Practice. CRC Press,
2009.

9. Kenneth R. Koehler. Directed graphs. http://kias.dyndns.org/comath/33.html,
2012.

10. Jonas Poelmans, Dmitry I. Ignatov, Sergei O. Kuznetsov, and Guido Dedene. Re-
view: Formal concept analysis in knowledge processing: A survey on applications.
Expert Syst. Appl., 40(16):6538–6560, November 2013.

11. Simon Polovina. An Introduction to Conceptual Graphs, pages 1–15. Conceptual
Structures: Knowledge Architectures for Smart Applications, July 2007, Sheffield,
UK. Springer, 2007.

12. Simon Polovina, Hans-Jürgen Scheruhn, Stefan Weidner, and Mark von Rosing.
Highlighting the Gaps in Enterprise Systems Models by Interoperating CGs and

FCA, pages 46–54. Proceedings of the Fifth Conceptual Structures Tools and
Interoperability Workshop (CSTIW 2016). CEUR-WS, 2016.

13. Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli, and Petko
Valtchev. Relational concept analysis: mining concept lattices from multi-relational
data. Annals of Mathematics and Artificial Intelligence, 67(1):81–108, 2013.

14. John F. Sowa. Conceptual graph examples.
http://www.jfsowa.com/cg/cgexampw.htm.

15. John F. Sowa. Conceptual Graphs, pages 213–237. Handbook of Knowledge Rep-
resentation, Foundations of Artificial Intelligence. Elsevier, Amsterdam, volume 3
edition, 2008.

16. Rudolf Wille. Conceptual Graphs and Formal Concept Analysis, pages 290–303.
ICCS ’97. Springer-Verlag, London, UK, UK, 1997.

