
Effect of chamber pressure on defect generation and their 
influence on corrosion and tribological properties of 
HIPIMS deposited CrN/NbN Coatings

BISWAS, Barnali, PURANDARE, Yashodhan <http://orcid.org/0000-0002-
7544-9027>, ARUNACHALAMSUGUMARAN, Arunprabhu 
<http://orcid.org/0000-0002-5087-4297>, KHAN, Imran and HOVSEPIAN, 
Papken <http://orcid.org/0000-0002-1047-0407>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/16805/

This document is the Accepted Version [AM]

Citation:

BISWAS, Barnali, PURANDARE, Yashodhan, ARUNACHALAMSUGUMARAN, 
Arunprabhu, KHAN, Imran and HOVSEPIAN, Papken (2018). Effect of chamber 
pressure on defect generation and their influence on corrosion and tribological 
properties of HIPIMS deposited CrN/NbN Coatings. Surface and Coatings 
Technology, 336, 84-91. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Effect of chamber pressure on defect generation and their influence on corrosion and 

tribological properties of HIPIMS deposited CrN/NbN Coatings 

Barnali Biswas
 a,1

, Y. Purandare
 1

, A. Sugumaran
 1

, Imran Khan
 2

 and Papken Eh. Hovsepian
 1

 

1
National HIPIMS Technology Centre, Materials and Engineering Research Institute, 

Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, United 

Kingdom 

2
Zimmer-Biomet UK Limited, Dorcan Industrial Estate, Murdoch Road, Swindon SN3 5HY, 

United Kingdom 

a) 
Corresponding author: Barnali.Biswas@student.shu.ac.uk  

 

Abstracts: It has been reported that compared to state-of-the-art technologies, High Power 

Impulse Magnetron Sputtering produces very dense and droplet free coatings due to the high 

plasma density and ionisation rate. However, thorough investigation of the coating 

morphology by Scanning Electron Microscopy, optical microscopy and other surface analysis 

methods revealed the existence of various types of coating defects. 

This study reports the influence of chamber pressure in particular on defect formation in 

CrN/NbN nanoscale multilayer coatings. The coating series was deposited using combined 

HIPIMS/UBM technique while varying the total chamber pressure from 0.2 Pa to 1 Pa. Four 

types of defects were identified, namely, nodular, open void, cone-like and pinhole. Defect 

density calculations showed that the coating produced at the lowest pressure, 0.2 Pa, had the 

lowest defect density of 0.84%. 

As expected coating corrosion properties improved linearly with decreasing defect density. 

Potentiodynamic polarisation corrosion studies revealed that in the potential range of - 300 

mV to + 300 mV, the current density decreased with decreasing defect density (from 5.96% 

to 0.84%). In contrast, pin-on-disk tribology tests at room temperature demonstrated that the 

tribological properties of the coatings deposited at different chamber pressures were 

dependent on the crystallographic orientations and on the nature of the oxides formed at the 
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tribological contact. Coatings with (200) crystallographic orientation had lower wear rates (  

1.6×10
-15

 m
3
N

-1
m

-1
) whereas coating with (111) crystallographic orientation had the highest 

wear rate (2.6×10
-15

 m
3
N

-1
m

-1
). Friction properties were influenced by the tribolayer formed 

during the tribological tests. 

However, for the coatings deposited at same chamber pressure of 0.35 Pa but with different 

defect densities (due to the difference in chamber cleanliness), the friction behaviour was 

directly influenced by the coating defects. The friction co-efficient (μ) decreased by a factor 

of two from 0.48 to 0.25 when the defect density decreased from 3.18% to 1.37%. 

  



1. Introduction: 

Physical vapour deposited (PVD) hard transition metal nitride coatings have been 

successfully used for industrial applications. CrN, TiN and NbN coatings especially have 

shown notable protective properties against corrosion and wear [1–3]. Moreover, it has been 

reported that multilayer nitride coatings deposited by reactive magnetron sputtering can 

improve coating properties. For example TiN/VN and TiN/NbN multilayer coatings have 

shown high coating hardness whereas, TiN/CrN and CrN/NbN both have improved corrosion 

resistance and reduced wear rates due to their multilayer structures [4–7]. 

Recently, new generation PVD technique High Power Impulse Magnetron Sputtering 

(HIPIMS) has been used for depositing multilayer CrN/NbN coatings. Due to its high plasma 

density and ionisation rate, HIPIMS has been found to be effective in producing very dense 

coatings compared to state-of-the-art technologies [8–10]. Nevertheless, HIPIMS can 

produce homogeneous coatings on complex-shaped substrates which is not achievable by 

conventional sputtering deposition due to its anisotropic deposition flux [11]. Due to the 

denser microstructure and smaller grain size, HIPIMS deposited coatings exhibited lower 

surface roughness, higher hardness, improved adhesion, excellent wear and corrosion 

resistance [12–14]. Although the deposition rate during the HIPIMS process is quite low, this 

drawback can be eradicated by combining HIPIMS with the Unbalanced Magnetron 

Sputtering (UBM) process [15]. 

Additionally, previous research revealed that HIPIMS generated plasma is free from the 

droplet phase [8–10,15,16]. For the HIPIMS process, applied power is not constant; rather 

HIPIMS is associated with a pulsed power supply where the peak power exceeds the average 

power by typically two orders of magnitude [10]. The supply of immense high power in very 

short pulses (impulse) enhances the generation of metal ions (M
+
) and the lower average 



power prevents droplet formation. Thus, the deposited coatings can be free from droplet 

related defects. 

However, detailed morphological investigation of HIPIMS coatings still shows some 

nanostructured defects. Any kind of growth defects are undesirable as these can restrain the 

coating functionality [17–22]. It can affect the surface roughness and surface finish, thus the 

tribological performance of the coatings can also be affected [18,19]. Nevertheless coating 

defects like pores, holes and voids can expose the substrate material to the corrosive media 

and accelerate the corrosion process [21,22]. Therefore, for improved and advanced industrial 

applications such as cutting tool and biomedical, a detailed understanding about coating 

defects and their influence on coating performance is very crucial. 

Deposition parameters such as deposition time, substrate temperature and bias voltage are 

influential on the coating growth mechanism [16,23–27]. Therefore, these parameters could 

also affect the coating defect formation. In addition to that, chamber pressure also has strong 

influence on coating properties especially for reactive deposition processes [28–30]. 

This research was aimed to study the impact of chamber pressure on defect generation and 

the subsequent effect of defects on coating performance. Both the corrosion and tribological 

performances of CrN/NbN coatings (deposited by Arc or conventional magnetron sputtering 

techniques) have already been investigated [21,22,31,32]. The benefits of using HIPIMS over 

conventional PVD to deposit CrN/NbN have been also demonstrated [16,33,34]. However, 

the impact of defects on the coating performance of HIPIMS deposited CrN/NbN was 

understudied and so far, very little attention was given towards the coatings defects 

associated with HIPIMS. These two reasons were the inspiration for the present work. 

 

 



2. Experimental Details 

2.1 Coating deposition: 

An industrial sized (1 m
3
) Hauzer 1000 four cathode PVD machine enabled with HIPIMS 

power supplies (Hüttinger Elektronik Sp. z o.o., Warsaw, Poland) and an advanced bias 

power supply (with active arc suppression units on cathode and substrate bias supplies) was 

used to deposit CrN/NbN nano-structured multilayer coatings. The deposition system was 

furnished with two Chromium (Cr) and two Niobium (Nb) targets (sized 600 x 200 mm). To 

enhance the adhesion of the coating with the substrate, HIPIMS plasma discharge enriched 

with Cr ions was used to pre-treat the surfaces of the substrate before coating deposition [35]. 

While depositing the coatings, UBM-DC was combined with HIPIMS to achieve a higher 

deposition rate [15]. All multilayer CrN/NbN coatings were produced by operating one Cr 

and one Nb target in HIPIMS mode and the other two targets (1 Cr and 1 Nb) in UBM mode. 

The machine was operated in constant power mode and the average power on the individual 

cathode was maintained at 8 kW irrespective of the technology (UBM or HIPIMS). 

Rectangular pulses of 200 µs at a frequency of 100 Hz, with a duty cycle of 1 % were 

employed to generate the HIPIMS plasma for coating deposition. During depositions, Ar and 

N2 (1:1) were used as the process gas. Three sets of coatings were deposited at chamber 

pressures of 0.2 Pa, 0.35 Pa and 1 Pa. The bias voltage was fixed at - 65 V, the temperature 

was maintained at 200 °C and the deposition time was 120 min for all the coatings. To 

produce homogeneous coatings, samples were mounted onto a three-fold rotational substrate 

holder. The distance between the substrate holder and the cathodes was 0.2 m. 304 stainless 

steel coupons, M2 high speed steel coupons and (100) Silicon wafer were used as substrates. 

 

 



2.2 Crystal structure study (XRD) 

A PANalytical Empyrean PIXcel 3D automated diffractometer in glancing angle (GA) beam 

geometry was used to determine the crystal structure configuration. The scanning range for 

GA XRD was selected as 2θ = 20° to 100° with a step size of 0.006° and the incident angle 

was fixed at 2°. GA XRD is a convenient method for phase identification studies, due to the 

reduced penetration depth of the X-rays which eliminates the contribution related to the 

substrate in comparison to standard X-ray diffraction. The X-ray source used was 

monochromatic Cu-Kα radiation with a wavelength of 1.5406 nm. The voltage and current of 

the X-ray generation tube was 45 kV and 40 mA respectively. The Miller indices for all the 

phases present in the XRD patterns were calculated by X'Pert HighScore Plus Software.  

2.3 Microstructural investigation 

2.3.1. Scanning electron microscopy (FEI-Nova NanoSEM 200) was used to capture the 

secondary electron (SE) images of planar and fractural cross sectional view of the coatings. 

The working distance was in the range of 4 to 5 mm and the beam voltage was in the range of 

5 to 20 kV in the process to capture clear images. These SEM images provided necessary 

information about coating thickness, morphology and defect structure. Energy-dispersive X-

ray (EDX) analysis (OXFORD Instruments Aztec software) incorporated on the SEM was 

used to assess the chemical composition of the coating. 

2.3.2. Huvitz 3D optical microscope and ImageJ software were used to analyse the 

percentage of surface area of the sample covered by the imperfections (i.e. the defect density 

in the coating). The images of the coating surfaces (130 µm × 90 µm) were captured using a 

digital camera attached with the microscope. The defect density was then quantified from 

binary pictures of the coatings [16]. This study was conducted to determine the effect of the 

chamber pressure on defect formation. 



2.4 Electrochemical corrosion test 

The corrosion behaviour of the CrN/NbN coating was examined using a Gill AC Potentiostat. 

At room temperature of 25 °C, all the electrochemical experiments were conducted by 

polarising the sample from - 1000 mV to + 1000 mV at a scan rate of 0.5 mV per sec in a 

3.5 % NaCl solution. During the test, the exposed surface area of the CrN/NbN coated 304 

stainless steel sample was 1 cm
2
. These measurements were aimed at studying the role of 

defects on the corrosion resistance of the coatings. 

2.5 Pin-on-disc tribology test 

To study the friction behaviour of the deposited coatings in dry sliding conditions a CSM 

room temperature pin-on-disc tribometer was used. CrN/NbN coated M2 high speed steel 

samples were used for this test with Al2O3 balls of 6 mm diameter used as a counterpart. For 

all the experiments, the number of laps was fixed at 20000 and 5 N static load was applied to 

measure friction rates. The room temperature and the relative humidity during the 

experiments were 25 °C and 15 % respectively. After the test, the wear coefficient (KC) was 

calculated using Archard's equation as KC =V/FN × d, where V is wear volume in m
3
, FN is 

normal load in Newtons and d is the sliding distance in meters. The wear volume V was 

calculated as V = 2πRA, where R stands for wear track radius and A is cross-sectional area of 

the wear track. A Veeco Dektak 150 surface profilometer was used to measure the radius (R) 

and the cross-sectional area (A) of the wear track after the test. 

2.8 Raman spectroscopy 

Raman spectroscopy was used to investigate the chemistry of the tribolayer formed during 

sliding. A Horiba-Jobin-Yvon LabRam HR800 integrated Raman spectrometer fitted with a 

green laser (wavelength 532 nm) was used to collect the Raman spectra of the wear track and 



wear debris. To reduce the intensity of incident beam and to avoid irradiation damage, a 10 % 

transmission filter was applied. 

3. Results & Discussion 

3.1 Measurement of the coating thickness and deposition rate 

Fig. 1 shows the variation of the coating thickness as a function of chamber pressure. To 

determine the influence of chamber pressure on deposition rate, the thickness of the coatings 

was measured by SEM using fracture cross-sections of the coating deposited on Si wafer.  

The graph shows that the thickest coating (3.65 µm) was produced at the lowest chamber 

pressure (0.2 Pa). The thickness then decreased suddenly to 2.15 µm with the increase of 

chamber pressure to 0.35 Pa. The most likely reason for decreasing thickness may be the 

strong resputtering of the depositing materials at very high pressure. Also, the diffusive 

collisions of depositing species within the plasma and the target poisoning can decrease the 

deposition rate [30,36]. For reactive sputtering, target poisoning is a very common 

phenomenon [37]. Although, during these coating depositions, N2 and Ar flow rates (sccm) 

were fixed (always 1:1); but a slight increase in the ratio of the partial pressures of N2 and Ar 

with the increase of the chamber pressure was observed. The ratio PN2
 / PAr was varied from 

0.85 at 0.2 Pa to 0.95 at 1 Pa. The change in the partial pressures could slightly increase the 

target poisoning at higher chamber pressures. Due to the formation of nitride layers on the 

target surfaces the sputter rate was reduced. Nevertheless, the mean free paths (λ) of the 

plasma species (neutral atoms, ions) were also reduced with the increase of chamber pressure. 

The reactive gas (Ar + N2) atmosphere during HIPIMS process is highly ionised [38] which 

makes the kinetics of the atoms/ions extremely complex. However, assuming the plasma 

atmosphere similar to the ideal gas atmosphere, the mean free paths at different chamber 

pressure were calculated (using Van der Waals radius (R) of Nitrogen = 1.55 × 10
-10

 m). At 



0.2 Pa chamber pressure, the λ value was found to be 0.11 m. The λ value then decreased to 

0.06 m at P = 0.35 Pa and 0.02 m at P = 1 Pa. This calculation clearly indicated that the 

collision frequency was higher at higher chamber pressures which decreased the possibility of 

sputtered species to reach the substrates directly without colliding with the gas species. Thus, 

the decrease in deposition rate at higher chamber pressure could be attributed to the combined 

effect of target poisoning and resputtering & diffusive collision of depositing materials. 

3.2 Crystallographic structure  

GA XRD patterns of the CrN/NbN superlattice coatings are shown in Fig. 2. This 

measurement revealed that the crystal structures of nanoscale CrN/NbN coatings were of a 

single phase fcc lattice. The coating deposited at the lowest chamber pressure of 0.2 Pa 

displayed a pronounced (200) orientation of the nitride phase. With the increase of chamber 

pressure to 0.35 Pa, the preferred orientation was shifted from (200) to (111). For the highest 

chamber pressure of 1 Pa, the preferred orientation again changed to (200). Similar behaviour 

was observed for CrN coatings when the nitrogen percentage was varied [39]. The change in 

the nitrogen volume within the chamber, resputtering of the depositing materials and different 

deposition rates of Cr and Nb at different chamber pressures can cause the variation between 

the chromium nitride and niobium nitride layers in the structure [40]. As a result, the 

crystallographic orientation of the coatings was changed. One satellite peak (SP) is visible at 

the left sides of the (200) for the coating deposited at P = 0.2 Pa which indicated good coating 

crystallinity and good chemical modulation of the coating [32]. 

3.3. Microstructural study of coating defects  

SEM was used to study the coating morphology and microstructure. High magnified planar 

and fracture cross sectional SEM images of the coatings revealed the existence of four types 



of defects (Fig. 3a-d). Depending on their growth mechanism and structure, the defects were 

categorised as nodular, open void defects, cone-like and pinhole defects [17].  

Among these four types of defects, nodular, open void and cone-like defects are associated 

with dust particles, flakes coming from the chamber components. A fourth types of defects 

are called pinhole defects (Fig. 3d) which generate due to the pre-existence of substrate pits. 

Detailed study about these defects can be found elsewhere [16,41]. 

3.4. Defect density calculation by Optical Microscopy and Image J software 

Fig. 4a shows the surface of the deposited coatings captured by optical microscope and Fig. 

4b represents the converted binary image of the same surface. 

The relationship of defect density (percentage of area covered by defects) with the chamber 

pressure is shown in Fig. 5. 

As seen in the figure, the defect density increased from 0.84 % to 5.94 % with increase of the 

chamber pressure from 0.2 Pa to 1 Pa. The increase in defect density was associated with the 

increase in flake generation. At the higher chamber pressure, plasma volume covers more 

area of the chamber, which can increase the amount of sputter flux bombardments on 

chamber wall and subsequent flake generation. These flakes can initiate more defect sites and 

cause further defect formation within the coating. In addition to that, intense resputtering at 

higher chamber pressure can reveal loosely bound defects more and increase the area 

associated with the defects. 

This study was conducted in a chamber which was not cleaned before or between two 

subsequent coating deposition processes. For this reason, this result is interesting because it 

clearly shows that the chamber pressure can be used as an effective tool to control the defect 

density, even in an industrial environment where it is not possible to thoroughly clean an 

industrial sized chamber frequently. 



3.5 Electrochemical corrosion test 

Previous studies have suggested that the corrosion properties of multilayer PVD coatings 

depend on their chemical composition, stress level, porosity and thickness as well as on the 

morphological defects of the coatings [7,16,20–22,34]. To study the effect of the defects on 

corrosion performance of CrN/NbN nano-scale multilayer coatings, electrochemical 

corrosion tests were conducted. 

Fig. 6 shows the potentiodynamic polarisation curves of CrN/NbN coatings deposited by 

varying the chamber pressures. In the potential range of - 300 mV to + 300 mV, the corrosion 

current density was significantly higher for the coating produced at the highest chamber 

pressure (1 Pa). Thicknesses of the coatings deposited at 0.35 Pa and 1 Pa chamber pressure 

were almost the same (2.15 µm and 2.18 µm); however defect density was higher (5.96 %) 

for the coating deposited at 1 Pa pressure. These increased defects are believed to be the 

reason for lower corrosion resistance. The thickest coating (3.65 µm) with the lowest defect 

density, (0.84 %) was produced at the lowest chamber pressure (0.2 Pa). For this coating, 

pitting resistance was more evident (in the potential range of - 300 mV to + 300 mV). This 

study confirmed the deleterious effect of coating defects on corrosion performance. 

3.6. Tribological properties 

The wear and friction behaviour of CrN/NbN coatings were evaluated by pin on disc tests in 

dry sliding conditions. The friction co-efficient i.e, COF (µ) of CrN/NbN coatings against 

number of laps has been plotted in Fig. 7. Whereas, Fig. 8 shows the wear tracks of the 

coatings deposited by varying chamber pressure. 

The coatings deposited at the higher pressures of 0.35 Pa and 1 Pa, had the higher number of 

surface defects. As observed in the friction curve, the coatings deposited at higher pressures 

exhibited high noise, which is typical of a sliding wear process with a large amount of debris 



involved in a three-body rolling contact mechanism [42]. Due to the friction between the 

alumina ball and coating surfaces, loosely bonded defects could be expunged and these 

defects can increase the wear debris formation during the tribological tests. Thus, the noise 

was more pronounced for the coatings with higher defects. 

The coating deposited at 0.2 Pa, had the lowest defect density (0.84 %) and the coating 

deposited at 1 Pa had the highest defect density (5.96 %) but both the coatings showed 

similar friction co-efficient (µ = 0.69 and 0.70 respectively) and wear co-efficient (Kc = 1.6 × 

10
-15

 m
3
N

-1
m

-1
 and 1.7 × 10

-15
 m

3
N

-1
m

-1
 respectively) values.  

To understand the tribological properties of these coatings, the influence of the chamber 

pressure on crystallographic orientation was studied. It is well known that crystallographic 

orientation influences tribological behaviour of the coatings [43–46]. In addition, Raman 

spectra were obtained from the corresponding wear track and wear debris of the CrN/NbN 

coatings to evaluate the nature of the oxides produced at the tribological contact.  

Fig. 9 shows the variation of wear co-efficient and peak intensity ratio with the chamber 

pressure. It is clear from the figure that the crystallographic orientation directly influenced the 

wear rate of the coatings. The coating with (111) preferred orientation had the highest wear 

rate (2.6 × 10
-15

 m
3
N

-1
m

-1
) whereas (200) oriented coatings had the lowest wear rates (Kc = 

1.6 × 10
-15

 m
3
N

-1
m

-1
 and 1.7 × 10

-15
 m

3
N

-1
m

-1
).  

The friction behaviour was influenced by the type of oxides formed during the tests. As 

obtained from the Raman study (Fig. 10), the tribolayer produced on the coatings deposited at 

chamber pressures of 0.2 Pa and 1 Pa had pronounced peaks at around 535 cm
-1

 (corresponds 

to Cr2O3) and 840 cm
-1

 (corresponds to Nb2O5, nH2O) [47,48]. Cr2O3 belongs to the family of 

magneli phases and therefore it is more lubricious [49]. In contrast, Nb2O5 has a 

crystallographic structure which does not contain easily shearable atomic planes and 



therefore it is less lubricious. Thus the higher friction co-efficient of these coatings can be 

attributed to the presence of Nb2O5 in the tribolayer. The coating deposited at 0.35 Pa 

chamber pressure showed only one peak at around 625 cm
-1

 (corresponds to CrNbO4). This 

coating however, showed the lowest friction co-efficient value, 0.48. This CrNbO4 based 

tribolayer must have a lower co-efficient of friction compared to the tribolayer formed on the 

top the coatings deposited at 0.2 Pa and 1 Pa. 

As discussed above, the effect of defects on friction properties was not clearly evident. 

However, a number of publications have shown the influence of defects on the tribological 

properties of the coatings [18,19]. So an additional study was conducted. A set of coatings 

was produced at 0.35 Pa after the chamber parts were cleaned. As the origin of most defects 

were flakes (discussed in the section 3.3, 3.4), the defect density of the coating produced in a 

clean chamber reduced by almost three times from 3.18 % before cleaning to 1.37 % after 

cleaning. 

Fig. 11 shows the friction curves of the coatings (deposited at 0.35 Pa) with different defect 

densities. As observed, the friction co-efficient (μ) reduced by a factor of two from 0.48 to 

0.25 when the defect density decreased from 3.18 % to 1.37 %. 

To study the effect of the tribolayer on the friction behaviour of this coating (P = 0.35 Pa and 

defect density = 1.37 %), Raman spectra were taken. As shown in the Fig. 12, the Raman 

spectra of the tribolayer were similar for both the coatings deposited at 0.35 Pa chamber 

pressure. This emphasised the fact that the difference in the friction behaviour of these 

coatings is clearly due to the defect density rather than the chemistry of the tribolayer formed 

in the wear track.  

 

 



Conclusion: 

CrN/NbN multilayer coatings were deposited by varying the chamber pressure to study the 

effect of chamber pressure on defect formation as well as to understand the influence of these 

defects on coating corrosion and tribological properties. Defect density calculations 

confirmed that the defect density of the coating was directly influenced by the chamber 

pressure. Coatings produced at the lowest chamber pressure (0.2 Pa) had the lowest defect 

density (0.84 %). The exclusive study on these defects revealed that external factors such as 

flakes and pre-existing substrate pits initiated these defects' formation. 

The Potentiodynamic polarisation study confirmed that the defect density dominated the 

coating corrosion behaviour. The coating with the highest defect density (5.96 %) had the 

lowest Ecorr value (-313 mV). Also, in the potential range from - 300 mV to + 300 mV, the 

corrosion current density of this coating was significantly higher compared to the coatings 

with fewer defects (0.84 % and 3.17 %). This result clearly indicated that the coating with the 

highest defect density had the lowest corrosion resistance. 

The tribological properties were influenced by the oxides formed at tribological contact as 

well as the crystallographic orientation of the coating. Coatings with (200) crystallographic 

orientation (deposited at 0.2 Pa and 1 Pa) had lower wear rates (1.6×10
-15

 m
3
N

-1
m

-1
) 

whereas coating with (111) crystallographic orientation (deposited at 0.35 Pa) had the highest 

wear rate (2.6×10
-15

 m
3
N

-1
m

-1
). Friction behaviour of these coatings was more influenced by 

the nature of oxides formed at the tribological contacts. The coating deposited at 0.35 Pa had 

the lowest friction co-efficient (µ = 0.48). Raman spectra of the tribolayer formed on the top 

of this coating suggested that it contained CrNbO4. In contrast, a Nb2O5 based tribolayer in 

the wear track was formed for the coatings deposited at 0.2 Pa and 1 Pa. Both these coatings 



showed higher friction values (µ = 0.69 and 0.70 respectively) because of the non-lubricious 

nature of the niobium oxides. 

An additional study was conducted to understand the influence of defect density on 

tribological properties of the coatings. One set of coatings was produced in a relatively clean 

chamber at a chamber pressure of 0.35 Pa. As expected, defect density reduced to 1.37 % as 

compared to 3.18 % before cleaning. The pin-on-disk tribological tests showed that the 

friction co-efficient (μ) reduced from 0.48 to 0.25 with the decrease in defect density. This 

additional study confirmed that along with the crystallographic orientation and the oxides 

formed at tribological contact, defect density plays a major role in the tribological 

performance of the coatings. 
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Figure Caption 

 

Fig. 1. Variation of the coating thickness as a function of chamber pressure. 

Fig. 2. GA XRD patterns of the coatings deposited by varying chamber pressure. 

Fig. 3. (a) Cross sectional view of a nodular defect, (b) Cross sectional view of an open void 

defect, (c) cross section al view of a cone-like defect and (d) pinhole defects. 

Fig. 4. (a) Optical microscopic image of coating surface and (b) Converted binary image of 

the same surface. 

Fig. 5. Variation of coating defect density as a function of chamber pressure. 

Fig. 6. Corrosion curves of the coatings deposited by varying chamber pressure. 

Fig. 7. Friction curves of the coatings deposited by varying chamber pressure. 

Fig. 8. Wear tracks of the coatings deposited by varying chamber pressure. 

Fig. 9.Variation of wear co-efficient and peak intensity ratio with the chamber pressure. 

Fig. 10. Raman spectra of the tribolayer produced on the coatings deposited by varying 

chamber pressure. 

Fig. 11. Friction curves of the coatings (deposited at 0.35 Pa) with different defect density. 

Fig. 12. Raman spectra of the tribolayers produced on the coatings (deposited at 0.35 Pa) with 

different defect density. 

  



 

Fig. 1. Variation of the coating thickness as a function of chamber pressure. 

 

 

Fig. 2. GA XRD patterns of the coatings deposited by varying chamber pressure. 



  

  

Fig. 3. (a) Cross sectional view of a nodular defect, (b) Cross sectional view of an open void 

defect, (c) cross section al view of a cone-like defect and (d) pinhole defects. 

   

Fig. 4. (a) Optical microscopic image of coating surface and (b) Converted binary image of 

the same surface. 
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Fig. 5. Variation of coating defect density as a function of chamber pressure. 

 

 

Fig. 6. Corrosion curves of the coatings deposited by varying chamber pressure. 

 



 

Fig. 7. Friction curves of the coatings deposited by varying chamber pressure. 

 

 

Fig. 8. Wear tracks of the coatings deposited by varying chamber pressure. 



 

Fig. 9. Variation of wear co-efficient and peak intensity ratio with the chamber pressure. 

 

 

Fig. 10. Raman spectra of the tribolayer produced on the coatings deposited by varying 

chamber pressure. 



 

Fig. 11. Friction curves of the coatings (deposited at 0.35 Pa) with different defect density. 

 

 

Fig. 12. Raman spectra of the tribolayers produced on the coatings (deposited at 0.35 Pa) with 

different defect density. 


