
Making Use of Empty Intersections to Improve the
Performance of CbO-Type Algorithms

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/16441/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ANDREWS, Simon (2017). Making Use of Empty Intersections to Improve the
Performance of CbO-Type Algorithms. In: Formal Concept Analysis : 14th
International Conference, ICFCA 2017, Rennes, France, June 13-16, 2017,
Proceedings. Lecture notes in artificial intelligence (10308). Springer, 56-71.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Making use of empty intersections to improve
the performance of CbO-type algorithms

Simon Andrews (ORCID 0000-0003-2094-7456)

Conceptual Structures Research Group
Communication and Computing Research Centre

Department of Computing
Faculty of Arts, Computing, Engineering and Sciences

Sheffield Hallam University, Sheffield, UK
s.andrews@shu.ac.uk

Abstract. This paper describes how improvements in the performance
of Close-by-One type algorithms can be achieved by making use of empty
intersections in the computation of formal concepts. During the compu-
tation, if the intersection between the current concept extent and the
next attribute-extent is empty, this fact can be simply inherited by sub-
sequent children of the current concept. Thus subsequent intersections
with the same attribute-extent can be skipped. Because these intersec-
tions require the testing of each object in the current extent, significant
time savings can be made by avoiding them. The paper also shows how
further time savings can be made by forgoing the traditional canonicity
test for new extents, if the intersection is empty. Finally, the paper de-
scribes how, because of typical optimizations made in the implementation
of CbO-type algorithms, even more time can be saved by amalgamating
inherited attributes with inherited empty intersections into a single, sim-
ple test.

Keywords: Formal Concept Analysis · FCA · FCA algorithms · Com-
puting formal concepts · Canonicity test · Close-by-One · CbO · In-Close

1 Introduction

There have been many advances in Formal Concept Analysis that address com-
plexity, focus the analysis and concentrate on producing manageable and mean-
ingful results. Such approaches include ice-berg lattices [1], nesting lattices [2],
creating sub-contexts [3], fault-tolerance [4, 5], expandable concept trees [6],
rough concepts [7] and approximation [8]. However, there will always be the
need for faster performance of the fundamental operations in FCA, such as the
computation of formal concepts. Clearly, we need to avoid the production of con-
cept lattices that are indecipherable, ‘bird’s nests’, containing thousands of nodes
and FCA results that are over-complex and meaningless. Nevertheless, with FCA
being applied ever more to the analysis of large sets of data, performance is an
important factor. Even if the set of concepts is small, dynamic applications need

fast computational engines to cope with fast changes in the underlying data. Or
it may be the case that although the set of computed concepts is large, applica-
tions may use this as a data-set of concepts on which to carry out queries and
subsequent analysis. Two recent major European projects provide real-world ex-
amples involving large and dynamic data bases: The ATHENA project - using
social media in crisis management [9, 10] and the ePOOLICE project - scan-
ning the electronic environment to detect organised crime [11]. Both projects
involved the development of software systems where FCA was implemented as
a component. It was found that the most practical means of applying FCA was
to compute very large sets of concepts on the fly, and then query these sets for
concepts of interest, rather than create pre-processing components to form sub-
contexts from the original data set. Both projects involved creating large sets of
structured data from the text-processing of Internet-based unstructured data,
dynamically and on the fly. Having a fast concept mining engine to convert this
data quickly into formal concepts before querying and visualization was essential
to the operation of the systems.

In the development of such fast algorithms, the discovery of the so-called
‘canonicity test’, whereby the attributes in a concept could be examined to
determine its newness in the computation [12], has proved to be fundamental.
This test has given rise to a number of algorithms based on the original Close-
by-One (CbO) algorithm [12] including the CbO algorithm presented in [13],
FCbO [14, 15] and In-Close2 [16]. FCbO introduced a combined ‘breadth and
depth’ approach to computation that allowed child concepts to fully inherit their
parent’s attributes. In-Close2 then added a modified, ‘partial-closure’, canonicity
test to reduce the computation required in the test. FCbO also introduced a
technique whereby failed canonicity tests could be inherited, thereby avoiding
repeated tests.

This paper describes new advances in the performance of CbO-type algo-
rithms by making use of empty intersections. During the computation, if the
intersection between the current concept extent and the next attribute-extent is
empty, this fact can be simply inherited by subsequent children of the current
concept. Because all extents D that are children of a current extent C are sub-sets
of C, it is simple to show that intersections of child extents with an attribute-
extent {j}↓ will be empty if the intersection between the same attribute-extent
and the parent extent was empty:

if D ⊆ C and C ∩ {j}↓ = ∅ then D ∩ {j}↓ = ∅
Thus subsequent intersections between child extents and the same attribute-

extent can be skipped. Because these intersections require the testing of each
object in the current extent, significant time savings can be made by avoiding
them.

The rest of this paper is structured as follows: The paper will use the algo-
rithm In-Close2 [16] as its starting point, so section 2 is a recap of that algorithm.
Section 3 is a recap of the FCbO algorithm. As a fast CbO-type algorithm for
computing formal concepts it is a good benchmark for the In-Close variants.
Section 4 describes a new In-Close variant, In-Close4a, that incorporates the

inheritance of empty intersections as described above. It should be noted that
In-Close1, In-Close2 and In-Close3 are the existing versions of In-Close, as pre-
sented in [17]. Thus the new versions presented here are named In-Close4a and
In-Close4b. In-Close3 is a version that incorporated FCbO’s feature of inherit-
ing failed canonicity tests, but, because of the added complexity and overheads
incurred, actually performed less well overall than In-Close2. Thus In-Close2,
rather than In-Close3, is used here as the starting point for the new versions.
Section 5 describes a refined version of In-Close4a, called In-Close4b, that forgoes
the traditional canonicity test for new extents, if the intersection between the
current extent and the next attribute-extent is empty. Section 6 describes some
key optimizations made in the implementation of CbO-type algorithms, and how
further time savings can be made by amalgamating inherited attributes with in-
herited empty intersections into a single, simple test. Section 7 presents a series
of experiments and results, comparing the performance of In-Close2, In-Close4a,
In-Close4b and FCbO. Finally, section 8 provides some concluding remarks and
ideas for further work.

2 Recap of the In-Close2 algorithm

Below is a recap of the In-Close2 algorithm, as presented in [17]. In-Close2 was
been ‘bred’ from In-Close and FCbO to combine the efficiencies of a partial-
closure canonicity test (as compared to a full closure test) with full inheritance
of the parent intent. The full inheritance is achieved by adapting the combined
breadth-first and depth-first approach of FCbO [14,15]. The main cycle is com-
pleted before passing to the next level, so that all the attributes of a parent
intent can be passed down to the next level rather than just some of them.
Like In-Close, child intents only have to be ‘finished off’ by adding attributes
when A = C, but now additional attributes after j are also inherited and can be
skipped. During the main cycle, whilst the current intent is being closed, new
extents that pass the canonicity test are stored in a queue, similar to the queue
in FCbO, to be processed after the main cycle has completed.

The In-Close2 algorithm is invoked with an initial pair (A,B) = (X, ∅), where
A is a set of objects (extent) and B is a set of attributes (intent) and X is the
set of all objects in the formal context, and initial attribute y = 0. Y is the set
of all attributes in the formal context and Yj is the set of all attributes up to
(but not including) j.

Line 1 - Iterate across the formal context, from a starting attribute y up to
attribute n− 1, where n is the number of attributes in the context.

Line 2 - Skip attributes already in B. Because intents now inherit all of their
parent’s attributes, these can be skipped.

Line 3 - Form an extent, C, by intersecting the current extent, A, with the
next column of objects in the context.

Line 4 - If the extent formed, C, equals the extent, A, of the concept whose
intent is currently being closed, then...

Line 5 - ...add the current attribute, j, to the intent being closed, B.

In-Close2

ComputeConceptsFrom((A,B), y)

for j ← y upto n− 1 do1

if j /∈ B then2

C ← A ∩ {j}↓3

if C = A then4

B ← B ∪ {j}5

else6

if B ∩ Yj = C↑j then7

PutInQueue(C, j)8

ProcessConcept((A,B))9

while GetFromQueue(C, j) do10

D ← B ∪ {j}11

ComputeConceptsFrom((C,D), j + 1)12

Line 7 - Otherwise, test the canonicity using the partial-closure canonicity
test [18]: ↑ is the standard closure operator in FCA and ↑j is a modification
meaning “close up to, but not including attribute j”.

Line 8 - If the canonicity test is passed, place the new extent, C, and the
location where it was found, j, in a queue for later processing.

Line 9 - Pass concept (A,B) to the notional procedure ProcessConcept to
process it in some way (for example, storing it in a set of concepts).

Lines 10 - The queue is processed by obtaining each new extent and associ-
ated location from the queue.

Line 11 - Each new partial intent, D, inherits all the attributes from its
completed parent intent, B, along with the attribute, j, where its extent was
found.

Line 12 - Call ComputeConceptsFrom to compute child concepts from j + 1
and to complete the intent D.

3 Recap of the FCbO Algorithm

Below is a recap of the FCbO algorithm [14, 15] as presented in [17]. FCbO
introduced the feature of inherited canonicity test failures to improve the per-
formance of CbO-type algorithms, along with the combined breadth/depth first
approach to enable full inheritance of parent intents. The inheritance of test
failure is achieved by recording intents that are not canonical as N js, where j is
the current attribute, thus enabling subsequent levels to test these failed intents
against the current one and thus avoid the computation of a redundant extent
and intent. FCbO is invoked with the initial concept (A,B) = (X,X↑), initial
attribute y = 0 and a set of empty Ns, {Ny = ∅ | y ∈ Y }.

FCbO

ComputeConceptsFrom((A,B), y, {Ny | y ∈ Y })
ProcessConcept((A,B))1

for j ← y upto n− 1 do2

M j ← N j
3

if j /∈ B and N j ∩ Yj ⊆ B ∩ Yj then4

C ← A ∩ {j}↓5

D ← C↑
6

if B ∩ Yj = D ∩ Yj then7

PutInQueue ((C,D), j)8

else9

M j ← D10

while GetFromQueue((C,D), j) do11

ComputeConceptsFrom((C,D), j + 1, {My | y ∈ Y })12

Line 1 - Pass concept (A,B) to the notional procedure ProcessConcept to
process it in some way (for example, storing it in a set of concepts).

Line 2 - Iterate across the context, from starting attribute y up to attribute
n− 1.

Line 3 - M j is set to the latest intent that failed the canonicity test at
attribute j, N j .

Line 4 - Skip attributes in B and those that have an inherited record of
failure.

Line 5 - Otherwise, form an extent, C, by intersecting the current extent, A,
with the next column of objects in the context.

Line 6 - Close the extent to form an intent, D.
Line 7 - Perform the canonicity test.
Line 8 - If the concept is a new one, store it in a queue along with the

attribute it was computed at.
Line 10 - Otherwise set the record of failure for attribute j, M j , to the intent

that failed the canonicity test.
Line 11 - Get each stored concept from the queue...
Line 12 - ...and pass it to the next level, along with the stored starting at-

tribute for the next level and the failed intents from this level.

4 New algorithm, In-Close4a: skipping attributes with
inherited empty intersections

In-Close4a adds a new feature to In-Close2 by enabling subsequent levels to
skip attributes that have previously resulted in an empty intersection with a
parent extent. If a parent extent intersected with an attribute-extent results

in an empty set, then any subset (child) of the parent extent intersected with
the same attribute-extent will also result in an empty set. Thus, if a record
is kept of the parent empty intersections, subsequent children can skip the at-
tributes concerned. Because the intersection between the current extent and the
attribute-extent must iterate all of the objects in the current extent, a significant
number of operations can potentially be avoided if intersections can be skipped.

The new algorithm, In-Close4a, incorporating this feature is given below. In-
Close4a is invoked with an initial pair (A,B) = (X, ∅), an initial attribute y = 0
and an empty set of attributes, P = ∅.

In-Close4a

ComputeConceptsFrom((A,B), y, P)

for j ← y upto n− 1 do1

if j /∈ B and j /∈ P then2

C ← A ∩ {j}↓3

if C = A then4

B ← B ∪ {j}5

else6

if C = ∅ then7

P ← P ∪ {j}8

if B ∩ Yj = C↑j then9

PutInQueue(C, j)10

ProcessConcept((A,B))11

Q← P12

while GetFromQueue(C, j) do13

D ← B ∪ {j}14

ComputeConceptsFrom((C,D), j + 1, Q)15

The changes in the algorithm from In-Close2 are as follows:

Line 2 - Skip attributes already in B and also skip attributes in P , as we
know they will result in empty intersections.

Line 7 - If the new extent, C, is empty...

Line 8 - ... add the current attribute to P .

Line 12 - Store P in Q ready to pass the attributes resulting in empty
intersections to the next level.

Note that the algorithm will compute the concept (∅, Y), if it exists. If C = ∅,
then the canonicity test is still carried out, and, if it is the first occurrence of
the empty set of objects, it will pass the canonicity test and the concept will be
completed at the next level.

5 New algorithm, In-Close4b: forgoing the canonicity
test after empty intersections

The concept (∅, Y) can be viewed as a special case and will exist if there are no
objects that have all the attributes in the formal context. If it exists it will be
computed by CbO-type algorithms at the first occurrence of C = ∅, with subse-
quent empty extents failing the canonicity test (although FCbO will avoid some
of these tests via inherited test-failure). However, as an alternative approach,
In-Close4b forgoes the canonicity test when C = ∅, in effect making it a case of
automatic failure. Thus, as a refinement of In-Close4b, the new algorithm not
only skips inherited empty intersections but also avoids having to carry out a
canonicity test whenever an empty intersection occurs. It is quite likely for the
empty intersection to occur very frequently in the computation, so there is thus
the potential to save a significant number of operations.

Of course, the resulting algorithm is incomplete, in that it will not compute
the concept (∅, Y). However, it is a simple task to add it afterwards, if it exists:
If Y ↓ = ∅ then add (∅, Y) to the set of computed concepts.

The new algorithm, In-Close4b, incorporating this feature is given below.
In-Close4b is invoked with an initial pair (A,B) = (X, ∅), an initial attribute
y = 0 and an empty set of attributes, P = ∅.

In-Close4b

ComputeConceptsFrom((A,B), y, P)

for j ← y upto n− 1 do1

if j /∈ B and j /∈ P then2

C ← A ∩ {j}↓3

if C 6= ∅ then4

if C = A then5

B ← B ∪ {j}6

else7

if B ∩ Yj = C↑j then8

PutInQueue(C, j)9

else10

P ← P ∪ {j}11

ProcessConcept((A,B))12

Q← P13

while GetFromQueue(C, j) do14

D ← B ∪ {j}15

ComputeConceptsFrom((C,D), j + 1, Q)16

It should be noted that forgoing the canonicity test following an empty in-
tersection was actually present in the very first incarnation of the In-Close algo-

rithm [19] (although not in later versions). However, it was not realised as a novel
time-saving device at the time and thus was not explicitly described as such. Its
effects were not explicitly measured or compared, nor were its implications con-
sidered, as far as incompleteness is concerned. Consequently, In-Close4b could
be regarded as a new ‘best of breed’ algorithm, combing time-saving features of
In-Close, In-Close2, In-Close4a and FCbO.

An implementation of In-Close4b is available, open-source and free to down-
load from Sourceforge1.

6 Optimisation

In this section, three key optimisations will be briefly described. The first two
are recapping existing major optimisations: the use of bit-arrays and the im-
plementation of the partial-closure canonicity test, and the third explains how
the inheritance of attributes and the inheritance of empty intersections can be
amalgamated into a single test. The experiments in Section 7 use optimised
implementations, so it is worth understanding the key optimisations involved.

Recap of the use of bit-arrays. Implementations of CbO-type algorithms,
such as In-Close and FCbO, typically use a bit-array to represent the formal
context. This allows operations on the formal context, such as closure operations,
to be implemented using bit-wise operators in the manner of fine-grained parallel
processing. In a typical 64-bit architecture, this means that 64 cells of the formal
context can be operated on simultaneously.

Recap of the implementation of the partial-closure canonicity test. In
practice, it is not necessary to always close the new extent up to the current
attribute. It is only necessary to find the first instance where B ∩ Yj and C↑j

do not agree. Thus failure is typically detected before j is reached, making even
more time savings than the partial-closure would. By comparison, in other al-
gorithms, such as FCbO, a full-closure is always required because, not only is it
the the basis of the canonicity test, it also provides the closure of new concepts.
In In-Close, with the partial-closure canonicity test, new concepts are closed in-
crementally whenever C = A by B ← B ∪ {j} (lines 4 and 5 of In-Close4a, for
example). Furthermore, given that the test C = A is provided ‘for free’, as a
by-product of the intersection in C ← A∩{j}↓, the overheads of this incremental
closure are insignificant.

Amalgamation of the inheritance of attributes and the inheritance of
empty intersections. In typical implementations of fast CbO-type algorithms,
the intent, B, of a concept is stored twice: once as a local version, in Boolean (bit)
form, with each bit representing the presence or absence of an attribute, and once

1 https://sourceforge.net/projects/inclose/

as integers (the index numbers of the attributes) in a tree data structure. The
latter is space-saving and thus used for storage and output, whilst the former is
used as a fast method of determining j /∈ B to skip inherited attributes. Thus,
because the Boolean form is not required for subsequent storage and output,
it can be used to record the inherited attribute and the empty intersections -
both are tested, recorded and inherited in the same bit-array. The addition of
the inheritance of empty intersections does not, therefore, require an additional
array for P and incurs very few overheads in the implementation.

7 Evaluation of performance

In this section, In-Close2, In-Close4a, In-Close4b and FCbO will be evaluated by
comparing their performance over a varied range of data sets. The experiments
are divided into three groups: 1) real data sets, 2) artificial data sets, and 3)
randomised data sets. Following the performance comparison, the algorithms are
investigated to compare the number of canonicity tests carried out in each case,
as this is the most labour intensive operation involved. Indeed, the intention
of features such as skipping attributes and inheriting canonicity failures are
specifically designed to reduce the number of canonicity test required.

Optimised implementations of the algorithms were created using C++ and
the experiments were conducted on a standard 64-bit Intel architecture, using a
PC with an Intel Core i7-2600 3.40GHz CPU and 8GB of RAM. To cater for any
inconsistency of system performance, each experiment was conducted multiple
times and the average time taken for each.

Real data set experiments. Four real data sets were used in the experi-
ments: Mushroom, Adult and Internet Ads, taken from the UCI Machine Learn-
ing Repository [20] and Student, an anonymised data set from an internal student
experience survey carried out at Sheffield Hallam University, UK. The data sets
were selected to represent a broad range of features, in terms of size and density,
and the UCI ones, in particular, are well known and used in FCA work.

The results of the experiments are given in Table 1 (timings) and Table
2 (canonicity tests). In all timing cases (apart from two ties) In-Close4b was
fastest, followed by In-Close4a then In-Close2, and FCbO was the slowest.

The smallest number of canonicity tests was achieved by FCbO for Mush-
room and Student and by In-Close4b for Adult and Internet Ads. It is clear, from
comparing In-Close2 results with those of In-Close4a and 4b that making use
of empty intersections has a large effect in reducing the number of canonicity
tests required. However, it is also clear that the inherited canonicity failures in
FCbO also produce a large reduction. Comparing the timings with the number
of canonicity tests carried out (particularly between In-Close2 and FCbO) gives
clear evidence of the significance of the partial-closure canonicity test in reduc-
ing computation time. Of course, it should be noted that making use of empty
intersections prevents canonicity test involving the closure of the empty set of
objects. Such closures are obviously less labour intensive than closing non-empty

sets of object, but nevertheless a significant number of operations are still neces-
sary, and the timing results clearly show that making use of empty intersections
shows a small but significant speed-up for each of the data sets.

Table 1. Real data set results (timings in seconds).

Data set Mushroom Adult Internet Ads Student
|G| × |M | 8, 124× 125 32, 561× 124 3, 279× 1, 565 587× 145

Density 17.36% 11.29% 0.97% 24.50%
#Concepts 226,921 1,388,469 16,570 22, 760, 243

FCbO 0.21 1.46 0.31 8.80
In-Close2 0.21 1.05 0.12 5.06

In-Close4a 0.19 0.95 0.08 4.65
In-Close4b 0.17 0.88 0.07 4.65

Table 2. Real data set results (canonicity tests).

Data set Mushroom Adult Internet Ads Student

In-Close2 1,164,829 2,614,810 1,867,689 55,038,419
In-Close4a 447,356 1,916,356 682,635 53,859,754

FCbO 325,986 2,029,933 363,568 40,630,663
In-Close4b 405,584 1,707,707 91,029 53,162,649

Artificial data set experiments. Artificial data sets were used that, although
randomised, the randomisation was constrained by properties of real data sets,
such as many-valued attributes having a fixed number of possible values. Three
data sets, M7X10G120K, M10X30G120K and T10I4D100K, were used to pro-
vide a range of features in terms of size and density.

The timing results of the artificial data set experiments are given in Table 3
and the comparison of the number of canonicity tests carried out is given in Table
4. The timing results reiterate those obtained in the real data set experiments:
In-Close4b fastest, then In-Close4a, then In-Close2, then FCbO. In terms of the
number of canonicity tests carried out, In-Close4b had the fewest, then FCbO,
then In-Close4a, then In-Close2.

Random data set experiments. Three series of random data experiments
were carried out, testing the effect of changes in the number of attributes, context
density, and number of objects:

Table 3. Artificial data set results (timings in seconds).

Data set M7X10G120K M10X30G120K T10I4D100K
|G| × |M | 120, 000× 70 120, 000× 300 100, 000× 1, 000

Density 10.00% 3.33% 1.01%
#Concepts 1,166,326 4,570,493 2,347,376

FCbO 1.35 15.45 23.83
In-Close2 0.98 8.37 9.10

In-Close4a 0.81 7.45 7.79
In-Close4b 0.77 5.60 6.56

Table 4. Artificial data set results (canonicity tests).

Data set M7X10G120K M10X30G120K T10I4D100K

In-Close2 14,621,925 330,546.826 185,296,387
In-Close4a 5,548,392 191,601,668 112,154,256

FCbO 4,640,906 167,814,522 75,281,105
In-Close4b 2,360,015 29,686,007 21,262,544

– Figure 1: Attributes series - with 5% density and 5,000 objects, the number
of attributes was varied between 300 and 1,000. The number of concepts
varied from approximately 1,000,000 to 22,000,000.

– Figure 3: Objects series - with 5% density and 200 attributes, the number
of objects was varied between 30,000 and 100,000. The number of concepts
varied from approximately 4,000,000 to 22,000,000.

– Figure 2: Density series - with 200 attributes and 10,000 objects, the density
of 1s in the context was varied between 3 and 10%. The number of concepts
varied from approximately 200,000 to 19,000,000.

The results of the random data set timings are given in Figure 1 (attribute
series), Figure 2 (density series) and 3. A comparison of the number of canonicity
tests carried out for the random data sets in each algorithm is given in Figure 4
(attribute series), Figure 5 (density series) and 6.

Again, the results confirm those from the previous experiments, with In-
Close4b showing the best performance, then In-Close4a, then In-Close2, then
FCbO. In terms of the number of canonicity tests carried out, overall FCbO
showed the greatest reduction, although In-Close4b was a close second and, for
lower density data sets in the density series, In-Close4b had greatest reduction.

8 Conclusions

In conclusion, the experimental results clearly show that making use of empty
intersections, by skipping inherited empty intersections (In-Close4a) and forgo-
ing the canonicity test following an empty intersection (In-Close4b), provides a

Fig. 1. Comparison of performance with varying number of attributes. 5% density,
5,000 objects. #Concepts range from approx. 1,000,000-22,000,000

Fig. 2. Comparison of performance with varying context density. 200 attributes, 10,000
objects. #Concepts range from approx. 4,000,000-22,000,000

Fig. 3. Comparison of performance with varying number of objects. 5% density, 200
attributes. #Concepts range from approx. 200,000-19,000,000

Fig. 4. Comparison of the number of canonicity tests carried out with varying number
of attributes. 5% density, 5,000 objects. #Concepts range from approx. 1,000,000-
22,000,000

Fig. 5. Comparison of the number of canonicity tests carried out with varying con-
text density. 200 attributes, 10,000 objects. #Concepts range from approx. 4,000,000-
22,000,000

Fig. 6. Comparison of the number of canonicity tests carried out with varying num-
ber of objects. 5% density, 200 attributes. #Concepts range from approx. 200,000-
19,000,000

small but significant improvement to the performance of CbO-type algorithms.
Their implementation is simple, costing almost no overhead and easily optimised
to amalgamate inherited empty intersections with inherited attributes.

In terms of further work, the canonicity test results for FCbO are interesting.
FCbO shows an equal or better reduction in canonicity tests carried out, com-
pared to the other algorithms, through its inheritance of canonicity test failures,
but this is outweighed by the costly ‘full-closure’ canonicty test it employs (as
also evidence in previous papers [16–18]). Although previous work [17] has al-
ready produced an algorithm (In-Close3) that incorporates FCbO’s inheritance
of canonicity test failures, it failed to provide any significant improvements in
performance compared to In-Close2, due to the complexity and consequent over-
heads in computation that it required. Nevertheless, the large reduction in canon-
icity tests carried out in FCbO makes it tempting to re-visit the inheritance of
test failures - either to improve and optimise further its implementation, or to in-
vestigate the possibility of designing a simpler method of test failure inheritance.
If test failures can be inherited without the penalty of significant overheads in
computation, further improvements in the performance of CbO-type algorithms
will be possible.

References

1. Stumme, G., Taouil, R., Bastide, Y., Lakhal, L.: Conceptual clustering with ice-
berg concept lattices. Proc. GI-Fachgruppentreffen Maschinelles Lernen (FGML01)
(2001)

2. Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: Galicia: an open platform for
lattices. In: A. de Moor B. Ganter, editor, Using Conceptual Structures: Contri-
butions to 11th Intl. Conference on Conceptual Structures. (2003) 241–254

3. Andrews, S., Orphanides, C.: Knowledge discovery through creating formal con-
texts, IEEE Computer Society (2010) 455–460

4. Pensa, R.G., Boulicaut, J.F.: Towards fault-tolerant formal concept analysis. In
Bandini, S., Manzoni, S., eds.: Advances in Artificial Intelligence, 9th Congress of
the Italian Association for Artificial Intelligence. Volume 3673 of Lecture Notes in
Computer Science., Springer-Verlag Berlin Heidelberg (2005)

5. Dau, F.: An implementation for fault tolerance and experimental results. In:
CUBIST Workshop. (2013) 21–30

6. Andrews, S., Hirsch, L.: A tool for creating and visualising formal concept trees.
CEUR Workshop Proceedings: Proceedings of the Fifth Conceptual Structures
Tools & Interoperability Workshop (CSTIW 2016) 1637 (2016) 1–9

7. Liu, M., Shao, M., Zhang, W., Wu, C.: Reduction method for concept lattices
based on rough set theory and its application. Computers & Mathematics with
Applications 53 (2007) 1390–1410

8. Gaume, B., Navarro, E., Prade, H.: Clustering bipartite graphs in terms of approx-
imate formal concepts and sub-contexts. International Journal of Computational
Intelligence Systems 6 (2013) 1125–1142

9. ATHENA: The European ATHENA Project - use of new smart devices and so-
cial media in crisis situations: http://www.projectathena.eu/ (Accessed: Septem-
ber 2016)

10. Andrews, S., Yates, S., Akhgar, B., Fortune, D.: Strategic Intelligence Manage-
ment: National Security Imperatives and Information and Communication Tech-
nologies. In: The ATHENA Project: Using Formal Concept Analysis to Facilitate
the Actions of Responders in a Crisis Situation. Elsevier: Butterworth-Heinemann
(2013) 167–180

11. Andrews, S., Brewster, B., Day, T.: Organised crime and social media: Detect-
ing and corroborating weak signals of human trafficking online. In: International
Conference on Conceptual Structures, Springer (2016) 137–150

12. Kuznetsov, S.O.: Mathematical aspects of concept analysis. Mathematical Science
80 (1996) 1654–1698

13. Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In
Belohavlek, R., Kuznetsov, S., eds.: Proceedings of Concept Lattices and their
Applications. (2008)

14. Krajca, P., Vychodil, V., Outrata, J.: Advances in algorithms based on CbO.
In Kryszkiewicz, M., Obiedkov, S., eds.: CLA 2010, University of Sevilla (2010)
325–337

15. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connec-
tions induced by object-attribute relational data. Information Sciences 185 (2012)
114–127

16. Andrews, S.: In-close2, a high performance formal concept miner. In Andrews,
S., Polovina, S., Hill, R., Akhgar, B., eds.: Conceptual Structures for Discover-
ing Knowledge - Proceedings of the 19th International Conference on Conceptual
Structures (ICCS), Springer (2011) 50–62

17. Andrews, S.: A best-of-breed approach for designing a fast algorithm for computing
fixpoints of galois connections. Information Sciences 295 (2015) 633–649

18. Andrews, S.: A partial-closure canonicity test to increase the efficiency of cbo-type
algorithms. In: Proceedings of the 21st International Conference on Conceptual
Structures, Springer (2014) 37–50

19. Andrews, S.: In-close, a fast algorithm for computing formal concepts.
In Rudolph, S., Dau, F., Kuznetsov, S.O., eds.: ICCS 2009. Volume 483
of CEUR WS., http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-483/ (2009)

20. Frank, A., Asuncion, A.: UCI machine learning repository:
http://archive.ics.uci.edu/ml (2010)

