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Abstract  

Environmental applications of NP increasingly result in widespread NP distribution within porous 

media where they are subject to various concurrent transport mechanisms including irreversible 
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deposition, attachment/detachment (equilibrium or kinetic), agglomeration, physical straining, 

site-blocking, ripening, and size exclusion. Fundamental research in NP transport is typically 

conducted at small scale, and theoretical mechanistic modeling of particle transport in porous 

media faces challenges when considering the simultaneous effects of transport mechanisms. 

Continuum modeling approaches, in contrast, are scalable across various scales ranging from 

column experiments to aquifer. They have also been able to successfully describe the simultaneous 

occurrence of various transport mechanisms of NP in porous media such as blocking/straining or 

agglomeration/deposition/detachment. However, the diversity of model equations developed by 

different authors and the lack of effective approaches for their validation present obstacles to the 

successful robust application of these models for describing or predicting NP transport phenomena.  

This review aims to describe consistently all the important NP transport mechanisms along with 

their representative mathematical continuum models as found in the current scientific literature. 

Detailed characterizations of each transport phenomenon in regards to their manifestation in the 

column experiment outcomes, i.e., breakthrough curve (BTC) and residual concentration profile 

(RCP), are presented to facilitate future interpretations of BTCs and RCPs.  The review highlights 

two NP transport mechanisms, agglomeration and size exclusion, which are potentially of great 

importance in controlling the fate and transport of NP in the subsurface media yet have been widely 

neglected in many existing modeling studies.  

A critical limitation of the continuum modeling approach is the number of parameters used upon 

application to larger scales and when a series of transport mechanisms are involved. We investigate 

the use of simplifying assumptions, such as the equilibrium assumption, in modeling the 

attachment/detachment mechanisms within a continuum modelling framework. While 

acknowledging criticisms about the use of this assumption for NP deposition on a mechanistic 

(process) basis, we found that its use as a description of dynamic deposition behavior in a 

continuum model yields broadly similar results to those arising from a kinetic model. Furthermore, 

we show that in two dimensional (2-D) continuum models the modeling efficiency based on the 

Akaike information criterion (AIC) is enhanced for equilibrium vs kinetic with no significant 

reduction in model performance. This is because fewer parameters are needed for the equilibrium 

model compared to the kinetic model.  
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Two major transport regimes are identified in the transport of NP within porous media. The first 

regime is characterized by higher particle-surface attachment affinity than particle-particle 

attachment affinity, and operative transport mechanisms of physicochemical filtration, blocking, 

and physical retention. The second regime is characterized by the domination of particle-particle 

attachment tendency over particle-surface affinity. In this regime although physicochemical 

filtration as well as straining may still be operative, ripening is predominant together with 

agglomeration and further subsequent retention. In both regimes careful assessment of NP fate and 

transport is necessary since certain combinations of concurrent transport phenomena leading to 

large migration distances are possible in either case. 

 

Keywords: nanoparticle, continuum model, advection-dispersion, transport, attachment, porous 

media.  

Highlights 

 Continuum models can successfully describe NP transport phenomena across scales 

 Sixteen distinct types of continuum model have been applied to NP transport 

 Agglomeration and size exclusion may be critically underrepresented in NP models 

 Work needed to raise efficiency of continuum models by robust parameter reduction 
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6.  Upscaling of continuum models for NP transport 

7. Conclusion 

1. Introduction 

Nanoparticles (NP) possess unique properties in engineered and environmental systems compared 

to their micron size counterparts [1, 2]. This leads to various novel applications in a wide variety 

of technology fields such as remediation of contaminants [3-6], catalysis [7], energy [8, 9] and 

many more [10]. NP released from various manufacturing or disposal points, such as landfill and 

wastewater treatment [10-12], may enter the environment and accumulate in soils and sediments 

[10, 13, 14]. NP can be mobilized from the topsoil zone to saturated zone due to infiltration driven 

by rainfall or irrigation. They can also enter aquifers via activities that intentionally inject NP into 

the subsurface media, e.g., for remediation of groundwater or for recovery enhancement of 

petroleum reservoir [10, 11, 14-20]. Growing concern about the unintentional migration and 

accumulation of NP in the subsurface environment, coupled with the aspirations for novel 

applications of nanotechnology in the subsurface, necessitate recognition of all the underlying 

mechanisms that possibly affect the behavior of NP in the subsurface porous media [15-23]. This 

knowledge will facilitate more effective and precise modeling tools for the description and 

prediction of NP fate and transport in porous media, thereby facilitating the development of 

necessary regulations to halt conversion of nanomaterial from an ‘emerging technology’ [24] to 

an ‘emerging contaminant’ [22, 25].  

Modeling tools are an essential component of decision-making and design of the remediation 

strategies for the removal of groundwater contaminants and reducing the potential risks of 

contaminant remobilization, e.g., redistribution of non-aqueous phase liquids (NAPLs) [26, 27] 

and radionuclides [28, 29] in the groundwater. The unique behaviors of NP lead to complication 

in predicting unintended exposure and risk of NP [23, 30-33]. A wide range of physicochemical 

interactions impact NP transport in the subsurface. The relative significance of these processes for 

NP may differ from that of larger colloids. For instance, aggregation is potentially one of the most 

important phenomena that can occur for NP transported in porous media [21, 33, 34]. Depending 

on the scale of the assessment and the required resolution/precision of the outcomes, modeling 

tools deployed for assessing the behaviors of NP in porous media may be categorized in three 

major groups: 1) abstract models; 2) mechanistic models; and 3) continuum-scale models [30, 35-
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37]. Selection of the most appropriate model for a given problem is a trade-off between simplicity 

and accuracy [12, 38].   

Abstract models including material flow analysis (MFA) or multi-media models (MMM), are 

founded on the mass balance principle and assess the release and fate of NP in the environment 

from the global level down to the local levels [e.g., 10-12, 22, 23, 37, 39, 40-44]. Most of these 

models are intrinsically based on simple algebraic equations and may not sufficiently capture the 

phenomenology of the influential factors into the model [14, 45], although some attempts have 

been made to address this [13, 14, 18, 46]. These models typically rely on statistical and 

probabilistic approaches that incur unknown uncertainties in the total results or about individual 

parameters which require rigorous uncertainty analysis [11, 40, 41]. MFA-based models are 

basically top-down models [44] and there exists a lack of suitable analytical methods for 

quantification, detection and analysis of environmentally relevant data of NP distribution at 

relevant scales [12, 43].  

Mechanistic models focus on the individual particles by considering the forces, torques, and energy 

of particle and interacting media [30, 36, 47-54]. These models become more difficult to apply 

when several phenomena occur simultaneously during transport of NP in porous media [21, 31, 

33, 48, 55-64]. Moreover, the intrinsic complexities and heterogeneities prevalent in real 

environmental conditions, such as surface roughness [65-68], natural organic matter (NOM) [32, 

47, 69], iron oxyhydroxide coating [70-72], silylation [73], extracellular polymeric substance, and 

biofilm [74-76] make it unfeasible to use models such as classical colloid filtration theory (CFT) 

[65-68], Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [47, 77], and Maxwell model [78-

80] which impose assumptions of uniformity. Mechanistic description of particle interactions with 

such heterogeneities at a range of scales, is a lively area of ongoing research [21, 81-84]. These 

models are yet to face the challenges related to the cconcurrent occurrence of various phenomena. 

Continuum-based models are defined as partial-differential equations based on the continuity 

principle (either the mass conservation law (mass balance) or particle number/volume balance) 

over the bulk spatial and temporal domains of the system which are either continuous or 

numerically-discretized continuous domains [30, 35, 36, 85-87]. This definition contrasts with 

pore-scale models in which the domain has a discrete configuration of solid and fluid [87]. In this 

review, we narrow down the scope of the continuum-based models to Eulerian techniques and thus 
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exclude the particle tracking analysis (generally Lagrangian methods) [34, 57], since they consider 

particles as a separate constituent from the fluid phase. It should be noted that commonly 

“continuum” terminology has been used to designate a range of larger spatial scales of the model 

domain (>>1 cm) in contrast to micro/pore-scale models (1-100 𝜇m) [87]. From the present paper’s 

viewpoint not only the spatial scalability of continuum models but also their ability to provide 

information about the kinetics of phenomena, transient situations, and heterogeneities in the bulk 

spatial domain are considered unique features of continuum-based models.  

Continuum models have been widely used for simulating miscible contaminants and classical 

colloid transport problems over the past decades and more recently they have been gaining 

popularity for modeling NP transport [12, 86, 88-90]. These models can be applied at various 

scales such as pore scale [91], column experiment [e.g., 21, 92-94], bench-scale experiments [21], 

mesocosm experiments [22, 95], and field scale operations [96, 97]. This allows continuum-based 

models to be applied not only for delineating the risk of NP release and the design of remediation 

strategies in the local scale but also for validating global assessment models of NP transport in the 

environment by applying them in tandem [35, 44].  

In contrast to mechanistic approaches which deal with forces or energy, continuum models deal 

with rates. These models accommodate different types of data based on number concentration 

[e.g., 21, 92, 98-100] or mass concentration [e.g., 100, 101, 102]. They can be modified to 

transform the data internally [21, 34]. They can therefore be calibrated and validated against a 

wide variety of available data types obtained from various laboratory experiments or realistic field 

measurements [21, 96, 97, 103]. More noteworthy, is their capability  to describe several transport 

phenomena simultaneously [e.g., 21, 92, 102, 104-111].  

No one of the fate and transport modeling approaches precludes application in parallel with any 

other, as each offers different insights. Fig. 1 illustrates the concept of a comprehensive, multi-

model analysis of engineered nanomaterials in the environment. For instance, continuum models 

of groundwater can be integrated with MFA to track the fate of NP in the subsurface where the 

required data for MFA is less available [44]. This class of models can be used to average the results 

of pore scale mechanistic simulations in order to obtain the one-dimensional concentration field 

and consequently estimate the values of the average deposition rate coefficients [91].  
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To date, there have been several informative review papers on the transport behaviors of NP [e.g., 

12, 22, 23, 47, 48, 88, 112-114] and other colloids [e.g., 30, 36, 53, 68, 98, 100, 115-121]. 

Nevertheless, most of these reviews commit to investigate mechanistic approaches such as 

classical colloid filtration theory (CFT) and/or DLVO theory. Thus far, from continuum viewpoint, 

there is no comprehensive review on various phenomena taking place for NP in porous media. 

Furthermore, an overview of the concurrent impacts of different transport mechanisms is lacking. 

Therefore, the present study focuses on all the possible transport mechanisms of NP in porous 

media and their superposition within the context of continuum modelling. These mechanisms 

comprise reversible, irreversible and equilibrium interactions of NP with porous media, as well as 

agglomeration, straining, blocking, ripening, and size exclusion. In this review, we describe the 

basic conceptual model applied along with each mathematical model for these processes. The 

motives behind selecting the type of conceptual model and their limitations are also discussed. 

Further conceptual scenarios in which various transport mechanisms are acting together are 

proposed to resolve inconsistencies incurred in the interpretation of the experimental outcomes 

using one model only. Finally, we briefly discuss some issues of upscaling continuum models to 

multidimensional scales.  

 

2. Methodology 

In this review we categorize 16 types of continuum-based models which have been used to date 

for simulation of NP transport (Table 1). Information from almost 50 papers on NP transport 

column experiments and continuum modeling are summarized in Table 2, which highlights 

underlying mechanisms of transport together with the respective types of the applied continuum 

model. The main NP of concern in these data include: silver (AgNP), nanoscale zero zero-valent 

iron (NZVI), iron oxide, hydroxyapatite (HAP), graphene, graphene oxide (GO), cerium dioxide 

(CeO2), TiO2, zinc oxide (ZnO), quantum dots (QDs), carboxylate-modified latex (CML), and 

aluminum oxide (AlO) NP. In order to investigate various deposition mechanisms, we used the 

MT3DMS [89] code to produce  breakthrough curves for various combinations of attachment and 

detachment parameters. We also used this model following [21] in an assessment of the validity 

of assuming an equilibrium term to describe NP attachment and concurrent 
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agglomeration/attachment in porous media. Full details of the model conditions and validation 

data are provided in Section 4. 

3. Transport mechanisms and continuum modeling approaches 

Figure 2 shows the result of a preliminary survey of literature on the major processes considered 

in transport of various NP in porous media. Aggregation (or agglomeration) is the most frequently-

reported process across all NP types followed by straining, blocking, ripening, size exclusion, 

reversible deposition, and irreversible deposition, respectively. Despite this, aggregation and size 

exclusion in porous media have been widely neglected in continuum modeling studies of NP 

transport [21, 34], at least in comparison with straining [71, 92, 110, 111, 122-137], blocking [71, 

102, 123, 124, 127, 128, 130, 131, 135, 138] and ripening [105-107, 110, 111] effects.  

3.1.Advection and dispersion  

Advection and dispersion mechanisms of colloids/NP have been recognized to be broadly the same 

as those of solutes such as ionic species, organic compounds, radionuclides etc. [54, 115]. 

Advection is the mechanism of transport with the average velocity of flowing groundwater. 

Mechanical dispersion [89] acts to spread the solute or colloid suspension parallel with and normal 

to the direction of flow because of the difference between the real velocity of the water inside the 

pores and the mean groundwater velocity, which arises from microscale velocity variation both 

within and between pores of different sizes [87, 89, 139-144]. Adding the molecular diffusion to 

the mechanical dispersion will result in hydrodynamic dispersion [89].  

In case of slow groundwater velocity, such as flow through compacted porous media, dispersion 

is of low significance but can nevertheless result from the molecular diffusion due to concentration 

gradients [84, 145]. Accordingly, the transport of solute and colloids/NP through porous media in 

the most simplified form might be described by the following basic partial differential ‘advection-

dispersion’ equation (ADE) [84, 86, 119, 145-148]:   

∂C 

∂t
 + 

𝜌𝑏

𝜀

∂𝑆

∂t
 = D

∂2C 

∂x2  – V
∂C 

∂x
         (1) 

where x is distance in the porous media [with the  dimension of L]; t is time elapsed [T]; C [N L-

3; N represents the particle number] and 𝑆 [NM-1] are the particle number concentrations of fluid-

phase particles and deposited phase particles, respectively [e.g., 21, 92, 98-100], or alternatively 
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C [ML-3] and S [MM-1] are the particle mass concentrations of fluid-phase particles and deposited 

phase particles, respectively [e.g., 100, 101, 102]; V [L T-1] is the pore water velocity (also known 

as real water velocity, linear groundwater flow velocity, seepage water velocity, interstitial 

velocity, or advection velocity). This is different from the Darcy velocity (also known as the 

superficial velocity or approach velocity) which is equal to the porosity times the pore water 

velocity [LT-1]. D is the hydrodynamic dispersion or simply dispersion coefficient [L2T−1]; 𝜀 is the 

bed porosity [—]; and 𝜌𝑏 is the porous medium bulk density [ML-3].  

The dispersion in Eq. (1) is defined by analogy to Fick's law of diffusion and is linearly related to 

the pore water velocity. In a one-dimensional uniform flow field such as column experiments 

transverse dispersion is not considered and thus the dispersion coefficient has one longitudinal 

component related to pore water velocity [89, 149]: 

𝐷 = 𝛼𝐿𝑉 + 𝐷∗           (2) 

where 𝛼𝐿is longitudinal dispersivity [L] and 𝐷∗ is the effective molecular diffusion coefficient 

[L2T−1]. 𝛼𝐿 is typically an intrinsic property of the porous medium as well as a function of scale 

[94, 149-151]. Thus, the common practice for both colloid and reactive solute transport is to 

determine this coefficient based on the breakthrough curve (BTC) of nonreactive solute transport 

through any given porous media [94, 146, 149, 152]. However in the case of colloid transport, 

Chrysikopoulos and Katzourakis [94] in a meta-study of 48 different BTCs, found that the 

dispersivity can exhibit a positive correlation with the particle size and the pore water velocity. 

Therefore, they suggested that the dispersion coefficient should be obtained from the colloid 

breakthrough data rather than nonreactive solute transport due to the potential for particulate-

specific dispersion mechanisms such as size exclusion and preferential flow (discussed in later 

sections) [92, 94, 141, 151]. Nonetheless, this approach can make the inverse modeling 

problematic when there are other parameters that must be estimated to represent other colloidal 

transport phenomena. Further research is needed to understand the uniqueness of estimated 

parameters based on fitting continuum model outputs to experimental data, especially when 

dispersivity is considered along with other NP transport parameters in the inverse modeling 

process.  
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Molecular diffusion is commonly neglected in colloid and solute transport studies with pore water 

velocities in the ranges of natural groundwater velocities [89, 151, 153]. However, it can become 

significant in very compact and fine porous media, fractured media with very low pore water 

velocities, or when there are other processes involved such as thermal or electrophoresis effects 

[89, 154-157]. The intrinsic diffusivity of colloidal particles decreases with increasing size 

according to the Stokes-Einstein equation and it is typically more than three orders of magnitude 

lower than the molecular diffusion for common solutes [94, 158-160]. For instance, the diffusivity 

of water is around 2.3 × 10−9 𝑚2𝑠−1 at 25 °C while for spherical particles with a diameter of 100 

nm it is around 4.9 × 10−12 𝑚2𝑠−1 according to Stokes-Einstein. Nevertheless, NP differ from 

larger colloids since diffusion may remain a significant mechanism in their transport behaviors. 

Molnar et al. [30] recently identified the high diffusivity of NP as a barrier toward developing 

mechanistic modeling approaches for NP transport as well as a reason for the lack of distinction 

between solute and NP mobility properties. To date, NP diffusion has been rarely considered as a 

distinct parameter in the continuum models—only one study [157] has considered its effect via 

Stokes-Einstein equation in the numerical transport model. Yet, frequently mechanistic modelling 

approaches have recognized its potential influence on the deposition behavior of NP [31, 32, 67].  

3.2. Attachment and detachment  

3.2.1. Irreversible deposition  

Solute mass transfer from liquid to solid phases is generally dominated by sorption which is usually 

modelled as a reversible kinetic process [161]. However, colloids and NP interact with solid 

surfaces of porous media by a number of mechanisms which may yield attachment that is 

practically irreversible. In other words, solute retention which appears irreversible at short 

timescales can be considered reversible at larger time scales under the same conditions [161], 

whereas irreversibly attached colloids may not be detached unless a significant physical or 

chemical perturbation occurs in the conditions of the system [66]. Irreversible deposition or 

physicochemical filtration was well described by colloid filtration theory (CFT). This was 

performed initially by drawing analogy to the transport in flocculation process [65], later by 

trajectory analysis [162], and by using filtration mass balance equations in a sphere around a single 

collector [163]. Filtration theory needs estimation of two parameters, the single-collector 
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attachment efficiency, 𝛼, and single-collector collision or contact efficiency, 𝜂0 . The first of these 

describes the probability of any collision between a particle and a collector resulting in attachment; 

the second describes the probability of that collision occurring in the first place. Although there 

has been a marked advancement in predicting 𝜂0 through use of correlation equations with 

controllable parameters such as Péclet number, particle:grain size ratio, and so on [31, 32, 67, 164], 

the estimation of 𝛼 still requires either empirical derivations, which may not be generalizable, or 

laboratory-column  experiments [12, 31, 67, 88, 113]. This limitation has caused researchers to go 

as far as eliminating 𝛼 — replaced by a parameter for fractioning reversibly and irreversibly 

deposited particles [165].  

In continuum-based models, the definition of the attachment term depends on the 

conceptualization of deposition phenomena. The simplified form of the governing ADE equation 

for colloid transport in porous media can be written with a first-order irreversible attachment term 

as model type (i), Table 1 [119, 148]. In this model, 𝐾𝑎𝑡𝑡  is attachment rate coefficient [T−1] which 

can be related to the parameters of CFT via the following equation [67, 68, 146, 166-168]:  

Katt =
3(1−ε)

2d50
𝛼𝜂0𝑉  (3) 

where d50 is the median porous media grain size [L] and ε is the porosity of porous media [—]. 

Although the parameter 𝐾𝑎𝑡𝑡 can be expressed via the theoretical relationship of Eq. (3), 

determination of α still requires experimental data. On this basis, throughout this paper we directly 

deal with the parameter 𝐾𝑎𝑡𝑡 instead of α [91, 93].  From the continuum modeling viewpoint, type 

(i) models only describe irreversible deposition and do not consider subsequent detachment. In 

experimental conditions where attachment is the only operative mechanism, increase in the value 

of 𝐾𝑎𝑡𝑡 leads to a flat reduction of the BTC plateau as shown in Fig. 3. The curves in this figure 

are produced by numerical solution of type (i) model using the MT3DMS code [21].   

Table 2 shows that 20% of NP continuum modelling studies used type (i) models. It is evident that 

most of these studies used very simplified experimental conditions, highlighting that this model 

and thereby CFT are strictly limited in scope of application to steady flow through idealized, 

uniform media. There have already been several excellent review papers [30, 48, 51-54, 56, 112, 

115, 120] discussing the deposition mechanisms of NP and colloids in porous media. From the 
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perspective of continuum modelling, however, it is apparent that deposition cannot be considered 

in isolation except in the most artificial circumstances.  

3.2.2. Detachment  

When the colloid association with the solid surface is not strong enough to be permanently 

retained, particles can be subject to reversible deposition and thereby detachment. Particles can be 

maintained temporary when they are trapped at a shallow DLVO secondary minimum [31, 33] or 

as recently found even at a shallow primary minimum resulted from nanoscale surface 

heterogeneities [169, 170], or held at the surface by hydrodynamic forces. Depending on how fast 

the diffusion of the material is, the process of attachment-detachment can be considered in form 

of either fast forward—backward interactions of particles or discrete retention—re-entrainment of 

particles [102, 165, 167, 171]. In other words, if particle detachment is so fast that the net result of 

particle interactions with the solid surface is dominated by attachment, it is only the attachment 

that can be at last perceptible. On the other hand, if the detachment rate is low, for example in 

slow-diffusion regimes experienced by larger (> 1 μm) colloid/aggregate sizes then particles may 

be first deposited and then be subject to detachment in time; this case is commonly termed ‘re-

entrainment’ [165, 167]. 

Commonly among literature studies, three forms of detachments have been inferred: (1) 

detachment shown by tailing in the BTC; (2) detachment in form of retarded or delayed BTC; and 

(3) detachment or release in form of separated peaks following the BTC. The first type of 

detachment typically emerges where the feeding solution into the column inlet is switched from 

the injecting particle dispersion to the particle-free solution with the same ionic strength and pH 

(two-phase injection experiments). This is the most common reference to ‘detachment’ and has 

been observed for various NP such as NZVI [105, 136], carbon nanotubes [172], silica [102], 

nanoporous silicate [173], and Ag NP [174-176] (Table 2). This is also known as re-entrainment 

and has been observed as dramatically extended BTC tailing which has been observed for a wide 

variety of colloids [165, 167, 171, 177]. The underlying mechanism for this kind of detachment is 

commonly sought in the hydrodynamic forces [33, 104, 178, 179]. The governing set of transport 

equations considering kinetic detachment of this type is given as type (ii) models (Table 1) [100, 

142], as well as types (iii) and (iv) models accounting for dual-site attachment/detachment. Using 
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the MT3DMS code [89], we numerically solved type (ii) set of equations. The outcomes, by 

holding 𝐾𝑎𝑡𝑡 constant while varying 𝐾𝑑𝑒𝑡, are presented in Fig. 4a. This figure shows that rising 

𝐾𝑑𝑒𝑡 not only causes the emergence of tailing in BTC, but also this leads to an asymmetric rise in 

the plateau of BTC which is higher at the side of the descending limb. The plateau elevates until 

finally it becomes flat at the largest value of Kdet where BTC resembles the conservative transport 

behavior.  

In the second type of detachment, retardation appears as a horizontal shift in the colloid/NP BTC 

compared to conservative transport BTC (Fig. 4b). This has been observed for iron NP [180], Ag 

NP [138, 174, 175], carboxyl-modified latex NP [181], HAP NP [124], and QDs [182-184] (Table 

2). The most pronounced occurrence of the retardation has been observed for NP with 

infinitesimally small size (<10 nm) such as QDs, particularly at elevated IS, decreased pH, [183-

185], smaller sizes of porous media grains [183, 186] or increased temperature [182]. It should be 

noted that although here we categorize retardation as a kind of detachment, in several studies which 

have observed retardation, ‘detachment’ has been ruled out because of not observing the tailing in 

the BTC [181, 183-190]. Nevertheless, our view based on the sum of evidence is that retardation 

results from reversible interaction of particles with the porous media surfaces – attachment and 

detachment, therefore — the net result of which will control the final transport of particles [21]. In 

the case of QDs, the delay in the BTC may arise from the fast diffusive mass transfer rate  of QDs 

from bulk solution to the sand surface and slower mass transfer of QD from the solid phase to the 

bulk phase [183]. Retardation in its linear form is mathematically related to the most common 

parameter in the literature of reactive transport modeling in groundwater known as distribution 

coefficient or partition coefficient 𝐾𝑑. The use of  𝐾𝑑, however, requires applying an assumption 

of equilibrium between the dissolved and sorbed phases of solute contaminant (or attached and 

mobile phases of particles as discussed in section 4). The respective model of this parameter is 

given in Table 1, as type (v). The solution to this model using MT3DMS code is shown in Fig. 4b. 

This figure elucidates how retardation (and acceleration as will be described in section 3.5, “Size 

exclusion”) of BTC can occur in combination with a significant amount of irreversible attachment 

(𝐾𝑎𝑡𝑡 = 1 x 10-3 S-1).  

The third type of detachment is related to the cases where after injection of the particle dispersion 

(first phase) and particle-free background solution (second phase), a solution with a lower IS or a 
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different pH is flushed through the porous media container. The released mass can be seen in the 

BTC in form of separated peak(s) following the primary breakthrough [63, 64, 187, 189, 191-194]. 

The model for simulating the release is given as type (vi) model in Table 1 [64, 115, 187]. This 

equation assumes that remobilized particles do not reattach again, with the rationale that conditions 

following a perturbation that causes release are less favorable for reattachment than the original 

conditions [64].  

Overall, for very small NP that display high diffusivity, thereby more collisions, detachment 

typically emerges in form of retardation of the BTC [102, 183], whereas for larger particles, due 

to hydrodynamics of the system, detachment may emerge in the form of tailing of the BTC [33, 

104, 178, 179]. We suggest that in future studies selecting an appropriate detachment model should 

be based on the aforementioned categorization. It should be mentioned, however, that the models 

listed in this paper for every transport mechanism are not strictly the only available approach, and 

there might be other alternatives, particularly in the field of colloid transport literature. For 

instance, there have been other modeling approaches to the release of attached colloidal particles 

under perturbation (third type of detachment) [195, 196]. There is clearly a need for further work 

to understand the thresholds or transitions between different detachment phenomena and relate 

these, if possible, to changes in the rates of competing underlying processes acting on particles. 

3.2.3. Coexistence of both irreversible deposition and reversible attachment/detachment  

In many practical cases both kinds of interaction can exist in the same system together, resulting 

in both reversible and irreversible depositions. This has been frequently observed in studies with 

dual deposition sites or polydisperse NP dispersions (containing fractions of small and large 

particles) [e.g., 21, 31, 33, 197, 198, 199]. In these cases, neither equilibrium sorption nor non-

equilibrium kinetic attachment/detachment models alone can satisfactorily describe NP transport, 

as none of them take into account the absolute irreversible deposition by themselves. In the case 

of the equilibrium model, the irreversibility is not taken into account because a physical 

relationship between the mobile-phase concentration and the immobile-phase concentration 

(sorption isotherms) is imposed upon the governing equation of the transport in porous media via 

the 𝑑𝐶̅ 𝑑𝑡⁄  term [161]. Regarding the non-equilibrium model, absolute irreversibility cannot be 

reached, unless the detachment rate in type (ii) model, (Table 1) is considered equal to zero—in 

which case the model reduces to type (i), Table 1. It was clearly illustrated in Fig. 4a that any 
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increase in Kdet value resulted in the emergence of tailing in BTC, as well as an asymmetric rise 

in the plateau of BTC, suggesting that absolute irreversibility cannot be achieved by model type 

(ii) alone. Therefore, both equilibrium and non-equilibrium attachment/detachment models are 

intrinsically reversible and cannot take into account the absolute irreversibility of colloidal 

particles in the transport problems.  

Accordingly, there is a need for an additional term in the model to describe irreversible deposition. 

Commonly, if the  𝐾𝑑 parameter can be used by invoking the equilibrium assumption, then 

description of irreversible deposition is made by addition of a sink term to decay the concentration 

of the fluid phase—similar to the simple irreversible deposition model explained already (model 

type (i), Table 1). This combination results in model type (v), Table 1. The BTC produced by such 

a model is shown in Fig. 4b. However, should the equilibrium assumption cannot be invoked, then 

kinetic model already has a term that decays the concentration of the fluid-phase, and no additional 

term can be added to decay the concentration of this phase. In this case a sink term that decays the 

concentration/population of the attached phase (−𝜆2
ρb

ε
𝑆) may be added to the model in order to 

take account of irreversible deposition—as given in model type (vii), suggested by Babakhani et 

al. [21], Table 1. Thus, in future modeling practices, we propose using either of the aforementioned 

approaches whenever both reversible and irreversible attachments are suspected to be operative 

simultaneously, e.g., due to heterogeneity in the population of particles. For such cases, these 

approaches are believed to be more rigorous representations of real condition rather than dual-site 

deposition models, e.g., model types (iii) and (iv). Further research is required to test this assertion 

across a range of scales and systems. 

3.3. Straining 

3.3.1. Mechanism 

In addition to the filtration mechanisms which are driven by the interfacial forces between particles 

and the porous media surfaces, retention of particles in porous media can be driven by physical 

straining [62, 200]. Since straining has been identified recently as a key process of retention in the 

transport of NP in porous media [e.g., 75, 125, 126, 130-132, 134, 137, 192, 201-207], in this 

section we review this phenomenon from the very fundamental concepts. 
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Straining is defined as the process of physical trapping of particles in the pore throats which are 

narrower than the size of particles. In the case of high concentration of particles, straining is 

deemed to occur as a result of concurrent arrival of many particles at a pore opening. This can 

result in “jamming” and “arching”, and eventually lead to “clogging” of the filtration surface [56, 

120]. In engineered filtration systems such physical straining results in a continuous compressible 

cake [208, 209] or a mat with holes on it [209]. But although observed in experimental micromodel 

by the aid of pore visualization [210] this is not considered common in natural aquifers unless it is 

encountered at the upper area of porous media [53, 211] or in the case of injecting engineered NP 

into subsurface media, in the near vicinity of the injection well [e.g., 212, 213-215]. Occasionally 

straining has been further subdivided into two mechanisms of wedging and bridging. Wedging is 

the trapping of particles at two bounding surfaces without interference of particles while bridging 

is the simultaneous arriving and accumulation of particles at the pore constriction [51, 216, 217].  

 

3.3.2. Criteria and manifestation  

In reality, even for ideal spherical and uniform grains and NP, the pores are not ideal flow channels 

for the transport of NP because of the existence of narrow spaces at the contact angle of the spheres. 

These angular spaces brings about a potential of straining for different sizes of NP. Herzig et al. 

[119] illustrated different retention sites for straining as (Fig. 5): (1) surface sites; (2) crevice sites; 

(3) constriction sites; and (4) cavern sites. This initiated the development and the use of a criterion 

for straining model selection by the ratio of particle diameter to grain diameter (dp/dg) [107, 200, 

218]. This critical ratio for straining as obtained from experimental results simultaneously under 

the influence of physicochemical filtration and straining retention was found to be 0.0017 [62, 92, 

219-221]. The idea of a critical straining threshold is important in developing the conceptual model 

of NP transport in regards to straining, since many papers have attributed [74, 75, 125, 126, 130-

134, 137, 192, 201-207] or rejected [129, 222-224] the influence of straining based on this criteria.  

Physical straining has been recognized to contribute: (1) to the removal of CeO2 NP, (with 𝑑𝑝/𝑑𝑔 

of 0.0002) ascribed to the angular shape of the porous media grains (industrial mineral silica) 

[192]; (2) to the removal of Ag NP following aggregation (with initial 𝑑𝑝/𝑑𝑔 = 3 × 10−5) [201], 

or heteroaggregation (with initial 𝑑𝑝/𝑑𝑔 ranging from 0.0001 to 0.0004) [202], or due to the 
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existence of a portion of pores smaller than the particle size (with overall 𝑑𝑝/𝑑𝑔 = 3 × 10−4) 

[203]; (3) to removal of GO at high IS due to concurrent agglomeration in porous media with 

initial 𝑑𝑝/𝑑𝑔 in range of 0.003-0.009 [130, 131], or with initial 𝑑𝑝/𝑑𝑔 in range of 0.001-0.002 

[133], or elevated 𝑑𝑝/𝑑𝑔 of 0.005 [132], and/or ascribed to increased surface roughness because 

of the biofilm-coated sand with initial 𝑑𝑝/𝑑𝑔 of 0.0005-0.0007 [74]; (4) to removal of TiO2 NP 

because of straining caused by aggregation during flow in porous media (initial 𝑑𝑝/𝑑𝑔 ranging 

from 0.001 to 0.010) [134] or due to presence of initial aggregates since suspended aggregates are 

more prone to encountering smaller pore throat (initial dp/dg = 0.0005) [204], or because of the 

smaller pores resulted from the clay content in the soil (initial 𝑑𝑝/𝑑𝑔 in range of 0.0003 to 0.001) 

[205]; (5) to removal of ZnO NP at the high IS (50 mM NaNO3) due to heteroaggregation with 

soil particles, due to the presence of surface charge heterogeneities (resulting in subsequent 

clogging of the pores) (initial 𝑑𝑝/𝑑𝑔 in range of 0.001 to 0.009) [137], or due to the concurrent 

aggregation [75, 206, 207] with initial 𝑑𝑝/𝑑𝑔 in range of 0.0006 to 0.0012. Straining has also been 

recognized to contribute to the removal of HAP NP and goethite particles when co-transported and 

heteroaggregated, with maximum 𝑑𝑝/𝑑𝑔 of 0.0046 [125] or for HAP NP and hematite particles 

with maximum 𝑑𝑝/𝑑𝑔 of 0.0027 [126] being larger than the literature threshold value (0.002). 

These figures show that the criteria of 0.0017 cannot be valid for NP mainly due to the interference 

of other mechanisms.  

In addition to this criterion, another sign for identifying the straining is the shape of the retained 

colloid mass profile as function of distance from inlet (RCP). As such, a number of authors [109, 

110, 122, 129, 172, 225-228] attributed the retention behavior to straining whenever they observed 

a hyper-exponential profile for the RCP; that is a marked decreasing rate of deposition with 

distance from inlet according to an inverse power law. This is in spite of the fact that hyper-

exponential behavior of the RCP can also be attributed to other factors and mechanisms such as 

surface roughness [62, 92, 229, 230], concurrent aggregation [231-234], colloid population 

heterogeneity [194, 235], variations in the pore-scale velocity [127, 236, 237], and chemical 

heterogeneity [220, 238, 239]. Nevertheless, monotonic and/or non-monotonic RCPs can be 

observed when the straining is considered the dominant mechanism of retention [109, 200, 240, 

241]. Non-monotonic RCP demonstrates a peak of concentration somewhere between the inlet and 

the outlet of the porous media domain [109]. Therefore, hyper-exponential behavior of RCP may 

not be a deterministic sign of the straining phenomenon.  
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Despite extensive allusions to the reflection of transport and deposition mechanisms in the RCP 

shape among literature studies [e.g., 109, 110, 122, 129, 172, 225-227], there have been fewer 

attempts to evaluate the slope of the BTC plateau in regards to the underlying mechanisms of 

transport. In this paper, the information about various BTC plateau shapes including flat, 

ascending, and descending in both forms of limited duration of particle injection and continuous 

injection (experiments without post-flush of particle-free dispersion) were collected in Table 2. 

Straining has been reported along with a flat shaped plateau of BTC for AgNP following 

aggregation [201], GO at intermediate IS [133], and ZnO in presence of biofilm or NOM [75, 206] 

and with an ascending-shaped plateau of BTC for nHAP [111], GO at high IS  [133], and ZnO 

[206, 207]. More frequently, however, straining has evidently come with an ascending-BTC 

plateau, e.g., for AgNP [176, 242]. NZVI  [136], GO [74, 130-132], CeO2  [192], TiO2 [134], and 

ZnO  [137]. This suggests that potential sites for straining mostly have a limited capacity. Once 

this capacity is met, a decrease in the retention rate results, that appears as an ascending-BTC 

plateau. Hence, straining is a phenomena that should commonly occur along with other transport 

mechanisms, such as blocking.  

3.3.3. Modeling approaches of straining  

Generally, straining has been described either with a depth-dependent decaying exponential 

function [92] or with a concentration-dependent decaying exponential function [200, 218, 241] in 

the continuum-based modeling framework. The former includes one empirical parameter, 𝛽, 

standing for the shape of the colloid spatial distribution and one extra variable of 𝑥 standing for 

the distance from the inlet. This function, given below, is in fact able to predict the depth dependent 

RCP [92]:  

ψ𝑥 = (
𝑑𝑐+𝑥

𝑑𝑐
)

−𝛽

 (4) 

where 𝑑𝑐 is size of grains (collector) representing the pore length which is oftentimes considered 

as 𝑑50, the median size of the porous media grains. The implementation of this function in the 

advection-dispersion model is its multiplication in the term for attachment (in 𝐾𝑎𝑡𝑡) as given in 

model types (viii), , (xi), (xii), (xiii), (xiv), and (xv) in Table 1. When 𝛽 is equal to zero (𝜓𝑥 = 1), 

the decrease of retained concentration with distance is exponential which is the case for clean bed 

filtration theory [110].                                       
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On the other hand, the concentration-dependent decaying exponential expression includes two 

parameters, a rate coefficient parameter, 𝑘0, standing for straining kinetic rate coefficient [T-1] and 

the coefficient for the exponential decline in straining rates, 𝜆, with the same unit as retained 

concentration variable, 𝑆, [NM-1 or MM-1] [200]: 

ρb

ε

∂𝑆

∂t
= 𝑘0 𝐶 𝑒

−𝑆
𝜆⁄   (5) 

This equation is solved with the advection-dispersion equation. When 𝑆 ≈ 0, the equation becomes 

the same as that for clean bed colloid filtration theory.  

The depth-dependent expression of Bradford et al. [92] has become more popular for simulation 

of colloid and NP straining to the extent that most of the recent literature studies on NP transport 

have utilized this expression to fit the BTC/ RCP of NP transport through column experiments, 

e.g., for hydroxyapatite NP [71, 111, 122-126] and silver NP [123, 127]. This expression only uses 

one parameter (𝛽) which can be estimated based on the observed shape of the RCP. In some studies 

a fixed value of 0.432 [71, 92, 110, 111, 122-124, 127-134] or 1.532 [e.g., 138] has been used. In 

most studies, however, this parameter has been considered as a free parameter to be estimated in 

the inverse modeling and the values obtained are highly variable: 0.302 and 1.234 for Ag NP [135], 

0.609 for CMC-NZVI [136], in range of 0.02 to 0.33 for ZnO NP [137], ranges of 0.659-2.28 and 

0.764-1.69 in co-transport of HAP NP and hematite particles, respectively [126], or ranges of 

0.432-1.85 and 0.432-1.57 in co-transport of HAP NP and goethite particles, respectively [125].   

The depth-dependent model of Bradford et al. considers a decaying attachment rate with distance 

which is favorable for capturing the hyper-exponential behavior of RCP, frequently witnessed in 

the transport of colloid and NP subjected to concurrent physicochemical filtration and straining. 

On the other hand, in studies which have used the concentration-dependent model, the effect of 

physicochemical filtration had been turned off, by thoroughly cleaning of the sand and the use of 

deionized water (DI) as the dispersant solution, in order to maximize electrostatic repulsion 

between the colloids and sand surface thereby to expect the mere influence of straining 

unambiguously [185, 200, 218, 240, 241]. This brought about nearly a monotonic shaped RCP in 

those studies. It is still not clear whether this model can fit the BTCs and RCPs for the conditions 

where concurrent influences of physicochemical filtration and straining exist. It should be noted 

that the straining model of Bradford et al. has been criticized for not having enough power to 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

21 
 

describe the real straining phenomenon [243]. In other words, whenever the depth-dependent 

model has been fitted to the experimental data with hyper-exponential RCP, it is obscured, 

recalling the ambiguities of the relevancy of straining to the RCP behavior, whether in reality the 

model describes the straining phenomena or it just captures the depth-dependent behavior [243]. 

One key drawback of the depth-dependent model of Bradford et al. is that it is still unknown how 

the variable of depth or length should be treated when it comes to application of the model in two- 

and three-dimensional simulations [118]. Although recently Köber et al. [213] employed this 

model for field-scale simulations, the treatment of the variable, 𝑥, was not clarified by these 

authors. In addition to this difficulty in upscaling the depth-dependent model of Bradford et al., it 

is also unclear whether this model can be valid in the real condition of flow in larger scales where 

the effect of preferential flow paths is considerable [153, 199, 210, 244, 245]. To date, relatively 

very few studies have discussed the occurrence of straining, clogging or pore plugging in the 

porous medium during NP transport in multi-dimensional domains [96, 157, 213, 214], some of 

which even tried to rule out these phenomena. Therefore, there is a crucial need to develop more 

rigorous conceptual models that can consider the concurrent effect of various phenomena 

occurring with straining of NP during transport in porous media. This may help providing insight 

into the role of each underlying mechanism. The problem becomes even more convoluted when 

other phenomena such as blocking/ripening and size exclusion are also involved as addressed in 

the next sections.     

3.4. Site-blocking and ripening 

3.4.1. Site-blocking mechanism and related modeling approaches  

The surface of porous materials may have a limited capacity for the adsorption/attachment of 

solute/particles and once this capacity is filled, the adsorption/attachment of further solute/particles 

is hindered by the presence of previously sorbed/attached materials. The most well-known 

approach for modeling this quality, which is called site-blocking effect, is to use the Langmuir 

approach for solute/gas [246] and for colloid [247] adsorption onto solid surfaces. This is used to 

model the site-blocking effect of  colloidal particle attachment during transport in porous media 

via the following relationship [102]:   
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ψ𝑏 = (1 −
𝑆

S𝑚
) (6) 

where 𝜓𝑏 is the Langmuirian blocking function related to the fraction of porous medium available 

for deposition [—] and 𝑆𝑚 is the maximum retained-particle phase concentration, i.e., colloidal 

retention capacity [NM-1 or MM-1]. When used in the advection-dispersion model, this expression 

will result in a second-order colloid deposition kinetics limited by aqueous phase as well as the 

solid phase concentrations [102, 248]. The BTC produced by this model does not maintain a 

plateau but instead gradually climbs toward the peak (ascending plateau). This gradual rising 

plateau is a sign of decline in the deposition rate with increasing the amount of attached phase 

particles, i.e., the blocking effect [102]. Accordingly, many papers by observing the gradual 

increasing plateau of the BTC, applied the Langmuirian approach into the continuum model 

(model types (ix), (x), (xi), (xii), (xiv), and (xv), Table 1) in order to simulate the transport of NP 

such as Ag NP [135, 203], GO [249-251], CeO2 NP [192], TiO2 NP [102, 222], QD [184-187], 

and CML [185]. Based on the satisfactory model fitting results, these studies proposed the blocking 

of the physicochemical attachment sites as an underlying phenomenon for transport of NP in 

porous media. However, the application of this model has not been only limited to the blocking 

due to physicochemical deposition but also has been widely applied for describing the depleting 

capacity of the straining sites over time via model types (xi) and (xii), Table 1, e,g., for AG NP 

[123, 127, 128, 135, 138], GO [130, 131], and several other colloids [e.g., 110]. In addition, in a 

few studies [71, 124], the Langmuirian type site-blocking function was combined with the depth-

dependent model of straining in form of dual-deposition sites (model type (xi), Table 1)—one for 

time-dependent retention and another for depth-dependent deposition, without any mention of 

straining or blocking explicitly.  

It is very important to note that a rising plateau of the BTC should not be always taken as a sign 

of site-blocking phenomenon. Recalling the BTC generated by using the simple non-equilibrium 

attachment/detachment model (model type (ii), Table 1) in Fig. 4a, ascending BTC plateaus can 

also emerge with increasing 𝐾𝑑𝑒𝑡 values as described in Section 3.2. Nevertheless, these shapes of 

BTC, which result from simple attachment/detachment model, come with tailing which may not 

be the case when the underlying transport process is site blocking [e.g., 132, 133, 181, 186, 187, 

203, 222, 249, 250] unless they occur simultaneously. In the latter case, both 𝐾𝑑𝑒𝑡 and Langmuirian 

function should be included in the model at the same time [74, 105, 130] (Table 2).    
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From a mechanistic standpoint, the Langmuir function can be criticized for being a linear function 

of the surface coverage [252]. Therefore, a dynamic blocking function based on the non-

equilibrium model of random sequential adsorption (RSA) mechanics as a nonlinear power law 

function of surface coverage was developed in order to account for the real surface exclusion 

effects introduced by larger colloids [252, 253]. Being a sort of mechanistic approach, this model 

obviated the need for parameter estimation. This model was even employed to simulate the 

transport of colloid in heterogeneous porous media [101]. Nevertheless, this type of modeling 

approach generally comes with the disadvantages of ignoring the specific interactions of attaching 

particles with interfaces and with previously deposited particles, as well as inefficiency of their 

application for non-spherical particles [36]. Furthermore, they have the limitation of being strictly 

valid for just the irreversible deposition [36]. Detailed discussion of this model can be found in 

[36]. Overall, the identification of blocking phenomena is clearer than other transport mechanisms, 

such as straining and agglomeration, e.g., a rising-plateau BTC without tailing appears to be a clear 

sign of blocking mechanism in the system. A Langmuir type model, in spite of emanating from 

solute transport literature, has generally been found effective for modeling the site-blocking aspect 

of NP transport in porous media across different scales [254, 255]. 

3.4.2. Ripening mechanism and related modeling approaches  

Ripening is the opposite of the blocking phenomenon, i.e. it is expected to occur when the particle-

particle interactions/associations on the surface of porous media are stronger than the particle-

surface interactions/associations. Also, in contrast to the blocking mechanism, in which the 

deposition rate decreases with time, ripening causes an increase in the deposition rate with time. 

This leads to a dropping plateau of the BTC in the case of ripening [51, 92, 98, 100, 106, 107, 111, 

115, 126, 234, 256-261]. Ripening has been observed for NP such as NZVI [105, 106, 258, 260, 

262, 263],  HAP NP [71, 111, 125, 126], TiO2 [256, 264, 265], nano- C60 [266], CeO2 NP [267], 

and ZnO NP [206, 207] typically at ISs in the range 10-20 mM NaCl or 1 mM CaCl2 [e.g., 207, 

256, 265]. Increase in the inflow concentration of NP strongly affects the ripening and can result 

in clogging of porous media [105, 106].   

In the context of continuum-based modeling of NP, two modeling approaches have generally been 

applied for ripening. First, a more robust form of Eq. (6), already capable of modeling the blocking 

effect, was introduced to model the ripening phenomenon alternatively, given as Eq. (e) in model 
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type (xv), Table 1 [105-107]. This equation represents ripening when 𝛽1 > 0 and 𝐴1 > 0 or 

blocking when 𝛽1 = 1 and 𝐴1 = −1/𝑆𝑚. Second, ripening has been modeled by adding a second-

order term between aqueous phase and the attached phase to the mass balance equation of the 

attached phase as given in Eq. (b) in model type (xiii), Table 1 [110, 111].  

The complexity of concurrent occurrence of various transport phenomena, namely, site-blocking 

and ripening along with aggregation, straining, and size exclusion, aggravated by the lack of proper 

experimental detection techniques, has not only caused problematic selection and application of 

various types of modeling approaches but also has been extended to the applied terminology in the 

literature of the subject [30, 118, 143]. Since ripening takes place in physicochemical conditions 

also favorable for aggregation, these terms sometimes has been used alternatively, or in other 

words, aggregation in porous media has been alluded to as ripening [107, 264, 268]. Yet, it should 

be clarified that aggregation, by itself, can occur both in the aqueous phase and the attached or 

immobilized phase separately. In aqueous phase, aggregation results from three mechanisms: 

perikinetic aggregation, differential sedimentation, and orthokinetic aggregation [21, 68] whilst in 

the attached phase, aggregation can result from the movement and/or rolling of the particles weakly 

attached on the secondary minimum of the collector surface and translating along the surface due 

to hydrodynamic drag forces and eventually their accumulation near the rear of the collector or at 

grain-to-grain contact areas [109, 237, 249, 269]. On the other hand, ripening arises from the 

interactions of depositing particles, still in the aqueous phase, with previously deposited particles, 

in the retained phase, leading to multilayer accumulation of particles on the surface of the collector 

[100, 111, 126, 256, 261, 262]. This also gives physical meaning to the second type of ripening 

model outlined above in which ripening is described by a second-order term standing for the 

interactions between the fluid phase and the attached phase.  

Chen et al. [256] provided an alternative explanation for the increased NP retention during 

transport. They indicated that enhancement in deposition rate can be also due to the appearance of 

more favorable surfaces for further deposition resulting from the alteration of the media surface 

charge distribution. Those authors, furthermore, proposed that collision of NP aggregates with 

sand surface can reconstruct the aggregates, i.e., change the particle arrangement in the structure 

of aggregates. This amounts to a consequent reduction in the sand-NP aggregate repulsion forces 

thereby enhancing the deposition rate [256]. Nevertheless, this observation was based upon 
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detecting a decrease in the particle size of the effluent samples, and no rigorous experimental 

evidence was provided. Countering this argument, similar behavior would be expected via the 

concurrent agglomeration of NP similar to the conceptual model proposed by [33] and numerically 

confirmed by [21]. In this interpretation, due to polydispersity of the injecting TiO2 dispersion in 

the study of Chen et al., concurrent agglomeration of the middle and larger fractions of the particles 

during transport, resulted from their deeper energy wells [31, 33, 199], could cause the removal of 

the middle and larger fractions of particles via agglomeration and subsequent ripening. In this way, 

the average size of particles which could reach the outlet of the porous media was reduced [21, 

111, 270]. This process has more recently been described as size selective retention [271]. Future 

experimental studies with measurement of particle size distribution inside the pore spaces and pore 

solid surfaces are required to find a better distinction among these phenomena and, therefore, 

verify the continuum model conceptual ground.  

It should be mentioned that blocking and ripening are two mutually exclusive phenomena, i.e., 

when physicochemical conditions are favorable for one, the other one should not take place. 

However, in practice they can still occur simultaneously within the continuum domain because of 

spatial heterogeneity in the porous media [261, 272]. In addition to concomitant blocking and 

ripening behaviors, transition from blocking phenomenon to ripening phenomenon has also been 

observed [125, 126, 256, 264, 265, 273]. Such shifts in the conditions of experiment that brings 

about a switching of the transport behavior from blocking to ripening is important because this can 

also alter most of the other underlying transport phenomena and thus provide insights into the role 

of each individual phenomena when several mechanisms of NP transport are operating 

concomitantly (see Fig. 6 a,b).  

Overall, two transport regimes can be encountered in the transport of NP in porous media. In the 

first regime, i.e., higher particle-surface attachment affinity than particle-particle attachment 

affinity, the major transport mechanisms are physicochemical filtration (describable by either 

kinetic or equilibrium attachment/detachment model), blocking (describable by Langmuir 

function), and perhaps together with physical retention, i.e., straining (describable with depth-

dependent function). This regime can produce ascending BTC plateaus (Fig. 6a). In practice, this 

condition may bring about a considerable mobility of NP which needs careful assessment of NP 

transport in order to prevent unwanted subsurface migration. The second regime is when the 
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particle-particle attachment tendency becomes dominant. In this regime although physicochemical 

filtration as well as straining may still be operative, ripening is predominant together with 

agglomeration and further subsequent retention. This regime may create descending BTC plateaus 

(Fig. 6b). If the conditions of the experiment shift the transport behavior from blocking to ripening, 

then hazardous aspects of unwanted NP migration might be relieved to some extend because of 

the substantial amount of the retention resulted from ripening. However, it may also be possible 

that in this regime even with significant agglomeration of NP in the mobile phase, ripening would 

not be the case. For instance, due to the lower input concentration ripening might not be significant. 

According to Table 2 ripening has been mostly the case when injection concentration ranged from 

100 mg/L to 20000 mg/L while the typical injection concentration of studies reviewed here was 

27.5 ± 11.5 mg/L. If ripening does not occur in this regime, agglomeration might promote size 

exclusion, which will be described next, thereby results in great migration distances. Should it be 

the case, the hazardous aspect of NP transport within subsurface will be much more serious than 

what has been hitherto believed. 

3.5. Size exclusion 

3.5.1. Significance for NP 

The importance of size exclusion was elucidated in considering the reasons for unexpected large 

migration distances of solute contaminants, such as radionuclides, in the subsurface because of 

their association with groundwater colloids, [59, 61, 274-281]. Size exclusion, also known in a 

more general concept as hydrodynamic chromatography, has been recognized as an underlying 

phenomenon for faster migration of particles compared to non-reactive solute in porous or 

fractured media [58-61, 100, 108, 117, 142, 151, 153, 280, 282-285]. Due to this mechanism, up 

to 4 - 5.5 times enhancement in colloid velocity compared to mean pore water velocity has been 

observed in micro-models [117, 153].  

Recently, the number of studies identifying size exclusion as an underlying transport phenomena 

of various NP has increased. These NP thus far include AgNP [135, 202, 286, 287], TiO2 [264, 

288], NZVI [289], and carbon nanotubes [290]. Particularly, size exclusion is noticeable in two 

areas of NP transport research, namely biofilm coated porous media [286, 291] and co-

transport/hetero-aggregation of NP [264, 273] even though these research areas are still at a 
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relatively early stage. For example, studies on the co-transport of Au NP with SWNT [273] or 

TiO2 with multi-walled carbon nanotubes (MWCNT) [264] showed that heteroaggregation of these 

NP can facilitate their transport in porous media [47, 95, 292]. Intuitively, it is easy to dismiss size 

exclusion for NP relative to larger colloids for the simple reason of their small size. However, 

notwithstanding the scientific necessity of obtaining robust proof of any such assertion, the 

potential for NP aggregation into particles large enough to experience size exclusion (section 3.6) 

provides a strong rationale for consideration of size exclusion in the context of NP fate and 

transport modelling.  

3.5.2. Mechanism 

Detection of size exclusion based on BTC and RCP data is challenging especially when several 

transport mechanisms act together. In many modeling studies of colloid and NP transport in porous 

media this mechanism has been neglected because of not observing the early BTC [e.g., 130, 131, 

190]. However, even though early BTC may not be observed, size exclusion can still be influential 

because its reflection in the BTC might be counterbalanced by other transport processes [92, 107, 

151]. Size exclusion was suggested by Bradford et al. [92] to be influential in the depth-dependent 

behavior of colloid retention. Agglomeration of NP can promote particle size growth which may 

in turn enhance the chance of size exclusion whilst it can also elevate physicochemical retention 

or retention via straining [31, 33, 92, 139, 199]. Although a satisfactory quantitative analysis of 

these effects acting simultaneously is still lacking [21, 33, 202, 281, 293], in this section we try to 

express the potential conceptual models of NP and colloid transport when several transport 

processes operate concomitantly.  

It should be clarified that herein size exclusion is considered as a mechanism of enhancing the 

transport of larger colloidal particles compared to smaller ones and nonreactive solute. This should 

be distinguished from some applications of the ‘exclusion’ terminology with the meaning of 

excluding colloids from all of pores (clogging) [62] or as a capture mechanism of colloid 

deposition [187, 294-296]. Size exclusion has been generally referenced in the context of colloid 

transport on two different scales [151, 283, 285]. First on a larger scale, i.e., bulk scale, the size 

exclusion concept has been referred to as the exclusion of particles larger than a portion of the 

pores that can be passed through by solute but not by the colloids [51, 54, 66, 92, 94, 98, 100, 110, 
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115, 283, 285, 297-300]. Second, at pore scale size exclusion has been attributed to migration of 

particles on flow paths which are close to the center of the pore channels where the velocity is 

theoretically 1.5 times larger than the mean pore water velocity—similar to the phenomena in 

solute transport context called "charge" or "anion exclusion", but with different underlying forces 

[58, 116, 139, 151, 153, 283].  

On the larger scale, the concept of inaccessibility of pores to colloid rather than solute, which has 

also been termed as “pore exclusion” [301], in order to be significant, requires the threshold ratio 

of the pore throat to colloid diameter to be larger than 1.5, suggesting for many environmental 

porous media that the size of the colloid must be larger than 1-2 𝜇𝑚 [153]. Grolimund et al. [302] 

showed that the inaccessibility of small pores in the soil texture to colloidal particles did not change 

with variations of the pore water velocity and therefore exclusion of colloids from the margins of 

the pore throats was the main cause of the breakthrough acceleration. The observation of 4-5.5 

times enhancement in the colloid velocity in a micromodel by Sirivithayapakorn and Keller [153], 

which was attributed to the preferential paths resulted from the selectivity of the pores, i.e., 

inaccessibility of the small pore to larger particles, as well as observation of detours in a 

micromodel by Auset and Keller [283] suggest that this type of size exclusion might be still 

considerable.   

At the smaller scale, the velocity profile in an individual pore section, approximated as a cylinder, 

is expected to adopt a parabolic shape according to the Poiseuille flow profile, i.e., the velocity is 

zero at the wall and the maximum at the center [60, 139-142, 283]. Part of mass that resides at the 

center of these pipes will arrive at the end of the pipes sooner than the mean velocity of the flow. 

This part of mass may contain the larger size fraction of the colloids with lower Brownian diffusion 

compared to small particles or solute. Since materials with lower diffusion may be less distributed 

over the pore (or fracture) cross-section area and are less likely to reach areas near the pore (or 

fracture) walls, they are conceptually less prone to the movement with the sluggish velocities at 

the vicinity of the walls. This part of mass is also less likely to move with retardation or 

attachment/detachment that occur in the area near pore channel walls. As a result, larger particles 

according to this conceptual model can migrate faster than average pore water velocity.  
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The underlying reasons presented in the current literature regarding why the particles tend to keep 

far from pore channel walls are neither satisfactory nor generic. For instance, it has been mentioned 

that the large size of particles prevent their centers of mass from sampling the areas very close to 

the pore (or fracture) walls, and/or that the surface-charge-induced repulsion of particles prevent 

them from entering certain pore regions close to walls [58, 59, 61, 92, 94, 100, 108, 115-117, 140-

142, 151, 153, 160, 279, 280, 282-285, 291, 302-304]. It has also been mentioned in co-transport 

of TiO2 with MWCNT that the long arm of MWCNT impede the heteroaggregates to reach the 

vicinity of the porous media solid surfaces where they can be deposited [264]. These reasons, 

however, may not be sufficient to describe the significant acceleration of migration velocity 

observed for particles compared to conservative solute, e.g., 1.45 times velocity enhancement 

observed by Grolimund et al. [302], because reaching to these velocities necessitates the majority 

of colloids travel at an area very close to the centerline of the pore channels while in addition to 

diffusion several other mechanisms/forces such as gravitational sedimentation, interception, 

inertia, and momentum may tend to bring the particles to the surface of the pore (or fracture) wall 

or at least redistribute them across the pore space [31, 33, 67, 120, 305]. In addition, the limited 

influential distance range of repulsive forces to the vicinity of the pore walls as well as the change 

in the charge sign due to heterogeneity of the geological medium can downgrade the mere role of 

repulsion forces in keeping the colloids far from the pore walls [281]. This lack of recognition 

about the underlying mechanism of size exclusion might be a reason for the complexity in 

identifying the size exclusion when several other transport mechanisms are also engaged. This is 

also the case even in the mechanistic modeling framework in which very few papers thus far have 

attempted to capture the effect of size exclusion phenomenon [59, 60, 140, 282].  

In a study by Malkovsky and Pek [281], it was suggested that a substantial enhancement in the 

particle velocity relative to the average groundwater velocity can only result from drift forces 

created by the “Magnus effect” (the hydrodynamic force resulting on a rotating sphere in a 

heterogeneous flow field). This force causes the translation of particles toward the centerline [60, 

139]. Essential conditions for the Magnus effect to be functional are the rotation of colloidal 

particles and unequal velocities of particle and local groundwater streamlines [281]. However, it 

has been indicated that rotational component of particle is negligible for a range of ratios of particle 

diameter to pore throat (or aperture) width lower than 0.4 while typical ratios has been reported to 
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be far lower —10−4 to 10−2 [60, 284, 306, 307]. Nevertheless, Malkovsky and Pek asserted that 

the Magnus effect was still considerable for relatively small particles because of their significant 

oscillation resulting from Brownian motion. Other authors attributed the reason for cross-stream 

displacement of particles near a wall to the inertia in a laminar flow [60, 308-311]. Based on this 

analysis, Segre and Silberberg [309, 311] found that particles close to the centerline tended to drift 

towards the wall of the tube and particles at the vicinity of the wall tended to drift toward the 

center. This tendency led to an equilibrium position at a distance about 0.6 times of the tube radii 

from the centerline.  

3.5.3. Continuum modeling approaches of size exclusion 

To date, no specific parameter has been added to the advection-dispersion model to represent size 

exclusion. However, several different approaches have been applied in the continuum modeling 

framework to capture the impact of size exclusion by adapting the basic flow and transport 

parameters including partition coefficient (𝐾𝑑), pore water velocity, volumetric water content (or 

porosity), and dispersivity [92, 108, 141, 299, 312-314]. In the simple linear adsorption model, 

anion exclusion was taken into account by allowing the partition coefficient to become negative 

in the parameter estimation process [313]. This is equivalent to letting the retardation factor in the 

parameter estimation process to go lower than unity, that is then called "acceleration factor" [153] 

as was shown in Fig. 4b. For a non-equilibrium adsorption model, exclusion was incorporated by 

considering an equivalent exclusion distance from the pore wall where the concentration is 

effectively zero [312, 313]. Subsequently, an exclusion volume could be estimated by multiplying 

the exclusion distance in the specific surface area (L2 M-1). This exclusion volume times the soil 

bulk density yielded an equivalent porosity that could be subtracted from the porosity of the 

immobile domain used in the non-equilibrium dual domain model [312, 313]. Likewise, Bradford 

et al. [92] in order to model size/charge exclusion, altered both porosity, based on the water content 

accessible to colloids, and Darcy velocity, based on the relative water permeability accessible to 

colloids.  

Some continuum approaches to size exclusion have been based on a known spatial distribution of 

pore/aperture width which was mainly obtained by a stochastic approach [299, 314]. The influence 

of size exclusion was then assimilated in the model by eliminating both advection and dispersion 
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fluxes into the fracture elements of the numerical grid which had an aperture thickness smaller 

than 15 𝜇𝑚 [299] or 12 times the colloid diameter [314]. In effect, this type of model considered 

the size exclusion at the larger scale, i.e., bulk scale size exclusion or pore exclusion (first 

interpretation described in section 3.5.2) rather than pore scale type. James and Chrysikopoulos 

[141] modified the Taylor dispersion coefficient, originally developed for dissolved matter, in 

order to account for the finite size of the colloidal particles. This way, they demonstrated that size 

exclusion from the slowest moving portion of the velocity profile increased the effective particle 

velocity whereby decreasing the overall particle dispersion. Scheibe and Wood [108] argued that 

increasing the velocity as a parameter for simulating size exclusion can result in altering dispersion 

(assuming no change in dispersivity), which is not conceptually consistent with the fact that the 

overall variance of the pore-scale velocity in respect to the size exclusion phenomenon should be 

decreased due to a lower chance of particles accessing certain regions of low velocity. Therefore, 

they proposed truncating the lower velocities from the velocity distribution profile to take account 

of the very low velocities adjacent to the pore walls that were not experienced by the colloids. The 

advantage of their method was that the velocity field for particles was statistically similar to that 

of the pore water velocity distribution but slightly modified as a result of the truncation [108].  

Overall, most of these modeling techniques are either based on a known (or a stochastically 

estimated) pore/aperture thickness distribution over the spatial domain [299, 314], or rely on 

modification of the other parameters and/or variables of the model such as velocity or dispersion 

[108, 141]. These issues can make the predictive power of the model less plausible when applied 

in larger scales. For instance, models which rely on the modification of the velocity field whereby 

estimating the parameters of model may not be applicable to real large-scale environmental 

problems in which the velocity field with its spatial and temporal variations in bulk scale is already 

unknown and might be affected by other factors as well when various phenomena such as straining 

and size exclusion coexist [92, 107]. This is also the case for the dispersivity parameter, which 

should be estimated based on the tracer breakthrough data in order to be determined as a property 

of the porous media and independent from the phenomenological mechanisms of particle transport 

[283].  

Once the dispersivity parameter is estimated from tracer BTC, the total number of parameters 

required to be determined in the procedure of particle transport model calibration will be reduced. 
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Yet, recent findings of Chrysikopoulos and Katzourakis [94] on showing the dependency of 

dispersivity on particle size shows that there is the need for reformulation of the continuum-based 

models in order to take account of the particle size distribution and its dynamics resulted from size 

exclusion, agglomeration and other transport phenomena. Such a modelling approach may be 

accomplished if a multi-species model formulation can be adapted for different particle size classes 

in terms of mass concentration [85]. The potential of heterogeneous particle populations to 

complicate transport models, even when the initial input population is uniform, has been well 

documented. However, the mechanisms which underpin such effects – homo- and hetero-

aggregation simultaneous with colloid transport and deposition – have been remarkably little 

studied in comparison to ‘static’ systems of flocculation and sedimentation. 

3.6. Aggregation  

3.6.1. Definitions and observations 

Homoaggregation or agglomeration of particles during transport within a porous media is one of 

the least understood phenomena relating to colloid and NP in the subsurface. It is of paramount 

importance because it causes change in the size and hence in the transport characteristics as well 

as the size-dependent functionality of NP. Understanding aggregation within porous media is 

therefore crucial to a range of environmental applications of NP, as well as assessments of 

environmental hazard. The terms 'aggregation' and 'stability' have been used interchangeably but 

they are two distinct processes; aggregation only considers the attachment of particles to each 

other, while stability considers both their attachment and their subsequent sedimentation and 

removal from the aqueous media [315-320]. This difference is more pronounced in the context of 

porous media. In particular, the restricted length scales for sedimentation to take place in pores 

and the fact that they are advecting through the pores may distinguish the aggregation in porous 

media from that in bulk liquids.  

To date, the most common model for simulating the aggregation of colloid or NP is the 

Smoluchowski model [34, 45, 68, 104, 321-323]. This model is based on the superposition of three 

mechanisms: perikinetic, orthokinetic, and differential sedimentation. The perikinetic mechanism 

of aggregation involves particle-particle collisions caused by the Brownian motion of particles. 

Orthokinetic aggregation involves collisions arising from any motion or flow in a fluid that can 

cause shear stress. Differential sedimentation occurs when the particle sizes are so different that 
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larger particles settle faster than the smaller ones and collide with those in their paths [21, 68]. 

Detailed accounts of aggregation mechanisms, e.g., consideration of the fractal nature of 

aggregates or of gravitational sedimentation in aqueous media, are available elsewhere [324-326].  

Aggregation of NP, in spite of being the focus of ongoing studies in aqueous media [45, 95, 322, 

326-328] has been largely ignored by models of transport in porous media. Many modelling studies 

on NP transport reported to date have overlooked aggregation by assuming that in the selected 

experimental conditions aggregation might have not been operative. This rationale may be justified 

in several conditions: high experimental values of zeta potential or stability analysis based on 

critical coagulation concentration (CCC) or DLVO theory [182, 201, 222]; the lack of significant 

size change observed under equivalent conditions in batch experiments [70, 135, 181, 187, 192, 

203, 329, 330]; or by observing no significant change in the concentration of suspended NP in 

such batch experiments, indicated the absence of sedimentation [e.g., 74]. Despite this, the 

formation of NP aggregates during transport in porous media has been experimentally 

demonstrated by a large number of studies for NP such as NZVI [21, 31, 33, 48, 104, 113, 180, 

331, 332], HAP [111, 125, 126, 129], Graphene/GO  [74, 130-133, 249], Ag NP [201-203], CeO2 

[267], TiO2 [134, 204, 205, 288, 333], ZnO [75, 137, 206, 207, 224], and AlO NP [329, 330] 

(Table 2). The results of batch experiments may not be a real indicator of the particle conditions 

in porous media because aggregation in batch experiment in absence of flow can lack at least one 

of the main driving mechanisms of aggregation; that is orthokinetic aggregation [21, 45, 206, 249, 

315]. This mechanism of agglomeration is very likely to be significant in porous media, because 

of the non-uniform distribution of the pore water velocity in pores which caused enhanced shear 

rate. Furthermore, enhanced local polydispersity in particle size distribution in pores can be 

responsible for accelerated agglomeration. This local polydispersity in the population of particles 

may arise from the complex multi-cascade processes of advective and diffusive transport [94, 141, 

295, 334], tortuosity in porous media [150], detached agglomerates with different sizes arriving 

from the up-gradient pores [109, 167], and size selective deposition/preferential retention [111, 

125, 135]. It is also worth mentioning that the observations in effluent samples that show no change 

in the size over time or as a function of the column length should not be used as evidence of no 

aggregation, because since aggregation tends to lead to large, more easily-deposited entities, it is 

preferentially the smaller, unaggregated particles which remain mobile as far as the column outlet 

[21, 111, 125, 135, 318, 319, 335].    
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Aggregation can affect the deposition of particles during their transport within porous media in a 

number of ways. Increase in size due to aggregation can reduce diffusivity thereby decreasing the 

frequency of collisions with pore surfaces [336]. The formation of porous aggregates can also alter 

their sedimentation velocity as well as collision rates with solid surfaces compared to those of 

impermeable spheres with equivalent mass and size [337]. The porosity and thus settling velocity 

of fractal aggregates can rise with growing their size because of the change in the fractal dimension 

that is an indication of their density [338-341]. For particles which collide with surfaces, increase 

in size of aggregates can increase the magnitude of the DLVO interaction energy secondary 

minimum, thereby increasing attachment rates [31-33, 199]. These interconnected and dynamic 

effects of change in particle size which occur differentially across a particle population render it 

complicated to develop a mechanistic approach for simulating the concurrent aggregation and 

transport of NP [21, 34, 57].  

3.6.2. Modelling considerations 

Very few studies have attempted to develop a model for NP aggregation during transport in porous 

media in continuum framework [21, 57, 104]. These models were mostly developed specifically 

for NZVI because of its importance in remediation of groundwater contaminants and the need for 

designing field remediation strategies [21, 33, 34, 104, 199]. Phenrat et al. [31, 32] developed 

empirical attachment and contact efficiency relationships for predicting the sizes of aggregates and 

the subsequent deposition of formed aggregates based on a range of one-dimensional (1-D) column 

transport data of polymer-modified NZVI particles. These empirical correlations can be used along 

with continuum model to simulate NP aggregation and transport in porous media [342]. 

Raychoudhury et al. [104] combined the Smoluchowski model of aggregation with the CFT model 

within an advection-dispersion equation in order to simulate the aggregation and transport of 

polymer-modified NZVI. However, they did not explicitly obtain the particle-particle attachment 

efficiency within the porous media. Instead, they determined aggregation kinetic parameters from 

static batch experiments and used them for fitting the model against the breakthrough data. As 

noted above, there can be significant differences between static experiments with those conducted 

in a real dynamic environment of the porous media [88].  

Taghavy et al. [34] used the Smoluchowski equation and CFT, all within a Lagrangian approach 

based on random-walk particle tracking to simulate the concurrent aggregation and transport of 

NZVI. Although they tackled the problem of binary collision in their probabilistic modeling 
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approach, the aggregation in that study was limited to perikinetic rather than orthokinetic 

aggregation [45, 315]. Furthermore, use of a Lagrangian approach limits the possibility of running 

a model in inverse mode and comes with consequent computational expenses when up-scaled [57, 

88, 112].  

Babakhani et al. [21] modified a widely-used solute transport model, MT3DMS, in order to 

incorporate the influence of aggregation together with other transport phenomena including 

attachment, detachment, and subsequent irreversible deposition of aggregates. They used a simple 

pseudo first-order reaction model to represent homoaggregation (Model type (vii), Table 1). The 

basis of common aggregation models such as the Smoluchowski model is a second-order rate 

equation [68, 343-345] although there is a limited number of studies which used a first-order 

formulation for aggregation [346-350]. Babakhani et al. showed that the use of a pseudo-first order 

model could describe the aggregation behavior of NP in porous media conditions of homogenous 

one dimensional and heterogeneous two-dimensional domains successfully. Interestingly, in the 

experimental cases where the conditions were favorable for disaggregation of NZVI, the model 

was still applicable by showing negative rates for the aggregation parameter [21]. Nevertheless, in 

that study, the effect of particle size distribution in porous media was not taken into consideration.   

Another approach to modelling aggregation was developed by Bradford et al. [109] that addressed 

hyper-exponential and non-monotonic trends of RCP. This was a dual-constituent model with the 

aim of capturing the transport and straining of pathogenic E. coli. The conceptual model assumed 

that E. coli could aggregate when a large number of mono-dispersed E. coli were deposited at 

straining sites. Then the aggregates of E. coli formed in the deposited phase could be released into 

the aqueous phase as a result of flow shear force after reaching a critical concentration. A two-

constituent model (one constituent for the individual mono-disperse E. coli. and the other one for 

the released E. coli. aggregates) was developed. This model is presented as model type (xiv) in 

Table 1. The drawback of this model is the use of four extra parameters in comparison with a 

common model of straining and site-blocking, e.g., model type (xii), Table 1. Application of the 

Akaike information criterion (AIC) by Bradford et al. [109], described elsewhere in this paper, 

showed the two-species straining model performed better than the well-known first-order 

attachment-detachment model (type (ii), Table 1). However, it was not investigated whether this 

model could have been still better than the first-order attachment-detachment model with straining 

and blocking functions (model type (xii), Table 1). It should be noted that aggregation in the study 
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of Bradford et al. was assumed to occur at the deposited-particle phase, opposed to common 

consideration of aggregation process which takes place in the fluid phase [68]. Although this model 

distinguished the aggregating from non-aggregating species, still it did not consider the particle 

size distribution within the pores.  

A substantial number of studies have attributed hyper-exponential RCPs to the aggregation process 

[75, 111, 203, 206, 207, 231-234, 264]. However, our review suggests two arguments against this 

possibility. The first reason is that the aggregation process is a time-dependent mechanism [21, 

349, 350] and thus increase in particle size should occur progressively over the course of migration 

through the porous media. Therefore, the average size of retained aggregates should increase 

toward the outlet of the column; however observations of hyper-exponential RCP indicate 

typically a decrease in the size of the retained particles along the column length [125, 126, 206, 

207]. The second reason, derived from experimental observations [127, 172, 200, 236], is that a 

decrease in the influent concentration causes greater hyper-exponential behavior. This is assumed 

to be because at low concentration of colloid/NP the capacity for straining will be exceeded only 

at the vicinity of the column inlet causing hyper-exponential shape while at high concentration, 

the capacity for straining will be uniformly met over the whole column length. On the other hand, 

aggregation is well known to be a concentration-dependent phenomenon [21, 31, 33, 104, 349, 

351, 352] which typically increases with the population of particles by a second-order rate [68, 

321, 345]. If aggregation is the reason for the hyper-exponential behavior, then the increase on the 

injecting concentration of NP must enhance the hyper-exponential pattern because of the ascended 

aggregation tendency. The outcomes of the aforementioned experimental studies show the 

opposite. One may attribute the hyper-exponential behavior to aggregation in the feeding reservoir 

of the NP upon injecting into the column experiment. Nonetheless, in the studies which carried out 

the ultra-sonication of the stock dispersion [125, 126, 131, 264, 353], still a hyper-exponential 

distribution emerged as well as a decrease in the retained particle size along the column length 

[125, 126], suggesting that the aggregation in the stock dispersion container cannot be responsible 

for hyper-exponential behavior.  

Further carefully-designed experimental work is clearly required to better inform both conceptual 

and mathematical models of aggregation and its contribution to NP transport and fate in porous 

media. What is clear from the available evidence is that successful models must be validated 

against effluent breakthrough and perhaps retained mass profile data across a range of scales and 
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physicochemical conditions [293]. Future studies must be also directed to develop both continuum 

models and experimental techniques that can capture the effects of particle size distribution 

dynamics resulting from aggregation processes within pores. This can obviously give valuable 

insights into the roles of concurrent transport mechanisms.  

4. Equilibrium vs kinetic terms in continuum models 

Incorporation of multiple transport mechanisms in continuum models and their application in 

complex, realistic domains and scales is not computationally efficient. The use of a partitioning 

(distribution) coefficient 𝐾𝑑 in NP transport modeling is desirable because it reduces the number 

of parameters in the attachment/detachment process from two (𝐾𝑎𝑡𝑡 and 𝐾𝑑𝑒𝑡) to one (𝐾𝑑), and 

more importantly facilitates the application of many analytical solutions and numerical tools for 

the governing equation [88, 354-356]. However, the use of 𝐾𝑑 nominally requires the assumption 

of an equilibrium state between the suspended and attached phases which has been recently 

debated in the context of NP fate and transport [12, 88, 112, 114]. Conceptually the equilibrium 

assumption is invalid since 𝐾𝑑 is physically based on the Gibb’s energy and thermodynamic 

equilibrium assumption, while NP suspensions are thermodynamically unstable [114]. On the 

other hand, several authors have successfully utilized the concept of 𝐾𝑑 in modeling NP transport, 

mostly in form of type (v) models (Tables 1 and 2) [146, 147, 180, 182, 190, 355, 357]. This is 

also in accordance with numerous experimental studies observing retarded BTCs [124, 138, 174, 

175, 181-184]. Retardation factor is related to 𝐾𝑑 as 𝑅 = 1 + 𝜌
𝑏
𝐾𝑑/𝜀. 

The equilibrium concept is increasingly popular in the context of NP adsorption to other surfaces 

in quiescent batch experiments [e.g., 358, 359-362]. Petersen et al. [360] obtained linear and 

nonlinear isotherms, respectively, for the sorption of regular and modified 14C-labeled multiwalled 

carbon nanotubes (MWCNTs) onto soil surfaces. Zhao et al. [357]  found a linear adsorption 

isotherm fitted the attachment of GO NP saturated with Na and Ca ions onto the surface of goethite 

particles. Julich and Gäth [358] compared the sorption of copper oxide (CuO) NP with copper ions 

(Cu2+) onto soil and found out that the sorptivity of both of them followed the Freundlich isotherm 

with much stronger sorption obtained for CuO NP compared to Cu2+. Abraham et al. [359] 

investigated the sorptivity of Ag NP onto model and environmental surfaces in stable and unstable 

systems and found that the sorption in the stable system followed the nonlinear Langmuir isotherm; 

however in the unstable system Ag NP sorption did not follow any classical models, suggesting 

NP aggregation plays a key role in modifying sorption phenomena. Nickel et al. [363] tested 
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whether the international standard guideline, OECD TG 106, for testing of nanomaterials 

adsorption/desorption, could be applicable for TiO2 NP or not. The authors found that the guideline 

was not applicable because concurrent occurrence of agglomeration and adsorption was not 

accounted for.  

While some, like Praetorius et al. [114] and subsequently Cornelis [112] have maintained criticism 

of the use of 𝐾𝑑 in NP transport studies others (e.g. Dale et al. [12, 88]) suggest that although a 

theoretically-robust, mechanistic-based approach may perform better for controlled experimental 

conditions, when the complexity of the model domain and scale increases (i.e. in all 

environmentally-relevant conditions), more pragmatic approaches which ‘borrow’ entities such as 

𝐾𝑑  often turn out to be the more practical, and sometimes the only feasible solution. A fundamental 

part of the issue regarding the applicability of the equilibrium assumption must be related to the 

interference caused by co-acting aggregation phenomena in NP attachment to other surfaces. In 

this section, we demonstrate application of a type (vii) continuum model [21] to practically test 

the assumption of linear adsorption (equilibrium), by replacing the first-order, reversible, kinetic-

reaction equation (non-equilibrium) attachment/detachment expression with linear adsorption 

partitioning. Can a one-parameter adsorption model (𝐾𝑑) be a surrogate for the two-parameter 

attachment/detachment deposition model across a range of scales and system conditions? The type 

(vii) model separately accounts for: (1) the attachment/detachment process; (2) the agglomeration 

of particles in the suspended phase; and (3) the irreversible deposition of aggregates. This model 

is described in detail in [21]. 

An iteration procedure was developed to optimize the transport parameters related to deposition 

and agglomeration (𝐾𝑎𝑡𝑡, 𝐾𝑑𝑒𝑡, 𝜆1  and 𝜆2) against the observed concentration data presented in 

[21]. In summary, experimentally-observed BTCs which were available in mass concentration 

were fitted by using WinPEST model [364] in order to estimate model parameters. Internally, the 

mass concentration is converted to particle number concentration for agglomerating particles while 

the obtained parameters, are updated in the iterative procedure. Therefore, Eq. (e) in model type 

(vii), Table 1, is used to calculate the size of aggregates and, subsequently, Eq. (c) is used to 

calculate the population of aggregates (transformation of the mass concentration to the number 

particle concentration). Then, these transformed observation data are employed to recalibrate 𝜆1 

again. This procedure is iterated until the difference in 𝜆1 values between two successive iterations 

is negligible (< 1 %). Here, in order to test the hypothesis of the linear adsorption isotherm 
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(equilibrium), Eqs. (a) and (b) in model type (vii) were substituted by the following single equation 

which is the standard equilibrium transport equation widely applied for the simulation of solute 

contaminants in the subsurface [54, 89, 90, 146, 190, 198]:  

∂C 

∂t
(1 +

ρb

ε
Kd) = D

∂2C 

∂x2  – V
∂C 

∂x
− λ1C − λ2

ρb

ε
S (7) 

where 𝐾𝑑 is the partitioning or distribution coefficient between the aqueous and solid phases [L3T-

1] [356]. The MT3DMS code was used to solve the equations and one- and two-dimensional 

breakthrough data of polymer-modified NZVI [33, 199] were used for fittings as described 

previously [21]. Briefly, one dimensional transport data used here comprise a case of monodisperse 

suspension of polymer-modified NZVI (F3) at low concentration (30 mg/L) which was not an 

aggregating system as well as a polydisperse suspension (F1) at high concentration (6000 mg/L) 

which showed the highest aggregation according to the DLVO analysis reported in [33]. In 

addition, data of polymer-modified NZVI at high concentration (6000 mg/L) with removed excess 

polymer (washed-MRNIP2) and polymer-modified NZVI at low concentration (300 mg/L) 

(unwashed) from two dimensional (2-D) experiments were used from [199]. The 2-D experiments 

comprise a cell (30 × 18 × 2.5 cm) containing three active layers: fine sand (d50 = 99 μm), medium 

sand (d50 = 300 μm), and coarse sand (d50 = 880 μm). The NP dispersion was injected through the 

fine sand layer which was the middle one while a background groundwater flow had been set up 

through three side ports [199].  

The results for 1-D simulations (Table 3) showed that incorporating 𝐾𝑑 at low concentration (30 

mg/L) in the case of F3 dispersion resulted in a just slightly poorer fit (r2 = 0.977, p = 0.59) than 

the two-parameter kinetic model (r2 = 0.987, p = 0.43). In the case of high concentration (6000 

mg/L) for the F1 dispersion, however, the difference between the equilibrium and kinetic models 

was more pronounced. Final fitting statistics for the 𝐾𝑑 model were r2 = 0.971, p = 0.18, while 

those of the 2-parameter approach were r2 = 0.996, p = 0.87 (Table 3). The parameter values 

resulted from the equilibrium model simulation after 1% convergence of λ1 in the iteration 

procedure were 4.75 × 10−5 L/g, 1.5 × 10−3 s-1, and 2.69 × 10−3 s-1 for 𝐾𝑑, λ1, and λ2, 

respectively (Table 3). The obtained values for 𝐾𝑑 in this study are comparable to those of He et 

al., [190], which ranged from 1.9 × 10−5 to 7.1 × 10−5 L/g. When the simulations were up-scaled 

to 2-D domains, the equilibrium model resulted in poorer performance, compared to the non-

equilibrium model, at low concentration than at high concentration. r2 for the case at low 

concentration (unwashed) with non-equilibrium and equilibrium model fittings was 0.787 and 
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0.636, respectively, whereas for the case at high concentration (washed MRNIP2) r2 was 0.951 

and 0.948 (Table 4). Yet, p values at both low and high concentrations increased when the non-

equilibrium model was substituted by the equilibrium model, from 0.61 to 0.79 and from 0.58 to 

0.92 at low and high concentrations, respectively. In [21], the reason for poorer model performance 

at low concentration than that at high concentration transport in 2-D domain was attributed to the 

existence of excess polymer in the dispersion of NZVI at low concentration which was not taken 

into account directly by the applied non-equilibrium model. Here, this deviation is even more 

obvious when a simpler model, i.e., equilibrium, is used.  

In order to determine which model performs better, we calculated the Akaike information criterion 

(AIC) [365], which is commonly used as a model selection criteria in colloid and NP transport 

studies [63, 109, 172, 293, 366]. This criterion prefers the model with the best goodness-of-fit 

measure and at the same time with the least number of fitting parameters, corresponding to the 

lowest AIC value. This can be calculated as [63]: 

AIC = 𝑛𝑜𝑏𝑠 log(σ2) + 2𝑘𝑝𝑎𝑟 +
2𝑘𝑝𝑎𝑟(𝑘𝑝𝑎𝑟 + 1)

𝑛𝑜𝑏𝑠 − 𝑘𝑝𝑎𝑟 − 1
 (8) 

where 𝑛𝑜𝑏𝑠 in the number of observation data, 𝜎2 is the sum of squared residuals divided by 𝑛𝑜𝑏𝑠, 

and 𝑘𝑝𝑎𝑟 is the number of parameters estimated in the inverse modeling process.  

 The results of these calculations for both of the investigated cases in one dimensional domain 

showed that the lower AIC value was obtained when the non-equilibrium attachment/detachment 

model was applied—AIC values with non-equilibrium and equilibrium models for F3 at 0.03 g/L 

(no aggregation) were -97.8 and -94.2, respectively, and for F1 at 6 g/L (with aggregation) were 

634 and 642, respectively (Table 3). This suggests that in one-dimensional simulations the kinetic 

attachment/detachment model is preferred rather than the linear adsorption partitioning model. 

Surprisingly, in two-dimensional simulations the equilibrium model was preferred by AIC instead 

of the non-equilibrium model—AIC values for non-equilibrium and equilibrium models at low 

concentration (0.3 g/L with free polymer) were -37.4 and -42.2, respectively, and at high 

concentration (6 g/L, without free polymer) were 609 and 582, respectively (Table 3). It should be 

noted that since AIC is a statistical model identification test, it is the final differences that matters 

not the magnitude. Both Praetorius et al. [114] and Cornelis [112] compare 𝐾𝑑 with α, 𝜂0, or 𝐾𝑎𝑡𝑡. 

However, 𝐾𝑑 which considers the exchange between the two phases of suspended and attached 

mass, neither can be compared with α, individually, which determines what portion of collisions 
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leads to attachment, nor with η0, individually, which ascertains what flux of particles are colliding 

with the collector, nor with 𝐾𝑎𝑡𝑡, individually, which determines the rate of permanent removal 

without detachment. In practice, 𝐾𝑑 might be only comparable with both 𝐾𝑎𝑡𝑡 and 𝐾𝑑𝑒𝑡 together, 

in a range that both equilibrium and kinetic model perform similarly [161]. If for a specific 

temporal and spatial scale we can use the assumption of instantaneous reaction (local equilibrium) 

[161], the concept of 𝐾𝑑 can be defended, regardless of whether the system contains particles or 

solute, provided that the interfering role of other phenomena such as aggregation and subsequent 

irreversible removal will be accounted for by other terms in the model.  

In other words, while strictly unjustifiable as a physical process for particle deposition in 

mechanistic models, nevertheless the equilibrium assumption may be an effective descriptor of 

reversible deposition behavior by concurrent attachment and detachment processes within a 

continuum modelling framework. Overall, in the experimental conditions simulated here, fairly 

similar model performance was obtained between the two modeling approaches in 1-D 

simulations. When the model was up-scaled to a 2-D stratigraphic, heterogeneous, experimental 

domain, the higher efficiency in terms of the number of model fitting parameter suggested that the 

equilibrium model is preferable in comparison to the kinetic model. This confirms the potential 

for use of the equilibrium assumption as a justified simplification for modelling NP in more 

complex porous media. 

 

5. Overview of the concurrent occurrence of multiple transport phenomena 

5.1. Conceptual model of transport for stable monodisperse dispersions 

For stable monodisperse suspensions of larger sized colloids, the conceptual model of Bradford et 

al. [92], may best describe the transport phenomena in porous media. In this model it was 

hypothesized that straining caused filling of the pores at contact areas of grains and caused those 

small pores to become dead-end at the near vicinity of the column inlet thereby constraining the 

colloid to sample only the continuous pore channels. After passing this region of the porous media 

in the experimental packed column, particles would be mounted on the fast central streamlines of 

the pore channels with less interactions with the grain walls and narrow restrictions of pores at the 

grain-grain contacts due to the exclusion phenomena and thus the number of dead-end pores 
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experienced by particles reduces with distance from the inlet of the column. In this way, the 

concentration of the RCP reduces significantly along the column length [92]. This must be the 

most plausible explanation regarding the hyper-exponential behavior of the RCP for stable 

monodisperse dispersions.  

5.2. Conceptual model of transport for stable poly-disperse dispersions 

When the particle population is poly-disperse but stable, the case which is more pronounced for 

NP dispersions [33], the hyper-exponential RCP as depicted in Fig. (7a) can still be developed as 

for monodisperse suspensions. At the entrance of the column all the particle size fractions have 

interactions with the surfaces of the porous media with higher chance of trapping larger particles 

due to the physical straining [62, 92] and/or physicochemical deposition resulted from their 

relatively deeper surface interaction energy minima [31, 33, 107]. As a proportion of large particles 

is irreversibly retained near the areas of the wall surfaces or grain-grain contacts at the entrance of 

the packed column, other survived large particles would less meet the close-to-wall regions during 

their travel through the rest of the column length thanks to the size exclusion. On the other hand, 

the particles from the smaller fraction of the size distribution spectrum can still have interaction 

with the wall. Yet, they exhibit shallow secondary minima [31, 33, 107, 139, 199] and thus are 

less subject to permanent deposition and also owing to their smaller size, they are less prone to 

straining all over the column length [62, 92, 107, 210]. Accordingly, neither significant deposition 

of small particles nor large particles can take place at the down-gradient of the column, in contrast 

to the entrance area. This concept is also compatible with blocking and ripening behaviors if one 

of them also occur. They can coincide with hyper-exponential shaped RCPs, because the retention 

process at the vicinity of the column entrance can be either straining or physicochemical filtration, 

regardless of whether the condition is favorable for blocking or ripening.  

5.3. Conceptual model of transport for unstable poly-disperse dispersions 

One of the most complicated transport behaviors, observed more commonly in studies of NP than 

those of larger colloids, is non-monotonic retention [123, 225, 293]. Previous reports have ascribed 

the reason for this non-monotonic shape of the RCPs to a variety of phenomena such as the release 

of the attached particles from the region close to the column inlet and their re-entrapment in the 
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down-gradient regions of the column or their translation, flowing, or funneling in the attached 

phase as a third phase [109, 236, 268, 367, 368], presence of polymer competing with the NP for 

the adsorption sites at the inlet vicinity [127, 186, 265], surface heterogeneity [204, 369], and other 

system conditions such as grain types and size [109, 370]. Furthermore, ripening [371] and 

blocking are pointed out to be influential in causing non-monotonic shaped RCPs [127, 138]. 

Blocking can promote non-monotonic behavior via filling of Sm sites at higher loading 

concentrations, coarser sand grains, lower velocity, and higher IS [109, 127]. It has also been 

indicated that non-monotonic RCPs can also occur as a consequence of straining [109] and 

agglomeration [256, 265]. Dual-species [109], dual-permeability [367], dual-domain [236], and 

stochastic models [225] have been deployed successfully in reproducing the non-monotonic shape 

of the RCP 

Considering the widespread evidence for the significance of aggregation processes in NP 

suspensions and during transport [109, 236, 367], we propose that agglomeration plays a key role 

in producing the non-monotonic shaped RCP. In contrast to the translation of attached mass of 

particles or aggregates on the surface of the grains [109, 236, 268, 367, 368], we assert it is 

agglomeration in the fluid phase that likely has the main contribution to bring about non-

monotonic retention behavior in unstable suspensions, as illustrated in Fig. 7b (adapted from [21, 

33, 270]). Essentially, at the immediate vicinity of the packed column entrance, the average size 

of particles is so small that they can neither be subject to irreversible deposition nor to size 

exclusion although there might be a delay in this area because of higher interaction of NP with 

walls due to their higher diffusion. Then all the particles, in this way, are transported toward the 

down-gradient of the column during which they are also agglomerating within the aqueous phase 

of the pores, as the condition is favorable for agglomeration. When the agglomerates are 

sufficiently grown in size their fate might be determined in two possible ways. First, those 

agglomerates closer to pore walls could be subject to straining and/or irreversible retention 

somewhere in the midst of the column length. This retention would potentially appear to be more 

pronounced as a result of ripening. Second, those agglomerates which are farther from pore walls 

by this time would be mounted on the faster central streamlines of the pores as a result of size 

exclusion. In this way they can potentially travel all the rest of the route to the column outlet and 

survive from retention although still their size may keep growing in this way and still be vulnerable 
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to the first possibility for retention as well. In combination, this aggregation-driven suite of 

processes leads to the appearance of a peak or a hotspot in the middle area of RCP. Clearly, 

assuming other factors to be held constant, the rate of aggregation should be a significant factor in 

determining the position of the non-monotonic peak as a function of distance from source. 

5.4 Experimental validation of model concepts 

We briefly reflect on recent developments in the experimental methods required to validate 

and test the models discussed. A crucial advance on standard column methods is represented by 

methods which 'open the box' on time-dependent changes within the porous medium. Recent 

advancement in real-time monitoring of transport in porous media include detecting solute 

transport by gamma imaging [372], colloid transport by fluorescence imaging [373-375], and NP 

transport by MRI [376]. X-ray computed tomography (XCT) has also been shown to have the 

potential for imaging the attached phase of NP, but its application at bulk scale is challenging 

because of interference at the grain/void interface and being limited to high electron density 

materials with high X-ray contrast [30]. Real-time monitoring of the attached phase of particles 

has been achieved by Roth et al. [377] via static light scattering (SLS) yielding important 

parameters such as permeability, the radius of gyration (analogous to the hydrodynamic radius), 

and the fractal dimension of deposited aggregates. SLS can obtain very small length scales (voxel 

resolution as low as 50 nm) at significantly lower cost than alternatives such as X-ray 

microtomography. Nevertheless, this technique requires a refractive index matched porous media 

which limits its ability to probe realistic environmental conditions in key parameters such as 

viscosity and surface properties [378]. The dynamics of the concurrent agglomeration and 

transport of NP in real porous media has not been monitored by any experimental technique within 

the literature reviewed here. Developing robust experimental evidence for validating models such 

as those proposed here, in particular where multiple processes are postulated and BTC/RCP 

interpretations are equivocal, remains a critical research priority. 

6. Upscaling of continuum models for NP transport  

In spite of large number of NP transport studies in 1-D column experiments, multidimensional 

transport reports are scarce [214, 244, 245, 379]. Likewise, multidimensional modeling tools are 
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still undeveloped [21, 96, 97, 103, 254, 255, 380, 381]. At larger scales, the nature of underlying 

phenomena can change compared to 1-D transport, due to the introduction of new impacts from 

nonuniform flow field, e.g. radial flow around injection wells [38, 382]. It is likely that the patterns 

of the BTC and RCP discussed throughout the present paper change significantly. In particular 

when the domain is heterogeneous, e.g. layered media [27, 199], multiple peaks can appear in the 

plateau of the BTC which cannot be modeled even when considering heterogeneous zones as 

discussed in [21]. Substantial differences may exist regarding the amount of pore space or solid 

surfaces available in 3-D porous media domain compared to that of simple ideal 1-D column 

domain. This can cause further deviations of column experiment outcomes compared to realistic 

environmental conditions.  

Well-known, 3-D groundwater modeling packages such as HYDRUS and MODLFOW have been 

modified to capture some of the transport mechanisms of NP. To date, HYDRUS [383] has been 

adapted to simulate most of the NP transport mechanisms discussed in this paper, except 

aggregation [384]. A 2-D or 3-D application of HYDRUS for NP transport has not been reported 

thus far. In addition, capabilities of simulating variable density or variable viscosity characteristics 

of transport that can be influential in fate and transport of NP in porous media have not been 

reported for this package. On the other hand, the MODLOW family of models, such as MT3DMS 

[89], SEAWAT [385], and RT3D [386] have been already applied for multidimensional transport 

simulations of NP with considering specific NP transport mechanisms including aggregation [21], 

density driven transport pattern [381], site blocking [254, 255], straining [213], and even reaction 

with groundwater contaminants [26]. Neither size exclusion as a specific phenomenon nor particle 

size distribution driven by aggregation, have not been considered in these models yet. 

A MATLAB-based software called MNM1D was developed for capturing NP transport 

mechanisms [105]. This model is mainly expressed as model type (xv) in Table 1. Recently, this 

was combined with RT3D to simulate micro and nanoparticles transport in 3-D porous media 

[380]. However, this model, too, has not considered aggregation and size exclusion mechanisms 

of NP aggregates within porous media. Therefore, there exists the need for development of new 3-

D modeling tools or further adaptation of current groundwater modeling package to take more of 

the NP transport mechanisms into account.  
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7. Conclusions 

Continuum modeling can successfully describe a variety of NP transport phenomena and their 

concomitant effects and is able to work at various scales ranging from column experiments to 

aquifer and watershed. Its importance among other modeling approaches therefore lies in part in 

its ability to link with other modeling techniques to bridge the gaps across temporal and spatial 

scales and to be used as means of validation for those models.  

On the other hand, there are a number of drawbacks with continuum models. First, continuum 

models have been criticized for being ‘descriptive’ or ‘backward models’ rather than being 

‘predictive’ or ‘forward models’ [23, 30, 387]. Crucially, the parameters of the continuum-model, 

which are mostly rate-coefficient constants, require estimation for each specific problem they are 

applied to and cannot be measured simply from the given conditions of the problem. Second, 

continuum models can be applied regardless of whether the selected mathematical models really 

match the underlying physical mechanisms operating on NP. If the conceptual ground of 

continuum models are defined poorly, they can lack generalization and prediction power even 

though the mathematical model outputs fit the experimental data properly [293]. Third, simplifying 

assumptions in development of some of continuum models that can cause erroneous outcomes 

[112, 114]. For instance, the applicability of the equilibrium assumption to the number of 

interactions of NP with the porous media surfaces in the context of NP transport and aggregation 

has recently been debated by several research groups [12, 88, 112, 114, 388]. Fourth, most of the 

developed conceptual/mathematical models thus far only consider one or a few of the underlying 

mechanisms under oversimplified conditions where other phenomena are not operating or 

conducted only in the simplistic domain of the column experiment. This may lead to significant 

deviations when the models are up-scaled to more realistic conditions [12, 22, 88].  

In addressing the first of these drawbacks, we have recently proposed a practical approach to 

predict the parameters of continuum models using an artificial neural network [342]. Such machine 

learning approaches, combined with continued advances in computing power, promise a 

significant advance in the use of continuum models for effective prediction of NP behavior. The 

objective of this paper has been to provide a systematic overview of the subject by which the 

significance and extent of the other three drawbacks can be rationally assessed.  
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In conclusion, we summarize here the key findings of this review: 

 For NP as for larger colloids, the available literature to date recognizes several defined 

empirical trends consistent with the dominance of different transport processes. Hyper-

exponential RCP is a sign of straining; ascending-plateau BTC indicates of blocking; 

descending-plateau BTC implies ripening, and early BTC is consistent with size exclusion. 

Furthermore, here we propose that non-monotonic RCP can result from agglomeration of 

NP. However, it is clear that multiple processes acting together concurrently on different 

fractions of the pore space or particle population may alter or mask these trends. 

 The criteria used for identifying the underlying phenomena of colloid transport behavior, 

e.g., the use of particle size to grain size ratio in identifying straining, are not necessarily 

applicable for NP. In addition, there is obvious scope for misinterpretation in respect to the 

reflection of several transport phenomena in BTCs and RCPs. The ascertained underlying 

mechanisms based on these criteria may not hold true in many cases. There is a critical 

need for research into conceptual and computational models which not only acknowledge 

but systematically evaluate the simultaneous and variable operation of the whole range of 

processes able to act on NP during transport in porous media. It is time to recognize that 

uniform, steady conditions assumed by most standard mathematical approaches are the rare 

exception, rather than the rule, for colloidal systems in porous media even under apparently 

controlled experimental conditions.  

 Two transport mechanisms, agglomeration during transport in porous media and size 

exclusion, have been widely neglected in the literature of NP transport modeling. 

Agglomeration results in size growth during the transport which can in turn trigger other 

mechanisms, especially, straining and size exclusion. Several literature evidences suggest 

that size exclusion might significantly contribute to transport behavior of NP aggregates 

even though it may not be shown up in the BTC and RCP, due to the concurrent operation 

of various transport phenomena. There exists the need for more rigorous investigations of 

the size exclusion mechanism in future NP transport studies.  

 Two major transport regimes are identified in the transport of NP within porous media. The 

first regime is characterized by higher particle-surface attachment affinity than particle-

particle attachment affinity, and operative transport mechanisms of physicochemical 

filtration, blocking, and physical retention. This regime can produce ascending BTC 
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plateaus. This condition may bring about a considerable mobility of NP in the subsurface 

and thus needs careful assessment. The second regime is characterized by the domination 

of particle-particle attachment tendency over particle-surface affinity. In this regime 

although physicochemical filtration as well as straining may still be operative, ripening is 

predominant together with agglomeration and further subsequent retention. This condition 

may create descending BTC plateaus. There is a need for further research in order to 

investigate how agglomeration affects the transport if in this regime ripening does not 

occur.   

 When concurrent effects of agglomeration and deposition exist in the NP transport system, 

we found that employing a single equilibrium term to describe irreversible deposition 

within a continuum model yielded results that were close to those obtained using two 

kinetic terms (attachment and detachment rates). Furthermore, the equilibrium model 

turned out to be more efficient than kinetic model in terms of the number of fit parameters 

and goodness-of-fit criteria when the scale of the model and the level of complicacy were 

augmented. 

 Multidimensional continuum models which consider multiple transport phenomena 

represent the only conceptually feasible approach to predict transport behaviors of NP at 

environmentally-relevant scales in realistic 3-D domains. However, the present limitations 

of computational power mean that it is essential that work continues to define robust 

correlation relationships between measurable and unmeasurable parameters, and to validate 

the use of efficient continuum-scale parameters which represent multiple underlying 

mechanisms. Given the large number of datasets and experimental conditions evidenced in 

the literature presented here, machine learning approaches represent a promising tool for 

elicitation and prioritization of factors influencing NP transport, for use in continuum 

models. There are significant benefits to understanding and management of environmental 

NP arising from use of abstract and mechanistic models, and combinations of these with 

continuum approaches. However, further development of 3-D continuum modeling tools 

is of crucial importance in order to achieve the ambition of reliable, predictive forward 

modelling of the fate and transport of NP in subsurface environments. 
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Figures and Tables:  

 

Figure Captions: 

Figure 1. The paradigm of various modeling approaches for simulating fate and transport of 

engineered nanomaterials (ENM) in the environment, showing the status of continuum-based 

models and their potential links with the available data sources and other modeling approaches 

Fig. 2. Literature survey of various phenomena operative in the transport of nanoparticles based 

on the number of studies found in the Web of Science database in December, 2015 [389].  

Fig. 3. Breakthrough curves generated by numerical solution of model Types (i) with MT3DMS 

model code following [21] for various 𝐾𝑎𝑡𝑡 values (S-1). Other parameters of flow and porous 

media conditions were selected according to [21, 33] (or refer Table 2).  

Fig. 4. Breakthrough curves generated by numerical solution of (a) model Type (ii) from Table 1, 

for various 𝐾𝑑𝑒𝑡 values (S-1) and a fixed 𝐾𝑎𝑡𝑡 = 0.001 S-1 and (b) model Type (v) from Table 1, 

for various retardation factors and a fixed 𝐾𝑎𝑡𝑡 = 0.001 S-1 with MT3DMS model code following 
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[21]. Other parameters of flow and porous media conditions were selected according to [21, 33] 

(or refer Table 2).    

Fig. 5. Possible retention sites for straining from [119]. 

Fig. 6. Possible regimes of transport mechanisms: (a) when particle-surface attachment tendency 

is higher than particle-particle attachment tendency and (b) when particle-particle attachment 

tendency is higher than particle-surface attachment tendency.  

Fig. 7. The proposed conceptual models (a) for coupled effects of straining and size exclusion 

causing hyper-exponential shaped retention profile in the case of injecting poly-disperse particle 

dispersion into the experimental packed column and (b) for concurrent effects of agglomeration, 

deposition/straining, and size exclusion forming non-monotonic retention profile.    

 

 

Tables: 

Table 1. List of continuum-based modeling types so far applied for the transport of nanoparticles 

in porous media. * 

Model 

type 

No. 

Colloid transport model equations  Modeled 

mechanisms other 

than advection and 

dispersion 

Fitting 

parameters other 

than dispersion 

Reference 

i b) 
ρb

ε

∂𝑆

∂t
 = KattC attachment  Katt [119, 148, 

390] 

ii b) 
ρb

ε

∂𝑆

∂t
 = KattC −

ρb

ε
Kdet𝑆 attachment/ 

detachment  

Katt, Kdet [100, 142] 

iii b) 
ρb

ε

∂𝑆

∂t
 = KattC −

ρb

ε
𝑓𝑟 Kdet S attachment and dual-

site detachment 

Katt, Kdet, 𝑓𝑟 [206] 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

51 
 

iv b) 
∂𝑆

∂t
=

∂𝑆1

∂t
+

∂𝑆2

∂t
 

c) 
ρb

ε

∂𝑆1

∂t
 = Katt,1C −

ρb

ε
Kdet,1𝑆1 

d) 
ρb

ε

∂𝑆2

∂t
 = Katt,2C −

ρb

ε
Kdet,2𝑆2 

dual-site attachment/ 

detachment 

Katt,1, Kdet,1, 

Katt,2, Kdet,2 

[391] 

v a)   
∂C 

∂t
(1 +

ρb

ε
Kd) = D

∂2C 

∂x2  – V
∂C 

∂x
−

KattC 

attachment, 

adsorption 

(retardation)  

Katt, Kd [146] 

[190] 

vi a) 
ρb

ε

∂𝑆

∂t
 = Krel

ρb

ε
(𝑆 − 𝑆𝑒𝑞)𝐻0(S −

𝑆𝑒𝑞) 

b) 𝑆𝑒𝑞 = 𝑓𝑛𝑟𝑆𝑖 

Release after 

perturbation  

𝐾𝑟𝑒𝑙, fnr [64, 115, 

187] 

vii a) 
∂C 

∂t
 + 

ρb

ε

∂𝑆

∂t
 = D

∂2C 

∂x2  – V
∂C 

∂x
− 𝜆1C −

𝜆2
ρb

ε
𝑆 

b) 
ρb

ε

∂𝑆

∂t
 = KattC −

ρb

ε
Kdet𝑆 

c) C =
Ĉ

4

3
π r3ρp

 

d) 𝑆 =
Ŝ

4

3
π r3ρp

 

e)    r = r0 e
λ1t

3  

agglomeration, 

attachment/ 

detachment, and 

irreversible deposition  

Katt, Kdet, 𝜆1, 𝜆2 [21] 

viii b) 
ρb

ε

∂𝑆

∂t
 = Kattψ𝑥C −

ρb

ε
Kdet𝑆 

c) ψ𝑥 = (
𝑑𝑐+𝑥

𝑑𝑐
)

−𝛽
 

depth-dependent 

(straining) attachment 

together with 

detachment  

Katt, Kdet, 𝛽 [92] 

ix b) 
ρb

ε

∂𝑆

∂t
 = Kattψ𝑏C −

ρb

ε
Kdet𝑆 

c) ψ𝑏 = (1 −
𝑆

S𝑚
) 

site-blocking 

attachment together 

with detachment  

Katt, Kdet, S𝑚 [102] 
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x b)    
∂𝑆

∂t
=

∂𝑆1

∂t
+

∂𝑆2

∂t
 

c) 
ρb

ε

∂𝑆1

∂t
+

ρb

ε

∂𝑆2

∂t
 = Katt,1ψ𝑏,1C +

Katt,2ψ𝑏,2C  

d) ψ𝑏,1 = (1 −
𝑆1

S𝑚,1
)  

e) ψ𝑏,2 = (1 −
𝑆2

S𝑚,2
) 

dual-site with site-

blocking kinetic 

attachment for 

available and not 

available favorable 

sites  

Katt,1, Katt,2, 

S𝑚,1, S𝑚,2 

[181] 

xi b) 
∂𝑆

∂t
=

∂𝑆1

∂t
+

∂𝑆2

∂t
 

c) 
ρb

ε

∂𝑆1

∂t
 = Katt,1ψ𝑏C −

ρb

ε
Kdet,1𝑆1 

d) 
ρb

ε

∂𝑆2

∂t
 = Katt,2ψ𝑥C −

ρb

ε
Kdet,2𝑆2 

e) ψ𝑏 = (1 −
𝑆1

S𝑚
) 

f) ψ𝑥 = (
𝑑𝑐+𝑥

𝑑𝑐
)

−𝛽
 

dual-site with site-

blocking attachment 

and depth-dependent 

(straining), together 

with detachment 

Katt,1, Kdet,1, 

Katt,2, Kdet,2, S𝑚, 

𝛽 

[124] 

xii b) 
ρb

ε

∂𝑆

∂t
 = Kattψ𝑏ψ𝑥C −

ρb

ε
Kdet𝑆 

c) ψ𝑏 = (1 −
𝑆

S𝑚
) 

d) ψ𝑥 = (
𝑑𝑐+𝑥

𝑑𝑐
)

−𝛽
 

site-blocking, depth-

dependent (straining) 

attachment together 

with detachment 

Katt, Kdet, S𝑚, 𝛽 [110] 

xiii b) 
ρb

ε

∂𝑆

∂t
 = Kattψ𝑥C −

ρb

ε
Kdet𝑆 +

ρbKrip S C 

c) ψ𝑥 = (
𝑑𝑐+𝑥

𝑑𝑐
)

−𝛽
 

ripening, depth-

dependent (straining) 

attachment  together 

with detachment  

Katt, Kdet, Krip, 𝛽 [110, 111] 

xiv a) 
∂𝐶1 

∂t
 + 

ρb

ε

∂𝑆1

∂t
 = D

∂2𝐶1 

∂x2  – V
∂𝐶1 

∂x
−

ρb

ε
K12𝐹𝑝 

dual-species for 

transport of 

aggregated and non-

aggregated species 

Katt,1, Kdet,1, 

Katt,2, Kdet,2, S𝑚, 

𝛽, K12, 𝑆𝑐𝑟𝑖𝑡1, 

[109] 
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b) 
∂𝐶2 

∂t
 + 

ρb

ε

∂𝑆2

∂t
 = D

∂2𝐶2 

∂x2  – V
∂𝐶2 

∂x
+

ρb

ε
K12𝐹𝑝 

c) 
ρb

ε

∂𝑆1

∂t
 = Katt,1ψ𝑏ψ𝑥𝐶1  −

ρb

ε
Kdet,1𝑆1 −

ρb

ε
K12𝐹𝑝 

d) 
ρb

ε

∂𝑆2

∂t
 = Katt,2𝐶2 −

ρb

ε
Kdet,2𝑆2 

e) ψ𝑏 = (1 −
𝑆1

S𝑚
) 

f) ψ𝑥 = (
𝑑𝑐+𝑥

𝑑𝑐
)

−𝛽
 

g) 𝐹𝑝 = max (𝑆1 − 𝑆𝑐𝑟𝑖𝑡1 , 0) 

with site-blocking 

attachment and depth-

dependent (straining), 

detachment 

xv b) 
∂𝑆

∂t
=

∂𝑆1

∂t
+

∂𝑆2

∂t
   

c) 
ρb

ε

∂𝑆1

∂t
 = Katt,1ψ1C −

ρb

ε
Kdet,1𝑆1 

d) 
ρb

ε

∂𝑆2

∂t
 = Katt,2ψ2C −

ρb

ε
Kdet,2𝑆2 

e) ψ1 = (1 + 𝐴1𝑆1
𝛽1) 

f) ψ2 = (
𝑑𝑐+𝑥

𝑑𝑐
)

𝛽2
 

dual-site with site-

blocking/ripening 

attachment and depth-

dependent (straining), 

detachment 

Katt,1, Kdet,1, 

Katt,2, Kdet,2, 𝐴1, 

𝛽1, 𝛽2  

[105, 106] 

xvi b) 
∂𝑆

∂t
=

∂𝑆1

∂t
+

∂𝑆2

∂t
 

c) 
ρb

ε

∂𝑆1

∂t
 = Katt,1ψ𝑏C  

d) 
ρb

ε

∂𝑆2

∂t
 = Katt,2ψ𝑥C 

e) ψ𝑏 = (1 −
𝑆1

S𝑚
) 

f) ψ𝑥 = max(1, 𝑆2
𝑆𝑚΄) 

dual-site with site-

blocking attachment 

and straining at very 

high ionic strength  

Katt,1, Kdet,1, 

Katt,2, Kdet,2, S𝑚, 

𝛽 

[133] 

* Wherever Eq. (a) is not presented it must be considered the same as Eq. (1) given in Section 3.1. 𝑥 is 

distance in the porous media [with the  dimension of L]; 𝑡 is time elapsed [T]; 𝐶 with dimension of [N L-

3; N represents the particle number, not a dimension] and 𝑆 with dimension of [NM-1] are the particle 

number concentrations of fluid-phase particles and deposited phase particles, respectively, according to a 

number of references [e.g., 21, 92, 98-100], or 𝐶 with the dimension of [ML-3] and 𝑆 with dimension of 
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[MM-1] are the particle mass concentrations of fluid-phase particles and deposited phase particles 

according to other references [e.g., 100, 101, 102]; V is the interstitial particle velocity or pore water 

velocity [LT-1]; D is the hydrodynamic dispersion coefficient  [L2T−1]; 𝜀 is the bed porosity [—]; 𝜌𝑏 is the 

porous medium bulk density [ML-3]; 𝐾𝑎𝑡𝑡 and 𝐾𝑑𝑒𝑡 are the attachment and detachment rate constants, 

respectively [T-1]; 𝑓𝑟 is the fraction of reversibly retained particles [—]; 𝜓𝑏 is the Langmuirian blocking 

function related to the fraction of porous medium available for deposition [—]; 𝑆𝑚 is the maximum 

retained-particle phase concentration, i.e., colloidal retention capacity [NM-1 or MM-1]; 𝜓𝑥 is the depth-

dependent retention function commonly used for hyper-exponential retention profile modeling [—]; 𝑑𝑐 is 

the granular media average diameter [L]; β is the empirical depth-dependent retention parameter [—]; 

𝐾𝑟𝑖𝑝 is the particle-particle interaction rate coefficient between fluid-phase particles and deposited phase 

particles [L3 T−1]; 𝐹𝑝 is the aggregated species production function [NM-1]; 𝑆𝑐𝑟𝑖𝑡1 is the critical 

concentration of 𝑆1 when production starts [NM-1]; 𝐾12 is the first-order production coefficient to account 

for the release rate of aggregated species [T-1]; 𝐴1 and 𝛽1 are the multiplier and exponent coefficients, 

respectively [—], which define the interaction dynamics, i.e., ripening for 𝐴1 > 0 and 𝛽1 > 0 or blocking 

for 𝛽1 = 1 and 𝐴1 = −1/S𝑚; 𝜓1 is the expression for the effect of ripening or blocking which is equal to 

𝜓𝑏 when 𝛽1 = 1 and 𝐴1 = −1/S𝑚; 𝜓2 is the expression for the effect of straining, equal to 𝜓𝑥 if 

assuming 𝛽2 = −𝛽; �̂� is the mass concentration of fluid-phase particles [ML-3]; �̂� is the mass 

concentration of deposited-phase particles [MM-1]; 𝑟 is the average radii of particles in the fluid phase and 

deposited phase [L]; 𝑟0 is the average radius of particles (or agglomerates) at 𝑡 = 0 [L]; 𝜌𝑝 is the average 

density of the particles or aggregates [ML-3]; 𝜆1 is the pseudo-first-order reaction rate [T−1], which stands 

for the decay in population of particles due to agglomeration; 𝜆2 is the pseudo-first-order reaction rate 

[T−1], which stands for the decay in the population of deposited, detachable particles and represents 

irreversible deposition; 𝐾𝑑 is the well-known distribution coefficient of the nanoparticles between the 

aqueous and solid phases [𝐿3𝑀−1]; Krel is the release rate constant, Seq [NM-1 or MM-1] is the 

equilibrium value of S in the new steady state following perturbation; Ho(S-Seq) is the Heaviside 

function (acting as a cancelling function) which is equal to one when S > Seq and zero when S ≤ 

Seq; Si [NM-1 or MM-1] is the value of S before the perturbation; fnr [–] is the fraction of deposited 

particles that are not released with the perturbation in the system conditions; and indexes 1 and 2 in 

dual-sites models (types (x), (iv), (xi), (xv), and (xvi)) stand for sites 1 and 2 and in dual species model 

(type (xiv)) stand for species 1 and 2. Note: Model type (xv) also includes modifications in the flow 

condition for change in the porosity and permeability due to clogging, which are not presented here. 
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Table 2. Summary of the NP transport studies experimental conditions and outcomes together with the major observed phenomena, 

the shapes of the breakthrough curve and residual concentration profile, and types of the applied continuum model.  

No. NP 

Type 

Coating and free 

polymer 

IS 

species 

pH IS 

(mM) 

C0 

(mg/L) 
dp/dg 

*
 

C/C0 

(%) 
BTC plateau 

shape** 

RP shape Major underlying 

phenomena  

Model 

Type(s) 

used 

Ref. 

1  AgNP citrate; 

polyvinylpyrrolidone

; branched 
polyethyleneimine 

NaNO3 7 5 10 2.7E-05—

3.4E-05 
20—

100 

flat NM physicochemical 

filtration; straining 

following aggregation 

ix without 

the term Kdet 

El Badawy 

et al. [201] 

2  AgNP proteinate capping 
with bovine serum 

albumin 

MgSo4 6.7 0—50 50 9.1E-05—
2.8E-04 

0—

75.7 

ascending NM straining  ix Ren and 

Smith 

[242] 

3  AgNP two nonionic 
surfactants: 

polyoxyethylene 

glycerol trioleate and 
polyoxyethylene 

(20) sorbitan mono-

laurate 

KNO3 6.5 1—10 1—10 8.6E-05 3.4

—

64.3 

ascending hyper-

exponential  

significant retardation  xii without 

the term Kdet 

Liang et 

al. [138] 

4  AgNP Polyoxyethylene 

Glycerol Trioleate 

and Polyoxyethylene 
(20) Sorbitan mono-

Laurat (Tween 20) 

KNO3 6.5 1—5 1—10 7.4E-05—

1.9E-04 
4.5

—

45.6 

ascending uniform, 

hyper-

exponential 

or non-

monotonic 

shapes 

irreversible interactions 

in a primary minimum 

due to microscopic 

heterogeneity 

xii without 

the term Kdet 

Liang et 

al. [127] 

5  AgNP surfactant, 

polyoxyethylene 
glycerol trioleate and 

polyoxyethylene 

(20) sorbitan mono-
laurat (Tween 20) 

NaNO3

; 
Ca(NO

3)2; 

H2O 

5.9—

6.5 

0—50 60 7E-05—

5.8E-04 
0—

100 

ascending non-

monotonic 

size selective filtration; 

reversible deposition of 

the AgNP due to 

secondary minimum 

interactions. 

ix; ix without 

Kdet; xii; i 

Braun et 

al. [135] 

6 AgNP coating: PVP; free 

polymer: HA 

KNO3; 

Ca(NO

3)2 

5.8 0.5—

100 

10 5E-05—

4.3E-03 
0—

88.3 

ascending non-

monotonic 

Increased aggregation of 

PVP- AgNP in presence 

of Ca2+ 

xii without 

the term Kdet 

Wang et 

al. [128] 

7  AgNP PVP KNO3; 

Ca(NO

3)2 

5.4—

6.1 

0.1—

10 

10 4.5E-05—

2.5E-04 
0.4

—

36.5 

ascending hyper-

exponential 

or non-

monotonic 

significant retardation, 

aggregation, irreversible 

deposition  

xii without 

the term Kdet; 

xiv without 

the term 

Kdet1; xiv 

without the 

term Kdet1 

and Kdet2 

Wang et 

al. [123] 
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No. NP 

Type 

Coating and free 

polymer 

IS 

species 

pH IS 

(mM) 

C0 

(mg/L) 
dp/dg 

*
 

C/C0 

(%) 
BTC plateau 

shape** 

RP shape Major underlying 

phenomena  

Model 

Type(s) 

used 

Ref. 

8 AgNP PVP  KNO3 4.5—

7.7 

0.9—

2.6 

1.7 1.3E-04—

3.6E-04 
0.16

—

8.84 

NC depth-

dependent 

straining following 

heteroaggregation, size-

exclusion  

iv without 

Kdet2  

 Cornelis 

et al. [202] 

9 AgNP polyoxyethylene 

glycerol triolate and 
polyoxyethylene 

(20) sorbitan mono-

laurat, 4% w/w each 
and the unbounded 

surfactant of ~5%  

H2O; 

NaNO3

; 

Ca(NO

3)2 

7.3 0—10 474—

800 

2.3E-04—

2.8E-04 
43—

100 

ascending and rather 

flat 

NM blocking; 

physicochemical 

retention; aggregation; 

and probably straining 

ix without 

Kdet; i; ii;  

Neukum et 

al. [176] 

10 NZVI  PAA NaClO4 8.6 1 200 3.1E-04—
3.5E-04 

18—

70 

continuous; flat NM aggregation; irreversible 

deposition 

i Laumann 

et al. [289] 

11 Iron 
oxide 

NPs 

PAA NC NC NC 20—
500 

2.7E-05—
4.7E-05 

88—

97 

continuous; flat NM irreversible deposition i Golzar et 

al., [392] 

12 NZVI CMC NC 8.5 30—
160 

100—
2500 

5.4E-05—
1.3E-04 

80 continuous; 

descending at low 

velocity 

NM aggregation and settling 

in the feeding stock 

dispersion 

i with 

modified 

boundary 

condition 

Kocur et 

al., [350] 

13 NZVI  Pure PAA-nZVI; 
NOM; Lignin 

sulfonate; CMC; HA 

NaHC
O3 

7.9—
8.3 

1 200 1.6E-03—
1.9E-03 

22—

53 

continuous; flat NM irreversible deposition  i Laumann 

et al. [393] 

14 NZVI CMC KCl 8.1 15 200 1.6E-05—
5.8E-05 

69—

99 

symmetric, flat NM filtration due to 

Brownian diffusion and 

gravitational 

sedimentation 

v He et al. 

[190] 

15 NZVI CMC NaHC
O3 

7.4 0.1 85—
1700 

2.2E-04—
1.2E-03 

55—

97 

predominately 

ascending 

hyper-

exponential 

Straining; detachment xi without ψb 

and Kdet2 

Raychoud

hury et al. 

[136] 

16 NZVI dispersed in xanthan 
solution 

NC NC 0—13 20000 1.0E-04 86—

90 

flat hyper-

exponential 

attachment, detachment 

(tailing), blocking, 

ripening, and clogging  

xv Tosco et 

al. [105] 

17 NZVI Cu Natural 
ground

water 

7.2 40 8000 8.4E-05—
8.7E-05 

61—

90 

ascending at low 

concentration (2 

g/L), descending at 

middle concentration 

(5 g/L), and multiple 

NC clogging after ripening  xv Hosseini 

and Tosco 

[106] 
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No. NP 

Type 

Coating and free 

polymer 

IS 

species 

pH IS 

(mM) 

C0 

(mg/L) 
dp/dg 

*
 

C/C0 

(%) 
BTC plateau 

shape** 

RP shape Major underlying 

phenomena  

Model 

Type(s) 

used 

Ref. 

peaks and tailing at 

very high 

concentrations (8 

and 12 g/L)  

18 NZVI poly(styrene 

sulfonate) (PSS) 

5 mM 

NaCl 5 

— mM 

NaHC

O3  

8 10 30—

6000 

1.6E-04—

2.1E-3 
61.5

—97 

flat NM agglomeration and 

subsequent irreversible 

deposition of 

agglomerates; 

disaggregation identified 

by the model.  

ii; vii Babakhani 

et al. [21] 

and 

Phenrat et 

al. [33] 

19 NZVI CMC NaHC
O3 

7.4 0.1 70—
725 

5.1E-04 55—

72 

continuous; 

ascending 

NM aggregation, detachment  vii Babakhani 

et al. [21] 

and 

Raychoud

hury et al. 

[104] 

20 nHAP Cu coated and humic 

acid as free polymer 

NaCl; 

CaCl2 

5.7—

5.9 

0—100 200 1.7E-04—

2.3E-04 
11—

89 

rather flat and 

ascending at the 

highest IS 

hyper-

exponential  

aggregation xi wihout 

considering 

ψb and Kdet2 

Wang et 

al. [129] 

21 nHAP Cu NaCl 6.2—

9 

0.1 200 1.7E-04 32—

90 

flat at various pH 

and water velocity 

but ascending by 

increasing the 

amount of Fe coating 

on the sand. 

hyper-

exponential  

retardation; blocking  xi without 

ψb; xi 

without Kdet 

Wang et 

al. [124] 

22 nHAP Alizarin red S 
(ARS)-labeled 

(caoted) NPs with 

humic acid as free 
polymer 

NaCl 6—
10.5 

0.1 100 5E-04— 
6E-04 

30.5

—

78.8 

flat at various 

concentrations of 

HA, but descending 

at zero concentration 

of HA 

hyper-

exponential  

blocking  xi without 

ψb; xi 

without Kdet 

Wang et 

al. [71] 

23 nHAP Alizarin red S 

(ARS)-labeled 
(caoted) NPs with 

humic acid as free 

polymer 

NaCl 7.2 0.1—

50 

100 4E-04—

1.1E-03 
7.8

—

78.8 

flat hyper-

exponential  

aggregation xi without  

ψb and Kdet2 

Wang et 

al. [122] 

24 nHAP Alizarin red S 

(ARS)-labeled 

(caoted) NPs: in 
presence of SDBS 

and CTAB 

NaCl 7 0.1 100 2.2E-04 0.8

—

78.6 

descending  hyper-

exponential  

aggregation; ripening; 

straining; and size 

selective retention   

xiii Wang et 

al. [111] 
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No. NP 

Type 

Coating and free 

polymer 

IS 

species 

pH IS 

(mM) 

C0 

(mg/L) 
dp/dg 

*
 

C/C0 

(%) 
BTC plateau 

shape** 

RP shape Major underlying 

phenomena  

Model 

Type(s) 

used 

Ref. 

25 GO NA NaCl 5.1 20—28 5—25 6E-04—

3.9E-03 
0.2

—

56.9 

ascending exponential 

to uniform 

aggregation; blocking  ix without 

Kdet 

Sun et al. 

[249] 

26 GO NA NaCl 6 1—100 5 1.3E-03 3.4

—

93.5 

ascending NM blocking  ix without 

Kdet  

Ferianciko

va and Xu 

[250] 

27 GO NA NaCl NC 1—100 12 5.5E-03 3—

99.4 

ascending NM aggregation; blocking i; ix without 

Kdet 

Liu et al. 

[394] 

28 graphe

ne 

SDBS and CTAB 

surfactants 

DI 

water 

NC 0.01 14—

16.5 

9.1E-04—

9.9E-04 
4.1

—

90.6 

flat NM attachment i Liu et al. 

[251] 

29 GO NA NaCl 7.1 50—

200 

20 3E-03—

8.2E-3 
22—

75 

ascending NM straining due to 

concurrent 

agglomeration; blocking 

xii Fan et al. 

[130] 

30 graphe

ne 

Carboxyl-

functionalized 

NC 5.6—

8.3 

NC 12 1.1E-03 88.4

—

99.8 

flat to slightly 

ascending  

NM attachment i Liu et al. 

[70] 

31 GO NA various 

Ca2+/N

a+ 

ratios: 

0; 0.15; 

0.3; 
0.6; 1; 

∞ 

7 1—10 20 2.6E-03—

8.7E-03 
1.8

—80 

ascending NM straining following 

agglomeration; blocking 

xii Fan et al. 

[131] 

32 GO NA DI 
water; 

NaCl 

4.8—
9 

0—50 19.2—
21.7 

9E-04—
2.5E-03 

10.7

—

95.9 

flat at intermediate 

IS and descending at 

high IS 

Relatively 

flat low and 

moderate 

IS, elevated 

from inlet 

point at high 

IS (50 mM) 

clogging and straining 

following 

agglomeration; blocking 

xi without 

Kdet 

Qi et al. 

[133] 

33 GO NA NaCl 7.2 1—50 20 5.1E-04—

6.6E-04 
24—

99.9 

ascending NC aggregation; straining; 

blocking 

xi with ψx=1, 

without 

Kdet2, and by 

shifting the 

He et al. 

[74] 
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No. NP 

Type 

Coating and free 

polymer 

IS 

species 

pH IS 

(mM) 

C0 

(mg/L) 
dp/dg 

*
 

C/C0 

(%) 
BTC plateau 

shape** 

RP shape Major underlying 

phenomena  

Model 

Type(s) 

used 

Ref. 

indexes 1 

and 2 

34 GO NA DI 

water; 

NaCl; 

CaCl2 

4—9 0—50 19.4—

21.4 

7.7E-04—

3.8E-03 
20.8

—

100 

flat (in sand) or 

ascending (in soil) at 

high NaCl 

concentration, 

descending at high 

CaCl2 concentration 

in soil 

NM aggregation; straining; 

blocking 

xi without 

Kdet; xvi 

Qi et a. 

[132] 

35 CeO2 HA NaCl 7—

10 

1—100 200 6E-04—

1.4E-03 
9.9

—

74.8 

flat NM Ripening in absence of 

HA due to aggregation 

i Lv et al. 

[267] 

36 CeO2 NA NaCl 3—9 1—100 10—50 2.1E-04 1.3

—

96.9 

ascending NM aggregation; straining; 

blocking 

ix Li et al. 

[192] 

37 TiO2, 

rutile 

NA KCl 

and 
KOH 

10 5 50 1.7E-04 5—

87 

ascending NM blocking  ix without 

Kdet 

Toloni et 

al. [222] 

38 TiO2, 

anatase 

NA NaCl 2.6—

9.6 

0.1—

50 

35 1.2E-03—

9.8E-03 
0—

94.1 

continuous, flat at 

intermediate IS, 

ascending at high IS 

NM straining; aggregation; 

detachment 

xi with ψb=1 

and without 

Kdet2 

Fang et al. 

[134] 

39 ZnO NA NaNO3 8.5 1—50 34—

430 

1.3E-03—

9E-03 
2.1

—

81.2 

continuous, 

ascending 

hyper-

exponential  

clogging; straining; 

aggregation; 

detachment; blocking; 

irreversible attachment 

xi with ψx, 

ψb1= ψx; and 

without Kdet2 

Sun et al. 

[137] 

40, 

41 

ZnO NA NaCl; 

CaCl2 

8 0.1—

20 

5 6E-04—

1.2E-03 
14.6

—

82.7 

flat at low IS, 

descending at high 

IS; flat in presence 

of NOM, descending 

in absence of NOM 

at high IS 

hyper-

exponential  

pore plugging; straining 

following the concurrent 

aggregation; 

detachment; blocking; 

irreversible attachment; 

and ripening  

ii Jiang et al. 

[206] and 

Jiang et al. 

[207] 

42 ZnO NA NaCl; 

CaCl2 

8 0.1—5 5 6E-04— 

9E-04 
11.3

—79 

flat in all cases hyper-

exponential  

straining following the 

concurrent aggregation 

ii Jiang et al. 

[75] 
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No. NP 

Type 

Coating and free 

polymer 

IS 

species 

pH IS 

(mM) 

C0 

(mg/L) 
dp/dg 

*
 

C/C0 

(%) 
BTC plateau 

shape** 

RP shape Major underlying 

phenomena  

Model 

Type(s) 

used 

Ref. 

43 QD-

CdSe/Z
nS 

COOHP; PAA-

octylamine (PAA-
OA); linoleic acid 

(LA) 

NaCl 5—

9.5 

0—30 1.6E-

03—
2.3E-

03 

5e-05— 

2E-04 
5.9

—

100 

flat or spike like with 

retardation 

NM retardation ix without 

Kdet 

Wang et 

al. [184] 

44 QD, 
CdSe/C

dZnS 

amphiphilic 
polymer, PAA-OA 

NaCl 7 3 0.0016 8.7E-05—
2.5E-04 

0.4

—

75.3 

flat to ascending and 

spike like 

non-

monotonic 

blocking by polymer ix without 

Kdet 

Wang et 

al. [186] 

45 CdSe 
QDs 

nonionic ethoxylated 
alcohol surfactant-

Neodol 

synthet
ic 

seawat

er 

8.5 550—
1000 

0.86 6.2E-05 91—

96 

flat NM retardation at elevated 

temperatures 

v without 

Katt 

Kini et al. 

[182] 

46 CdTe 

QDs 

NA NaCl; 

CaCl2 

8 2—100 44.7 2E-04— 

3E-04 
5—

98 

flat in NaCl solution 

and ascending in 

CaCl2 solution 

NM blocking; release ix without 

Kdet 

Torkzaban 

et al. [187] 

47  CML NA NaCl; 

CaCl2 

7 0.5—

60 

3.13—

25.0 

2E-04— 

4E-04 
30—

100 

ascending, delayed NM blocking; delay x Sasidharan 

et al. [181] 

48 AlO NA NaCl 4.8 0—100 50—

400 

3E-04—

1.3E-03 
52.5

—

95.9 

flat NM aggregation; blocking x with ψb2=1 Rahman et 

al. [329] 

and 

Rahman et 

al. [330] 

49 TiO2, 
anatase 

NA NaCl 4 1.1 100—
1000 

8E-05— 
7E-04 

96.1

—

98.7 

ascending  NM irreversible deposition; 

blocking 

ix without 

Kdet 

Saiers et 

al. [102] 

50 CdTe 
QDs 

and 

CML 

NA NaCl; 

CaCl2 

8 0.5—
100 

40.2—
250 

2E-04— 
7E-04 

1—

99 

ascending NM blocking ix without 

detachment  

Torkzaban 

et al. [185] 

*dp/dg is calculated based on the ratio of the average hydrodynamic diameter to the average grain size which might not be according to 

the what the authors reported, i.e., they might have calculated dp/dg based on other types of size measurement techniques than 

hydrodynamic diameter used here; **BTC plateau shape mostly considered at intermediate or favorable retention condition.. NM: not 

measured; NA: not applicable; NC: not clear; PVP: polyvinylpyrrolidone; CMC: carboxy-methyl-cellulose; PAA: Polyacrylic acid; 

SDBS: anionic sodium dodecyl benzene sulfonate; CTAB: cationic cetyltrimethylammonium bromide; COOHP: carboxyl derivatized 

polymer. 
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Table 3. Parameter values and fitting results for cases of F3 at 30 mg/L and F1 at 6 g/L using non-

equilibrium and equilibrium models.
a 

 
F3-0.03 g/L-  

Non-equilibrium b 

F3-0.03 g/L- 

Equilibrium b 

F1-6 g/L-       

Non-equilibrium c 

F1-6 g/L -

Equilibrium c 

𝐊𝐝 or 𝐊𝐚𝐭𝐭 7.21E-03 d 4.99E-05 e 1.05E-02 d 4.75e-5 e 

 𝐊𝐝𝐞𝐭   2.61E-02   NA   3.61E-02   NA 

𝛌𝟏  NA NA 8.89E-04 1.50e-3 

𝛌𝟐  NA NA 2.27E-03 2.69e-3 

𝐑𝟐  0.987 0.977 0.996 0.971 

P-Value 0.43 0.59 0.87 0.18 

AIC -97.8 -94.2 634 642 

aThe unit of Kd is 𝑚3/𝐾𝑔 and the units of other parameters are 𝑠−1. bBased on simple finite difference 

(FD) method. cBased on the total variation diminishing (TVD) method. dKatt. 
eKd. NA: not applicable.  

 

Table 4. Parameter values and fitting results for cases low concentration of 0.3 g/L and high 

concentration (washed-MRNIP2) of 6 g/L using non-equilibrium and equilibrium models.
a 

 0.3 g/L-        

Non-equilibrium 

0.3 g/L- 

Equilibrium 

6 g/L-           

Non-equilibrium 

6 g/L- 

Equilibrium 

𝐊𝐝 or 𝐊𝐚𝐭𝐭  fine  6.82E-03 b 1.15E-05 c 2.34E-02 b 7.04E-05 c 

𝐊𝐝 or 𝐊𝐚𝐭𝐭 medium 2.78E-03 b 2.02E-03 c 3.67E-03 b 4.27E-04 c 

𝐊𝐝 or 𝐊𝐚𝐭𝐭 coarse  3.90E-03 b 8.00E-04 c 1.49E-01 b 1.08E-03 c 

𝐊𝐝𝐞𝐭 fine  4.88E-03 NA 5.02E-02 NA 

𝐊𝐝𝐞𝐭 medium 1.69E-05 NA 1.75E-04 NA 

𝐊𝐝𝐞𝐭coarse  1.23E-03 NA 2.83E-02 NA 

𝛌𝟏 fine  NA NA 1.46E-04 7.04E-06 

𝛌𝟏 medium NA NA 2.27E-03 1.32E-03 

𝛌𝟏coarse  NA NA 9.87E-05 8.83E-05 
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𝛌𝟐 fine  NA NA 2.48E-04 1.44E-04 

𝛌𝟐 medium NA NA 3.08E-04 1.52E-03 

𝛌𝟐coarse  NA NA 1.27E-04 1.55E-04 

𝐑𝟐  0.787 0.639 0.951 0.948 

P-Value 0.61 0.79 0.58 0.92 

AIC -37.4 -42.2 609 582 

aThe unit of Kd is 𝑚3/𝐾𝑔 and the units of other parameters are 𝑠−1. bKatt. 
cKd. NA: not 

applicable.   

 

 

References 

 

[1] Keane E. Fate, transport, and toxicity of nanoscale zero-valent iron (nZVI) used during superfund remediation. 

US Environmental Protection Agency. 2009. 

[2] Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the 

environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. 2008;27:1825-

51. 

[3] Doong R-a, Saha S, Lee C-h, Lin H-p. Mesoporous silica supported bimetallic Pd/Fe for enhanced 

dechlorination of tetrachloroethylene. RSC Advances. 2015;5:90797-805. 

[4] Lin F-h, Doong R-a. Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite 

nanocatalysts. Applied Catalysis A: General. 2014;486:32-41. 

[5] Doong R-a, Liao C-Y. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped 

titanate nanotubes prepared by microwave-assisted hydrothermal method. Journal of hazardous materials. 2016. 

[6] Li M, Hsieh T-C, Doong R-A, Huang CP. Tuning the adsorption capability of multi-walled carbon nanotubes to 

polar and non-polar organic compounds by surface oxidation. Separation and Purification Technology. 2013;117:98-

103. 

[7] Chiang L-F, Doong R-a. Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO 

2 with low Cu addition. Separation and Purification Technology. 2015;156:1003-10. 

[8] Chang P-Y, Bindumadhavan K, Doong R-A. Size Effect of Ordered Mesoporous Carbon Nanospheres for 

Anodes in Li-Ion Battery. Nanomaterials. 2015;5:2348-58. 

[9] Chang P-y, Huang C-h, Doong R-a. Ordered mesoporous carbon–TiO 2 materials for improved electrochemical 

performance of lithium ion battery. Carbon. 2012;50:4259-68. 

[10] Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. Journal of 

Nanoparticle Research. 2013;15:1-17. 

[11] Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: from global to regional to local. 

Environmental Science & Technology Letters. 2013;1:65-70. 

[12] Dale A, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha MA. Modeling nanomaterial environmental 

fate in aquatic systems. Environmental Science & Technology. 2015. 

[13] Liu HH, Cohen Y. Multimedia environmental distribution of engineered nanomaterials. Environmental science 

& technology. 2014;48:3281-92. 

[14] Meesters JAJ, Koelmans AA, Quik JTK, Hendriks AJ, Van de Meent D. Multimedia modeling of engineered 

nanoparticles with SimpleBox4nano: model definition and evaluation. Environmental Science & Technology. 

2014;48:5726-36. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

63 
 
 

[15] Yu H, He Y, Li P, Li S, Zhang T, Rodriguez-Pin E, et al. Flow enhancement of water-based nanoparticle 

dispersion through microscale sedimentary rocks. Scientific reports. 2015;5. 

[16] Bardos P, Bone B, Daly P, Elliott D, Jones S, Gregory, et al. A Risk/Benefit Appraisal for the Application of 

Nano-Scale Zero Valent Iron (nZVI) for the Remediation of Contaminated Sites, "Taking Nanotechnological 

Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment". 

NANOREM, Supporting MS3, EU, 7th FP, NMP201212. 2014. 

[17] Tratnyek PG, Johnson RL. Nanotechnologies for environmental cleanup. Nano today. 2006;1:44-8. 

[18] Praetorius A, Scheringer M, Hungerbühler K. Development of environmental fate models for engineered 

nanoparticles  a case study of tio2 nanoparticles in the rhine river. Environmental Science & Technology. 

2012;46:6705-13. 

[19] Ehtesabi H, Ahadian MM, Taghikhani V, Ghazanfari MH. Enhanced heavy oil recovery in sandstone cores 

using tio2 nanofluids. Energy & Fuels. 2013;28:423-30. 

[20] Hashemi R, Nassar NN, Pereira Almao P. Enhanced Heavy Oil Recovery by in Situ Prepared Ultradispersed 

Multimetallic Nanoparticles: A Study of Hot Fluid Flooding for Athabasca Bitumen Recovery. Energy & Fuels. 

2013;27:2194-201. 

[21] Babakhani P, Fagerlund F, Shamsai A, Lowry GV, Phenrat T. Modified MODFLOW-based model for 

simulating the agglomeration and transport of polymer-modified Fe nanoparticles in saturated porous media. 

Environ Sci Pollut Res Int. 2015:1-20. 

[22] Baalousha M, Cornelis G, Kuhlbusch T, Lynch I, Nickel C, Peijnenburg W, et al. Modeling Nanomaterials Fate 

and Uptake in the Environment: Current Knowledge and Future Trends. Environmental Science: Nano. 2016. 

[23] Peijnenburg W, Praetorius A, Scott-Fordsmand J, Cornelis G. Fate assessment of engineered nanoparticles in 

solids dominated media–Current insights and the way forward. Environmental Pollution. 2016. 

[24] Bottero J-Y, Auffan M, Borschnek D, Chaurand P, Labille J, Levard C, et al. Nanotechnology, global 

development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes 

Rendus Geoscience. 2015;347:35-42. 

[25] Tian Y, Gao B, Silvera-Batista C, Ziegler KJ. Transport of engineered nanoparticles in saturated porous media. 

Journal of Nanoparticle Research. 2010;12:2371-80. 

[26] Fagerlund F, Illangasekare TH, Phenrat T, Kim HJ, Lowry GV. PCE dissolution and simultaneous 

dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology. 

2012;131:9-28. 

[27] Phenrat T, Fagerlund F, Illangasekare T, Lowry GV, Tilton RD. Polymer-Modified Fe0 Nanoparticles Target 

Entrapped NAPL in Two Dimensional Porous Media: Effect of Particle Concentration, NAPL Saturation, and 

Injection Strategy. Environmental Science & Technology. 2011;45:6102-9. 

[28] U.S.EPA. OSWER. Selected Sites Using or Testing Nanoparticles for Remediation. : http://clu-

in.org/download/remed/nano-site-list.pdf; 2011. 

[29] Vesilind PA, Peirce JJ, Weiner RF. Environmental Engineering: Butterworth-Heinemann; 1994. 

[30] Molnar IL, Johnson WP, Gerhard JI, Willson CS, O'Carroll DM. Predicting colloid transport through saturated 

porous media: A critical review. Water Resources Research. 2015. 

[31] Phenrat T, Kim H-J, Fagerlund F, Illangasekare T, Lowry GV. Empirical correlations to estimate agglomerate 

size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in 

saturated sand. Journal of Contaminant Hydrology. 2010;118:152-64. 

[32] Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV. Estimating Attachment of Nano- 

and Submicrometer-particles Coated with Organic Macromolecules in Porous Media: Development of an Empirical 

Model. Environmental Science & Technology. 2010;44:4531-8. 

[33] Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV. Particle size distribution, 

concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. 

Environ Sci Technol. 2009;43:5079-85. 

[34] Taghavy A, Pennell KD, Abriola LM. Modeling coupled nanoparticle aggregation and transport in porous 

media: A Lagrangian approach. Journal of Contaminant Hydrology. 2015;172:48-60. 

[35] Kelly RA, Jakeman AJ, Barreteau O, Borsuk ME, ElSawah S, Hamilton SH, et al. Selecting among five 

common modelling approaches for integrated environmental assessment and management. Environmental 

Modelling & Software. 2013;47:159-81. 

[36] Adamczyk Z, Nattich-Rak M, Sadowska M, Michna A, Szczepaniak K. Mechanisms of nanoparticle and 

bioparticle deposition–Kinetic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 

2013;439:3-22. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

64 
 
 

[37] Mackay D, Webster E, Cousins I, Cahill T, Foster K, Gouin T. An introduction to multimedia models. CEMC 

Report. 2001:30. 

[38] Comba S, Braun J. A new physical model based on cascading column experiments to reproduce the radial flow 

and transport of micro-iron particles. Journal of contaminant hydrology. 2012;140:1-11. 

[39] Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered 

nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental science & technology. 

2009;43:9216-22. 

[40] Gottschalk F, Sonderer T, Scholz RW, Nowack B. Possibilities and limitations of modeling environmental 

exposure to engineered nanomaterials by probabilistic material flow analysis. Environmental Toxicology and 

Chemistry. 2010;29:1036-48. 

[41] Sun TY, Gottschalk F, Hungerbühler K, Nowack B. Comprehensive probabilistic modelling of environmental 

emissions of engineered nanomaterials. Environmental Pollution. 2014;185:69-76. 

[42] Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environmental 

science & technology. 2008;42:4447-53. 

[43] Gottschalk F, Sun T, Nowack B. Environmental concentrations of engineered nanomaterials: review of 

modeling and analytical studies. Environmental Pollution. 2013;181:287-300. 

[44] Nowack B, Baalousha M, Bornhöft N, Chaudhry Q, Cornelis G, Cotterill J, et al. Progress towards the 

validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. 

Environmental Science: Nano. 2015. 

[45] Quik JTK, van De Meent D, Koelmans AA. Simplifying modeling of nanoparticle aggregation–sedimentation 

behavior in environmental systems: A theoretical analysis. Water Research. 2014;62:193-201. 

[46] Arvidsson R, Molander S, Sandén BA, Hassellöv M. Challenges in exposure modeling of nanoparticles in 

aquatic environments. Human and Ecological Risk Assessment. 2011;17:245-62. 

[47] Hotze EM, Phenrat T, Lowry GV. Nanoparticle Aggregation: Challenges to Understanding Transport and 

Reactivity in the Environment. J Environ Qual 2010;39:1909–24. 

[48] Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N. Aggregation and deposition of engineered 

nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science & Technology. 

2010;44:6532-49. 

[49] Adamczyk Z, Weroński P. Application of the DLVO theory for particle deposition problems. Advances in 

Colloid and Interface Science. 1999;83:137-226. 

[50] Grasso D, Subramaniam K, Butkus M, Strevett K, Bergendahl J. A review of non-DLVO interactions in 

environmental colloidal systems. Reviews in Environmental Science and Biotechnology. 2002;1:17-38. 

[51] Bradford SA, Torkzaban S. Colloid transport and retention in unsaturated porous media: A review of interface-, 

collector-, and pore-scale processes and models. Vadose Zone Journal. 2008;7:667-81. 

[52] Keir G, Jegatheesan V, Vigneswaran S. Deep bed filtration: modeling theory and practice. Water and 

Wastewater Treatment Technologies, V Saravanamuthu, ed, Eolss Publishers, Oxford, UK. 2009:263-307. 

[53] McDowell-Boyer LM, Hunt JR, Sitar N. Particle transport through porous media. Water Resour Res. 

1986;22:1901-21. 

[54] Schijven JK, Hassanizadeh SM. Removal of viruses by soil passage: Overview of modeling, processes, and 

parameters. Crit Rev Environ Sci Technol. 2000;30:49 – 127. 

[55] Pan B, Xing B. Applications and implications of manufactured nanoparticles in soils: a review. European 

Journal of Soil Science. 2012;63:437-56. 

[56] Jegatheesan V, Vigneswaran S. Deep Bed Filtration: Mathematical Models and Observations. Critical Reviews 

in Environmental Science and Technology. 2005;35:515-69. 

[57] Taghavy A, Mittelman A, Wang Y, Pennell KD, Abriola LM. Mathematical modeling of the transport and 

dissolution of citrate-stabilized silver nanoparticles in porous media. Environmental Science & Technology. 

2013;47:8499-507. 

[58] Albarran N, Missana T, Alonso U, García-Gutiérrez M, López T. Analysis of latex, gold and smectite colloid 

transport and retention in artificial fractures in crystalline rock. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects. 2013;435:115-26. 

[59] Jen C-P, Li S-H. Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in 

the fractured rock. Waste Management. 2001;21:499-509. 

[60] Li S-H, Jen C-P. Modeling of hydrodynamic chromatography for colloid migration in fractured rock. Nuclear 

technology. 2001;133:253-63. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

65 
 
 

[61] Xie J, Lu J, Lin J, Zhou X, Xu Q, Li M, et al. Insights into transport velocity of colloid-associated plutonium 

relative to tritium in porous media. Scientific reports. 2014;4. 

[62] Bradford SA, Yates SR, Bettahar M, Simunek J. Physical factors affecting the transport and fate of colloids in 

saturated porous media. Water Resources Research. 2002;38:63-1. 

[63] Bradford SA, Torkzaban S, Leij F, Simunek J. Equilibrium and kinetic models for colloid release under 

transient solution chemistry conditions. Journal of contaminant hydrology. 2015. 

[64] Torkzaban S, Bradford SA, Vanderzalm JL, Patterson BM, Harris B, Prommer H. Colloid release and clogging 

in porous media: Effects of solution ionic strength and flow velocity. Journal of contaminant hydrology. 2015. 

[65] Yao K-M, Habibian MT, O'Melia CR. Water and waste water filtration. Concepts and applications. 

Environmental Science & Technology. 1971;5:1105-12. 

[66] Ryan JN, Elimelech M. Colloid mobilization and transport in groundwater. Colloids and Surfaces A. 

1996;107:1-56. 

[67] Tufenkji N, Elimelech M. Correlation equation for predicting single-collector efficiency in physicochemical 

filtration in saturated porous media. Environmental Science & Technology. 2004;38:529-36. 

[68] Elimelech M, Jia X, Gregory J, Williams R. Particle deposition and aggregation: measurement, modelling and 

simulation. Amsterdam: Elsevier; 1998. 

[69] Sirk KM, Saleh NB, Phenrat T, Kim H-J, Dufour B, Ok J, et al. Effect of adsorbed polyelectrolytes on 

nanoscale zero valent iron particle attachment to soil surface models. Environmental science & technology. 

2009;43:3803-8. 

[70] Liu L, Gao B, Wu L, Yang L, Zhou Z, Wang H. Effects of pH and surface metal oxyhydroxides on deposition 

and transport of carboxyl-functionalized graphene in saturated porous media. Journal of nanoparticle research. 

2013;15:1-8. 

[71] Wang D, Bradford SA, Harvey RW, Gao B, Cang L, Zhou D. Humic acid facilitates the transport of ARS-

labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environmental science & technology. 

2012;46:2738-45. 

[72] Tian Y, Gao B, Wang Y, Morales VL, Carpena RM, Huang Q, et al. Deposition and transport of functionalized 

carbon nanotubes in water-saturated sand columns. Journal of hazardous materials. 2012;213:265-72. 

[73] Elimelech M, Nagai M, Ko C-H, Ryan JN. Relative insignificance of mineral grain zeta potential to colloid 

transport in geochemically heterogeneous porous media. Environmental science & technology. 2000;34:2143-8. 

[74] He J-Z, Li C-C, Wang D-J, Zhou D-M. Biofilms and extracellular polymeric substances mediate the transport 

of graphene oxide nanoparticles in saturated porous media. Journal of hazardous materials. 2015;300:467-74. 

[75] Jiang X, Wang X, Tong M, Kim H. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand 

porous media coated with Escherichia coli biofilm. Environmental Pollution. 2013;174:38-49. 

[76] Li Z, Hassan AA, Sahle-Demessie E, Sorial GA. Transport of nanoparticles with dispersant through biofilm 

coated drinking water sand filters. Water research. 2013;47:6457-66. 

[77] Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton RD, Lowry GV. Stabilization of aqueous nanoscale zerovalent iron 

dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on 

aggregation and sedimentation. Journal of Nanoparticle Research. 2008;10:795-814. 

[78] Zhang W, Crittenden J, Li K, Chen Y. Attachment efficiency of nanoparticle aggregation in aqueous 

dispersions: modeling and experimental validation. Environmental science & technology. 2012;46:7054-62. 

[79] Marmur A. A kinetic theory approach to primary and secondary minimum coagulations and their combination. 

Journal of Colloid and Interface Science. 1979;72:41-8. 
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