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Abstract

The increase in energy demand has led to expansion of renewable energy sources and their integration into

a more diverse energy mix. Consequently the operation of thermal power plants, which are spearheaded by

the gas turbine technology, has been affected. Gas turbines are now required to operate more flexibly in grid

supporting modes that include part load and transient operations. Therefore, condition based maintenance

should encapsulate this recent shift in the gas turbine’s role by taking into account dynamic operating condi-

tions for diagnostic and prognostic purposes. In this paper, a novel scheme for performance-based prognostics

of industrial gas turbines operating under dynamic conditions is proposed and developed. The concept of

performance adaptation is introduced and implemented through a dynamic engine model that is developed

in Matlab/Simulink environment for diagnosing and prognosing the health of gas turbine components. Our

proposed scheme is tested under variable ambient conditions corresponding to dynamic operational modes of

the gas turbine for estimating and predicting multiple component degradations. The diagnosis task developed

is based on an adaptive method and is performed in a sliding window-based manner. A regression-based

method is then implemented to locally represent the diagnostic information for subsequently forecasting the

performance behavior of the engine. The accuracy of the proposed prognosis scheme is evaluated through the

Probability Density Function (PDF) and the Remaining Useful Life (RUL) metrics. The results demonstrate

a promising prospect of our proposed methodology for detecting and predicting accurately and efficiently

the performance of gas turbine components as they degrade over time.
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Highlights

• A prognosis scheme for predicting the performance of gas turbine components is presented.

• The proposed prognosis scheme takes into consideration flexible and dynamic operating conditions of

gas turbines.
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• The performance of the scheme is tested under transient conditions of gas turbines.

• The proposed scheme is utilized to detect and forecast compressor fouling and turbine erosion.

Nomenclature

Acronyms

AB Accuracy Bounds

DI Diagnostic Index

EoL End of Life

ERUL Equivalent Remaining Useful Life

GPA Gas Path Analysis

ISA International Standard Atmosphere

NN Neural Networks

OF Objective Function

PDF Probability Density Function

RUL Remaining Useful Life

Symbols

a coefficient of linear regression model

l time length of diagnostic window overlap (h)

L time length of diagnostic window (h)

ṁ mass flow rate (kg/s)

n total number of operating points

N corrected shaft rotational speed

p probability

P pressure (Pa)

q total number of diagnostic windows

t time instant (h)

T temperature (K)

u ambient and operating conditions vector

W component work (W)

x variable

X component characteristics vector

Y measurement vector
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Greek

α accuracy bound

Γ mass flow capacity

∆ deviation

ε average prediction error

η isentropic efficiency

µ mean

π pressure ratio

σ spread

Subscript

amb ambient

c compressor

cl clean

d diagnosis

deg degraded

des design point

e effective

f fuel

inj injected

lreg linear regression

p prognosis

pred predicted

pt power turbine

r reference engine

ref reference

t turbine

th thermal

thr threshold

1− 6 engine gas path station

1. Introduction1

The ever-growing demand for environmental friendlier and more efficient power generation sources has2

triggered a diverse family of challenges that have to be met by gas turbines which are the prime movers3
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of thermal power plants. One of these challenges involves the development of high fidelity, accurate and4

computationally efficient health monitoring, diagnostic and prognostic schemes for ensuring a reliable and5

effective gas turbine asset management [1].6

Efficiency still remains as one of the top priorities of gas turbine manufacturers and users. However, there7

has been a significant shift towards products that can operate with increased reliability and flexibility in load8

following and grid supporting roles. A significant part of this shift is due to the fact that gas turbine power9

plants have to compensate for intermittent renewable energy sources in a more diverse energy mix. This10

new type and mode of gas turbine operation has been recently implemented in the Siemens Flex-PowerTM
11

[2] and GE’s FlexEfficiencyTM [3] technologies. A typical gas turbine operating profile is shown in Fig. 1.12

The recent trend for increased flexibility in gas turbine operation implies that the engines are required13

to start up and shut down faster, and at the same time produce power at high thermal efficiency. Since the14

power output available from renewable energy sources is prioritized in the grid, the gas turbines will have15

a supporting role for fulfilling the energy demands depending on the wind capacity and the solar radiation.16

Consequently, majority of the gas turbine’s new operating profile will be dominated by part-load operation,17

followed by fast start ups and shut downs as depicted in Fig. 1. This increased demand on the gas turbine18

flexibility has motivated the gas turbine community to evaluate the effects of this transition in terms of19

accuracy of diagnostic and prognostic schemes.20

Figure 1: Flexible gas turbine operating profile [3], Courtesy of General Electric c©.

Apart from a limited number of works in the literature [4, 5, 6, 7] most diagnostic and subsequently21

prognostic schemes have been developed based on the steady state performance operation. Moreover, in22

dynamic operating conditions the useful life of gas turbine components is consumed faster than the steady23

state and the maintenance intervals suggested by manufacturers [8] are brought out forward, as shown from24

Fig. 2. The peaking unit given in Fig. 2 refers to a unit where its operational profile is characterized by an25

increased number of start ups and shut downs which characterize the transient conditions. The midrange26

unit refers to a unit that is dominated by part-load operations with a smaller number of start ups and shut27

downs, and the continuous unit refers to a unit that operates most of its lifetime at base load mode.28

The problem of prognosis deals with prediction of the future condition of a system. The most common29
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Figure 2: Gas turbine maintenance intervals for various operational modes with respect to the number of starts and operating

hours as reproduced from [8], Courtesy of General Electric c©.

issue in prognostics deals with calculation of the Remaining Useful Life (RUL) [9, 10] of a life limited30

component of the system. In particular, for gas turbine prognostics there are several available methods,31

such as model-based [11], data-based [12, 13] and statistical [9, 14] approaches, although these schemes32

are only tested and developed when diagnosis is performed at steady state conditions. The capabilities33

of a prognosis scheme for implementing the engine’s dynamic transient performance information has to be34

further investigated. Among a wide selection of methods, such as exponential models [15] and particle35

filtering [11, 16] that are applied for prognostics of various energy systems the most common method for gas36

turbine prognosis is trending through regression fitting of gas turbine component degradations as developed37

in [9].38

In comparison to our earlier works on transient diagnostics [17, 18], in this study the proposed adapta-39

tion method is further developed and implemented for gas turbine prognostics. Specifically, the proposed40

prognosis scheme is not continuous as suggested in [9], where all the past diagnostic results under steady41

state operation were used to fit a multiple regression model based on a data skewness criterion. In contrast42

to [9], in this study a linear regression method is implemented that is based on a local window-based seg-43

ment. Furthermore, the proposed scheme takes into consideration the transient operations, variable ambient44

conditions as well as multiple component degradations.45

Our proposed prognosis scheme within a local window-based segment is fundamentally different from the46

conventional forecast of engine health and RUL based on pattern recognition methods that utilize the entire47

historical operating data of the engine. The main reason for this change in the prognosis approach lies in the48

fact that most existing gas turbine prognosis schemes [1, 12, 13] rely on diagnostic methods that have been49

tested only for steady state operating conditions. In addition, for model-based diagnostic algorithms, such50

as the Gas Path Analysis (GPA), it is a common practice to take into account engine historical data that51
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are close to the International Standard Atmosphere (ISA) conditions to minimize the uncertainty involved52

with measurement corrections when these are corrected back to ISA conditions [9]. This type of correction53

enables the gas turbine users to compare the health of their gas turbine assets, expressed in terms of the54

component efficiency and mass flow rate, with the ones that are provided by the manufacturer at the ISA55

conditions.56

Given that the gas turbine’s role is becoming more flexible, the rate of engine component degradations57

at such dynamical operational modes will significantly change their degradation patterns and their corre-58

sponding RUL will be shorter. Performing prognostics that take into account the entire set of operational59

data which encapsulate the increased number of the firing start ups, shut downs and extended periods of60

inactivity for the new type and mode of flexible operational gas turbines will produce results that will be61

difficult to interpret for condition based maintenance. It is more practical and realistic for such types of62

flexible gas turbine units to forecast the engine components health for a shorter time frame that will be63

based upon the previous diagnostic results window that cover only the recent history of the engine operation.64

Therefore, the proposed prognosis scheme may provide the gas turbine users with an improved insight on65

the engine’s health at such dynamical operating conditions.66

Generally speaking, the accuracy of a prognosis is dependent on the diagnosis accuracy. From a series67

of available gas turbine diagnostic methods [19] such as model-based GPA [9] and data-based [20, 21, 22]68

approaches only a few [7, 23, 6, 24, 4, 5] have been tested for transient conditions. This study will develop69

and implement an adaptive diagnostic method that has been successfully applied and tested for engine70

dynamical conditions in our earlier work [17]. The advantage of this approach is that it can satisfy at a71

high level of accuracy and low computational complexity and time a set of objectives ranging from the72

component map reconstruction and the engine model tuning up to an effective diagnosis of degradations73

that are experienced by multiple engine components [25].74

An additional challenging aspect of the prognosis task is the fact that model-based gas turbine diagnostic75

methods are heavily relying on the engine model [1]. On principle the accuracy of a gas turbine model76

depends on detailed understanding of its components behavior as captured by component performance77

maps. The former challenges have been effectively addressed in our earlier works [26, 18], where a number78

of component map modeling approaches have been proposed and implemented in a dynamic engine model79

that was developed in Matlab/Simulink, and successfully tested for the gas turbine performance adaptation.80

It is well-known that model-based gas turbine prognostics is a challenging task since it integrates a series of81

processes and suggested technologies [27].82

Our proposed method is applied to a model of a two-shaft gas turbine that is injected with soft multiple83

component degradations over time to illustrate and demonstrate the effectiveness of our approach. The84

capabilities of our proposed method are evaluated for predicting multiple component degradations when the85

engine operates under variable operating and dynamical performance conditions for a period of up to 25,00086
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h. A series of prognosis performance metrics, as suggested by Saxena et al. [28], have also been developed87

and implemented to assess the accuracy of the proposed prognosis scheme. The proposed prognostic method88

has the capability to enhance and refine the current gas turbine performance prediction approaches, and to89

improve and extend performance-based prognostic techniques.90

To summarize, the main contributions of this paper are as follows. First, the prognosis of an engine91

component performance degradation for an industrial gas turbine operating under dynamical conditions92

is investigated by using an adaptive diagnostic and prognostic scheme. In contrast to our earlier works93

[17, 18], where the concept of performance adaptation was developed and implemented only for diagnostics,94

this study extends the corresponding scheme for prognostic purposes. Specifically we propose a sliding-95

window based performance adaptation concept that can effectively deal with prediction of multiple engine96

component degradations. Therefore, detecting and predicting the health of multiple engine components that97

degrade with respect to time time under dynamical conditions through the use of a new sliding window based98

performance adaptation method is developed and examined for the first time in the literature, to the best of99

the authors knowledge. In contrast to other available prognostic approaches in the literature, such as those100

in [9, 11, 12, 13, 14], our proposed scheme is capable of predicting effectively the component degradations101

under dynamical operation and variable ambient conditions. By using a regression method for fitting the102

diagnostic results of each diagnostic window, the health of each engine component can be accurately and103

efficiently predicted. Finally, we assess the accuracy of our proposed prognosis scheme by evaluating the104

equivalent RUL of each component and the probability of the distributed prognostic results to lie within the105

acceptable levels of accuracy.106

The remainder of this paper is organized as follows. In Section 2, the assumptions and the methodology107

for the proposed scheme that integrates performance adaptation, diagnostic and prognostic capabilities is108

described. The description of the case studies is presented in Section 3. Simulation results of the proposed109

approach are presented in Section 4, followed by the conclusions in Section 5.110

2. Methodology111

2.1. Assumptions112

Generally speaking, the gas turbine degradation is heavily influenced by various factors such as ambient113

and operating conditions, manufacturing tolerances and imperfections that make the task of prognosis quite114

challenging one. In this context, several prognostic schemes have been developed and applied for gas turbines115

and this emphasizes the fact that there does not exist a unique approach to cover effectively such a wide116

range of degradation scenarios. However, in order to make the proposed scheme more generic and applicable117

to real engine applications the following assumptions are made in this study:118
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• Only soft engine performance degradations due to the compressor fouling and turbine erosion that are119

developed over time are examined.120

• The ambient conditions and engine operational mode are variable and dynamic, respectively and121

represent the ever growing demand for flexibility in a gas turbine operation.122

• The degradation patterns examined for the compressor fouling and turbine erosion are monotonically123

increasing or decreasing depending on the examined type of component degradation.124

• The degradation patterns that are examined are independent of maintenance actions and are mainly125

attributed to the aging of the component. For instance, when the compressor is experiencing fouling126

the lost efficiency and mass flow capacity cannot be fully recovered by offline washing and such an127

unrecoverable degradation accumulates over time.128

• The component degradations are described by deviations of isentropic efficiency and mass flow capacity129

from their clean/healthy values.130

2.2. Performance Adaptation131

The concept of performance adaptation is the process of tuning the nonmeasurable component param-132

eters, such as the mass flow capacity and isentropic efficiency, of an engine model in order to match the133

measurable engine performance parameters, such as the temperature and pressure along the gas path, of a134

reference engine. The process involves, invokes and implements an optimization algorithm for minimizing135

the residuals between the performance parameters of the model and the reference engine, as depicted in Fig.136

3. Such a method forms the foundation of refining an engine model and matching it to the engine under137

investigation.138

The advanced performance adaptation approach that is empowered by a novel component map generation139

scheme is the one that was developed by the authors in [17, 18] and has been also used in this study. A140

brief description of this method follows. Generally the engine behavior, assuming there is no presence of141

measurement noise and bias, can be expressed as follows:142

Y = f(X,u) (1)

where Y denotes the engine performance vector consisting of the measurable parameters, X denotes the143

component characteristic vector that consists of nonmeasurable parameters and u denotes the ambient and144

operating conditions vector consisting of ambient conditions and a control input parameter called handle145

that can be either fuel flow rate, rotational speed or any other quantity.146

The engine performance vector can be either the field data of a service engine or simulations from a147

different engine model. To conduct testing of our proposed method two engine models are used. The148
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Figure 3: The flow chart of the performance adaptation process.

engine model that uses the performance maps of PROOSIS [29] gas turbine simulation software is going to149

be referred to as the reference engine. The second engine model implements the advanced map modeling150

method that was developed by the authors in [18] and is going to be referred to as the engine model.151

For this study, the difference between the predicted Y by the engine model and the observed Yr mea-

surements from the reference engine is evaluated by means of an Objective Function (OF ) that is defined

as follows:

OF =

√√√√ n∑
i=1

(
Yi −Yri

Yri

)2

(2)

where n denotes the total number of operating points and Yi and Yri denote the i − th predicted and152

measurable performance vector, respectively. Further details regarding the performance adaptation can be153

found in [17, 18].154

2.3. Adaptive Diagnostics155

Performance degradation of an engine component is represented by deviation of its parameters from their156

nominal/clean/healthy values. The deviation of a component parameter such as the mass flow capacity ∆Γ157

can be expressed as the absolute difference between the degraded Γdeg and the clean Γcl divided by the clean158

Γcl as follows, i.e. ∆Γ = |Γdeg − Γcl| /Γcl.159

In order to emulate such a component degradation deviations in the mass flow capacity and efficiency160

of each component of the reference engine are injected. Therefore, the nominal/clean/healthy vector Xrcl161

which is the output of the component map is multiplied by a time dependent injected deviation signal162

∆Xrinj that results in a deviated component vector Xrdeg . Consequently, the reference engine operates at163

degraded conditions and produces a new set of degraded measurable parameters Yrdeg , as schematically164

depicted in Fig. 4.165

The injected deviations of the component vector ∆Xrinj can be expressed as a function of time t, i.e.166

∆Xrinj = g(t). The type of the function g depends on the degradation pattern that each component167
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Figure 4: Representation of time dependent injected degradations into the engine component.

experiences. In this study component degradation patterns such as the ones shown in Fig. 5 will be168

examined. When the engine operates under dynamical conditions the degradation of the engine components169

evolves faster than that at steady state conditions, as shown in Fig. 5, where it is assumed that the rate170

of component degradation due to aging is represented as a drop of -1% per year in the health component171

parameter. The health component parameter simply refers to the mass flow capacity and the efficiency.172

Typical values of degradation rates with respect to the above health indicators depend on the engine type173

and its operating conditions [30]. The former observation highlights the importance and the challenging174

aspect of predicting the performance of engine degraded components when the gas turbine is operating at175

dynamical transient conditions.176
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Figure 5: Typical engine health parameter deviation with respect to time for 25,000 h of steady state and transient engine

operations.

The objective of the diagnosis problem is to determine the level of degradations that are injected in177

the components of the reference engine. This is achieved by minimizing the observed residuals between178

the component parameters of the reference engine and the engine model through implementation of the179

performance adaptation methodology [17].180

It should be emphasized that the performance adaptation scheme has the capability of generating and181

tuning a set component maps to match the engine measurements for a wide range of operating conditions.182
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Once each component map is fed with its corrected rotational speed and pressure ratio inputs, its corre-183

sponding outputs that are the mass flow rate and the efficiency are determined and subsequently used for184

thermodynamic computations. For simulating the time evolving component degradation the outputs of the185

maps are injected with time dependent signals as shown in Fig. 4, before their utilization for the thermo-186

dynamic computations. Therefore, the degraded reference engine might operate under the same operating187

conditions (inputs) as the clean reference engine but their outputs will be different since the time dependent188

injected faults alter the initial clean/healthy output of the component map. The complexity of decomposing189

the time parameter in the estimated degraded component parameters can be resolved by partitioning the190

diagnostic results into smaller time increments so that the adaptation approach can handle. Therefore, in191

this work a sliding window-based method is proposed that has the advantage of filtering out the effects that192

time-dependent injected degradations have on the adaptation procedure.193

From the bank of available degraded data, the diagnostics tasks are performed through a set consisting194

of q sliding windows that cover the entire range of the available data. On a local level, each window that195

is initiated at the time instant td has a width of L that includes n operating points as shown in Fig. 6.196

The n operating points corresponding to each window refer to the samples of data that one may utilize197

to perform the diagnostic analysis and is different from the total number of measurement data that are198

available within the time frame of width L. The n operating points corresponding to each window refer to199

the samples of data that one may utilize to perform the diagnostic analysis and is different from the total200

number of measurement data that are available within the time frame of width L. The number of operating201

points n selected for an analysis depends on how sensitive it would be to the data resolution. If the total202

data captured in a time width L is of high resolution having repeated values and at the same time present203

a uniform distribution, then one may reduce the data samples that are utilized for a diagnostic analysis204

to a number n to reduce the computational time without sacrificing the diagnostic accuracy. Several data205

reduction and smoothing techniques could be implemented for accomplishing the above. The above method206

is more practical and suited for real applications given that the gas turbine users may not have access to207

high quality engine data for covering a wide range of operational history of the engine.208

For each diagnostic sliding window, the engine model matches the degraded measurements of the refer-209

ence engine by generating a new set of component maps that form the degraded vector Xdeg. The initial210

adaptation of the engine model is in fact a training phase for the fault diagnosis task given that it acts as211

the reference frame for the engine healthy/clean condition.212

Another key aspect of the above process is that the time td when the adaptive diagnosis is initiated and213

the time te when the proposed scheme starts detecting the component degradation effectively are different.214

This occurs due to the fact that the proposed diagnostic algorithm requires time to tune itself with the215

degradation progression data before it can reach an accurate diagnosis. Therefore, the sliding windows for216

diagnostic analysis overlap with one another at a data length of l as shown in Fig. 7. It follows that at217
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Figure 7: Representation of the overlap between the sliding windows that are used for the diagnostic problem.

the diagnostic window No. 2, the process is initiated at td and only the diagnostic information after te that218

is depicted as squares is considered. For the region between td and te, the diagnostic information refers to219

the previous window No. 1. This process is repeated until the final set of data is used in the final window220

No. q. A Diagnostic Index (DI) as described in [18] is now utilized to assess the accuracy of the diagnosis221

information and is defined as follows:222

DI = 100

(
1

1 + ε

)
(3)

where ε denotes the mean error in the component vector X. Consequently, the accuracy level that component223

maps are optimized to match the degraded measurements is evaluated according to:224

ε =

n∑
i=1

∣∣∣∣∆Xpredi
−∆Xrinji

∆Xrinji

∣∣∣∣
n

(4)

2.4. Prognostics225

Prognosis is concerned with the prediction of the engine future health that is analyzed with the adaptive226

performance diagnostic method for all the past operating points. The main objective of the adaptive227
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prognosis scheme is to forecast the performance of each engine component that degrades over time for a228

specific prognostic window.229

Taking into consideration the fact that the sliding window-based diagnostic approach partitions the230

degradation pattern into smaller time increments, it is reasonable to assume that at such a local scale the231

engine components performance degrades linearly with time. In order to ensure that the degradation pattern232

will be linear at such a local scale, data analysis methods such as the Probability Density Functions (PDF),233

the skewness and kurtosis criteria [10] could be utilized to investigate the data distribution and estimate234

whether the rate of degradation satisfies the above assumption. Once this is performed then the data can235

be effectively handled by the sliding window diagnostic method. A wide spread PDF or sign changes in the236

skewness of data distribution [9] can indicate an increase or decrease in the degradation rate and can serve237

as guide for tuning the width L of the diagnostic windows. For this study, the diagnostic windows had fixed238

width L but one could easily modify this as stated above.239

This observation allows one to perform the prognosis on a local window level instead of using the complete240

set of the past diagnostic windows. Therefore, a regression model can be used to determine the function h241

by which the degraded component parameter ∆Xlreg varies with respect to time t as follows:242

∆Xlreg = h(t), t ∈ [td, td + L] (5)

The linear regression method [9, 31] was implemented for this case. Therefore, the function h is obtained243

by:244

h(t) = a1t+ a2, t ∈ [td, td + L] (6)

where the coefficients a1 and a2 are determined based on a least square minimization scheme. Once the245

degradation pattern is fitted accurately through the linear regression model, the health of the engine com-246

ponent is predicted for a prognostic window of time with width M . The accuracy of the prognosis is247

determined by comparing the obtained results with the actual reference engine degradation data ∆Xrinj248

and by determining the probability of this distribution to lie within specified accuracy bounds.249

The next step of this process involves the utilization of the PDF in order to estimate the likelihood of the250

fitted regression model to take any given value. Among several probability distributions available, the most251

common for statistics and forecasting is the normal (Gaussian) distribution. The advantage of the normal252

distribution that has the characteristic bell-shape curve is that it is simple to manipulate mathematically and253

derive results that can be easily interpreted. Therefore, the normal distribution is going to be implemented254

in this study. The PDF of the normal distribution for a variable x is as follows:255

f(x) =

(
1

σ
√

2π

)
e−

1
2 ( x−µσ )

2

(7)
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where x in this study refers to the degraded component parameter ∆Xlreg and µ denotes its mean with a256

standard deviation of σ.257

In order to compute the total probability of the distribution that lies within the specified Accuracy258

Bounds (AB) [α−, α+] of the actual degradation, the PDF is integrated as follows:259

p =

∫ α+

α−
f(x)dx (8)

The integral has a maximum of 1 and a minimum of 0 when the entire PDF lies inside or outside the AB of260

the actual degradation, respectively. The actual degradation accuracy bounds at time tp when prognosis is261

initiated are given by the following equations:262

α−
(tp) = xα(tp) − αxα(tp) (9)

and263

α+
(tp) = xα(tp) + αxα(tp) (10)

where α denotes the level of accuracy and xα(tp) refers to the actual deviation in the component parameter264

∆Xrinj at the time instant tp. The AB of 90% implies that the value of α is 0.10. It should be emphasized265

that in real gas turbine applications the component degradation ∆Xpred can only be estimated and the266

actual degradation such as ∆Xrinj remains an unknown.267

The AB of the actual degradation which is based on the injected degradation ∆Xrinj is not used here as268

a direct prognosis accuracy metric, but it is only an indication of how the prognostic results are distributed269

with respect to the actual degradation. Therefore, the PDF of the distributed prognostic results ∆Xlreg270

that are implemented here can serve as a guide for evaluating the width L of the diagnostic window that271

is used for the prognosis. A PDF that has a wide spread indicates that the past diagnostic window could272

be further partitioned into smaller time width L in order to achieve a PDF that has a narrower spread,273

and therefore the prognosis will be more reliable. A schematic representation of the PDF for the normal274

distribution of linearly regressed component parameter ∆Xlreg with respect to the diagnostic predictions275

∆Xpred within the AB [−α, α] corresponding to the actual degradation ∆Xrinj is shown in Fig. 8.276

The final step in the prognostic process is to estimate the RUL of the engine components. Generally the277

gas turbine users have a priori information that is specified by the manufacturer for the End of Life (EoL)278

of the engine. This EoL criterion is associated with a performance threshold associated with the degraded279

component parameters ∆Xthr, beyond which maintenance actions should be performed. Majority of the280

gas turbine prognostic approaches [16, 32, 9] compute the RUL based on the estimate of the components281

degradation and by projecting the fitted degradation results to future. The latter is used in order to282
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Figure 8: The PDF for the normal distribution of the degradation as predicted by the regression method at time tp. The

blue filled section of the curve represents the amount of this PDF that lies within the accuracy bounds [α−, α+] of the actual

degradation. The diagnostic results are depicted in yellow filled points.

evaluate how pessimistic or optimistic their prediction is with respect to the EoL which is normally based283

on steady state operation as presented by Li and Nilkitsaranont [9].284

For a gas turbine operation that is dynamic the corresponding degradation pattern will change and285

consequently the RUL cannot be mapped to typical component degradation estimations that occur at286

steady state. Moreover, the main principle of our proposed prognostic scheme is to move away from conven-287

tional approaches [33] of projecting the fitted degradation pattern into future time until a specified value of288

the component degradation is reached and a probability is assigned to this final prediction. The proposed289

scheme is performed under a discrete window-based level that focuses on the pattern by which the engine290

components degrade over time and a PDF is assigned to the predicted degradation pattern itself at the end291

of each prognostic window.292

Therefore, in this study we utilize an alternative methodology to the RUL metric that is designated as the293

Equivalent RUL (ERUL). This will be mapped only to the level of component degradation that is detected294

and not based on the projected line of the prognostic results that meets a specific level of degradation. Let295

us now make a reasonable assumption that if the diagnostic process is initiated at time td with a degraded296

health component parameter x(td), the threshold corresponding to the degraded health parameter x(tEoL)297

would be reached at the maximum number of operating hours as suggested by the manufacturer EoL. This298
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is shown in Fig. 9.299
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Figure 9: Representation of the component degradation parameters with respect to time as used for estimation of the ERUL.

The above assumption allows one to compute the ERUL at a time instant td + k by associating it with300

the degradations that are detected as follows:301

ERUL(td+k) = −(tEoL − td)
(
x(tEoL) − x(td+k)

x(tEoL) − x(td)

)
+ (tEoL − td) (11)

where the variable x(.) refers to the degradations in the component parameters ∆Xlreg as predicted by the302

regression method. The major difference between the conventional RUL and our proposed ERUL is the fact303

that the latter is mapped directly to the degradation pattern at each time instant. Moreover, by taking into304

account that this pattern is partitioned into several linear segments one may compute the ERUL without305

having the entire operational history of the engine.306

Finally, accuracy bounds similar to the ones described earlier are utilized to represent the true ERUL307

that is based on the actual degradation of the component parameters ∆Xrinj . Therefore, the ERUL for308

each component can be approximated by and compared with the true ERUL. The ERUL also reflects the309

rate that an engine component ‘consumes’ its life depending on the engine operating conditions.310

To summarize, the prognosis procedure that is depicted in Fig. 10, is described as follows:311

• Adapt the engine model to reference engine corresponding to a wide range of operating conditions.312

This will be used as the reference for future diagnostic analysis.313

• The engine model is readapted to the new degraded conditions and match the component parameters314

of the degraded reference engine by implementing the sliding-window method.315

• Once diagnosis is performed, the diagnostic results that are available in the diagnostic window are316

fitted by the regression method and the future health of each component is estimated. The prognostic317

window associated with the linear regression is determined by the user.318

• The probability of the distributed prognostic results to lie within certain accuracy bounds of the actual319

degradation is assessed by implementing the PDF of the normal distribution.320
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• The capability of our proposed method to predict the engine health accurately is evaluated through321

the use of the RUL metric and the time before main maintenance actions can be estimated.322
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Figure 10: The flow chart of our proposed adaptive prognosis scheme.

2.5. Gas Turbine Model323

The proposed diagnostic and prognostic approaches introduced and developed in previous subsections324

are now integrated with a dynamic model of a two shaft industrial gas turbine developed in Matlab/Simulink325

environment and validated with PROOSIS [29]. The average error that is observed between the PROOSIS326

measured output and the simulated output of the initial developed engine model was of the magnitude of327

1% in [34] which was further reduced to 0.1% through the implementation of the performance adaptation328

in [26, 18]. The engine model consists of a compressor, a combustor, a compressor turbine and a power329

turbine as shown in Fig. 11. A detailed description of the model used for this application can be found in330

our earlier works in [34, 18].331

3. Case Study Description332

Our proposed prognosis scheme is implemented in a dynamic engine model [18, 34] and is evaluated and333

analyzed under transient conditions. Analysis of the diagnostic and prognostic results and discussions are334

provided in the subsequent results section 4.335

One of the prerequisites for a successful adaptive diagnosis and prognosis scheme is that the engine336

measurable parameters are directly influenced by the component characteristic parameters to be adapted.337

Our primary objective for presenting the case studies is to evaluate and illustrate the achievable accuracy338

improvements of our proposed schemes that incorporate the performance adaptation, adaptive diagnostics339

and prognostics and take into consideration the above prerequisite. Therefore, the selection of the inlet340

and outlet measurements of the degraded components are well justified. The list of the selected input and341
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Figure 11: The two shaft industrial gas turbine engine model layout that is developed in Matlab/Simulink. For definitions of

variables, refer to the Nomenclature section.

measurable parameters for the adaptive performance diagnosis and prognosis are provided in Tables 1 and342

2, respectively.343

Table 1: The engine input parameters.

Symbol Parameter Units

Pamb ambient pressure Pa

Tamb ambient temperature K

ṁf fuel flow kg/s

Performance specifications of the reference engine are shown in Table 3. The nominal operating point344

that is chosen as the model design for this configuration is at 3.4 MW with the fuel flow rate ṁf set as345

the control input of the engine. At this point it should be noted that both diagnosis and prognosis are346

concerned with the difference ∆ between the estimated and observed measured output of the engine and347

not the actual output itself. Consequently, the main objective of this scheme for assessing and evaluating348

the accuracy and performance of diagnosis and prognosis at dynamic operating conditions is independent of349

the actual measured parameters and design specifications of a gas turbine. The design specifications of a gas350

turbine play an important role in the model adaptation phase where component maps have to be generated351

and tuned to match the performance of such an engine. This is a topic that is extensively covered in our352
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Table 2: The engine performance measurable parameters.

Symbol Parameter Units

P2 compressor inlet pressure Pa

T2 compressor inlet temperature K

P3 compressor discharge pressure Pa

T3 compressor discharge temperature K

P5 turbine exit pressure Pa

T5 turbine exit temperature K

P6 exhaust gas pressure Pa

T6 exhaust gas temperature K

Wpt power output Watts

N shaft rotational speed rpm

Table 3: Performance specifications of the reference engine.

Symbol Parameter Value Units

Wpt Power 3.4 MW

πc Pressure Ratio 10.8

ηth Thermal efficiency 38 %

ṁ4 Exh. flow rate 34 kg/s

earlier works. [18, 35].353

It is important at this point to describe how the data corresponding to the reference engine are produced.354

The simulation step size that is used in Simulink for the case studies examined is set to 1 ms. The total355

simulation run time is 100 s and this results in 100,000 data samples. Since the objective of this study is to356

examine the maximum amount of degradation that each component is experiencing for a total of 25,000 h of357

operation, the available results should be correlated to represent this time interval. It is therefore assumed358

that 4 operating points correspond to one hour of operation. This implies that we capture the behavior of the359

engine every 15 minutes. The large size of the data samples ensures that the dynamic effects of the engine360

behavior are present during this analysis. For instance, a transient operating point at the time instant t1=1361

h will follow by another transient operating point at the time instant t2=1 h and 15 min. On a global scale362

the collection of the operating points as the engine degrades over time are representative of the engine’s363

dynamic behavior. This follows due to the fact that the selected fuel flow, which is the control parameter in364
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the simulation model, is random and highly nonlinear for this time interval. Therefore, the dynamic effects365

of the engine are not sacrificed during this correlation analysis and mapping of the available data.366

It follows that in order, to make the case studies more realistic and representative of the dynamic engine367

behavior, both the ambient and operating conditions acting as inputs to the models are not considered368

constant and instead change with respect to time. The fuel flow schedule for this study is depicted in Fig.369

12. The ambient conditions are simulated so as to be periodic both on a daily basis as well as a yearly basis370

and the resulting ambient temperatures are shown in Fig. 13.371
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Figure 12: The variation of the fuel flow rate with respect to time.
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Figure 13: The variation of ambient temperature with respect to time.

The required data for case studies are generated by performance simulations of the reference engine at372
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degraded conditions, where prognosis is performed at different instants of the data time series. The degraded373

conditions are represented by injecting deviations ∆Γ and ∆η in the mass flow capacity and efficiency into374

the reference engine, respectively. The range of injected deviations is summarized in Table 4.375

Table 4: Injected deviations of the component parameters.

Component Degradation Parameter Deviation Range (%)

Compressor Fouling
∆Γc

∆ηc

0-(-1.8)

0-(-2.7)

Turbine Erosion
∆Γt

∆ηt

0-(2.5)

0-(-1.8)

Power Turbine Erosion
∆Γpt

∆ηpt

0-(2.5)

0-(-2.7)

Two case studies are conducted. The objective of the first case study is evaluate the capability of the376

adaptive sliding window diagnostic method to detect accurately the injected degradations. The required377

measurements for the first case study are generated by performance simulations of the reference engine at378

degraded conditions.379

The objective of the second case study is to prognose the performance behavior of each component380

based on the diagnostic results of the first case study. This is accomplished by the linear regression model381

on a local and discrete window-based method that takes into consideration only data from the previous382

diagnostic window. This specific proposed prognosis method will be designated as the Model A. In addition,383

the prognostic method that was suggested in [9], and that takes into account all the past diagnostic results384

on a global scale, is adopted and will be designated as the Model B, for facilitating its comparison with385

Model A.386

In terms of the diagnostics, the Model B employs the adaptive diagnostic method that was developed by387

the authors and not the GPA method [9]. The GPA method that is used in [9] implements steady state data,388

however our adaptive diagnostic method can deal effectively with transient operations. This is conducted389

intentionally since uncertainty or improved accuracy that is provided by different diagnosis schemes should390

be filtered out in order to focus solely on the capability of each method to predict the engine performance,391

and therefore ensure that the comparisons among them are more realistic. The accuracy of the prognosis392

scheme is evaluated by means of the PDF and the RUL in order to compare these results with the actual393

degradation and actual RUL.394
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4. Results and Discussion395

Our proposed prognosis scheme now is tested under dynamic transient conditions. The results for each396

case study are presented and discussed in the following subsections.397

4.1. Diagnostics - Case Study 1398

The objective of the first case study is to evaluate the accuracy of our proposed adaptive diagnostic399

methodology. This forms the foundation by which the prognosis will be developed and evaluated. Before400

commencing the diagnostic process, one needs first to adapt the engine model to the healthy reference engine401

for a wide range of operating conditions. This initial adaptation is the benchmark by which deviations in402

the component parameters will be determined subsequently. Therefore, degradation is injected to the engine403

component at td=2,500 h. The first set of data up to td is used for the initial adaptation of the engine model404

and represents the nominal/clean/healthy condition of the engine.405

The diagnosis process is initiated at td on a sliding window manner, where the width L of the diagnostic406

window that is used here is L=3,000 h, and the length of their overlap is l=500 h. The total number of q407

diagnostic windows that are used is 9 and the number of operating points n that are utilized for detecting408

the degradation in each diagnostic window is 100.409

The diagnostic results of this case study for the compressor isentropic efficiency are shown in Fig. 14.410

The capability of our developed adaptive diagnostic method that implements the sliding window method is411

clearly shown to be able to deal effectively with time dependent degradation process.412
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Figure 14: The compressor isentropic efficiency as predicted by our proposed diagnostic method for the specified windows.

The mean error for each diagnostic window is shown in Fig. 15, where it follows that the average error is413

below 0.1% for all diagnostic windows. As expected, the error is more evident in the first and the last group414

of diagnostic windows. The reason for this behavior is that for certain diagnostic windows the gradient of415
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Figure 15: The average diagnostic error for the compressor isentropic efficiency for each diagnostic window.

the deviated component parameter is relatively greater than the other windows, and therefore this leads to416

a more challenging situation for the adaptive diagnostic method.417

The diagnostic index associated with our proposed methodology for the compressor isentropic efficiency418

is obtained as 0.99. This implies that our diagnosis is 99% effective. The same level of diagnostic accuracy is419

achieved for all the degraded components of the engine. This case study results demonstrate the promising420

prospect of our adaptive diagnostic method for diagnosing accurately degradations of gas turbine engine421

components. This high accuracy performance of the diagnosis scheme is now shown to be transferable to422

the prognostics case study that follows in the next subsection.423

4.2. Prognostics - Case Study 2424

The objective of the second case study is to evaluate and demonstrate the accuracy of our proposed425

prognosis scheme under transient conditions. Prognosis is initiated at different data points instants based426

on the local or global past diagnostic results for Model A and Model B, respectively. The capability of our427

method is assessed by determining the accuracy of the prognosis subject to forecasting the performance of428

each component and then comparing it with the actual degradation as injected to the reference engine.429

The prognosis process starts at tp=5,000 h and is conducted every 2,500 h until one reaches the 22,500430

h of operation. Two prognostic windows of M=1 month and M=2 months width are used. In terms of the431

operation and maintenance strategy of industrial gas turbines the specific width M of the prognostic window432

corresponds to a practical time frame that facilitates gas turbine users to plan in advance for forthcoming433

maintenance activities depending on the engine condition.434

The number of diagnostic results in each window that is utilized for forecasting the engine component435

performance is denoted by n and is set to 100. This number is always fixed for the Model A that implements436

only the diagnostic results of the previous diagnostic window. In case of Model B that builds upon the437

entire set of past data, the number n increases with respect to time. The compressor isentropic efficiency438

deviations that are predicted by Models A and B are shown in Figs. 16 and 17, corresponding to different439

initiations times.440

As can be observed from Figs. 16 and 17, the Model A provides more accurate component performance441
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(a) Prognosis at tp=5,000 h.
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(b) Prognosis at tp=7,500 h.
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(c) Prognosis at tp=10,000 h.
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(d) Prognosis at tp=12,500 h.

Figure 16: The predicted compressor isentropic efficiency for prognostic windows of width M when the process is initated at

tp=5,000, 7,500, 10,000 and 12,500 h of operation.

parameter predictions than Model B. This is actually expected since partitioning the degradation pattern442

into small increments of time ensures that the diagnostic results present a linear trend that can be cap-443

tured expeditiously and more accurately as compared to having the entire performance data of the engine444

component.445

In contrast to the linear regression method of Model A, the regression fit of Model B ranges from linear446

corresponding to the first diagnostic window up to quadratic corresponding to the last diagnostic window.447

The mean errors in predicting the compressor isentropic efficiency for one month and two months prognostic448

windows, when both Models A and B are implemented, are shown in Figs. 18 and 19, respectively. It is449

clearly evident that Model A is more accurate as compared to Model B.450

At this point it should be emphasized that both prognosis models are using the regression approach451

that fits the trends in the diagnostic results. Both Model A and B benefit significantly from the improved452

accuracy of the adaptive diagnostic method that was encapsulated in Figs. 14 and 15. However, if the453

diagnosis scheme is not this accurate then Model B will be influenced significantly more than Model A as454
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(a) Prognosis at tp=15,000 h.
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(b) Prognosis at tp=17,500 h.
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(c) Prognosis at tp=20,000 h.
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(d) Prognosis at tp=22,500 h.

Figure 17: The predicted compressor isentropic efficiency for prognostic windows of width M when the process is initated at

tp=15,000, 17,500, 20,000 and 22,500 h of operation.
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Figure 18: The prediction error for the compressor isentropic efficiency for M=1 month prognostic window.

it relies on a larger set of diagnostic data. In such a case, the error in the diagnosis scheme will accumulate455

significantly for all past diagnostic points where the prognosis of Model B is based upon.456

It is therefore important to evaluate the probability of the prognostic results that lie within certain457

accuracy bounds corresponding to the actual degradation. For this case study where the accuracy bounds458

have been set at 90% of the actual degradation, the PDF for all the predicted component parameters lie459
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Figure 19: The prediction error for the compressor isentropic efficiency for M=2 months prognostic window.
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(a) Compressor isentropic efficiency.
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(b) Compressor mass flow capacity.

Figure 20: Probability distribution of the predicted compressor degradation with respect to the actual degradation for prognostic

windows of width M=1 month. The red line represents the PDF of the predicted component parameter and the blue filled

vertical slice represents its probability to lie within the accuracy bounds. The depicted diagnostic results correspond to the

last detected degradation of the diagnostic window at td +L. Similarly, the prognostic results correspond to the last prediction

of the prognostic window at tp +M .

within these bounds as observed in Figs. 20, 21 and 22. As shown in Fig. 20, with the prognostic window of460

width M=1 month the probability starts from a moderate value at the first prognostic window and starts461

to reach 100% from the second prognostic window until the last set of data that are used for prognosis.462

Apart from the first prognostic window, the spread of the PDF for the compressor efficiency and mass flow463

capacity is quite small for a time frame of one month and representative of a reliable prognosis.464

In case of the turbine and power turbine degradation where a 2 months prognostic window is depicted465

in Figs. 21 and 22, respectively, it is evident that initially the prognosis results lying within the accuracy466

bounds are moderate and they keep increasing with time. A closer look at the turbine and power turbine467

component degradations reveals the effects that specific diagnostic patterns have on the accuracy of the468

prognosis. For instance, there are regions along the path of each diagnostic pattern where the gradient of469

the deviated component parameter is significantly higher than the other regions. This implies that the rate470
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(a) Turbine isentropic efficiency.
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(b) Turbine mass flow capacity.

Figure 21: Probability distribution of the predicted turbine degradation with respect to the actual degradation for prognostic

windows of width M=2 months. The red line represents the PDF of the predicted component parameter and the blue filled

vertical slice represents its probability to lie within the accuracy bounds. The depicted diagnostic results correspond to the

last detected degradation of the diagnostic window at td +L. Similarly, the prognostic results correspond to the last prediction

of the prognostic window at tp +M .
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(a) Power turbine isentropic efficiency.
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(b) Power turbine mass flow capacity.

Figure 22: Probability distribution of the predicted power turbine degradation with respect to the actual degradation for

prognostic windows of width M=2 months. The red line represents the PDF of the predicted component parameter and the

blue filled vertical slice represents its probability to lie within the accuracy bounds. The depicted diagnostic results correspond

to the last detected degradation of the diagnostic window at td + L. Similarly, the prognostic results correspond to the last

prediction of the prognostic window at tp +M .

of degradation in these regions progresses faster than others. The latter affects the accuracy of the prognosis471

scheme given that it yields a wider spread of the PDF and the probability to lie within the accuracy bounds472
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is smaller.473

One way to address this issue would be to add an additional criterion that will partition the diagnostic474

pattern into even smaller time increments for regions in which the degradation propagates faster. Therefore,475

the spread of the PDF can serve as a guide for modifying the width L of the diagnostic windows based on476

the optimal level of gradient that is acceptable for achieving accurate diagnosis and prognosis results. An477

additional metric that evaluates the accuracy of prognosis is the ERUL of the component. In case of the478

compressor mass flow capacity the ERUL that is predicted by both Model A and Model B is shown in Fig.479

23 for a one month prognostic window.480
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Figure 23: The ERUL of the compressor based on the compressor mass flow capacity as predicted by Model A and Model B

for a 1 month prognostic window.

It follows from Fig. 23 that the Model A results lie within the true ERUL, whereas Model B is very481

close to the true ERUL although it deviates slightly at the end of the prediction. The former observation is482

further highlighted when one considers the relative error in the ERUL estimation as shown in Fig. 24. As the483

prognosis process is initiated at different times instances tp the relative error drops significantly for Model484

A and lies within the 90% accuracy bounds. However, the ERUL prediction error for Model B, although485

initially converges within the acceptable limits, does at later stages of the time series becomes significantly486

higher than that of Model A.487

Since the prognosis integrates a series of processes, the observed error is accumulated from the processes488

of component map generation, engine model adaptation, and the diagnosis. This prediction error can be489

traced back to the reconstruction and tuning of the model’s component maps, and more specifically that490

of the compressor which is more complex. Once the output of the compressor map is injected with time491

evolving faults, the adaptive diagnostic process attempts, through the sliding window method, to decompose492

the time variable from the estimated output of the map. During the above process it is important to analyze493
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Figure 24: The relative error (%) in the ERUL of the compressor based on the compressor mass flow capacity as predicted by

Model A and Model B for a 1 month prognostic window.

the pattern of the data available in each diagnostic window. If the available data correspond to accelerated494

or decelerated rate of degradation, this implies that the diagnostic pattern could be further partitioned into495

smaller time increments in order to facilitate the adaptive diagnostic process and reduce further the error.496

It can be concluded that the performance of our proposed prognostic scheme is dependent upon the497

accuracy of the adaptive diagnostic method, that in turn relies heavily on the engine model. Therefore,498

it is crucial to continuously adapt the initial engine model to match the performance of the engine under499

investigation in order to establish a good benchmark for future diagnostic and prognostic analysis. Variable500

operating conditions make the adaptation of the engine model to the reference engine a challenging task.501

However, it gives a greater insight into the dynamics of the engine health and how this evolves with time.502

As far as the practical aspects and limitations of our proposed scheme are concerned when used in real503

engines and real fault cases several considerations must be taken into account. Two key areas that need spe-504

cial attention for successfully implementing the proposed scheme are the data preprocessing and the engine505

model adaptation. Data preprocessing ensures that the data available from a service engine are properly506

corrected, smoothed, averaged and filtered out from noise and bias. One of the limitations of the proposed507

scheme is that it does not include a method for handling measurement noise and bias. This is something508

that can be successfully handled by Kalman filters, Neural Networks (NN), or other data-based methods at509

the preprocessing phase or in conjunction with the engine adaptation process and before the adaptive sliding510

window diagnostics. The width L of each diagnostic window can be adjusted based on the distribution of the511

available data for diagnosis so that the linear regression assumption made for prognosis will be adequately512

justified. A good quality set of engine data that is utilized by our proposed scheme is of crucial importance513

for the accuracy of diagnosis, and therefore for prognosis.514

Another practical consideration deals with the maintenance activity of an engine from the time of the515

most recent model adaptation up to the time that the diagnosis and prognosis are pursued. For a unit that516

is on grid supporting operational modes with many transients this implies that the engine model should517

be adapted to the widest possible operational envelope. Another limitation of our proposed scheme is that518
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it is not readily applicable for detecting and predicting gas turbine performance that is below 50% of the519

engine’s rotational speed. This low operational speed regime is governed by a group of component maps520

that are different than the ones implemented for the engine model adaptation and diagnosis. However, one521

could utilize low speed component map generation methods for adapting and implementing the current522

scheme to diagnose and prognose engine behavior at very low speeds. Finally, the engine model should be523

continuously refined to its most recent health condition so that the prognosis could be performed with an524

increased reliability and accuracy.525

Therefore, implementation of our proposed scheme to any gas turbine performance simulation or as a526

health monitoring, diagnosis and prognosis tool could provide a more reliable and accurate information for527

gas turbine engines and supports the users in making more accurate decisions on efficiently managing their528

assets.529

5. Conclusions530

In this paper, a novel prognostic scheme is introduced and developed that aims to improve the accuracy of531

gas turbine engine performance prediction under dynamic operating conditions. The concept of an advanced532

performance adaptation method is integrated with a dynamic gas turbine engine model that is developed533

in Matlab/Simulink environment. An optimization methodology was utilized to match the dynamic engine534

model to a reference model, that utilizes component characteristic maps that are available from the PROOSIS535

and implemented as look up tables.536

Testing of our proposed methods to a two shaft industrial gas turbine engine model operating for 25,000537

h subject to multiple component degradations demonstrate the following observations. The component538

degradation pattern is accurately captured by locally fitting linear regression functions at specific sliding539

diagnostic windows. This is achieved by implementing a nonlinear unconstrained optimization method for540

reconstructing the component map curves until the resulting simulated measurements match those of the541

reference engine for each diagnostic window. The engine health is predicted accurately with a prognostic542

window ranging from one month up to two months of operation.543

The capability of our proposed schemes to adapt, diagnose and prognose the gas turbine performance544

when this is represented by dynamic operating conditions gives a great insight into the dynamics of the545

degradation pattern mechanisms. The implementation of our proposed method to any condition monitoring546

and heath estimation strategy could enhance the understanding of the gas turbine dynamic behavior, and547

therefore could significantly improve the operational and maintenance strategy of gas turbine assets.548
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