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Post translational changes to α-synuclein
control iron and dopamine trafficking; a
concept for neuron vulnerability in
Parkinson’s disease
James A. Duce1,2* , Bruce X. Wong1,2, Hannah Durham1, Jean-Christophe Devedjian3, David P. Smith4

and David Devos3

Abstract

Parkinson’s disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary
clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine
neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified
post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of
findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle
trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic
import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and
oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and
increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine,
three pathological components associated with disease progression in sporadic Parkinson’s disease.

Keywords: α-synuclein, Iron, Dopamine, Endosomal trafficking, Oxidative stress, Post translational modification,
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Background
Parkinson’s disease (PD) is the second most common pro-
gressive neurodegenerative disorder and is characterised
by tremor, bradykinesia rigidity and gait disorders [1].
Additive non-motor symptoms include cognitive deficits,
sleep disturbances, anxiety, motivation disorders and
mood disorders [2]. The pathophysiology of PD is charac-
terised by loss of over 60% of neuromelanin-containing
dopaminergic neurons in the substantia nigra pars com-
pacta (SNc), which results in a > 90% reduction in dopa-
mine (DA) in the striatum causing the motor symptoms
observed with the disease. PD is also neuropathologically
characterised by the presence of Lewy bodies (LBs) and

Lewy neurites (LN). These cytoplasmic inclusions contain
α-synuclein (α-syn; PARK1) as the major constituent [3].
As well as in the SNc, LBs are found in brain regions
including the locus coeruleus, raphe nucleus and dorsal
motor nucleus of the vagus [4]. These pathological hall-
marks are also observed in several other synucleinopa-
thies, including multiple system atrophy (MSA) and
dementia with Lewy bodies (DLB), as well as some
forms of neurodegeneration with brain iron accumula-
tion (NBIA) [5].
An understanding of why SNc neurons are vulnerable

in familial forms of PD or with advancing age in specific
environments may yield important insights into the dis-
ease process and avenues into ways in which to thera-
peutically intervene. There have been several theories as
to the susceptibility of dopaminergic neurons in the SNc
in PD, in particular, the Ca2+-dependent pacemaking
capability of these neurons that leads to a maintained el-
evated mitochondrial oxidant stress (OS) [6]. However,
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this review attempts to identify a pathogenic mechanism
of relevance to PD when DA, iron and α-syn are highly
expressed within the same neuron. We propose a possible
association between post-translational modifications to
α-syn, altered neurotransmitter compartmentalisation
at the synapse and enhanced iron-dependent OS.
Before the concept can be presented, an overview of

prior relevant literature must be appraised. The current
comprehension on DA and iron metabolism, as well as
the role α-syn has in synaptic maintenance, are provided
before evaluating the genetic and post-translational modifi-
cations that reportedly alter α-syn structure and function.

Oxidative stress and dopamine metabolism
The majority of midbrain dopaminergic neurons are lo-
cated in the SNc and ventral tegmental area (VTA) and
have widespread projections [7]. DA is a monoaminergic
neurotransmitter produced from tyrosine in the cytosol
as a two-step reaction (for further information refer to
[8]). Iron acts as a co-factor for the tyrosine hydroxylase
(TH) step in the catalysis of DA synthesis [9].
Within certain environments, such as in the presence

of divalent metals, the unstable catechol ring of DA can
be enzymatically deaminated by monoamine oxidase
(MAO). This generates dihydroxyphenylacetic acid
(DOPAC) and hydrogen peroxide (H2O2) as well as
subsequent oxidative species and hydroxyl radicals [10].
Alternatively, DA can be spontaneously oxidised in the
presence of oxygen to yield DA-o-quinone, H2O2 and
superoxide [11]. The end product aminochrome can
also participate in oxidative stress and mitochondrial
dysfunction [12] as well as induce and stabilise neuro-
toxic oligomeric α-syn formation [13].
In the cytoplasm, DA is highly prone to spontaneous

and enzymatic degradation. To minimise the risk in ex-
posing this monoaminergic neurotransmitter to an oxi-
dative environment, the SNc neuron compartmentalises
DA in vesicles. By virtue of their low pH and MAO-free
environment, storage in synaptic vesicles hinders DA
breakdown. Immediately after cytosolic synthesis, DA is
taken up into synaptic vesicles by the vesicular monoamine
transporter 2 (VMAT2). DA released from the synapse that
is reinternalised into the nerve terminal through dopamine
transporter (DAT) is also repackaged in synaptic vesicles
via VMAT2. Several studies have shown that intracellular
accumulation of DA or the modification of these DA
transporters can lead to neurotoxicity [14, 15].

Alteration in iron metabolism
Physiological iron is important for the regulation of cell
development, mitochondrial respiration, production of
myelin [16] as well as neurotransmitter synthesis and
metabolism [17]. Iron is of particular importance and
abundance in the SNc [18], in part due to its requirement

as a cofactor for TH activity which is vital for DA synthe-
sis. It is the ability of iron to transition in valency between
ferrous (Fe2+) and ferric (Fe3+) that makes it an essential
element for cell survival. However when this electron
transfer is not correctly harnessed within an aerobic envir-
onment the resulting Fenton reaction produces hydroxyl
radicals that induce OS toxicity [19, 20]. Iron deficiency
can lead to cognitive impairment [21, 22] but excess iron
is also an underlying factor associated with neuro-
pathology in neurodegenerative disorders such as PD
[17, 19, 23]. As such it is of upmost importance that
iron levels and redox state are carefully regulated in
the brain so as to maintain optimal neuronal function
while avoiding toxicity.
Transferrin is a glycoprotein that binds and transports

iron throughout the extracellular system including in the
brain [24]. When required, cellular uptake of iron within
holo-transferrin (transferrin with iron attached) predom-
inantly occurs via transferrin receptor (TfR) mediated
endocytosis [17]. Despite TfR mediated internalisation
being the predominant pathway for iron import in neu-
rons, other known import mechanisms include divalent
metal transporter 1 (DMT1). Once inside the cell the
cytosolic iron can be utilised for the functional require-
ments of maintaining a healthy cell, safely stored or
exported from the cell. Storage is typically within ferritin
but select cell types, including dopaminergic neurons of
the SNc, alternatively store iron in neuromelanin. These
neuromelanin positive cells tend to express ferritin poorly
[25, 26]. When the cell has sufficient iron to maintain
survival, excess is removed through the only known
membrane pore protein ferroportin (FPN). For iron ef-
flux, FPN must be maintained on the cell surface and
stabilisation is assisted in neurons by the type 1 trans-
membrane protein amyloid-β precursor protein (APP)
[27, 28]. In contrast, FPN stabilisation on astrocytes is
through ceruloplasmin and oligodendrocytes use hephaes-
tin [29, 30]. Expression of iron regulating proteins is con-
trolled through the canonical cis-trans iron regulatory
system involving iron response protein binding to an iron
response element (IRE) (for review see [31]). However an
important aspect also to consider when investigating the
iron regulatory function of these proteins is their location
within the cell, as illustrated with the required membrane
location of FPN.
The susceptibility of SNc neurons in PD is in part con-

sidered to be due to their iron content [32]. A decrease
in ferritin that parallels the reduced iron [33] suggests
intracellular iron may be more available for reactive
oxygen species (ROS) generation by Fenton reactions
[34, 35]. Changes to various other proteins involved in
iron homeostasis have also been observed in PD. Al-
tered DMT1 expression correlates with iron accumula-
tion in the SNc ventral tier of a Parkinsonian toxicity
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mouse model (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;
MPTP) as well as PD patients [36, 37]. In contrast, FPN is
under-expressed in several models of PD including MPTP
and 6-Hydroxydopamine (6-OHDA) [38, 39]. This decrease
in FPN may be caused by impaired expression or membrane
trafficking of APP and ceruloplasmin in PD and relevant
models [40–43].
More recently, with the advance of magnetic resonance

imaging, a strong correlation between disease severity and
levels of iron in the SNc has been identified [44, 45]. To a
lesser extent, iron overload also seems to precede atrophy
in the striatum [45]. Despite these early stage iron changes
with disease and the potential for its use as a biomarker
for disease progression, it still remains to be determined
whether iron is causal or a downstream effect of PD.

Role of α-synuclein in synaptic maintenance
Aggregated α-syn is a central neuropathological feature
in PD patients and mutations in the SNCA gene encod-
ing α-syn result in familial PD [46, 47]. Neuronal expres-
sion levels of α-syn are heterogenous throughout the
brain. The high expression in SNc, caudate nucleus, pu-
tamen and ventral pallidum closely tracks the dopamin-
ergic regions affected in PD [48]. The physiological role
of α-syn is poorly understood, however it is implicated
in various cellular processes. A location within presynaptic
terminals as well as a neuroprotective capacity on nerve
terminal injury and SNARE (soluble N-ethylmaleimide-
sensitive-factor attachment protein receptor) complex dis-
ruption [49, 50] consolidate a theory that α-syn has a role
in neurotransmitter storage and release within the synapse
[51]. Spatial and working memory deficits upon α-syn de-
letion in a mouse model support the requirement of this
protein to maintain synaptic function [52, 53]. The
function of α-syn within presynaptic vesicles may be as
a molecular chaperone in folding SNARE proteins [49].
This is similar to the homologous 14-3-3 protein [54]
and cysteine-string protein α (CSPα) [55]. Expression of
14-3-3 protein is increased upon α-syn depletion [52],
whilst neurodegenerative depletion of the latter can be
rescued by overexpression of α-syn [49]. It is now
understood that the fusion and clustering of SNARE-
associated vesicles to the synaptic plasma membrane
can be regulated by α-syn association with vesicle-
associated membrane protein 2 (VAMP2/synaptobrevin-
2) [50]. By keeping VAMP2 in close proximity with the t-
SNAREs, α-syn can control stimulated neurotransmitter
release through a role in vesicle clustering.
α-Syn has also been suggested to modulate vesicle size

and the releasing properties of synaptic vesicle recycling
and reserve pooling [51, 56]. An argument for α-syn in-
volvement in overall modulation of DA recruitment
and homeostasis arises from known interactions with

VMAT2 during vesicle filling as well as with DAT re-
quired for DA reuptake [57, 58].
Cellular evidence indicates α-syn is able to alter iron

homeostasis, aligning with an IRE being discovered
within its 5′-promotor region [59]. Endocytic/exocytic
trafficking is a fundamental component of iron homeo-
stasis and as recently reported, both α-syn and TfR colo-
calise on the membrane surface. Depletion of α-syn
results in an accumulation of Tf/TfR complex within the
endosome [60]. Dynamin 1, as an additional target for
CSPα complexes, is another α-syn interactor [61]. This
provides new insights into a more general role for α-syn
in molecular chaperoning of early clathrin-mediated
endocytosis. The ability of α-syn to control clathrin-
mediated endocytosis therefore suggests that this protein
may be another regulator of the intracellular iron pool
and thus requires further investigation.
Of note, α-syn may also play a role in DA synthesis

through binding to inhibit TH; the rate limiting iron-
dependent enzyme for DA biosynthesis [62]. More gen-
erally, α-syn also regulates monoamine transporters [63]
and interacts with the signalling protein ARPP16/19; a
DA- and cAMP-regulated neuronal phosphoprotein
family member involved in regulation of DA signalling
pathways [64]. Since the primary location of α-syn is in
the synapse it is likely that any modification to the protein
will have detrimental effects on synaptic transmission and
pathogenesis in α-synucleinopathies such as PD.

Post-translational modifications to α-synuclein on
the membrane
α-Syn undergoes several post-translational modifications
(PTMs) including acetylation, phosphorylation, oxidation,
nitration, ubiquitination and truncation. These PTMs
regulate α-syn structure and physiological function. They
could also be linked to the aggregation and/or oligomer
formation of α-syn as all have been found extensively in
LBs. This review will focus on N-terminal acetylation; re-
sponsible for the constitutive structure of α-syn found in
vivo, as well as phosphorylation and oxidation; the most
common PTMs found in LBs and associated with OS.
In its physiological state, α-syn is constitutively N-

terminally acetylated [65, 66]. This region is particularly
rich in lysines that are known to be involved in the for-
mation of an α-helical structure upon lipid interaction
[67]. Acetylation of lysines is a reversible reaction that
impacts on multiple cellular pathways. The acetylation
of lysines 6, 34, 45 and 96 on α-syn have all been re-
ported in the brain [68] and these acetylated forms have
been purified from LBs [69]. Modification of these same
residues by aldehydes (e.g. products of DA catabolism or
lipid peroxidation) may affect α-syn’s membrane binding
capability via acetylation [67]. Of relevance to our pro-
posed concept are effects of N-terminal acetylation,
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charge and curvature of vesicles on α-syn binding. The
binding of α-syn to lipid vesicles with high negative charge
content is essentially unaffected by N-terminal acetylation
irrespective of curvature. However, binding to vesicles
containing lower negative charge is increased, with stron-
ger binding observed for vesicles with higher curvature;
properties that relate closely to synaptic vesicles [70, 71].
This is supported by N-terminal acetylation of α-syn being
shown, by nuclear magnetic resonance spectroscopy
(NMR), to produce more pronounced binding to mem-
branes of increased curvature and moderate charge [70].
Of note, a later study summised that N-terminal acetyl-
ation only affected the ‘weak’ binding of α-syn to zwitter-
ionic vesicles with no change in phospholipid membrane
binding affinity [72]. This has led to the speculation that if
N-terminal acetylation is involved in lipid binding it may
be mediated through other binding partners.
Several phosphorylation sites have been identified on

α-syn either at tyrosine, threonine or serine (e.g. Y39,
S87, Y125, and S129). However, S129 is the locus most
typically affiliated with PD as this site is phosphorylated
in around 90% of α-syn deposits in PD patients compared
to 4% in controls [73]. Information from site directed mu-
tation studies have mostly concentrated on mechanisms
of toxicity related to aggregation (see below) but its role in
membrane interaction is being elucidated. Collectively,
data on the phosphorylation site at S129, S87 and Y39
support a concept that this PTM results in an inability of
α-syn to bind membranes [74–78]. Of relevance to DA
trafficking, phosphorylation of membrane associated α-
syn at S129 alters neurotransmitter uptake [79]. It is yet to
be confirmed whether a similar effect occurs in synaptic
vesicle formation associated with VAMP2. An attempt to
address how α-syn phosphorylation impacts upon interac-
tions with other proteins has led to the discovery that
phosphorylation of α-syn at S129 promotes Rab8a binding
and mediates toxicity. Rab8a is a small guanine nucleotide
binding protein implicated in coordinating vesicle traffick-
ing [80]. Similar to phosphorylation, the methionine oxi-
dation of α-syn leads to a decreased affinity for biological
membranes [81]. In vitro reports have identified this
modification to alter the α-syn aggregation pathway, but
its effect within the synapse remains to be fully charac-
terised. This is partly due to its transient nature under
physiological conditions. While methionine oxidation of
α-syn impairs degradation through the 20S proteasome
[82], in-cell NMR now indicates that oxidative modifi-
cation to methionine residues at the N-terminal region of
α-syn is reversible as it can be enzymatically repaired [83].

Structure changes to α-synuclein that induce
oligomerisation
Recent studies using more physiological conditions in
the purification of α-syn have suggested an equilibrium

between the tetrameric α-helical and monomeric forms
that coincides with N-terminal acetylation [65, 66]. Dis-
ruption of the α-helical tetramer may trigger the forma-
tion of alternative soluble oligomeric structures as
intermediaries of the insoluble fibrils observed in LBs
[65]. Indeed intracellular cross-linking experiments have
indicated that the presence of this tetramer can be dis-
rupted by familial PD point mutations in α-syn [84].
This theory still remains to be confirmed as other
groups report an intrinsically disordered structure when
the protein is purified under similar conditions [85]. In-
cell NMR has also shown that α-syn retains an intrinsic-
ally disordered state, rather than an assembled tetra-
meric α-helical structure, when the protein is introduced
to the cell by electroporation [86].
As with many other amyloidogenic neurodegenerative

diseases, evidence suggests that it is the soluble oligo-
meric forms of α-syn preceding fibril formation that me-
diate pathogenesis [87]. Disruption of the intracellular
tetramer may be the first step in this pathway [84].
Modification to the conformation of the monomer or its
oligomeric state is likely to be highly susceptible to gen-
etic alteration, PTMs and interaction with ligands such
as transition metals or DA [88–90]. While it is import-
ant to identify how an increase in the propensity for ag-
gregation can occur, it is unlikely that only a single
modification to α-syn is responsible for PD pathology
within the SNc. Indeed, an equilibrium of α-syn species
is likely to exist within the SNc at any one time and the
function of α-syn or its pathological effect will rely on a
shift in this equilibrium.

Point mutations in α-synuclein associated with pathology
Mutations in α-syn including A30P, A53T, E46K and
more recently identified H50Q and G51D, result in early
onset PD. Li et al. [91] show that although the mono-
meric structure of wild-type (WT), A30P and A53T is
similar, mutated forms aggregate in vitro at a faster rate.
H50Q decreases the solubility of α-syn by up to 10-fold
[92] whereas G51D may promote an alternative mechan-
ism of pathogenesis as aggregation properties are re-
duced [93, 94]. Such a mechanism may be associated
with the chaperone like properties of α-syn as G51D re-
duces lipid-binding function [95]. Enhanced vulnerability
to mitochondrial impairment and oxidative stress have
also been suggested as potential modes of action for this
variant [93]. Whilst A53T shows an increased rate of fi-
bril formation [96], A30P is more likely to aggregate into
the protofibril oligomeric species while not progressing
to the full fibril forms. In contrast to the other familial
PD mutations in α-syn, E46K does show structural
changes of the monomeric species that modify the polar-
ity of the amphipathic repeat region [97, 98]. The E46K
aggregates more rapidly into fibrils [99, 100] but these
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fibrils are morphologically similar and protofibrils are
fewer than with WT α-syn [101]. Intriguingly, Mbefo
and colleagues [102] identify that E46K increases phos-
phorylation at S129 and alters the subcellular localisa-
tion of α-syn, suggesting that this may cause enhanced
aggregation.
Currently, all the familial PD mutations in α-syn in-

crease the propensity of the protein to aggregate and
therefore suggest this to be a key component of the dis-
ease associated neurotoxicity. However whilst H50Q,
A53T and E46K appear to promote fibril formation,
A30P has a greater prevalence in stabilising the oligomer
species. It remains to be identified whether there is a de-
fined species of aggregated α-syn that is the toxic species
or, as is more likely, a range of forms are responsible for
neuronal death in the SNc.

Modification of α-synuclein by oxidation
Oxidation of the 4 methionine residues located in the
N-terminal (M1 and 5) and the C-terminal (M116 and
127) of α-syn produce methionine sulfoxides that inhibit
fibrillisation. The degree of this inhibition is propor-
tional to the number of oxidised methionine residues
[103]. In addition, oxidative modifications to the tyro-
sines via nitration induce a partial folded conformation
that stabilises soluble oligomers and stops elongation
into fibrils. These oligomeric species are thus formed
along aggregation pathways distinct from ones used in
amyloid fibril formation [104–106]. In the presence of
H2O2 all 4 methionines are converted to sulfoxides [107]
and rotenone (used as a neurotoxic Parkinsonian model)
results in methionine oxidation and subsequent intracel-
lular aggregates [108].

Modification of α-synuclein by phosphorylation
The phosphorylation status of α-syn has a marked influ-
ence on aggregation and toxicity. However, it remains to
be confirmed whether phosphorylation promotes or pre-
vents aggregation and toxicity (e.g. [109]). Disparities
may arise from there being no established aggregated
form of α-syn that is predominantly toxic [110–114] and
the different kinase efficiencies for phosphorylating α-
syn. In vitro biochemical studies with phosphorylation of
α-syn at S129 by casein kinase (CK) 2 results in greater
fibril formation than with unphosphorylated α-syn [73],
conversely polo-like kinase (PLK) 2 phosphorylation has
comparable fibrillisation kinetics to the WT protein
[115]. The subcellular location of α-syn also plays a role
in which kinase phosphorylates the protein. CK2 and G
protein-coupled receptor kinase (GRK) 3, 5 & 6 contribute
to S129 phosphorylation of membrane-associated α-syn,
whereas cytosolic α-syn is phosphorylated exclusively by
CK2 [79]. Most cell culture studies associate S129 phos-
phorylation with increased formation of soluble oligomers

[116, 117], cytoplasmic and nuclei aggregates [116, 118],
and cytoplasmic inclusions [119, 120]. In contrast the
results from multicellular animal models are less clear
with phosphorylated S129 promoting [73, 116–121],
preventing or having no effect on inclusion formation
[75, 109, 122–128]. Discrepancies in these studies ori-
ginate from a reliance on α-syn phosphomimetic muta-
tions that do not fully recapitulate the real phosphorylation
states of α-syn [115, 123].
The presence or absence of additional factors are likely

to be a feature of the variances in phosphorylated S129
α-syn aggregation. These may largely derive from the
buffer conditions in which the samples are prepared. In
addition, C-terminal methionine sulfoxides impair Y125
phosphorylation by the major tyrosine kinase Fyn [83].
As phosphorylated Y125 primes the efficient modifica-
tion of S129 by CK [129], reduction in Y125 phosphoryl-
ation is likely to also diminish modifications of S129.
This would support the presence of an age- and disease-
dependent decline in α-syn phosphorylation in models
and patients of PD [127].

Modification of α-synuclein by iron
Despite Fe2+ being the predominant form within the cell,
Fe3+ has the greater affinity for α-syn (Fe2+; 5.8 × 103 M−1,
Fe3+; 1.2 × 1013 M−1) at D121, N122, and E123 [88, 130].
This suggests that within an aerobic environment the
intracellular Fe2+ could have a greater affinity upon oxida-
tion to Fe3+. The resulting H2O2 and hydroxyl radicals
byproducts could augment OS [131] and in turn lead to
the oxidation of α-syn at methionines, as observed with
other reduced metals and oxidised lipids [81, 132].
The affinity between α-syn and divalent metals such as

Fe2+ is also altered by PTMs such as phosphorylation.
Peptide studies show that phosphorylation at S129 or
Y125 increase the binding affinity for Fe2+ but not Fe3+

at residues 107–140, thereby altering the residues in-
volved in the binding site [133]. Despite confirmation
being required in the full-length protein, this suggests
that phosphorylation may increase the available pool of
iron that promotes intracellular α-syn aggregation.
Binding of Fe3+ directly, or as a result or Fe2+ oxidation,

alters the morphology of α-syn fibrils and accelerates ag-
gregation in both WT and mutant variants including
E46K [134]. In the presence of unilamellar vesicles, the
addition of Fe3+ to α-syn results in the formation of stable
oligomers that impair membrane conductance and lead to
neurotoxicity [135].

Modification of α-synuclein by dopamine
Several in vitro studies illustrate that DA can modulate
the aggregation of α-syn to form oligomers not consid-
ered direct intermediates on a pathway to amyloid fibril
formation [89, 90]. DA modification of α-syn is through
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the oxidation of all 4 methionines. Substitution of these
residues significantly reduces the propensity of α-syn to
form kinetically stable oligomers [136]. Despite fibrils
being formed after extended incubation in the presence
of DA, these are less stable and susceptible to fragmen-
tation [137]. The oxidative intermediates of DA also
have the ability to bind and induce α-syn aggregation.
Aminochrome promotes the formation and stabilisation
of neurotoxic protofibrils of α-syn [90, 111] and leads to
the formation of adducts (e.g. 5,6-indolequinone) that
subsequently also bind α-syn [138, 139].
Despite an ability of Fe2+ to auto-oxidise in an aerobic

environment, this Fenton reaction is greatly assisted in
the presence of DA, to produce hydroxyl radicals. In the
presence of DA, the ability of Fe3+ to promote α-syn fi-
bril formation is completely inhibited [89, 140] and
identifies DA as a key modulator of α-syn oligomer for-
mation. The relationship between α-syn and iron has
also been studied in vivo. Overexpression of various α-syn
mutants in the presence of iron and DA or H2O2 induce
the formation of aggregated α-syn [141].

Posttranslational modifications to α-synuclein
regulate dopamine and iron transport
It is possible that preferential vulnerability to PD-related
neurotoxicity in a subgroup of SNc dopaminergic neu-
rons arises from the convergence of different cellular
risk factors. It is becoming increasingly evident that α-syn
has physiological roles in both iron and DA homeostasis.
More established in the literature is the hypothesis that
α-syn can regulate DA through synaptic vesicle docking
and fusion, recycling of vesicles and import through the
DAT/VMAT2 receptors [57, 58]. However, α-syn can
also mediate the production of cellular DA through the
regulation of iron that is required for TH activity [118].
This regulatory function may also be through a role α-syn
has in receptor mediated endocytic trafficking. Through
an interaction with dynamin [61], α-syn is proposed to
modulate clathrin-coated endocytosis, of which the best
characterised model is TfR mediated iron import. In sup-
port of this being a pathway in which α-syn may regulate
cellular iron levels, it has recently been identified that
α-syn ablation alters the level of TfR and iron within
neurons [60].
Despite an increased comprehension of α-syn func-

tion, there are still conflicting reports on whether α-syn
promotes or inhibits vesicle trafficking (e.g. [51, 56]).
We propose that this confusion is largely caused by the
perception that the regulation of functional α-syn is only
at a translational level. Similar to other cell modulatory
pathways (e.g. the cell signalling transduction network),
it is feasible that PTMs to α-syn control vesicle traffick-
ing. Indeed, phosphorylation and oxidation of α-syn are
detrimental to α-syn binding to lipids [74–77, 81]

whereas acetylation of α-syn induces a greater affinity
[70]. This suggests that phosphorylated or oxidised forms
of α-syn have an increased propensity to be retained
within the cytoplasm whereas native N-terminal acetyl-
ation of α-syn permits attachment to vesicles membranes
either in its own right or through interaction with partner
proteins. The pool of cytoplasmic iron within neurons is
tightly monitored and if levels become too low as to im-
pair the activity of enzymes such as TH, then overriding
regulatory pathways are implemented. In the current
working hypothesis on α-syn function in iron and DA traf-
ficking (Fig. 1a) we reinforce a theory that α-syn binding
to lipid membranes requires N-terminal acetylation. Paral-
lel with promoted translation of α-syn when iron is re-
quired by the cell (due to the IRE within the 5′ promoter
region), lipid binding of the N-terminal acetylated form fa-
cilitates the dynamin-mediated endosomal trafficking of
TfR and controls iron internalisation. In parallel, cellular
DA production through TH activity requires the storage
of this oxidant in synaptic vesicles to minimise cytosolic
degradation and free radical production. The incorpor-
ation of DA into synaptic storage vesicles is facilitated
through α-syn binding to VMAT2. Upon stimuli, VAMP2
then binds to its corresponding t-SNARE protein to allow
fusion with the synaptic membrane and release of DA into
the cleft. Recycled DA, not required by the post-synaptic
neuron, is then imported back into the pre-synaptic
neuron through the DAT receptors that also bind α-syn
on the membrane. DA is internalised into synaptic vesicles
through the α-syn/VMAT2 complex.
In physiological conditions when either iron and/or

DA transport requires to be altered, we propose that this
can be mediated through post translational modification
of α-syn. Phosphorylation, or conditions that give rise to
the oxidation of α-syn, reduce the α-syn binding capacity
to lipid membranes, thereby no longer promoting endo-
cytosis or vesicle trafficking (Fig. 1b). TfR controlled iron
import into the cell will be decreased, in turn decreasing
TH activity and lowering DA production [118]. Phos-
phorylation will similarly reduce the ability for α-syn to
bind membrane DAT/VMAT2 or VAMP2 and thus re-
duce DA incorporation into synaptic vesicles or recyc-
ling within the presynaptic neuron. This concept on the
physiological function of α-syn in iron and DA homeo-
stasis describes how modifications to the protein indi-
vidually affect iron and DA homeostasis. However, it is
highly probable that other PTMs are involved and that
the total α-syn population present in a cell is made up of
multiple PTMs dependent on the cell’s specific require-
ment in a certain location. Therefore, it is feasible that
phosphorylated α-syn may be implemented in one area
of the neuron to reduce iron import, while in the syn-
apse it may be alternatively modified (i.e. N-terminally
acetylated) to increase DA recycling and trafficking.
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Posttranslational modifications to α-synuclein
increase vulnerability to neurotoxicity when
dysregulated
The pathological relevance of α-syn in these pathways is
when PTMs become dysregulated and accumulate to
detrimental levels. Upon hyper-phosphorylation or ex-
cessive oxidation of α-syn, TfR endocytosis is likely to be
impaired (Fig. 2). The subsequent reduction in intracel-
lular iron could lead to alternative compensatory import
mechanisms being initiated in order to maintain cellular
function (e.g. DMT1 [36, 37]). An attempt by SNc neu-
rons to rescue metabolic function by increasing DMT1
expression, as observed in PD [37], may have further
detrimental consequences in iron-mediated OS suscepti-
bility. Furthermore, DA produced through restored TH
activity will not be correctly incorporated into synaptic
vesicles via VMAT2 due to the absence of membrane
bound α-syn. Elevated cytoplasmic DA within a high labile
iron environment is likely to consequentially generate
toxic DA reactive quinones along with reactive species
that promote oxidative stress and mitochondria dysfunc-
tion. Along with impaired neurotransmitter uptake, condi-
tions of high phosphorylation or oxidation would deplete

synaptic DA stores and compound neuron dysfunction
during synaptic transmission. In addition PTM induced
changes to the aggregation of α-syn may compound tox-
icity through consequential modifications to DA, iron and
related auto-oxidation species [89, 90, 103, 134]. As con-
firmed by the prevalence of phosphorylated α-syn in LBs,
this PTM accelerates aggregation [73]. Whilst this can be
further exacerbated by the presence of iron, the addition
of an oxidant such as DA, steers a profile more towards
maintenance of oligomeric species and protofibrils [89,
140]. Oxidation alone also has this affect on α-syn and
these soluble oligomeric and protofibrils species may be
more detrimental to the cell through an increased capacity
to generate reactive oxygen and nitrogen species. The
presence of soluble oligomeric species of oxidised α-syn
within close proximity to synaptic vesicle membrane may
also lead to ROS-induced lipid peroxidation and subse-
quent release of DA incorporated through the already im-
paired VMAT2 mechanism. An iron and lipid dependent
form of cell death called ferroptosis has recently been
identified as a major feature in models of PD [142]. The
oxidation of α-syn may be a key component of this path-
way that requires further investigation.

Fig. 1 A working model that illustrates the functional role of post translationally modified α-synuclein in normal physiology. a N-terminal acetylation
of α-syn facilitates dynamin-mediated endocytosis of TfR and internalisation of iron (1). An appropriate intracellular iron level is tightly controlled to
maintain neuronal function including DA production by the iron-dependent enzyme TH (2). DA is incorporated into synaptic storage vesicles through
α-syn binding to VMAT2 (3). Upon stimuli, VAMP2 then binds to the t-SNARE protein to allow fusion with the synaptic membrane and release of DA
into the cleft (4). Recycling of DA back into the pre-synaptic neuron through the DAT receptors also requires binding to α-syn on the membrane and
subsequent reinternalisation into synaptic vesicles through the α-syn/VMAT2 complex (5). b When iron or DA transport is required to be reduced in
physiological conditions, α-syn is phosphorylated or oxidised (not shown) to decrease lipid affinity. A lack of membrane bound α-syn reduces neuronal
iron import through TfR endocytosis (1), production of DA by TH(2), DA incorporation into synaptic vesicles (3), reduced DA release into the synaptic
cleft (4) and/or DA recycling within the presynaptic neuron (5)
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Concluding remarks
Experimental elucidation of DA and iron metabolism in
neurons have slowly pointed to α-syn as a key regulator
in synaptic and endosomal vesicle trafficking with links
to PD pathology. Understanding the complexities of
PTMs to α-syn has also increased during the same
period. However relevance of these changes to iron and
DA dyshomeostasis in sporadic PD have yet to be deter-
mined. The relationships these have to genetic polymor-
phisms at the SNCA locus associated with PD also
remain elusive. Overall, reviewed information concurs
with our proposed hypothesis that α-syn is intimately
linked with iron and DA physiology. The invoked dys-
regulation to either pathway present in PD and a range
of other synucleinopathies (e.g. DLB and MSA), is there-
fore suggested to be directly linked to neuropathology in
cell populations that are vulnerable in these diseases.
There is therefore a fundamental necessity for continued
research into understanding how the modifications to α-
syn described here and by others, adapt the protein’s
normal role within the neuron and in synucleinopathies.
It is the hope that risk genes identified in genome-wide
association studies will assist in the identification of not

only pathological pathways in PD but also provide the
necessary assistance in solving the physiological path-
ways related to α-syn.
While this review has provided a proof of concept to

only part of the complexity in the disease, it highlights
that the pathology does not originate from a single
process. A complex combination of genetic and environ-
mental factors will lead to pathology in most PD forms
and it is conceivable that the pathways involved in alter-
ations to iron and DA transport may vary from one indi-
vidual to another. Consequently, therapeutic strategies
for preventing or slowing down disease progression are
likely to require personalisation for each PD case. As
such, greater characterisation and validation of biomarkers
used in disease diagnosis will substantially assist in
identifying the disease subpopulation in which a patient
falls into. It will also enable them to be treated at an
earlier disease time point with a drug that they will
have greater response to.
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