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Abstract 

Reaction pathways in ex-situ catalytic upgrading of pyrolytic oil towards formation of 

specific products such as hydrocarbons are still not well established due to the presence of 

many different organic components in the raw pyrolytic oil. Currently, only a few studies are 

available in literature particularly with regards to application of hierarchical mesoporous 

zeolite in the refinement of sample pyrolytic oil. This study provides the first experimental 

investigation of ex-situ catalytic upgrading of pyrolytic oil derived from Napier grass using 

microporous and hierarchical mesoporous zeolites. Two hierarchical mesoporous zeolites 

were synthesized by desilication of microporous zeolite using 0.2 and 0.3 molar solution of 

sodium hydroxide. Upgrading over microporous zeolite produced 16.0 wt% solid, 27.2 wt% 

organic phase and 23.9 wt% aqueous phase liquid while modified zeolites produced 21-42 

% less solid and 15-16 % higher organic phase liquid. Higher degree of deoxygenation of 

pyrolytic oil was achieved with the modified zeolites. Analysis of organic phase collected 
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after catalytic upgrading revealed high transformation of oxygenates into valuable products. 

Bulk zeolite produced cyclic olefins and polyaromatic hydrocarbons while mesoporous 

zeolites were selective toward cycloalkanes and alkylated monoaromatic production, with 

significant reduction in the production of polyaromatic hydrocarbon. Result of gas analysis 

showed that hierarchical mesoporous zeolite favored decarboxylation and decarbonylation 

reactions compared to the parent zeolite, which promoted dehydration reaction. Mesoporous 

zeolite produced with 0.3 molar sodium hydroxide solution was found to be the best-

performing catalyst and its reusability was tested over four consecutive cycles. This study 

demonstrated that pyrolytic oil derived from Napier grass can be transformed into high-

grade oil over hierarchical mesoporous zeolite.  

Keywords: Napier grass; pyrolytic oil; Deoxygenation; Reaction pathways; Microporous 

ZSM-5; Mesoporous ZSM-5; hydrocarbons  

*Corresponding author: Isah Yakub Mohammed (yimohd@atbu.edu.ng; 

kebx3iye@nottingham.edu.my)  

1. Introduction 

Development of an alternative fuel that would replace or reduce dependency on the fossil 

based fuels continues to gain attention in recent times due to the fear of energy insecurity 

in the near future and environmental impact associated with the use of petroleum-based 

fuels in addition to sociopolitical issues (Yakub et al., 2015). Lignocellulosic biomass (non-

food materials: forest residues, agro-wastes, energy grasses), and aquatic plants and algae 

are being considered as alternative feedstock for the production of renewable biofuel due to 

the presence of carbon in their building blocks, which can be processed into liquid fuel 

(Mohammed et al., 2015). Pyrolysis remains an attractive route for the thermochemical 

conversion of biomass as it comprises fewer steps and capable of high liquid yield (known as 

pyrolysis oil or pyrolytic oil ) through a careful control of process parameters such pyrolysis 

temperature, heating rate, vapor residence time in the reactor, and rapid cooling of the 

mailto:yimohd@atbu.edu.ng
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volatile in the condenser (Mohammed et al., 2016). Pyrolytic oil from biomass is a complex 

mixture consisting predominantly oxygenated organic compounds, phenolics, light 

hydrocarbons and traces of nitrogen and sulfur containing compounds depending on nature 

of the source biomass. The high level of the oxygenated compound in the oil is responsible 

for the poor physicochemical characteristics such as low pH, low chemical stability, low 

energy content (Mohammed et al., 2016). This therefore rendered the oil unsuitable for 

direct application as fuel or refinery-ready feedstock for quality fuel production and other 

consumer products. 

Catalytic upgrading of pyrolytic oil is one of the techniques being used to improve the 

quality of the oil. This approach provides more process flexibility as the upgrading step can 

be manipulated and optimized individually. Catalytic cracking of pyrolysis oil over porous 

materials such as zeolite (HY, mordenite, silica-alumina, silicalite, ZSM-5) is now receiving 

more attention. ZSM-5 (MFI-Mordenite Framework Inverted) is a microporous material in 

nature with a well-defined pore structure and acidity, which selectively allows diffusion and 

conversion of molecules (Mante et al., 2014). Study by Vitolo et al. (2001) on the catalytic 

cracking of pyrolysis oil produced from wood with ZSM-5 (2 g) at temperature between 410 

and 450 oC in a fixed bed micro-reactor with a feed flow rate of 5.9 ml/h revealed that 

upgrading reactions such as decarboxylation, decarbonylation, cracking, aromatization, 

alkylation, isomerisation, cyclisation and oligomerization proceed via carbonium ion 

mechanism, which occurred at the acidic sites (Brùnsted acid sites) of the ZSM-5. Coke and 

tar were also observed as co-products from the catalytic reaction, which led to the catalyst 

poisoning. The upgraded products recorded with fresh ZSM-5 was 11.3 wt% organics, 28.9 

wt% aqueous, 47.7 wt% non-condensable gas and 11 wt% solid. High yield of the non-

condensable gas recorded was attributed to high degree of deoxygenation reactions.  

Recently, Saad et al. (2015) reported catalytic cracking of pyrolysis oil derived from rubber 

wood in a dual reactor using ZSM-5 (3.2 g) at 511 oC with feed rate of 1.4 g/min. They 
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observed the highest organic product yield of 13.36 wt% with 44.93 wt% aqueous phase. 

Despite the use of dual reactor system, which was meant to reduce coke formation, solid 

product as high as 29.2 wt% was recorded. They concluded that the low yield of upgraded 

organic product was due to poor physicochemical properties of the raw pyrolysis oil used. 

This could also be linked to oxygen-containing chemical species such as guaiacols, furanic 

rings and sugars in the pyrolysis oil, which are perceived to result in coke formation during 

upgrading due to their instability and deficiency in molar balance ( Zhang et al., 2014). The 

coke precursors are said to undergo polymerization and polycondensation on the catalytic 

surface, fill up the inner pores and eventually result in the catalyst deactivation (Wei et al., 

2016). Researchers have suggested that lignin-derived compounds are more susceptible to 

char and coke formation during cracking and upgrading of pyrolytic oil derived from 

lignocellulosic biomass compared to compounds from hemicellulose and cellulose (acid, 

aldehydes, ketones, ester, and sugars). This was attributed to the complex structure and 

bulkiness of the lignin derivatives, which make them too large for the pores of the ZSM-5 

catalyst (Zhang et al., 2015b). Recent studies by Wei et al. (2016) on catalytic cracking of 

pure phenol and guaiacol as model compounds over ZSM-5 revealed that less catalytic coke 

was formed with the model compounds compared to the pyrolysis oil. They proposed that 

there are possible interactions between the derivatives of hemicellulose and cellulose with 

the lignin-derived compounds during the upgrading reactions. They further investigated 

cracking of pure pyrolysis oil mixed with 50wt% methanol and phenolic-rich pyrolysis oil 

fraction mixed with methanol in order to evaluate the ZSM-5 coking condition and 

hydrocarbon yield. The result showed that the later feedstock produced more hydrocarbon 

and less coke compared to the former. They concluded that small active molecules are also 

responsible for the catalyst coking by adhering to the active sites in the pores.  

Studies aimed at minimizing catalyst deactivation is as old as the catalytic process 

development and searching for long-lasting solutions are in progress to ensure industrial 

process scale-up (Alaba et al., 2016a). Structural modification of zeolite is being given 
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considerable attention in recent time as a solution to coke formation by diffusion limitation 

(García et al., 2015). Researchers have shown that modification (demetalation) of zeolite in 

an alkaline medium produced a partial collapse of the zeolite network into more than one 

level of porosity (micro and mesoporosity) with a network of interconnected cavities and 

cylindrical channels located in both outer and inner portions of the zeolite crystals (Na et al., 

2013). The resulting solid from the alkaline treatment tends to exhibit significantly 

enhanced accessibility of the active site, remarkable hydrothermal stability and longevity of 

the catalyst as a result of reduction in size of the purely microporous domains and facile 

diffusion of coke precursors through the mesopore, in addition to retaining the other zeolitic 

properties of its parent material (García et al., 2015). This method is therefore considered 

as an attractive top-down approach for the development of hierarchical zeolites with 

superior properties to meet their applications in catalytic cracking processes, particularly in 

the area of pyrolytic oil upgrading for deveploment of alternative renewable biofuel (Pérez-

Ramírez et al., 2011).  

Application of hierarchical mesoporous ZSM-5 in catalytic deoxygenation of pyrolysis vapor 

have shown significant improvement in the quality of pyrolysis oil (Lee et al., 2014; Li et al., 

2014b; Gamliel  et al., 2016; Mohammed et al., 2017a). For ex-situ upgrading studies over 

hierarchical mesoporous ZSM-5, most researchers have focused on the use of synthetic or 

model pyrolytic oil compounds as a basis for evaluating the catalyst performance (Botas et 

al., 2014; Tian et al., 2016).  Report by Puertolas et al. (2015) is one of the recent studies 

where upgrading of actual pyrolytic oil was investigated. Pyrolytic oil derived from pine 

wood was converted to aromatics over bulk (microporous) and hierarchical mesoporous 

ZSM-5 in a fixed bed reactor at 450 oC. The upgraded pyrolytic oil over mesoporous ZSM-5 

exhibited better physicochemical properties relative to the parent ZSM-5. The catalyst 

promoted the production of monoaromatic hydrocarbon such as benzene, toluene and 

xylene (BTX) while decrease in the amount of phenolics, acids, ketones was observed. The 
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formation of aromatics was linked to the increased accessible acid sites present at the 

mesopore walls and external surface. Higher composition of CO in the non-condensable gas 

with the mesoporous ZSM-5 was observed compared to the parent ZSM-5. The amount of 

CO in the gas showed a strong linear relationship with the amount of aromatics in the 

upgraded pyrolytic oil. The authors concluded that mesoporous ZSM-5 favored 

decarbonylation reaction compared to the parent ZSM-5, which promoted dehydration 

reaction. Similarly, Veses et al. (2016) reported deoxygenation of pyrolytic oil derived from 

wood over metal loaded hierarchical mesoporous ZSM-5. Catalytic activity of metal loaded 

hierarchical mesoporous ZSM-5 was compared with that mesoporous ZSM-5. The result 

showed comparable product distribution. Nearly 57 wt% total liquid, 21 wt% gas and 21 

wt% char was recorded with mesoporous ZSM-5 while the metal loaded mesoporous ZSM-5 

had 56-60 wt% liquid, 19-22 wt% gas and 19-22 wt% char. Although, maximum organic 

phase oil yield relative to the feed pyrolytic oil was achieved (41 wt%) with the metal 

loaded mesoporous ZSM-5 compared to the mesoporous ZSM-5, which produced about 35 

wt%. The corresponding degree of deoxygenation achieved was 42.6% and 35%. However, 

from the result presented by authors, the upgraded oil produced over mesoporous ZSM-5 

had lower phenolics, acid, aldehyde and ketones in addition to higher monoaromatic 

hydrocarbons and lower polyaromatic hydrocarbons. It can be seen that upgraded pyrolytic 

oil over mesoporous ZSM-5 has higher potential to be converted to fuel and valuable 

chemicals. The presence of less acid and other oxygenates in the oil are general 

requirement for avoidance of side reactions during storage, prior to further processing into 

fuels. Monoaromatics are high valuable chemicals and have commercial application in the 

petrochemical industry while the low amount of polyaromatic hydrocarbons signifies that the 

oil is less toxic.  

Reaction pathways in ex-situ catalytic upgrading towards formation of specific products such 

as saturated hydrocarbons, olefins, monoaromatic hydrocarbons are still not well 
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established due to the different organic components in the raw pyrolytic oil. Currently, 

catalytic upgrading of pyrolytic oil derived from Napier grass has not been reported. This 

study presents experimental report on ex-situ catalytic upgrading of pyrolytic oil derived 

from Napier grass over microporous and hierarchical mesoporous ZSM-5 in a high-pressure 

micro-reactor.  

2. Materials and method  

2.1 Materials 

Crude pyrolytic oil used in this study was organic phase product derived from Napier grass 

in a vertical fixed bed reactor at 600 oC, 50 oC/min under 5 L/min nitrogen atmosphere. The 

oil had density and higher heating value on dry basis 0.98 g/cm3 and 29.18 MJ/kg 

respectively. The consists of 53.87 wt% carbon, 6.45 wt% hydrogen, 1.35 wt% nitrogen, 

0.76 wt% sulfur and 37.57 wt% oxygen. Chemical composition of the pyrolytic oil was 

established using GC-MS analysis. Based on the GC-MS percentage peak area, the oil is 

made up of 4.67% aliphatic hydrocarbon (ALHC), 2.53 % aromatic hydrocarbon (ARHC), 

28.15 % normal phenol (PHOL), 37.87 % methoxy phenol (MTPHOL), 2.18 % methoxy 

aromatic (MARHC), 16.88 % acids, ketones, aldehydes (AAK), 3.05 % imidazole and 4.68 % 

esters (Mohammed et al. 2017b). Zeolite catalyst was purchased from Fisher Scientific Sdn. 

Bhd. (Selangor, Malaysia). Sample was taken and converted to protonic form by calcining at 

550 oC in air at 5 oC/min for 5 hours and the resulting solid was designated as ZSM-5. 

Hierarchical mesoporous ZSM-5 was obtained from desilication of ZSM-5 using aqueous 

NaOH solution. 30 g of ZSM-5 was mixed with different aqueous solution (0.2 and 0.3 M ) of 

NaOH (300 mL) for 2 h at 70 °C. The solid was filtered using vacuum filtration with the aid 

of a polyamide filter and thereafter oven dried at 100 °C. The dried samples were 

transformed into H-form with 0.2 M NH4NO3 solution at 80 °C for 24 h, followed by 

overnight drying at 100 °C and calcination at 550 °C for 5 h. The final alkaline treated solids 

were designated as 0.2HZSM-5 and 0.3HZSM-5. Alkaline and acid treatments of zeolite 



Page 8 of 28 

 

have been reported in the literature but information about the effluents generated from 

these processes are very limited. In this study, the concentration of NaOH and NH4NO3 were 

carefully selected towards cleaner catalyst synthesis in addition to maintaining the structural 

integrity and catalytic properties. The leachates generated were channelled to microalgae 

cultivation unit as part of the nutrients in accordance to Bold's Basal Medium (BB) 

formulation (Bischoff and Bold, 1963). All the catalysts were characterised according to 

standard procedures. X-ray diffraction (PANalytical X’pertPro, DSKH Technology Sdn. Bhd. 

Selangor, Malaysia) was used to examine the nature of the crystalline system at 2θ angles 

between 10° and 60°, 25 mA, 45 kV, step size of 0.025°, and 1.0 s scan rate. Scanning 

electron microscopy (SEM) (FEI Quanta 400 FE-SEM, Hillsboro, USA) was used to evaluate 

the surface and structural characteristics. Specific surface area and pore properties were 

determined using physisorption analyzer (ASAP 2020, Micrometrics, Norcross, USA). Acidity 

of the catalyst was determined via ammonia-temperature programmed desorption (TPD) 

using a pulse chemisorption system (ChemiSorb 2720, Micrometrics, Norcross, USA). 

2.2 Catalytic upgrading  

Catalytic upgrading of the crude pyrolysis oil was carried out in a high-pressure reactor. The 

reactor was a 50 mL stainless steel (SS) Swagelok double-ended (FNPT 6.35 mm) tube 

(304L SS/DOT-3E 1800 TC-3EM 124) of length 98.6 mm and 2.4 mm wall thickness. The 

experimental set-up as shown in Figure 1 consists of the reactor tube, I6D series needle 

valve (SS-16DKM4-F4, 6.35mm MNPT by 6.35mm FNPT SS316) attached to a 6.35 mm SS 

316 T-piece connected to 6.35 mm fitting from the top of the reactor tube. The remaining 

end of the T- piece was connected to a reducing adapter (SS-8-RA-4, 12.70 mm FNPT by 

6.35 mm MNPT, SS316) attached to a rupture disc (SS-RTM8-F4-2, 12.70 mm MNPT by 

6.35 mm FNPT, SS) joined to a 6.35 mm SS extension tube with Skyflex pressure gauge. 

The bottom of the reactor was closed with 6.35 mm SS ferrule with a thermocouple (K-type, 

NTT Heating, Sdn Bhd, Selangor, Malaysia) connected to a computer via pico data logger. 



Page 9 of 28 

 

Before the set-up, 30 g of crude pyrolytic oil was mixed with a certain amount of catalyst in 

a closed container and charged into the reactor after the bottom the reactor was sealed off. 

The system was purged with nitrogen (99.9% purity, Linde Gases Sdn. Bhd) for about two 

minutes and the fittings were assembled. The reactor was heated electrically at 50 oC/min. 

After the temperature attained the set-value and the required reaction time is reached, the 

power was switched off and the system was allowed to cool to room temperature. 

Subsequently, the valve was opened for gas collection and the reactor with remaining 

content was weighed. The reactor content was carefully collected in a container. Phase 

separation was carried out using centrifuge (Eppendorf™ 5430, Fisher Scientific Sdn. Bhd. 

Selangor, Malaysia) at 6500 rpm for 12 min. Aqueous phase and organic liquid product were 

separated and weighed. Samples were withdrawn for further analysis. The reactor was 

thoroughly washed with excess acetone and all its contents were recovered and mixed with 

remaining content (solid and tar) in the centrifuge tube. Solids in the mixture were 

separated using vacuum filtration with the aid of sartolon polyamide filter paper (0.45µm 

pore size) and washed with acetone and oven dried at 60oC overnight. The total liquid, 

organic, aqueous, solid and gas yield were computed using equations below. The 

experiment was carried out in triplicates and standard deviations were computed.  
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  (6)                   
SLD

(%)  Yield
TLP

(%)  Yield100
GP

(%)  Yield   

Where W is weight in gram and the subscript TLP, R2, R1, RBO, ACQ, OLP, TSLD, SLD, IC 

and GP represent total liquid product, reactor and its content, empty reactor, raw pyrolytic 

oil, aqueous phase, organic liquid product, total solid product, solid yield, initial catalyst and 

gas product respectively.    

2.2 Product characterization  

Characterization of the liquid product was carried out. Higher heating value was determined 

using an oxygen bomb calorimeter (Parr 6100, Parr Instruments, Molin, USA). Elemental 

compositions were determined using a CHNS/O analyzer (2400 Series II CHNS/O analyzer, 

Perkin Elmer Sdn Bhd, Selangor, Malaysia). Fractionation of the organic phase pyrolytic oil 

was simulated using TGA in nitrogen atmosphere at 20 mL/min, 10 oC/min from ambient to 500 

oC to examine the volatile fractions and the result was compared with the simulated distillation 

of fossil-gasoline, kerosene and diesel. Chemical composition of the pyrolytic oil was 

determined using a gas chromatograph-mass spectrometer (GC-MS) system (PerkinElmer 

Clarus® SQ 8, Akron, USA) with a quadruple detector and PerkinElmer-EliteTM-5ms column 

(30 m × 0.25 mm × 0.25 µm) (PerkinElmer, Akron, USA). The oven was programmed at an 

initial temperature of 40 °C, ramp at 5 °C/min to 280 °C and held there for 20 min. The 

injection temperature, volume, and split ratio were 250 °C, 1 µL, and 50:1 respectively. 

Helium was used as carrier gas at 1.0 mL/min. MS ion source at 250 °C with 70 eV 

ionization energy was used. Peaks of the chromatogram were identified by comparing with 

standard spectra of compounds in the National Institute of Standards and Technology 

(NIST, Gaithersburg, MD, USA) library. The gas products collected in a gas sample bag 

(Tedlar, SKC Inc., USA) was analyzed using a gas chromatography (PerkinElmer Clarus 500, 

Akron, USA) equipped with a stainless steel column (Porapak R 80/100) and thermal 

conductivity detector (TCD). Helium was used as a carrier gas and the GC was programed at 

60 °C, 80 °C and 200 °C for oven, injector and TCD temperature, respectively. 
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3. Results and Discussion  

3.1 Characteristics of the catalysts  

The diffractogram of the catalysts is shown in Figure 2a. Both the parent ZSM-5 and the 

alkaline treated samples exhibited main peaks at around 2θ between 20° and 25°, which are 

typical characteristic peaks for ZSM-5. Although the intensity of the modified zeolite (0.2HZSM-

5 and 0.3HZSM-5) decreased with increased NaOH concentration. This observation shows a loss 

of crystallinity due to desilication which could also be linked to the formation of mesoporous 

structures in the material (Alaba et al., 2016b). Physisorption analysis (Figure 2b) of ZSM-5 

displayed a type I isotherm according to the IUPAC classification. The isotherm showed a 

very strong adsorption in the initial region and a plateau at high relative pressure (>0.9). 

This pattern indicates that ZSM-5 is a microporous material (Ibáñez et al., 2014). Both 

0.2HZSM-5 and 0.3HZSM-5 displayed a combination of type I and IV isotherms with a low 

slope region at the middle that shows the presence of few multilayers and a hysteresis loop 

at relative pressures above 0.4, which could be linked to capillary condensation in a 

mesoporous material (Li et al., 2014a). With increasing NaOH concentration, the hysteresis 

loop became more pronounced and could also be related to the level of mesoporous 

structure formed in the sample after the desilication. Other characteristics of catalysts from 

the physisorption analysis are summarized in Table 1. Comparing ZSM-5 and modified ZSM-

5, as expected, the Si/Al ratio decreased between 34-40 % after desilication. Similarly, 

reduction in Brunauer Emmet Teller (BET) specific surface area (SBET), Smicro and Vmicro were 

also observed in the modified ZSM-5. This observation shows that some of the micropores 

in the parent ZSM-5 have been converted to mesoporous structures after the desilication, 

which have contributed to the resulting mesoporosity in the modified ZSM-5 (Na et al., 

2013). Pore size distribution from Barrett, Joyner and Halenda (BJH) desorption plot (Figure 

2c) shows that bulk ZSM-5 has pore size of 2-3 nm while the modified 0.2HZSM-5 and 

0.3HZSM-5 had pore size of 3-43 nm. Generally, microporous solids have pore size below 2 
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nm while pore size of 2-50 nm are characteristics of mesoporous solids (Storck et al., 

2008). Consequently, the pore size exhibited by the bulk zeolite could be ascribed to the 

presence of larger micropores while that observed in the modified zeolites is an evidence of 

presence of mesoporous structures formed as a result of desilication. NH3-TPD analysis 

(Figure 2d) displayed two peaks in the parent ZSM-5 at temperatures around 219 and 435 

°C while single peaks around 206 and 258 °C were observed 0.2HZSM-5 and 0.3HZSM-5 

respectively. The high temperature peak represents the desorption of NH3 from strong acid 

sites while those observed at temperatures between 206 and 258 °C are ascribed to the 

desorption of NH3 from weak acid sites (Saad et al., 2015). Disappearance of the strong 

acid sites in the modified ZSM-5 is attributed to decreased silica content in the respective 

samples (Na et al., 2013). Total surface acidity obtained from the area under each peak was 

found to be 3.8085, 3.0036 and 2.9635 mmol/g for ZSM-5, 0.2HZSM-5 and 0.3HZSM-5. 

The SEM-EDX (Figure 3) revealed that ZSM-5 is highly crystalline, with hexagonal prismatic 

morphology and different particle size of less than 500 nm. Both 0.2HZSM-5 and 0.3HZSM-

5 had morphological characteristic similar to the parent ZSM-5 indicating that the 

morphological integrity of the catalyst was not affected by desilication.  

3.2 Products distribution and characterization  

Figure 4 presents catalytic performance of ZSM-5 and modified ZSM-5 in the upgrading of 

pyrolytic oil under 60 min reaction time at 400 oC and catalyst loading of 2.0 wt%. Thermal 

condition (0.0 wt% catalyst loading) was used as control. Under this condition, total liquid, 

non-condensable gas and solid product collected was 76.6, 22.5 and 0.9 wt% . The total 

liquid yield decreased to 51.10, 50.30 and 47.40 wt% while the non-condensable gas 

increased to 32.90 37.10 and 43.30 wt% when ZSM-5, 0.2HZSM-5 and 0.3HZSM-5 was 

applied respectively. The lower liquid yield and increased gas production with the catalysts 

is attributed to several catalytic reactions such as decarbonylation and decarboxylation 

(Mohammed et al., 2016a). Increase in solid product was recorded with the catalysts 
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relative to the control. Comparing between the catalysts, ZSM-5 produced highest solid 

product (16.0 wt%) while 0.3ZSM-5 had lowest solid yield (9.30 wt%). Vitolo et al. (2001) 

reported total solid content of about 11.0wt% during upgrading of pyrolysis oil over ZSM-5. 

Similarly, in a separate study by Saad et al. (2015), a total solid content of 29.2 wt% was 

recorded. The high yield of solid with ZSM-5 is attributed diffusion resistance of large 

oxygenated compounds or coke precursors in the raw pyrolytic oil, which undergo 

polymerization and polycondensation reactions and finally deposited on the catalyst surface. 

Consequently, the lower solid yield recorded with modified ZSM-5 can be linked to the 

improved pore structures in the modified ZSM-5. This observation is contrary to the report 

of Puertolas et al. (2015). The authors observed increase in solid yield and reduction in total 

liquid product over the hierarchical zeolites. However, this dissimilarity could be attributed 

to difference in pore and acidity of the hierarchical zeolites. Mesoporous ZSM-5 produced 

15-16 % higher organic phase and 21-32 % lower aqueous phase compared to the bulk 

ZSM-5. This observation indicates that bulk ZSM-5 favoured dehydration reaction while the 

modified ZSM-5 promoted more decarbonylation and decarboxylation, which substantiated 

the higher gas yield recorded with the modified catalyst. Higher heating value (HHV) of the 

organic phase (Figure 4) increased from 29.18 MJ/kg (raw pyrolytic oil dry basis) to 35.90 

MJ/kg after the thermal treatment, which accounted for about 23 % increase. Increase in 

the HHV was also recorded after catalytic treatment. Upgrading over ZSM-5, 0.2HZSM-5 

and 0.3HZSM-5 produced organic phase with HHV of 40.46, 42.08 and 43.43 MJ/kg 

respectively. These values accounted 39-49 % increase in the HHV relative to the raw 

pyrolytic oil. Degree of deoxygenation (DOD) (Figure 4) calculated using Equation (7) was 

19.24 % after thermal treatment, which increased significantly to 48.58 % with ZSM-5. The 

modified ZSM-5 produced more deoxygenated organic phase with DOD of about 57 %. The 

high DOD recorded with the catalysts is therefore responsible for the improved HHV.  
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Where Oj and Oi represent oxygen content of upgraded pyrolytic oil and raw pyrolytic oil on 

dry basis respectively.  

Puertolas et al. (2015) reported 34 % DOD of pyrolytic oil over bulk ZSM-5 while higher 

DOD recorded with hierarchical mesoporous ZSM-5 was 42%. Maximum HHV of 35.3 MJ/kg 

was recorded, which was attributed the higher DOD achieved with the mesoporous ZSM-5. 

Similar improvement in DOD and HHV of upgraded pyrolytic oil over mesoporous ZSM-5 has 

been reported by Veses et al. (2016). The authors recorded 7.1% DOD with thermal 

upgrading while 39% DOD was recorded with mesoporous ZSM-5. The corresponding HHV 

was 27.3 and 32.5 MJ/kg.  Other physicochemical properties of pyrolytic oil are summarized 

in Table 2. There was no clear trend in pH value of the upgraded pyrolytic oil. Although, 

slight decrease in acidity of the upgraded pyrolytic oil was observed (3.88-3.92) relative to 

the raw pyrolytic oil (3.71) except for the thermally upgraded pyrolytic oil, which had pH 

value of 3.6. The decrease in the acidity of the oil produced over the catalyst is an indication 

of reduction of organic acids and phenolic compound through carboxylation and 

decarbonylation reactions (Mohammed et al., 2016).   

Thermogravimetric analysis of pyrolytic oil provides data on weight loss by evaporation as 

sample is heated over a certain temperature range. The resulting information similar to the 

distillation data, which can be used to estimate amount of pyrolytic oil that will distil into 

specific fuel products.  In this study, TGA analysis of commercial fossil premium motor spirit 

(PMS), kerosene and diesel was performed as standard. Organic raw pyrolytic oil feedstock 

and upgraded samples were subjected to the same thermal treatment. From Figure 5(a), 

final evaporation temperature of PMS, kerosene and diesel was found to be 126, 185 and 

291 oC respectively. Using the final evaporation temperature, by extrapolation, the raw 

organic pyrolytic oil constitutes (Figure 5b) nearly 70 wt% volatile fraction. The weight loss 
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above 300 oC can be attributed to thermal decomposition of residue. About 68 wt% of the 

oil had boiling range similar to that of diesel. Similarly, approximately 48 wt% of the 

pyrolytic oil is made up of kerosene boiling fraction while 35 wt% had boiling characteristic 

comparable to that of PMS. Evaporation profile of thermally upgraded pyrolytic oil revealed 

increase in diesel and kerosene boiling fractions to 75 and 50 wt% while volatile fraction 

with PMS boiling characteristics decreased to 31 wt% relative to the raw pyrolytic oil. 

Upgraded pyrolytic oil over bulk ZSM-5 had about 77, 53 and 34 wt% diesel, kerosene and 

PMS boiling fraction respectively. Reduction in PMS boiling fraction recorded with thermal 

and ZSM-5 compared to the raw pyrolytic oil could be attributed to thermal and catalytic 

cracking of light fractions originally present in the pyrolytic oil feedstock. pyrolytic oil 

upgrading over modified ZSM-5 produced about 78-84 wt%, 57-67 wt% and 43-50 wt% 

volatile organic fraction with boiling point comparable to that of diesel, kerosene and PMS 

respectively. The increased volatile fraction recorded with modified ZSM-5 could be ascribed 

to cracking of heavy molecular fractions and subsequent transformation.  

3.3 GC-MS analysis of organic phase   

Compounds identified in the raw and upgraded pyrolytic oil are grouped into hydrocarbons 

(HC), aromatic hydrocarbons (ARHC), methoxy aromatics (MARHC), phenol (PHOL), 

methoxy phenol (MPHOL), acids, aldehydes and ketones (AAK), methylester (MEST) and 

other value added chemicals (OVAC). The amounts of each component is expressed in 

percentage (%) based on the relative area from GC-MS analysis as summarized in Table 3. 

Noticeable changes were observed in the composition of the upgraded pyrolytic oil. Increase 

in PHOL content was recorded in thermally upgraded pyrolytic oil relative to the raw 

pyrolytic oil.  This is ascribed to thermal decomposition of MPHOL which decreased 

considerably. The process involves formation of methyl radical resulting in hydoxyphenoxy 

radical, which subsequently decarbonylates to cyclopentadienyl radical. Radical-radical 

reaction between methyl and cyclopentadienyl lead to the formation of phenols (Scheer et 
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al., 2011). High formation of phenol has also been reported by Veses et al. (2016). The 

authors recorded about 21.32 % phenol content in the blank test relative to 14.66-18.41 % 

obtained with catalyst. Thermal cracking of MPHOL to MARHC may have occurred, which is 

responsible to the increased composition of MARHC in the thermally upgraded pyrolytic oil 

relative to the feedstock and other upgraded oil. Significant reduction in AAK was also 

recorded with thermal cracking. Similarly, the percentage of hydrocarbon (1,3-dimethyl-1-

cyclohexene) in the feedstock increased from 4.67 to 5.2 % but a new hydrocarbon 

structure, 1,3,5-cycloheptatriene was observed after the upgrading. Benzene originally 

present in the feedstock was not detected in the product after thermal treatment. 

Therefore, cycloheptatriene may have originated from transformation of benzene and the 

cyclohexene and subsequent rearrangement and ring expansion.  pyrolytic oil upgraded 

over bulk ZSM-5 and modified ZSM-5 produced oil with less PHOL, AAK and complete 

elimination of MPHOL through series of reactions such as dehydration, decarbonylation and 

decarboxylation. PHOL content in the upgraded oil over ZSM-5 increased by 47 % and ARHC  

by a factor of five relative to the raw pyrolytic oil, which may be due to complete elimination 

MPHOL as rightly observed (Table 3). This suggests that conversion MPHOL proceeded via 

demethylation into phenol and subsequent dehydration into aromatics. Many studies have 

reported transformation MPHOL (guaiacol) into aromatics over ZSM-5. Studies by Cheah et 

al. (2016) on deoxygenation of hydroxyacetaldehyde and guaiacol catalyzed by HZSM-5 

reported that conversion of guaiacol to aromatic was through demethylation into phenol and 

subsequent dehydration into aromatics. Similar observations have been reported by Wei et 

al. (2016) and Zhang et al. (2016). The authors in their separate studies, stated that 

guaiacol and furan compounds were transformed into aromatics over ZSM-5. However, from 

the compositon of MARHC in the upgraded pyrolytic oil over ZSM-5 (Table 3), which 

increased by about 63 % relative to the MARHC content in the raw pyrolytic oil. It can be 

seen that conversion of MPHOL is not a simple reaction due to complex nature of the raw 

pyrolytic oil. Consequently, based on the result obtained in this study, it is can be stated that 
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MPHOL is converted into aromatics via multi-reaction pathways. Modified ZSM-5 produced 

high amount of aromatics relative to parent ZSM-5, suggesting high degree of conversion of 

MARHC while formation of other HC compounds declined with hierarchical mesoporous ZSM-

5. It is interesting to note that most of the HCs produced with parent ZSM-5 are cyclic 

olefins, which decreased with modified ZSM-5. Selectivity of olefins and aromatics by the 

catalysts is shown Figure 6. It can be seen that the parent ZSM-5 produced more olefins 

and polyaromatic hydrocarbon (PAH) while the opposite trend was recorded with the 

modified ZSM-5. It can therefore be inferred that the high amount of solid earlier recorded 

with the parent ZSM-5 was due to evolution of PAH at acid sites, which serves as coke 

precursors and eventually result in the solid yield.  Furthermore, the nature of aromatics 

recorded with modified ZSM-5 were mainly alkyl benzenes, which suggests that hierarchical 

mesoporous ZSM-5 favoured ring alkylation reaction. This trend seems to have correlation 

with Si/Al ratio. With decreasing Si/Al ratio, more alkyl benzenes were produced. Similar 

observation has been reported by Foster et al. (2012). The authors observed that decrease 

in Si/Al ratio promote production of aromatics. They also reported that mesoporous ZSM-5 

favoured the production of alkylated monoaromatic hydrocarbons. It worthy to note that the 

content of esters  (MEST) in the raw pyrolytic oil increased significantly in all the upgraded 

pyrolytic oil. MEST in the upgraded oil over bulk ZSM-5 is similar to the MEST content of the 

thermally upgraded oil. It is possible that some small organic molecules generated during 

the catalytic cracking of pyrolytic oil with ZSM-5 which would otherwise transesterify during 

quenching of reaction system may have polymerised, resulting in solid formation as rightly 

observed in the product distribution above. Similar observation has been reported by Cheng 

et al. (2014) during catalytic cracking of crude pyrolytic oil in a high-pressure reactor. The 

authors stated that formation of solid was promoted by ZSM-5 via polymerisation of small 

compounds during the period of cooling down the reactor. On the other hand, the MEST in 

the upgraded oil over modified ZSM-5 was 20-28 % higher relative to the MEST in the 

thermally upgraded oil. This suggests that some of the active chemical species during 
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cracking were transerterified into methyl esters during quenching of the reactor. For 

example, decomposition of methanol-imidazole present in the raw pyrolytic oil to release 

methanol is expected, which could further react with organic acids to form esters. Methyl 

esters are biodiesel component, which is another valuable renewable product.  

Most of the catalytic upgrading studies reported in the literature focused mainly on the 

upgraded organic phase product. Aqueous phase produced as a result of deoxygenation 

reactions is mostly regarded as a waste stream and its composition generally unknown. In 

this study, analysis of the aqueous phase from the catalytic upgrading of pyrolytic oil was 

carried out with GC-MS and the most abundant chemical species identified are summarised 

in supplementary Table S1. Aqueous phase from ZSM-5 deoxygenation consist phenols,  

benzenediols, alcohols and small amount of acid, aldehyde and ketones while the aqueous 

phase resulting from mesoporous ZSM-5 were mostly ketones and aldehydes, phenols and 

traces of alcohols. These compounds are intermediate products of deoxygenation reactions 

and may be utilised as organic building blocks for synthesis of important fine chemicals. 

Conversion of water soluble renewable organic materials has been characterised with high 

conversion efficiency. Studies by Timko et al. (2006) on conversion and selectivity of a 

Diels-Alder cycloaddition by use of emulsions of carbon dioxide and water revealed that the 

reaction in emulsions of water and carbon dioxide leads to the high selectivity and 

conversion that are characteristic of water. Consequently, aqeous phase from the catalytic 

upgrading of pyrolytic oil represent environmentally benign stream that can be used for 

production of valuable chemicals. 

3.4 GC analysis of gas composition   

Composition of gas as determined by the GC is summarized in Table 4. The component 

identified include hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2) and methane 

(CH4). Thermal cracking produced gas with highest CH4 content (33.42 vol%), suggesting 

production of small organic molecules. Similarly, significant amount of CO in the gas from 
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thermal cracking is an evidence of some decarbonylation reaction, which confirmed the 

formation of cyclopentadienyl radical as previously stated in the mechanism of phenol 

formation from thermal decomposition of methoxyphenol. The principal composition of gas 

from the catalytic upgrading process were CO and CO2, which are indications of 

decarboxylation and decarbonylation reactions. With modified ZSM-5, the CH4 composition 

decreased relative to ZSM-5. This can be linked to the alkylation reaction observed with the 

hierarchical ZSM-5. It can therefore be stated that the alkyl group generated during 

upgrading reacted with the aromatic pool within the system and subsequently result in alkyl 

benzenes as observed in the previous section above. Furthermore, considerable increase in 

the amount of CO and CO2 were recorded with the mesoporous ZSM-5 compared to bulk 

ZSM-5, indicating higher degree of decarboxylation and decarbonylation. This observation is 

in good agreement with the result of GC-MS analysis. Preferential decarbonylation and 

decarboxylation reactions with hierarchical mesoporous ZSM-5 has been reported in the 

literature (Veses et al., 2016). A summary of comprehensive material flow and possible 

reaction pathways during upgrading is shown in Figure 7 and 8 respectively.  

3.5 Reusability of modified ZSM-5   

Stability of the hierarchical mesoporous ZSM-5 in the upgrading of pyrolytic oil was 

evaluated with 0.3HZSM-5, being the best performing catalyst observed in this study. 

Upgrading experiments were conducted in four consecutive cycles. After each experiment, 

the spent catalyst was regenerated in air at 550 oC for 6 h at 10 oC/min heating rate. A 

portion of the regenerated catalyst was subsequently characterized. Catalyst loading (wt%) 

and other reaction parameters were kept constant to ensure similar contact time. From 

Figure 9,  reusability of modified ZSM-5 showed no significant impact on the total liquid, gas 

and solid yields but rather have considerable impact on the production of organic and 

aqueous phases. First cycle produced 29.5 wt% organic phase, which decreased to 25 wt% 

in the second cycle. The corresponding aqueous phase recorded was 10.6 wt% and 16.9 
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wt%. There was no significant difference between organic yield in the second and third 

cycles but thereafter decreased to 21.2 wt% in the fourth cycle. Increase in the aqueous 

phase was recorded after each cycle. This observation suggests that regenerated catalyst 

promoted dehydration reaction. From the physicochemical analysis, a continuous decline in 

HHV and DOD were observed with catalyst in the consecutive cycles (Figure 9), which are 

indications of loss of catalytic activity probably due to chemisorption of poisons such as 

nitrogen or sulfur containing compounds on the active sites (Argyle and Bartholomew, 

2015). Puertolas et al. (2015) reported that the ratio of organic to aqueous phase in the 

upgraded pyrolytic oil over regenerated mesoporous ZSM-5 decreased and was attributed to 

decrease in the acid sites. Chemical composition of upgraded pyrolytic oil and gas collected 

over regenerated catalyst are summarized in Table 5 and Table 6 respectively. In consistent 

with the physicochemical properties, significant decrease in ARMHCs was observed in the 

pyrolytic oil after each cycle with corresponding increase in PHOL content. AAK and MARHC 

compounds were detected in the upgraded oil after the first cycle. From the gas analysis 

result (Table 6), a decline trend in the CO contents was observed after each cycle, which is 

an evidence of decreased decarbonylation reaction. Characteristics (BET XRD and SEM-EDX) 

of fresh and regenerated catalyst are shown in Table 7 and Figure 10. From the 

physisorption analysis result (Table 7), all the properties of the regenerated catalyst 

decreased after four consecutive cycles except for the mesopore surface area which 

increased by 12 %. BET surface area decreased by 44% while micro surface area and pore 

volumes decreased approximately three-folds lower relative to the original value. SEM-EDX 

images (Figure 10b) displayed new peak for carbon and sulfur, suggesting thermal and 

chemical deactivation. As earlier stated, sulfur containing compounds are among the 

chemical species that result in catalyst poisoning. After regeneration, the catalyst 

composition was similar to that of fresh catalyst (Figure 10c). Although the SEM image 

showed some disruption of original hexagonal prismatic structure in the regenerated 

catalyst, which is an indication of partial collapse in the catalyst morphology. This 
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observation could be responsible for the reduction in surface and pore characteristics 

recorded. Similarly, the diffractogram (figure 10d) of the regenerated catalyst after four 

consecutive cycles displayed characteristic peaks similar to that of the fresh catalyst, 

indicating high stability. However, the peak intensities in the regenerated catalyst were 

considerably lower than that of the fresh catalyst. This mean that crystallinity of 0.3HZSM-5 

decreased with reusability. Therefore, the decline in the catalyst performance recorded after 

each cycle can be attributed to the changes in its properties, particularly the surface area, 

which is directly proportional to the number of active sites. Similar observations have been 

reported in literature (Vitolo et al., 2001; Puertolas et al., 2015).  

4. Conclusion  

Ex-situ upgrading of pyrolytic oil derived from Napier grass over micro and hierarchical 

mesoporous ZSM-5 was carried out in a high-pressure reactor. Hierarchical mesoporous 

ZSM-5 (0.2HZSM-5 and 0.3HZSM-5) used in this study was produced through desilication of 

bulk ZSM-5 with aqueous sodium hydroxide solution. To understand the effect of catalyst in 

the upgrading process, thermal cracking was performed. Upgrading over microporous ZSM-

5 produced 16.0 wt% solid, 27.2 wt% organic phase and 23.9 wt% aqueous phase liquid 

while modified zeolites produced 21-42 % less solid and 15-16 % higher organic phase 

liquid. Higher degree of deoxygenation of pyrolytic oil (57 %) was achieved with the 

modified ZSM-5 relative to 48.58 % recorded with bulk ZSM-5. GC-MS analysis of organic 

phase collected after catalytic upgrading revealed high transformation of methoxyphenol 

and methoxyaromatics. Bulk ZSM-5 produced cyclic olefins and polyaromatic hydrocarbons 

while modified ZSM-5 were selective toward cycloalkanes and alkylated monoaromatcs, with 

significant reduction in polyaromatic production. Result of gas analysis showed that 

hierarchical mesoporous ZSM-5 favored decarboxylation and decarbonylation reactions 

compared to the bulk ZSM-5, which promoted dehydration reaction. 0.3HZSM-5 was found 

to be the best-performing catalyst and its reusability was tested over four consecutive 
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cycles. Composition of aromatic hydrocarbon in the oil collected over regenerated catalyst 

decreased while increase in phenol content was recorded relative to the oil composition from 

the fresh catalyst. Furthermore, degree of deoxygenation and higher heating was found to 

decrease after each cycle, which was attributed to the loss catalyst active sites. This study 

demonstrated that pyrolytic oil derived from Napier grass could be transformed into that 

high-grade pyrolytic oil via catalytic upgrading over hierarchical mesoporous ZSM-5.  
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