Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic

SALAMA, Abdussalam, SAATCHI, Reza and BURKE, Derek (2017). Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic. In: http://www.aaate2017.eu/, Sheffield, UK, 11-15th September 2017.. (In Press)

WarningThere is a more recent version of this item available.
[img] PDF
AAATE Salama 23 05 2017 Final_0.pdf - Accepted Version
Restricted to Repository staff only
Available under License All rights reserved.

Download (745kB) | Contact the author
Official URL: http://www.aaate2017.eu/

Abstract

Electronic-health relies on extensive computer networks to facilitate access and to communicate various types of information in the form of data packets. To examine the effectiveness of these networks, the traffic parameters need to be analysed. Due to quantity of packets, examining their transmission parameters individually is not practical, especially when performed in real time. Sampling allows a subset of packets that accurately represents the original traffic to be chosen. In this study an adaptive sampling method based on regression and fuzzy inference system was developed. It dynamically updates the sampling by responding to the traffic changes. Its performance was found to be superior to the conventional non-adaptive sampling methods.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: e-health, computer network traffic sampling, multimedia transmission, QoS.
Research Institute, Centre or Group: Materials and Engineering Research Institute > Centre for Automation and Robotics Research > Systems Modelling and Integration Group
Depositing User: Reza Saatchi
Date Deposited: 20 Jul 2017 13:54
Last Modified: 20 Jul 2017 14:03
URI: http://shura.shu.ac.uk/id/eprint/15936

Available Versions of this Item

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics