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Abstract 

CdTe thin films of different thicknesses were electrodeposited and annealed in air after 

different chemical treatments to study the effects of thickness and the different chemical 

treatments on these films for photovoltaic applications. The thicknesses of the samples range 

from 1.1 μm to 2.1 μm and the annealing process was carried out after prior CdCl2 treatment 

and CdCl2+CdF2 treatment as well as without any chemical treatment. Detailed optical and 

structural characterisation of the as-deposited and annealed CdTe thin films using UV-Vis 

spectrophotometry and x-ray diffraction reveal that incorporating fluorine in the well-known 

CdCl2 treatment of CdTe produces remarkable improvement in the optical and structural 

properties of the materials. This CdCl2+CdF2 treatment produced solar cell with efficiency of 

8.3% compared to CdCl2 treatment, with efficiency of 3.3%. The results reveal an alternative 

method of post-deposition chemical treatment of CdTe which can lead to the production of 

CdTe-based solar cells with enhanced photovoltaic conversion efficiencies compared to the 

use of only CdCl2.    

Keywords: CdTe; CdCl2; CdF2; annealing; electrodeposition; solar cell.  

 

1.0 Introduction 

CdTe is an important group II-VI semiconductor for applications such as in photovoltaic 

solar energy conversion [1-5] and radiation detection [6-8]. The most crucial properties of 

this material for these applications include; optical, structural, chemical composition and 

electronic properties. These properties have been studied to certain extent to date [9-12]. For 

photovoltaic application in particular, these studies have mainly concentrated on CdCl2-

treated CdTe since CdCl2 treatment is a crucial step in the fabrication of high efficiency 

CdTe-based solar cells [13-15]. The improvement in solar cell efficiency in this case is 

attributed to the diffusion of Cl into CdTe. As a modification of the CdCl2 treatment, 

Mazzamuto et al. [14] and Rio-Flores et al. [16] have tried to incorporate Cl into CdTe 
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during post-deposition heat treatment by using a mixture of argon and a Freon gas (CHF2Cl) 

which contains both Cl and F atoms to achieve improved solar cell efficiency [14]. Recently, 

authors of the present work have incorporated Cl and F atoms into CdTe through the use of a 

mixture of CdCl2 and CdF2 in the post-deposition heat treatment of CdTe to obtain improved 

solar cell efficiency compared to the use of only CdCl2 treatment [17]. This improvement has 

also been attributed to the higher diffusion property of F compared to Cl. These recent results 

by the authors’ group [17] as well as those of Mazzamuto et al. [14] and Rio-Flores et al. [16] 

have necessitated the detailed study of the effects of annealing of CdTe with CdCl2 treatment, 

CdCl2+CdF2 treatment and without chemical treatment, on the structural and optical 

properties of electrodeposited CdTe thin films of different thicknesses, in order to further 

understand how these treatments impact the properties of CdTe for solar cell efficiency 

improvement. It is pertinent also to observe that although some optical properties of CdTe 

have been studied at different times [12, 18], comprehensive study of the effect of different 

annealing conditions (with prior CdCl2 and CdCl2+CdF2 treatments) on the entire optical 

parameters (transmittance, absorbance, reflectance, absorption coefficient, extinction 

coefficient, refractive index and dielectric constant) of CdTe has not been reported in a single 

publication.  

The optical parameters of the CdTe thin films of different thicknesses were obtained from 

normal-incidence transmittance spectra and applying equations (1) - (8) [19-22]. It is well-

known that when light is incident on a thin film material, it is either absorbed, transmitted or 

reflected, and the sum of the fractions of the absorbed, transmitted and reflected light equals 

unity, assuming no losses due to scattering, so that 

                                                                       

where A is absorbance, T is transmittance and R is reflectance. 

The overall response of the material to the incident light is connected to its complex 

refractive index according to equation (2). 

                                                                           

where N is the refractive index of the material, n is the real part of the refractive index and K 

is the imaginary part of the refractive index, and also known as the extinction coefficient of 

the material in question. 

The reflectance of the material and the real part of the refractive index are related by equation 

(3). 

  
      

      
                                                                      

The absorption coefficient α, of the material is also related to the extinction coefficient 

according to equation (4). 
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where λ is the photon wavelength.  

The complex dielectric constant ε, is related to n and K according to equation (5).  

  

                                                                      

where εr and εi are the real and imaginary parts of the dielectric constant of the material 

respectively.  

The absorbance of the thin film is related to its transmittance according to equation (6). 

        
 

 
                                                                            

The absorption coefficient is also related to the transmittance by 

   
 

 
                                                                                  

where d is the thickness of the film. 

Finally, for a direct bandgap semiconductor, the absorption coefficient is related to the energy 

hν, of the absorbed photons and the energy bandgap Eg, of the semiconductor by  

  
        

   

  
                                                                     

where C is a constant, h is Planck’s constant and ν is the frequency of the incident photon. 

 

2.0 Experimental Procedure 

The CdTe thin films used in this work were potentiostatically electrodeposited from an 

aqueous electrolyte containing 1 M CdSO4 of 99% purity and 1 mM TeO2 of 99.999% (with 

1000 ppm of high-purity CdCl2 and CdF2 as dopants) using a two-electrode deposition set-up. 

A high-purity platinum plate was used as the anode (counter electrode) and glass/fluorine-

doped tin oxide (FTO) as the cathode (working electrode). Because of its low purity, the 

CdSO4 chemical was first electro-purified for 48 h at a cathodic potential slightly lower than 

the potential for the deposition of Cd using glass/FTO substrate. These potentials were 

determined from a cyclic voltammogram recorded for the 1 M CdSO4 solution in de-ionised 

water, using a Gill AC computerised potentiostat (ACM Instruments Cumbria, UK). After the 

electro-purification, 1 mM TeO2 was then added to make up the CdTe deposition electrolyte. 

The pH of the electrolyte was adjusted to 2.0±0.02 and CdTe layers were electrodeposited at 

a cathodic voltage of 2038 mV and temperature of 85.0±2.0°C. Full details of the 
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electrodeposition of CdTe thin films using two-electrode system is reported in recent 

publications [23, 24]. 

Four samples of CdTe with thicknesses were electrodeposited on glass/FTO substrates. The 

thicknesses of the samples were determined using a UBM Microfocus optical thickness 

profilometer (UBM, Messetechnik GmbH, Ettlingen, Germany). Each of the four samples 

with area of 2 cm × 4 cm, was divided into four pieces of area 1 cm × 2 cm each. One set of 

these pieces was treated with CdCl2 by dipping them in a saturated CdCl2 solution in 

deionised water and allowed to dry. Another set was treated with a saturated CdCl2 solution 

containing about 0.1 g of CdF2. The CdCl2 and CdF2 chemicals were both of 99.999% purity. 

All chemicals used in the work were purchased from Sigma Aldrich, UK. The remaining two 

sets of samples were left without chemical treatment. Afterwards, the samples treated with 

CdCl2 and CdCl2+CdF2 together with one set of the samples without chemical treatment were 

annealed in air at a temperature of 450°C for 15 minutes in a programmable Carbolite 

furnace. The last set of samples without chemical treatment was left as-deposited. 

Optical characterisation of all the annealed and as-deposited CdTe samples was carried out 

using a Cary 50 UV-VIS Spectrophotometer (Varian, Australia) by recording the normal-

incidence transmittance spectra in the photon wavelength range of (750 – 1000) nm. Using 

equations (1) – (8), the rest of the optical parameters were obtained from the transmittance 

spectra. For structural characterisation, x-ray diffraction (XRD) patterns of the 16 samples 

were obtained using a Philips X’pert Pro diffractometer (Philips Analytical, The Netherlands) 

with Cu-Kα excitation wavelength of 1.5406 Å for 2θ angles from 20° to 70°. The applied 

tension and current were 40 kV and 40 mA respectively. Solar cells were fabricated using 

CdTe treated with CdCl2 and CdCl2+CdF2 and assessed following the procedure reported 

earlier [17]. The results of the structural and optical characterisation of these samples are 

presented in the next section. 

 

3.0 Results and Discussion 

 

3.1 Structural characterisation – X-ray diffraction 

Figures 1 (a), (b), (c) and (d) show the x-ray diffraction patterns of the 1.1 μm-thick CdTe 

thin film sample under different annealing conditions.  From these results, the material 

displays preferential orientation of the crystallites in the (111) crystal plane in all four 

conditions. Figures 1(b), (c) and (d) however show that annealing with or without CdCl2 or 

CdCl2+CdF2 treatment generally improves the (111) preferential orientation of crystallites. 

This improvement is however seen to be more pronounce for the sample treated with 

CdCl2+CdF2 (fig. 1(d)) compared to the one treated with only CdCl2 (fig. 1(c)) and the 

sample without any chemical treatment (fig.1 (b)). 

 

Figures 2 (a), (b), (c) and (d) show similar XRD patterns for the 1.3 μm CdTe layers under 

the same annealing conditions as in figure 1 above. Again a similar trend is observed as in the 

case of 1.1 μm samples in figure1. The sample treated with CdCl2+CdF2 also shows a more 

preferential crystallite orientation in the (111) plane compared to the rest of the samples. 
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Figures 3 (a), (b), (c) and (d) show the XRD results of the 1.8 μm sample under different 

treatment conditions. In general, the preferential crystallite orientation increases with 

annealing. Strikingly too, the situation begins to change at this thickness for the samples 

treated with CdCl2+CdF2 as is seen by the emergence of two additional XRD peaks 

corresponding to the (220) and (311) crystal planes of the cubic phase with the intensity of 

the (111) peak slightly decreasing below that of the sample treated with only CdCl2. Thus the 

highly preferential orientation in the (111) plane begins to reduce with substantial intensity 

arising from the (220) and (311) planes, thereby making the material crystallites more 

randomly oriented. This result suggests a structural transformation of CdTe starting from 

around this particular thickness of 1.8 μm. 

 

In figures 4 (a), (b), (c) and (d), the XRD patterns of the 2.1 μm sample under different 

treatment conditions are presented. Again, the (111) preferential orientation improved with 

annealing for the  sample without chemical treatment and the one treated with only CdCl2. 

For the sample treated with CdCl2+CdF2, the story changes completely with the (111) peak 

decreasing drastically in intensity, this time, below that of the as-deposited sample. As a 

result, one extra peak corresponding to the (331) crystal plane of the cubic phase appears in 

addition to the (220) and (311) peaks that came up in the corresponding 1.8 μm sample. Not 

only does one see a total of four XRD peaks, but the peaks corresponding to the (220) and 

(311) planes increased considerably in intensity, indicating further population of these crystal 

planes by crystallites. The material layer therefore has more randomly oriented crystallites. 

The results of figures 1, 2, 3 and 4 suggest a threshold thickness of the electrodeposited CdTe 

thin film (in the neighbourhood of 1.8 μm) beyond which the crystallites in the material 

become more randomly oriented with a resultant polycrystalline material.  

 

 Again, the results suggest that treating CdTe with CdCl2+CdF2 prior to annealing facilitates 

this structural transformation more than the conventional CdCl2 treatment does. Most of the 

high-efficiency CdTe-based solar cells reported in the literature have employed CdTe 

materials with randomly oriented crystallites depicted by the type of XRD pattern shown in 

figure 4(d) [14, 25, 26]. The CdTe samples treated with CdCl2+CdF2 should therefore 

produce CdTe solar cells with improved efficiency compared to those treated with only 

CdCl2. Structural parameters obtained from analysis of the (111) peak of all the samples 

show that the lattice constant (a) and interplaner spacing (d-spacing) are always higher in 

value and closer to those of the reference material for the samples treated with CdCl2+CdF2 

in comparison with those treated with only CdCl2 or untreated at all. These results are shown 

in tables 1, 2, 3 and 4 for comparison. The closest reference material with diffraction peaks 

matching the samples under study has the Joint Committee on Powder Diffractions and 

Standards (JCPDS) file No: 00-015-0770 with 2θ = 23.8°, d-spacing, d = 3.7420 Å and latice 

constant, a = 6.4810 Å for the (111) diffraction peak. There is no clear correlation of the 

structural parameters with thickness of the samples. However, the observed large values of a 

and d for the CdCl2+CdF2-treated samples suggest that with this treatment, CdTe material 

closer in quality to the standard CdTe in the JCPDS file can easily be obtained by employing 

this treatment.  

 



6 
 

Table 1: Results of XRD study of As-deposited CdTe layers of different thicknesses. 

Sample 

thickness 

(μm) 

2θ (°) (111) 

peak 

intensity 

d-

spacing 

d (Å) 

Lattice 

constant 

a (Å) 

FWHM 

β (°) 

Crystallite 

size D (nm) 

1.1 24.0 7041 3.711 6.428 0.1299 63 

1.3 24.0 7380 3.707 6.421 0.1299 63 

1.8 24.0 13373 3.705 6.418 0.1624 50 

2.1 24.0 9546 3.714 6.434 0.1624 50 

 

 

Table 2: Results of XRD study of CdTe layers of different thicknesses annealed without 

chemical treatment at 450°C for 15 minutes. 

Sample 

thickness 

(μm) 

2θ (°) (111) 

peak 

intensity 

d-

spacing 

d (Å) 

Lattice 

constant 

a (Å) 

FWHM 

β (°) 

Crystallite 

size D 

(nm) 

1.1 23.8 7949 3.746 6.488 0.1299 63 

1.3 24.1 8171 3.697 6.404 0.1299 63 

1.8 24.0 13681 3.712 6.430 0.1299 63 

2.1 24.0 15066 3.708 6.424 0.1299 63 

 

 

Table 3: Results of XRD study of CdTe layers of different thicknesses annealed with CdCl2 

at 450°C for 15 minutes. 

Sample 

thickness 

(μm) 

2θ (°) (111) 

peak 

intensity 

d-

spacing 

d (Å) 

Lattice 

constant 

a (Å) 

FWHM 

β (°) 

Crystallite 

size D 

(nm) 

1.1 24.0 16668 3.707 6.422 0.1299 63 

1.3 24.1 10055 3.696 6.403 0.1299 63 

1.8 24.1 15605 3.696 6.403 0.1299 63 

2.1 24.0 15528 3.715 6.434 0.1299 63 

 

 

Table 4: Results of XRD study of CdTe layers of different thicknesses annealed with 

CdCl2+CdF2 at 450°C for 15 minutes. 

Sample 

thickness 

(μm) 

2θ (°) (111) 

peak 

intensity 

d-

spacing 

d (Å) 

Lattice 

constant 

a (Å) 

FWHM 

β (°) 

Crystallite 

size D 

(nm) 

1.1 24.0 26855 3.715 6.434 0.1299 63 

1.3 24.0 22606 3.714 6.434 0.1299 63 

1.8 24.0 14557 3.714 6.433 0.1624 50 

2.1 24.0 5311 3.726 6.454 0.1299 63 
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Since these same samples were also subjected to the conventional CdCl2 treatment, the 

possible reason for the observed structural improvements can only be linked to the presence 

of F. Fluorine is also a halogen like Cl, but with smaller atomic size as well as higher 

diffusivity compared to Cl [27-30]. This therefore means that F diffuses more into CdTe 

during the annealing process unlike Cl. It can therefore act more as a fluxing agent, compared 

to Cl, to bring about re-crystallisation and passivation of grain boundaries in CdTe resulting 

in the observed structural transformation. This actually should be part of the sources of 

improvement in solar cell conversion efficiency when these CdTe materials are used. Tables 

1 – 4 also show that there is no significant effect on crystallite size in all the samples before 

and after annealing. This observed constancy in crystallite size may be as a result of the 

limitations of the XRD instrumentation or the Sherrer equation in estimating crystallite sizes 

larger than 63 nm. 

 

3.2 Optical characterisation – Spectrophotometry 

The percentage transmittance spectra of the CdTe samples of different thicknesses with 

different annealing conditions, in the wavelength range (750 – 1000) nm, are shown in 

figures 5 (a), (b), (c) and (d).  

In the as-deposited samples of different thicknesses (fig. 1(a)), the transmittance edges are 

poorly defined and fall in the range (780 – 800) nm with a wide spread of the near infrared 

(NIR) transmittance in the range (20 – 70) %. After annealing without chemical treatment 

(fig. 1 (b)), and with CdCl2 treatment (fig. 1 (c)), the gradient of the transmittance edge 

slightly improved, falling in the range (790 – 800) nm with a narrowing of the percentage 

NIR transmittance in the range (30 – 60) %. For the samples treated with CdCl2+CdF2, a 

further improvement in the transmittance edge is observed with the transmittance edges of all 

the samples experiencing a redshift to ~820 nm wavelength. A further reduction in the 

percentage transmittance and narrowing of the NIR transmittance in the range (35 – 50) % is 

also observed. This property is desirable for applications such as in photovoltaic solar cells. 

In this NIR region, it is also observed that there is no clear correlation between the percentage 

transmittance and film thickness except for the 2.1 μm sample whose % transmittance 

remained fairly lowest under all annealing conditions. 

For the absorbance as shown in figures 6 (a), (b), (c) and (d), the best improvement 

(especially towards the visible region) as well as improvement in the absorbance edge (with 

redshift) is observed for the samples treated with CdCl2+CdF2 (fig. 6 (d)). In addition, there is 

a better correlation between the absorbance and sample thickness with the 1.1 μm sample 

showing the least absorbance and the 2.1 μm sample showing the greatest absorbance. Again, 

for the CdCl2+CdF2-treated samples, there is the least spread in absorbance across the 

wavelength range under study. In the CdCl2-treated samples, there is an improvement in 

absorbance compared to the as-deposited samples and the samples without chemical 

treatment. This improvement however, is not as pronounced as that in the CdCl2+CdF2-

treated samples. The improvement in absorption with increase in thickness and with 

CdCl2+CdF2 treatment is desirable for solar cell application and radiation detection.  
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The percentage reflectance spectra of the samples are also shown in figures 7 (a), (b), (c) and 

(d). Again, there is an overall redshift in the reflectance edge as well as least spread in 

reflectance for the samples treated with CdCl2+CdF2 in comparison with rest of the samples. 

There is also a fair correlation between the reflectance edge and sample thickness. The higher 

the thickness of the sample, the more the reflectance edge shifts towards the longer 

wavelength. The highest observed reflectance for all the samples (in the NIR region) is 

~20%, which indicates a fundamental property of these electrodeposited CdTe. This 

behaviour also manifests in the refractive index and dielectric constant of all the samples 

showing maximum values as will be seen later. 

Figures 8 (a), (b), (c) and (d) present the absorption coefficients (α) of the various samples 

under different annealing conditions. There is again the best improvement in absorption 

coefficient and in absorption edges for the samples treated with CdCl2+CdF2 (fig. 8 (d)) 

compared to the other samples. For the samples without chemical treatment (fig. 8 (b)), 

samples treated with only CdCl2 (fig. 8 (c)) and those treated with CdCl2+CdF2, α displays an 

inverse relationship with film thickness for photon energies  1.50 eV, except for the thickest 

sample (2.1 μm). This may be due to change in stoichiometry in this particular sample during 

deposition. In the as-deposited samples, α appears to increase with film thickness. The best 

improvement in absorption coefficient for the samples treated with CdCl2+CdF2 is worthy of 

note. This property and the observed least transmittance for the same set of samples suggest 

that these samples either have more closely packed grains or more passivated grain 

boundaries or both. This situation, which is favourable to photovoltaic application, must have 

been initiated by the presence of F in the chemical treatment. 

Figures 9 (a), (b), (c) and (d) show the graph of (αhν)
2
 vs. photon energy for all the samples. 

Again, the highest absorption (αhν)
2
 and the best absorption edges are displayed by the 

samples treated with CdCl2+CdF2 followed by those treated with only CdCl2 and then by the 

samples annealed without chemical treatment. These results bring out the overall positive 

effect of annealing on electrodeposited CdTe. The trend in absorption here, with respect to 

film thickness follows the same pattern observed for α in figure 8. However, a close 

observation of figure 9 reveals that the samples annealed with CdCl2+CdF2 treatment all have 

the same (narrow) energy bandgap of ~1.48 eV. The samples with only CdCl2 similarly have 

a common energy bandgap of ~1.50 eV, while the samples annealed without chemical 

treatment have a common energy bandgap of ~1.52 eV. The as-deposited samples have 

energy bandgaps in the range (1.47 – 1.50) eV with the thickest sample (2.1 μm) having no 

defined energy bandgap. 

It is important at this point to mention that the as-electrodeposited CdTe layers are not of 

interest especially in solar cell fabrication as these materials do not produce good solar cells 

as a result of their poor electronic quality, having been grown at relatively low temperature. It 

is for this reason that post-deposition heat treatment of CdTe, especially with prior CdCl2 

treatment came into practice. This process, which we are now modifying by adding CdF2, has 

the advantage of annealing out defects, initiating re-crystallisation and passivating grain 

boundaries in the CdTe material, thus improving the overall quality of the material for 

electronic devices application. The major interest in the present work is therefore on the 



9 
 

annealed samples with or without prior chemical treatment. The narrowing of energy 

bandgap of the chemically treated CdTe samples (fig. 9 (c) and (d)) is therefore of interest in 

applications such as radiation detection and photovoltaic solar energy conversion.  

The extinction coefficient of the CdTe layers under study are shown in figures 10 (a), (b), (c) 

and (d). The extinction coefficient determines the absorption coefficient according to 

equation (4). The variation of K with photon energy follows similar trend as the absorption 

coefficient. For the samples treated with only CdCl2 however, two observations can be made. 

Firstly, the thinnest sample (1.1 μm) in this set has the least values of K. Secondly, the values 

of K for this entire set of samples is about one order of magnitude higher than those for the 

samples without chemical treatment (fig. 10 (b)) and with CdCl2+CdF2 treatment (fig. 10 

(d)). The reason for this deviation is not clearly understood at present. However, the 

treatment with only CdCl2 may be responsible for this. Apart from this deviation, one 

observes that the spread in the values of K is least for the samples treated with CdCl2+CdF2. 

The refractive indices of the various CdTe samples as a function of photon energy are shown 

in figures 11 (a), (b), (c) and (d). These graphs are similar to those of reflectance in figure 7, 

if the reflectance were plotted against photon energy. The least spread in the refractive index 

is observed for the samples treated with CdCl2+CdF2. For this set of samples, n~2.60 for all 

the sample thicknesses for photon energies   Eg except for the 2.1-μm sample in which n 

varies from 2.25 to 2.60 in this photon energy range. The reason for this slight deviation in 

the 2.1 μm-sample may be connected with the rapid structural transformation observed in the 

sample (fig. 4 (d)) which may have resulted in the reduction in the density of crystallites or 

grains in one or more of the observed four crystal planes of orientation in the XRD pattern. 

Consequently, light propagates faster in this material for certain photons with higher energies 

than others (in the NIR region), since       , where c is the speed of light in vacuum and 

  is the velocity with which light propagates in the sample. Below the bandgap energy, there 

is no clear dependence of n on film thickness for all the samples under the various annealing 

conditions. Another possible reason for the observed trend in the values of n for the 2.1-μm 

sample is due to the presence of large gaps or holes between the randomly oriented 

crystallites resulting from annealing. Under such situation, large amount of photons 

(especially, in the NIR region) can transmit through such holes resulting in relatively low n 

values. 

Figures 12 (a), (b), (c) and (d) show the graphs of real part of the dielectric constant vs. 

photon energy. These graphs are generally similar in feature to the graphs of n vs. photon 

energy. The samples treated with CdCl2+CdF2 show the least spread in the values of   . For 

photon energies      ,    is in the range (6.4 – 7.0) for these samples. For the CdCl2-

treated samples,    is in the range (5.2 – 6.9) while for the untreated samples (fig. 12 (b)),    

is in the range (6.0 – 7.0). The range of values of    is even wider for the as-deposited 

samples (fig. 12 (a)). There is again no clear correlation between the values of    and film 

thickness in all the samples irrespective of the annealing condition. The observed values of    

suggest that devices fabricated with the CdCl2+CdF2-treated CdTe samples will display 
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relatively improved and more stable capacitance and therefore will have longer response time 

in the infrared photon energy range.  

Figures 13 (a), (b), (c) and (d) show the graphs of imaginary part of the dielectric constant    

as a function of photon energy. A trend similar to that observed for the extinction coefficient 

K is seen here. The samples treated with only CdCl2 have values of    that are about one order 

of magnitude higher than the rest of the samples. The spread in the values of    is the least for 

the samples treated with CdCl2+CdF2 compared with the samples treated with only CdCl2 and 

those without chemical treatment. Apart from the sample with thickness of 2.1 μm, the value 

of    tends to decrease as the film thickness increases for all the annealed samples. A possible 

reason for the deviation in the 2.1 μm-sample has been stated earlier. These results and all the 

previous results discussed so far suggest that samples treated with CdCl2+CdF2 generally 

show the best improvement in their quality for solar cell application compared to other 

samples. 

This combined, more superior improvement, in the structural and optical properties of CdTe 

layers treated with CdCl2+CdF2 is expected to produce solar cells with better device 

performance compared to those treated with CdCl2. In order to substantiate this claim, 

authors have recently reported preliminary solar cell device results confirming the advantage 

of this treatment [17]. However, as work progresses towards optimizing growth, chemical 

treatment and annealing conditions, as well as device fabrication steps, current solar cell 

results obtained for 2 mm diameter glass/FTO/CdS/CdT/Au cells and presented in figure 14 

show drastic improvement in efficiency for solar cell with CdCl2+CdF2 treatment compared 

to that with CdCl2 treatment. These cells show efficiencies of 8.3% and 3.3% respectively for 

CdCl2+CdF2-treated CdTe and CdCl2-treated CdTe respectively. Other device parameters for 

the 8.3% cell are: open-circuit voltage (Voc) = 656 mV, short-circuit current density (Jsc) = 

33.3 mAcm
-2

 and fill factor (FF) = 0.38, while device parameters for the 3.3% cell are: open-

circuit voltage (Voc) = 510 mV, short-circuit current density (Jsc) = 20.2 mAcm
-2

 and fill 

factor (FF) = 0.32. These results are better than the earlier reported maximum values of 6.7% 

and 3.0% for CdCl2+CdF2 and CdCl2 treatment respectively [17]. The CdTe thickness used 

for these cells was 2 μm with CdS thickness of 240 nm.  

 

4.0 Conclusion 

The effects of post-deposition annealing with different chemical treatments on the structural 

and optical properties of electrodeposited CdTe thin films have been studied in detail using x-

ray diffraction and spectrophotometry. The result of XRD study shows that samples with 

thicknesses up to 1.8 μm exhibit increased preferential orientation of the crystallites in the 

(111) plane after annealing relative to the as-deposited material and irrespective of the 

chemical treatment before annealing. For samples with thicknesses > 1.8 μm, the preferential 

orientation in the (111) crystal plane tends to decrease below that of the as-deposited material 

for samples annealed after CdCl2+CdF2 treatment. However, for samples with thicknesses 

 1.8 μm, the intensity of the (111) XRD peak generally begin to decrease gradually for 
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CdCl2+CdF2 treatment while XRD peaks corresponding to the (220), (311) and (331) crystal 

planes begin to emerge. This trend indicates a structural transformation of the samples under 

this treatment condition. The lattice constant and d-spacing of the materials get closer to 

those of the standard reference material for these samples treated with CdCl2+CdF2. 

The results of optical characterisation show that the absorption property of all the samples 

increases with increase in film thickness while the transmission decreases with increasing 

film thickness, irrespective of the annealing condition employed. The optical properties of the 

materials in general get improved on annealing, with less spread in the optical parameters. 

However, annealing after CdCl2+CdF2 treatment improves these properties further. The 

energy bandgaps of the samples annealed with CdCl2+CdF2 treatment become smaller 

compared to the rest of the samples. This trend also underlines the influence of CdCl2+CdF2 

treatment on the optical properties of these electrodeposited CdTe materials for photovoltaic 

application. Photovoltaic solar cells fabricated with  with CdCl2+CdF2-treated CdTe and 

CdCl2-treated CdTe produced efficiencies of 8.3% and 3.3% respectively showing the 

advantage of CdCl2+CdF2 treatment over conventional CdCl2 treatment.  
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Figure captions 

Fig. 1 XRD patterns of 1.1 μm CdTe samples with different annealing conditions 

 

Fig. 2 XRD patterns of 1.3 μm CdTe samples with different annealing conditions 

 

Fig. 3 XRD patterns of 1.8 μm CdTe samples with different annealing conditions 

 

Fig. 4 XRD patterns of 2.1 μm CdTe samples with different annealing conditions 

 

Fig. 5 Optical transmittance vs. photon wavelength for CdTe thin films with different   

           thicknesses under different annealing conditions 

 

Fig. 6 Optical absorbance vs. photon wavelength for CdTe thin films with different   

           thicknesses under different annealing conditions 

 

Fig. 7 Optical reflectance vs. photon wavelength for CdTe thin films with different  

          thicknesses under different annealing conditions 

 

Fig. 8 Optical absorption coefficient vs. photon energy for CdTe thin films with different      

           thicknesses under different annealing conditions 

 

Fig. 9 (αhν)
2
 vs. photon energy for CdTe thin films with different thicknesses under different   

           annealing conditions 

 

Fig. 10 Extinction coefficient vs. photon energy for CdTe thin films with different  

            thicknesses under different annealing conditions 

 

Fig. 11 Refractive index vs. photon energy for CdTe thin films with different thicknesses  

            under different annealing conditions 

 

Fig. 12 Real dielectric constant vs. photon energy for CdTe thin films with different  

             thicknesses under different annealing conditions 

 

Fig. 13 Imaginary dielectric constant vs. photon energy for CdTe thin films with different  

             thicknesses under different annealing conditions 

 

Fig. 14 Current density-Voltage graphs of solar cells made with CdTe annealed with CdCl2     

            and CdCl2+CdF2 

 

 

 

 

 

 

 

 

 

 


