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ABSTRACT 

The inclusion of gallium into the well-known CdCl2 post-growth treatment shows drastic improvement in both 

CdTe material and electrical properties of the fully fabricated CdS/CdTe-based solar cell as compared with the 

regular CdCl2 treatment. The optical, morphological, compositional and electronic properties the glass/FTO/n-

CdS/n-CdTe/p-CdTe were explored after post-growth treatment of glass/FTO/n-CdS/n-CdTe/p-CdTe with 

CdCl2 and CdCl2:Ga treatments at 430 °C for 20 min. Morphological analysis show grain growths within the 

ranges of (100 – 2000) nm and (200 – 2600) nm for CdCl2 and CdCl2:Ga treatments as compared with the as-

deposited glass/FTO/n-CdS/n-CdTe/p-CdTe layer with grain size within the ranges of (100 – 250) nm. 

Structurally, the preferred orientation of the as-deposited CdTe remains (111)C after both CdCl2 and CdCl2:Ga 

treatments of glass/FTO/n-CdS/n-CdTe/p-CdTe with randomisation of crystallite orientation observed after 

CdCl2:Ga with an increase in the diffraction intensities of the (220)C and (311)C CdTe peaks. The multilayer 

structure glass/FTO/n-CdS/n-CdTe/p-CdTe utilised in this work was grown using electrodeposition technique. 

The glass/FTO/n-CdS/n-CdTe/p-CdTe sample was divided into three sets; the first and second sets were treated 

with CdCl2 and CdCl2:Ga respectively, while the third set was left as-deposited. Both the CdCl2 and CdCl2:Ga 

sets were heat treated in air at 430°C for 20 min, etched to improve metal/semiconductor interface and 

metallised with 100 nm Au contacts. The current-voltage measurements show comparative improvements in the 

open-circuit voltage, short-circuit current density, fill factor and the solar cell efficiency of the CdCl2:Ga treated 

glass/FTO/n-CdS/n-CdTe/p-CdTe as compared with the CdCl2 treated structure. A conversion efficiency of 

~11% was achieved with the CdCl2:Ga treatment while ~7% was achieved with the CdCl2 treatment of similar 

glass/FTO/n-CdS/n-CdTe/p-CdTe device structure. This observation shows that the inclusion of gallium further 

improves CdCl2 treatment of CdS/CdTe-based solar cell due to its unique features of improving the 

stoichiometry of the CdTe layer. 
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1 INTRODUCTION  

Heterojunction solar cell formed by the combination of semiconductors from groups II and VI, with emphasis 

on cadmium sulphide/cadmium telluride (CdS/CdTe) based solar cell have been considered as an alternative to 

silicon (Si) based solar cell [1], [2]. CdS/CdTe-based solar cell which has attained 21.5% conversion efficiency 

[3]  can be deposited  using different techniques as reported in the literature [1]. Post-growth treatment (PGT) 

has been considered as an integral part of achieving highly efficient solar cell [4]. This is justified by 

recrystallisation and grain growth, optimisation of electrical conductivity and doping concentration, passivation 

of grain boundaries, optimisation of the CdS/CdTe interface morphology, improvement in Cd:Te stoichiometric 

composition, reduction of Te precipitation amongst other advantages observed after PGT in the presence of 

some halogen based salts and gases [5]–[9]. As documented in the literature, it is challenging to completely 

avoid the presence of Te precipitates in CdTe by modifying the growth technique, growth process or post-

growth treatment [10]–[12]. Fernandez, 2003, discussed that the presence of Te precipitates is attributed to 

peculiarities of the CdTe phase diagram [13] with Te-rich composition in the vicinity of melting point and a 

strong retrograde character of solidus on Te-rich side of homogeneity region [14]. Dharmadasa et al, 2015 [11] 

relate the incorporated defects within CdTe bandgap at 0.40±0.04 eV, 0.65±0.02 eV and the broad  mid-gap 

defect level at 0.73±0.02 eV within the CdTe bandgap (1.45 eV) to Te-richness, while, the defects at 0.96±0.04 

and 1.18±0.02 were related to Cd-richness in CdTe layers using photoluminescence (PL) study. Defects related 

to Cd-rich CdTe are more useful when large Schottky barriers are required at the CdTe/metal interface in 

achieving high performing devices. This has also been demonstrated by Burst et al, 2016 [15] and Reese et al, 

2015 [16]. Other independent researchers have established the reduction of defect concentrations of CdTe at 

0.40±0.04 eV, 0.65±0.02 eV and 0.73±0.02 using PL study [13] by annealing CdTe in gallium melt. Therefore, 

Ga has a unique property of reducing Te-richness in CdTe material. Based on this understanding, this work 

focuses on the effect of the inclusion of shallow donor dopant such as gallium into the normal cadmium chloride 

post-growth treatment as it affects both the material and device properties of CdS/CdTe-based solar cell. 

 

2 2. EXPERIMENTAL DETAILS 

All the chemicals and substrates used in this work were procured from Sigma Aldrich, UK. Two-electrode 

electrodeposition configuration was utilised in this work for its simplicity and minimised contamination route. 

Fluorine-doped tin oxide (FTO) substrates with sheet resistance ~7 Ω/□ were used as the working electrode 

while high purity carbon rod was utilised as the anode. The substrate was cut into 4×3 cm
2
 and attached to a 
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cathode using polytetrafluoroethylene (PTFE) tape. Computerised GillAC potentiostat was utilised as the power 

supply source. Prior to deposition, the working electrode was cleaned in an ultrasonic bath containing soap 

solution and rinsed in deionised (DI) water. Afterwards, the substrate was degreased using acetone and later 

rinsed in a flow of DI water before been transferred into the electrolytic bath. It should be noted that all the 

cathodic potentials utilised in this work have been pre-characterised, optimised and published [17], [18]. 

 

2.1 Sample preparation 

2.1.1 CdS bath preparation and growth 

120 nm thick cadmium sulphide (CdS) was cathodically electrodeposited on the glass/FTO substrate from an 

aqueous electrolyte containing cadmium chloride hydrate (CdCl2· xH2O) of 98% purity and ammonium 

thiosulphate (NH4)2S2O3 99% purity. The salt concentrations of 0.12M CdCl2·xH2O and 0.18M (NH4)2S2O3 in 

800 ml deionised (DI) water was utilised. The solution was contained in a 1000 ml polypropylene beaker while 

the beaker was placed in an 1800 ml glass beaker containing DI water. The glass beaker serves as the outer bath 

containing a low volume of DI water to maintain uniform heating of the electrolyte within the inner 

polypropylene container. The outer beaker was heated using a programmable hot plate/stirrer system with the 

stirring rate set to ~300 rpm. Prior to the deposition of CdS, the electrolytic system was adjusted to pH 

2.00±0.02 and the bath temperature was maintained at ~85˚C during growth. The bath was electro-purified for 

~30 hours prior to the deposition of CdS. The CdS layer was deposited at an optimised cathodic potential of 

1200 mV based on structural, optical, morphological, compositional and electrical property analysis [17]. 

Immediately after growth, the glass/FTO/CdS was rinsed in flowing DI water to wash off loose elemental Cd 

and S on the CdS layer. The layer was dried under a nitrogen stream and heat treated at 400˚C for 20 minutes in 

air to improve the characteristic properties of CdS [5]. The inclusion of CdCl2 was avoided at this stage to 

isolate the effect of CdCl2 and CdCl2+Ga2(SO4)3 on the post-growth treatment of glass/FTO/n-CdS/n-CdTe/p-

CdTe layers. 

 

2.1.2 CdTe bath preparation and growth 

CdTe was electrochemically deposited on well rinsed and heat treated glass/FTO/CdS substrate in an 

electrolytic bath containing cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O) of 99.98% purity and tellurium 

oxide (TeO2) of 5N (99.999%) purity. Salt concentrations of 1.5M Cd(NO3)2·4H2O and 5 ml of dissolved TeO2 

solution were contained in 800 ml DI water. Due to the insolubility of TeO2 in water, 0.03M TeO2 was prepared 
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by dissolving 2g of TeO2 in 30 ml concentrated nitric acid. The acidic solution was stirred continuously for 60 

minutes prior to its dilution with 400 ml of DI water. The tellurium concentration in the electrolytic bath was 

kept low due to the high difference in the reduction potential of Cd and Te.  

The pH at the start of electrodeposition and growth temperature of the bath were adjusted to 2.00±0.02 and 

~85˚C respectively. The outer glass beaker setup as explained for the CdS bath was also utilised. 1100 nm thick 

n-type CdTe layer was grown at 1370 mV on the glass/FTO/n-CdS substrate. Afterwards, ~30 nm of p-CdTe 

was deposited on n-CdTe layer using the same electrolytic bath. This was achieved by adjusting the growth 

voltage to 1360 mV in a continuous growth process. The incorporation of the thin p-CdTe layer is for the 

formation of a p-n junction at n-CdTe/p-CdTe interface with very low lattice mismatch and an Ohmic contact on 

the Au/p-CdTe interface [14], minimise the contact resistance [19], enhance the band bending by pinning the 

Fermi level (FL) close to the valence band as later shown in Figure 6 (b) and improve the reproducibility of the 

devices. Although pinning the FL close to the valence band can be achieved through surface etching as 

demonstrated in the literature [20], [21], the back layer Cd/Te concentration in this work was altered as 

explained in Section 2.1.2, so that only the thin CdTe layer (~30 nm) is p-type while the bulk of the CdTe layer 

(~1100 nm) remains n-type after PGT as demonstrated by Salim et al, 2015 [18]. It should be that under ideal 

conditions, the incorporated p-CdTe back layer is expected to pin the Fermi level close to the valence band 

whereby higher barrier height can be formed. Conversely, the incorporation of p-CdTe introduces defect related 

to Te-richness in CdTe [22]. For this reason, it is essential that the thickness of the p-CdTe back layer is 

optimised. 

The glass/FTO/n-CdS/n-CdTe/p-CdTe layer was rinsed in DI water and dried in a stream of nitrogen afterwards. 

The 4×3 cm
2
 glass/FTO/n-CdS/n-CdTe/p-CdTe was divided into 3 sets of 4×1 cm

2
, labelled AD (as-deposited), 

CCT (CdCl2 treated) and GCT (CdCl2:Ga treated) based on the post-growth treatment undergone. 

 

2.1.3 Post-growth treatment preparation and application 

In this study, two aqueous solutions (A and B) were used to treat the material layers. Solution A contains 0.1M 

CdCl2 in 20 ml of DI water at room temperature, while solution B contains 0.1M CdCl2 and 0.05M Ga2(SO4)3 in 

20 ml of DI water at room temperature. The solutions were stirred continuously for 1 hour to achieve 

homogeneity. The sample labelled AD was left as-deposited, while samples labelled CCT and GCT were CdCl2 

treated in solution A and CdCl2:Ga treated in solution B respectively. 
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The application of CdCl2 and CdCl2+Ga2(SO4)3 on the grown glass/FTO/n-CdS/n-CdTe/p-CdTe was achieved 

by adding few drops of relevant solution on the glass/FTO/n-CdS/n-CdTe/p-CdTe surface. The full coverage of 

the glass/FTO/n-CdS/n-CdTe/p-CdTe layer with the treatment solutions was achieved with a damped cotton 

bud. Both the CCT and GCT treated glass/FTO/n-CdS/n-CdTe/p-CdTe layers were allowed to air-dry before 

heat treatment. The heat treatment was performed at 430˚C for 20 minutes in air atmosphere for samples 

undergoing each treatment based on previously optimised conditions [4], [23]–[25]. The CCT and GCT treated 

glass/FTO/n-CdS/n-CdTe/p-CdTe layers were then rinsed in DI water and dried in a stream of nitrogen 

afterwards. It should be noted that the incorporation of gallium in CdTe reduced the intensity of the 

cathodoluminescence (CL) peak associated with defects in CdTe [13]. Therefore the addition of Ga in the 

regular CdCl2 treatment will further reduce defects in CdTe, improve the stoichiometry and perhaps dope the 

material. 

The surfaces of the AD, CCT and GCT glass/FTO/n-CdS/n-CdTe/p-CdTe layers were etched using a solution 

containing K2Cr2O7 and concentrated H2SO4 for acid etching and a solution containing NaOH and Na2S2O3 for 

basic etching for 2 seconds and 2 minutes respectively to improve the metal/semiconductor contact [26], [27]. 

Immediately afterwards, the (AD, CCT and GCT) samples were transferred to a high vacuum system in order to 

deposit 2 mm diameter and 100 nm thick Au contacts on the glass/FTO/n-CdS/n-CdTe/p-CdTe structure. The 

fabricated devices were analysed using current-voltage characteristic measurements to determine their device 

parameters. 

 

2.2 Characterisation techniques 

The information about the level of crystallinity and phase identification of deposited layers were obtained using 

Philips PW 3710 X’pert diffractometer with Cu-Kα monochromator of wavelength λ=1.54 Å. The X-ray 

generator tension and current were adjusted respectively to 40 kV and 40 mA for these experiments. The optical 

properties of the grown thin films were studied at room temperature using Cary 50 Scan Ultraviolet-Visible 

(UV-Vis) spectrophotometer within the wavelength range of (200 – 1000) nm. The morphological and 

compositional analyses of the deposited layers were studied using FEI Nova 200 NanoSEM equipment. The 

electrical conductivity type of the layers was determined using Photoelectrochemical (PEC) cell measurements. 

The fully fabricated solar cell parameters were measured using fully automated Rera Solution I-V measurement 

system.  
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3 RESULTS AND DISCUSSION 

3.1 Analysis of CdS layer 

Although this work is mainly based on the effect of post-growth treatment (PGT) as it affects the CdTe absorber 

layer but the basic characteristics of the underlying CdS layer will be briefly discussed. Figure 1 (a) shows a 

graph of the square of the absorption against photon energy, while Figures 1 (b) and 1 (c) show the typical SEM 

micrograph and XRD patterns of heat treated CdS layer. As shown in Figure 1 (a), the bandgap of the 

electrodeposited CdS layer utilised in this work is ~2.42 eV. This was derived by taking the tangent of the 

straight line portion of the curve at the photon energy value at A
2
=0.  The observed bandgap is comparable to 

the bulk CdS bandgap.  

From observation, the SEM micrograph of CdS as depicted in Figure 1 (b) shows a full coverage of the 

underlying glass/FTO substrate. Due to the good coverage, shunting paths between FTO and the CdTe top layer 

is substantially sealed off. The observation of small grain justifies CdS wetting property. Furthermore, the 

electrodeposited CdS utilised in this work is polycrystalline in nature as observed in Figure 1 (c) with a 

preferred orientation along hexagonal (101) plane. 
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Figure 1: Typical (a) optical absorption curve, (b) SEM micrograph and (c) XRD spectrum of heat treated CdS layers 

grown by electroplating. 
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3.2.1 Optical absorption analysis 

Figure 2 (a) shows the optical absorption curves, while Figure 2 (b) shows the slope of the absorption edges and 

bandgaps for AD, CCT and GCT - glass/FTO/n-CdS/n-CdTe/p-CdTe layers. As observed in Figures 2 (a) and 2 

(b), the bandgap of all the AD, CCT and GCT layers falls within the CdTe bulk bandgap range of (1.45 to 1.50) 

eV [28], even for the as-deposited layer without any PGT to modify its optical parameters. Although, there were 

no clear differences in the bandgap due to the material quality of the as-deposited CdTe layer, the difference in 

the absorption edge is clearly observed in Figure 2 (b). Bosio et al, (2006) reported that the sharpness of the 

absorption edge signifies superior semiconductor layer optical property [5]. Based on this submission, it could 

be interpreted that the layer with the superior optical quality is the GCT layer and the least is the as-deposited 

CdTe layer. It is interesting to observe an inverse relationship (see Figure 2 (b)) between the bandgap and the 

absorption edge slope which further buttresses the GCT - glass/FTO/n-CdS/n-CdTe/p-CdTe material 

superiority. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Summary of the effect of different treatments on bandgap and the slope of absorption 

edges. 

Sample Bandgap (eV) Absorption edge slope (eV
-1

) 

AD 1.48 2.94 

CCT 1.47 3.85 

GCT 1.47 8.33 

 

Figure 2:  Graphs of (a) Square of absorption against photon energy and (b) Optical 

bandgap and slope of absorption edge against treatment conditions for AD, CCT and GCT 

- glass/FTO/n-CdS/n-CdTe/p-CdTe layers. 
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3.2.2 Morphological analysis 

Figures 3 (a), 3 (b) and 3 (c) show the morphology of AD, CCT and GCT - glass/FTO/n-CdS/n-CdTe/p-CdTe 

thin films. As observed from Figure 3, the underlying substrates are fully covered by the CdTe layer before and 

after different treatments.  The as-deposited glass/FTO/n-CdS/n-CdTe/p-CdTe layer shows agglomeration of 

small crystallites to form cauliflower-like larger grains. After post-growth treatment such as CCT and GCT, 

grain growths within the range of (100 – 2000) nm and (200 – 2600) nm were observed respectively. The 

influence of CdCl2 in PGT of CdTe has been explicitly explored in the literature as it affects the improvement of 

material and device quality of CdTe based solar cells [4]–[6]. Further improvements in grain size can be 

observed in morphological property of the GCT treated glass/FTO/n-CdS/n-CdTe/p-CdTe layer as shown in 

Figure 3 (c) as compared with the CCT in Figure 3 (b) in this work. Although this improvement signals the 

positive effect of the inclusion of Ga in the usual CCT of CdTe, it cannot be ascertained at this stage. 

 

 

 

 

 

 

 

 

 

3.2.3 Compositional analysis 

Figure 4 shows the atomic composition of a typical glass/FTO/n-CdS/n-CdTe/p-CdTe multilayer configuration 

as detected by EDX technique. It should be noted that in addition to Cd and Te, the presence of S, Si, Sn and F 

may also be observed due to underlying glass/FTO/CdS substrate, Cl or Ga due to the PGT utilised and O due to 

layer oxidation. As expected, low Cd/Te composition was observed for the AD layer due to the Te-richness 

during the growth of the top p-CdTe layer at lower cathodic potential. This observation further buttresses the 

fact that provided CdTe is not subjected to any extrinsic doping, the conductivity type of CdTe is composition 

dependent for the as-deposited layer as later shown in Section 3.2.5. A shift towards unity of Cd/Te ratio was 

observed after CCT and GCT. This observation has been reported in the literature  [4]–[6], [18] as one of the 

advantages of PGT of CdTe. It should be noted that in addition to elemental composition, self-compensation and 

Figure 3: Typical SEM micrographs of (a) AD, (b) CCT and (c) GCT CdTe thin films electrodeposited on CdS layer 

at 1370 mV. 
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doping effect can take place during PGT. In the case 

of GCT, the presence of gallium can also remove 

Te-precipitate during the heat treatment [13], [19]. 

Therefore, the combination of all these processes 

seems to produce beneficial properties for the CdTe 

layer and the glass/FTO/n-CdS/n-CdTe/p-CdTe 

structure. 

 

 

 

3.2.4 Structural analysis 

Figure 5 shows the structural analysis of electrodeposited glass/FTO/n-CdS/n-CdTe/p-CdTe layers under 

different conditions and Table 2 summarises the results of X-ray diffraction (XRD) analysis on the effect of 

different post-growth treatments on glass/FTO/n-CdS/n-CdTe/p-CdTe layers. It was observed that no reflection 

can be attributed to the underlying CdS layer [29] except for the hexagonal CdS (002) which coincides with the 

FTO peak at angle 2θ=26.68˚ cannot be ascertained. Other reflections attributed to FTO were observable at 

2θ=32.9°, 37.1° and 51.6°. XRD reflections assigned to cubic (111), (220) and (311) CdTe phases at 2θ=23.88°, 

38.65° and 45.84° were also observed. It can be deduced from Figure 5 that under all conditions explored in this 

work, the most intense XRD reflection is observed at 2θ=23.85°. For the CCT - glass/FTO/n-CdS/n-CdTe/p-

CdTe layer, an increase in the cubic (111)C orientation was observed as compared to AD without any 

observable change in the other CdTe reflections. However, for GCT - glass/FTO/n-CdS/n-CdTe/p-CdTe layer, 

randomisation of crystallite orientation was observed. This is usually seen with the collapse of (111) peak and 

increase in (220) and (311) peaks. As reported recently [30], these changes suddenly occurs when the grain 

boundaries are melted due to presence of impurities such as excess Cd, Cl, O and Ga. The presence of Ga seems 

to enhance the decrease in the (111) peak and increasing the (220) and (311) peak intensities due to 

randomisation of crystal orientations.  
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From the comparison between the AD, CCT and GCT glass/FTO/n-CdS/n-CdTe/p-CdTe layers, it could be 

inferred that the inclusion of gallium in the normal cadmium chloride treatment PGT may have triggered the re-

crystallisation and reorientation of the crystalline planes in this work. It should be noted that alterations in XRD 

patterns also depends on the underlying substrates and heat treatment conditions used [30].  

As shown in Table 2, there was no clear distinction between the glass/FTO/n-CdS/n-CdTe/p-CdTe layers 

explored in this work as concerning the full-width-at-half-maximum (FWHM), lattice spacing and crystallite 

size calculated using Scherrer equation. This observation might be due to the limitations of the use of Scherrer 

equation [31] or the XRD analysis software on polycrystalline material layers with large crystals. 

 

 

 

 

 

 

Table 2: The XRD analysis on the effect of PGT on CdTe layers. 

Treatment 2θ     

(degrees) 

Lattice 

spacing (Å) 

FWHM 

(degrees) 

Crystallite 

size D (nm) 

Plane (hkl) Assignments 

AD 23.94 3.72 0.162 52.3 (111) Cubic 

CCT 23.92 3.72 0.162 52.3 (111) Cubic 

GCT 23.92 3.72 0.162 52.3 (111) Cubic 
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Figure 5: XRD spectra of glass/FTO/n-CdS/n-CdTe/p-CdTe structures for different conditions 

(AD, CCT and GCT). 
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3.2.5 Photoelectrochemical (PEC) cell study 

The PEC cell requires the formation of a solid/liquid junction between a semiconductor and a suitable 

electrolyte. The electrolyte utilised in this work is 0.1 M sodium thiosulphate (Na2S2O3). Both the 

semiconductor and a counter electrode (high purity carbon rod) introduced to the electrolyte are connected to a 

voltmeter. Band bending at the semiconductor/electrolyte interface forms a Schottky type potential barrier due 

to the equalisation of the FL of both the semiconductor and the electrolyte. The direction of band bending is 

determined by the conductivity type of the semiconductor. The voltage difference (VL-VD) under illuminated 

(VL) and dark (VD) conditions determines the conductivity type of the semiconductor [32]. It should be noted 

that the use of PEC as against other robust conductivity measurement techniques such as Hall Effect 

measurement is pertinent due to the underlying conducting substrate FTO.  

Table 3 shows the PEC signal of glass/FTO/p-CdTe layer after different PGTs. It was observed that the p- 

conduction type of the as-deposited CdTe layer was retained after different treatments. Although, a shift in the 

PEC signal towards the n-type conduction region was also observable in both the CCT and GCT p-CdTe layers.  

 

This observation depicts the movement of the FL which was close to the valence band towards the middle of the 

bandgap due to the alteration in doping as a result of the heat treatment condition [6], Cd/Te compositional 

changes [33] amongst other factors. Other incorporated layers such as n-CdS and n-CdTe have been known to 

retain their conductivity type with a slight shift towards the opposite conductivity type [17], [18].  

 

3.3 Solar cell devices characterisation 

Based on the analysis as discussed in Section 3.2.5, the glass/FTO/n-CdS/n-CdTe/p-CdTe layer schematics and 

the band diagram can be represented by Figure 6 (a) and Figure 6 (b) respectively. 

 

 

 

 

Table 3: PEC cell measurements on p-CdTe layers after different treatments 

Sample VL (mV) VD (mV) PEC signal (VL-VD)  (mV) Conductivity type 

AD -61 -84 23 P 

CCT -78 -96 18 p 

GCT -42 -47 5 p 
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Figures 7 (a), 7 (b) and 7 (c) shows the current-voltage (I-V) curves of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au 

layers with different PGT conditions, measured under AM1.5 as discussed in Section 2.2. From these I-V curves 

measured under illuminated condition, solar cell parameters such as series resistance (Rs), shunt resistance (Rsh), 

short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF) and conversion efficiency (η) can be 

determined. Experimentally observed solar cell parameters for the different conditions are summarised in Table 

4 for three champion cells. Both the series resistance Rs and shunt resistance Rsh were calculated from the slopes 

Figure 7: Current-voltage characteristics of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devics with AD, CCT and GCT 

conditions. 
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Figure 6: (a) Schematic diagram and (b) The band diagram of the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au thin 

film solar cell. 
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Table 4: Tabulated device parameters obtained from I-V measurements under A.M1.5 illuminated condition. 

Treatment Rs (Ω) Rsh ×10
3
 (Ω) Jsc (mAcm

-2
) Voc (V) Fill factor Efficiency (%) 

AD 1027 1.4 7.1 0.25 0.24 0.43 

 

1062 1.5 7.8 0.26 0.24 0.49 

 

1180 1.3 7.6 0.25 0.24 0.46 

CCT 302 6.4 24.2 0.61 0.50 7.50 

 

353 3.8 25.5 0.64 0.43 7.01 

 

354 3.2 24.8 0.64 0.43 6.84 

GCT 273 8.0 29.9 0.72 0.52 11.21 

 

319 7.1 27.4 0.70 0.52 9.97 

 

276 8.0 29.3 0.73 0.52 11.12 

 

inverse of the linear-linear I-V curve in the forward and reverse bias respectively under AM 1.5 illuminated 

condition.  

The high Rs and low Rsh values as observed in the fabricated solar cell incorporating AD - CdTe can be directly 

attributed to low semiconductor material quality as described by Soga, 2004 [34]. It is clearly observed in Figure 

7 and Table 4 that the improvement in the electrical properties of the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au 

devices can be achieved after some chlorine based treatment [35]. The addition of gallium into the regular CdCl2 

treatment further enhances the device performance. This enhancement can be attributed to the material 

properties improvement after treatment and as discussed in Section 3.2. It should be noted that the short-circuit 

current density as observed in this work is higher than the Shockley–Queisser limit on single p-n junction [36] 

as a result of the incorporation of the multilayer n-n-p configuration [37]. The structure represents an early stage 

of graded bandgap, multilayer devices configuration.  

Furthermore, the comparatively higher FF, Jsc and Voc observed with cells fabricated using GCT CdTe solar 

cells can be attributed to the incorporation of n-dopant treatment such as gallium in CdTe by the introduction of 

excess electron into the crystal lattice to boost conductivity and also further improvement in the material quality 

as observed in Sections 3.2.1 to 3.2.5. Similar observations have been recorded in the literature with the 

incorporation of n-dopant to CdTe [38]–[40]. Although the effect of the incorporation of gallium on bandgap 

defects cannot be depicted from the I-V results, the improvement in the overall electronic properties of the 

fabricated devices is observable.  

 

4 CONCLUSION 

The effect of the inclusion of Ga to the regular CdCl2 post-growth treatment on the material and electronic 

properties of CdS/CdTe based layers has been explored in this work. The optical analysis shows that the grown 
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CdTe layer is within the standard bulk CdTe bandgap range with material superiority after CdCl2:Ga treatment 

due to the steeper absorption edge slope. The morphological studies show full material coverage and grain 

growth after both CCT and GCT. The compositional analysis shows the improvement of stoichiometry when 

treated with GCT. The structural analysis shows improvement in the XRD peak intensity reflection of the as-

deposited glass/FTO/n-CdS/n-CdTe/p-CdTe after both CCT and GCT with the preferred orientation along the 

cubic (111) plane. Although, more pronounced recystallisation was observed after GCT with a comparative 

reduction in the (111)C and an increase in the (220)C plane, showing improvement of grain boundary enhanced 

PV effect.  

Improvement in the electrical properties of the fabricated glass/FTO/n-CdS/n-CdTe/p-CdTe/Au was observed 

after PGT with GCT showing better results than CCT owing to the gallium inclusion in the treatment. With 

further material optimisation of gallium doping in CdTe treatment, improved electronic properties can be 

achieved. Work is on-going on the optimisation of Ga concentration and treatment parameter required for this 

inclusion.  
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