
Hierarchical Cluster Analysis to Aid Diagnostic Image Data 
Visualization of MS and Other Medical Imaging Modalities

SELVAN, Arul <http://orcid.org/0000-0001-9222-5538>, COLE, Laura 
<http://orcid.org/0000-0002-2538-6291>, SPACKMAN, Lynne and WRIGHT, 
Chris

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/15710/

This document is the Published Version [VoR]

Citation:

SELVAN, Arul, COLE, Laura, SPACKMAN, Lynne and WRIGHT, Chris (2017). 
Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization of MS and 
Other Medical Imaging Modalities. In: COLE, Laura, (ed.) Imaging Mass 
Spectrometry Methods and Protocols. Methods in Molecular Biology, 1 . Humana 
Press, 95-123. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


95

Laura M. Cole (ed.), Imaging Mass Spectrometry: Methods and Protocols, Methods in Molecular Biology, vol. 1618,
DOI 10.1007/978-1-4939-7051-3_10, © Springer Science+Business Media LLC 2017

Chapter 10

Hierarchical Cluster Analysis to Aid Diagnostic Image Data 
Visualization of MS and Other Medical Imaging Modalities

Arul N. Selvan, Laura M. Cole, Lynne Spackman, Sarah Naylor, 
and Chris Wright

Abstract

Perceiving abnormal regions in the images of different medical modalities plays a crucial role in diagnosis 
and subsequent treatment planning. In medical images to visually perceive abnormalities’ extent and 
boundaries requires substantial experience. Consequently, manually drawn region of interest (ROI) to 
outline boundaries of abnormalities suffers from limitations of human perception leading to inter-observer 
variability. As an alternative to human drawn ROI, it is proposed the use of a computer-based segmenta-
tion algorithm to segment digital medical image data.

Hierarchical Clustering-based Segmentation (HCS) process is a generic unsupervised segmentation 
process that can be used to segment dissimilar regions in digital images. HCS process generates a hierarchy 
of segmented images by partitioning an image into its constituent regions at hierarchical levels of allowable 
dissimilarity between its different regions. The hierarchy represents the continuous merging of similar, 
spatially adjacent, and/or disjoint regions as the allowable threshold value of dissimilarity between regions, 
for merging, is gradually increased.

This chapter discusses in detail first the implementation of the HCS process, second  the implementa-
tion details of how the HCS process is used for the presentation of multi-modal imaging data (MALDI and 
MRI) of a biological sample, third the implementation details of how the process is used as a perception 
aid for X-ray mammogram readers, and finally the implementation details of how it is used as an interpreta-
tion aid for the interpretation of Multi-parametric Magnetic Resonance Imaging (mpMRI) of the Prostate.

Key words Image perception, Image processing, Segmentation, Computer-aided detection, 
Computer-aided diagnosis, MALDI, MSI, MRI, Mammogram, DCE-MRI, mpMRI

1 Introduction

Tissue abnormality in medical images is usually related to a dissimilar 
part of an otherwise homogeneous image. The dissimilarity may be 
subtle or strong depending on the medical modality and the type 
of abnormal tissue.

Segmentation and delineation of abnormalities in medical 
images plays an important role in diagnosis and subsequent treat-
ment planning. For example when an abnormality is identified by 
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a radiologist on a breast screening mammogram then this case is 
discussed in detail at a multidisciplinary team (MDT) meeting to 
determine appropriate follow-up. It is important that the lesion 
extent is appropriately understood and delineated at the MDT in 
the communication between radiologist and surgeon concerning 
such abnormal cases which requires some form of region excised. 
It is well known that disagreements exist concerning the definition 
of lesion extent and the accurate specification of the location of 
lesion edges. This issue is important because of the following:

●● The potential extent of treated abnormal area can determine 
what type of subsequent surgical intervention the woman has and

●● Surgeons typically excise more breast material surrounding a 
lesion to ensure that they have fully removed any malignancy.

To visually perceive abnormalities’ extent and boundaries 
requires substantial experience. Consequently, manually drawn 
region of interest (ROI) to outline boundaries of abnormalities 
suffers from the following limitations:

●● Abnormalities are heterogeneous, hence in manually drawn 
region of interest (ROI) due to the limitation of human per-
ception information on abnormalities’ heterogeneity remains 
poorly exploited.

●● Also manual ROI suffers from inter-observer variability.

As an alternative (to ROI based), it is proposed the use of a 
segmentation algorithm, for example by Chandarana et al. [1]. In 
medical images, segmentation of regions of potential abnormalities 
is a difficult task because of issues such as spatial resolution, poor 
contrast, ill-defined boundaries, noise, or acquisition artifacts [2].

Segmentation can be thought as a process of grouping visual 
information, where the details are grouped into objects, objects 
into classes of objects, etc. Thus, starting from the composite seg-
mentation, the perceptual organization of the image can be repre-
sented by a tree of regions, ordered by inclusion. The root of the 
tree is the entire scene, the leaves are the finest details, and each 
region represents an object at a certain scale of observation [3].

Traditionally, segmentation algorithms would “binarize” the 
boundary map by choosing some threshold. There are two prob-
lems with thresholding a boundary map [4]:

●● The optimal threshold depends on the application, and
●● Thresholding a low-level feature like boundaries is likely to be 

a bad idea for most applications, since it destroys much 
information.

For these reasons, the segmentation algorithm should operate 
on a non-thresholded basis. Nevertheless, one needs to threshold 
the boundary map in order to perceive the boundaries, but this is 
done at many levels.

Arul N. Selvan et al.
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Hierarchical Clustering-based Segmentation (HCS) process is 
an unsupervised segmentation process that generates a hierarchy of 
segmented images by partitioning an image into its constituent 
regions at hierarchical levels of allowable dissimilarity between its 
different regions. The hierarchy represents the continuous merg-
ing of similar, spatially adjacent, and/or disjoint regions as the 
allowable threshold value of dissimilarity between regions, for 
merging, is gradually increased [5–7].

This chapter discusses in detail the implementation of the HCS 
process and how the process is applied for the following:

●● HCS aided presentation of multi-modal (Magnetic Resonance 
Imaging—MRI and Matrix-Assisted Laser Desorption/
Ionization—MALDI, Mass Spectrometry Imaging—MSI) 
imaging data of biological tissue sample.

●● HCS as a perception aid for X-ray mammogram readers.
●● HCS aided interpretation of Multi-parametric Magnetic 

Resonance Imaging (mpMRI).

2 Materials

The input to the HCS process is a two-dimensional matrix of num-
bers. The two-dimensional matrix of numbers can be the represen-
tation of the distribution of masses (of peptide and protein) in a 
biological sample (in the case of MALDI MSI) or the attenuated 
X-ray energy (in the case of X-ray images) or the nuclear magnetic 
resonance signal from the hydrogen atoms in an object (in the case 
of MRI). In the following three sections, the acquisition details of 
the input data, for each of the three applications of the HCS pro-
cess, is discussed separately.

The tissue sample was subcutaneously transplanted mouse fibrosar-
coma tumors. The MRI sectional images and subsequently MALDI 
MSI data were acquired as follows [8]:

●● The tumor tissue was embedded in gelatin blocks and markers 
were placed in all four corners of the gelatine blocks in order 
to aid spatial recognition and registration between modalities 
(Fig. 1).

●● MRI images were acquired using the 0.25 T Esaote GScan. 
The sample was centrally placed with a dedicated wrist coil and 
a range of sequences performed FOV (160 × 160). Optimal 
results were achieved from the T2-weighted Gradient Echo 
(3NEX) and XBone (4NEX) sequences; 2 mm slices (see Notes 
1 and 2) (Fig. 2).

2.1 MRI and MALDI- 
MSI Data of Tissue 
Sample

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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●● The tissue sample was frozen and then cryosectioned prior to 
MALDI MSI data capture.

●● Peptide mass fingerprints and MALDI Images were performed 
using the Applied Biosystems Qstar Pulsar i.

Anonymized X-ray mammogram image data were acquired as part 
of a screening program using Full Field Digital Mammography 
(FFDM) system with the pixel spacing of 70 μm (0.070 mm) (see 
Note 3). The approximate location and extent of abnormalities 
were marked by an expert radiologist (Fig. 3).

Anonymized MRI image data were acquired as part of diagnostic 
investigation. The images were acquired with pixel spacing of 1000 μm 
(1.0 mm) and 1.0 mm spacing between slices. The multi- parametric 

2.2 X-Ray 
Mammogram Image 
Data

2.3 mpMRI 
Image Data

Fig. 1 Tumor tissue embedded in a gelatin block and four markers placed in four 
corners

Fig. 2 T2-weighted MRI image of the tissue specimen

Arul N. Selvan et al.



99

images were acquired as T2-weighted before injecting intravenous 
contrast (Fig. 4) and T1-weighted Dynamic Contrast Enhanced 
(DCE) images. In T2-weighted images, with a small "Field Of View" 
(FOV),  tumour will appear as signal loss (dark).

The DCE MRI images are acquired after intravenously inject-
ing gadolinium chelate contrast (Fig. 5). After injecting intrave-
nous contrast the temporal sections were acquired 16 times at an 
interval of approximately 10.49 s. Figure 6 lists the Prostate part of 
the section acquired from time 10:23:51.6275 (SER26) to time 
10:26:33.9775 (SER11) (Fig. 6).

3 Methods

In the interpretation of medical images visually perceiving the dif-
ferent component regions in the image is a difficult task, this is due 
to issues like spatial resolution, poor contrast, ill-defined boundar-
ies, noise, or acquisition artifacts [2]. To aid the visual perception 
and thus facilitate the interpretation process, the HCS process was 
adopted to outline and highlight the different regions in an image.

In the following sections, first the HCS process method is out-
lined. In subsequent sections, it will be discussed in detail how the 
HCS process was used for the following:

●● To visualize the correlating information between the two 
modalities MRI and MALDI-MSI.

Fig. 3 X-ray mammogram image with the location and size of the abnormality 
marked by the expert

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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●● To visualize the finer details within a potential abnormal region 
in a X-ray mammogram.

●● To visualize multi-parametric MRI image data (T1-weighted 
DCE-MRI and T2-weighted MRI) and thus correlate infor-
mation between the two parametric image data.

Since the early days of computer vision, the hierarchical structure 
of visual perception has motivated clustering techniques to seg-
mentation [9], where connected regions of the image domain are 
classified according to an inter-region dissimilarity measure. 
Hierarchical Clustering-based Segmentation (HCS) [5–7] imple-
ments the traditional agglomerative clustering [10], where the 
regions of an initial partition are iteratively merged and automati-
cally generate a hierarchy of segmented images. The hierarchy of 

3.1 Hierarchical 
Clustering-Based 
Segmentation (HCS)

Fig. 4 T2-weighted MRI image section of the prostate

Fig. 5 Dynamic Contrast Enhanced MRI image section of the Prostate post 
contrast injection

Arul N. Selvan et al.
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segmented images is generated by partitioning an image into its 
constituent regions at hierarchical levels of allowable dissimilarity 
between its different regions. At any particular level in the hierar-
chy, the segmentation process will cluster together all the pixels 
and/or regions that have dissimilarity among them less than or 
equal to the dissimilarity allowed for that level. Refer Fig. 7 for a 
flowchart representation of the HCS process.

Following is a high-level description of the HCS process 
(Fig. 7) [5]:

 1. Give each pixel in the image a region label as follows:
If an initial segmentation of the image is available, label 

each pixel according to this pre-segmentation.

Fig. 6 Temporal sequence of the DCE MRI image of a section of the Prostate

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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If no initial segmentation is available, label each pixel as a 
separate region.

Set current dissimilarity allowed between regions, dissimi-
larity_allowed, equal to zero.

 2. Calculate the dissimilarity value, (dissimilarity_value), between 
all pairs of regions in the image.

Set threshold_value equal to the smallest dissimilarity_value.
 3. If the threshold_value found, in step 2, is less than or equal to 

the current dissimilarity_allowed,
then merge all those regions having dissimilarity_value, 

between them, less than, or equal to the threshold_value.
Otherwise go to step 6.

 4. If the number of regions merged in step 3 is greater than 0,
then reclassify the pixels on the border of the merged 

regions with the rest of the regions until no more reclassifica-
tion is possible.

After all the possible border pixels are reclassified, among 
the merged regions, store the region information for this itera-
tion as an intermediate segmentation and go to step 2.

Otherwise, if the number of regions merged in step 3 is 
equal to 0 then, go to step 5.

Input Image
Reclassify pixels
bordering merged
regions if possible

Merge
similar
regions

Number of
regions > 1

No

Yes

Yes

Yes

No

Store final
segmented image

Stop

Increment dissimilarity
allowed between
regions

No

Store
intermediate
segmented
image

Number
of regions
merged > 0

Dissimilarity
allowed between
regions is less
than maximum
possible value

Compute feature
measure around
pixels

Compute similarity
between pairs of
pixels

Cluster most similar
neighbouring pixels

Store initial
segmented
image

Initialise dissimilarity
allowed between
regions

Fig. 7 Flowchart illustrating the HCS process’ operational logic

Arul N. Selvan et al.
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 5. If the current number of regions in the image is less than the 
preset value, check_no_regions, go to step 7.

Otherwise, go to step 6.
 6. If the current value of dissimilarity_allowed is less than the 

maximum possible value, then increase the dissimilarity_
allowed value by an incremental value, and go to step 2. 
Otherwise go to step 7.

 7. Save the region information from the current iteration as the 
coarsest instance.

The above steps are processing intensive but ensure that the 
segmentation does not depend on the order in which the image 
regions are processed and the borders identified are more appro-
priate (see Notes 4 and 5).

The details of the steps followed in preparing the tissue sample and 
acquiring the corresponding MALDI-MSI data for this study is 
given in another publication [11] coauthored by the author. 
Following are the steps involved in correlating the MRI image data 
of the tissue with that of the MALDI-MSI data (Figs. 8 and 9).

●● The original MRI image data was up-sampled (see Notes 1 and 2).
●● The HCS process was applied within the region of interest 

(ROI) enclosing the tissue.
●● The typical segmentation output was identified.
●● The HCS segmentation output was correlated (visually) with 

the MALDI-MSI (Fig. 9).

3.2 HCS Process 
Aided Correlation 
of MRI and MALDI-MSI 
Image Data

Fig. 8 Processing of the T2-weighted MRI image section (a) of the tissue speci-
men. The original image data is Up-Sampled (b). The HCS process relevant out-
put highlighting the inner details of the abnormality (c, d)

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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The primary requirement of an automated abnormalities 
detection system (like HCS) is the segmentation of the potential 
abnormal regions from noise and background. Segmentation of 
regions of abnormalities in images of low resolution is a challeng-
ing task. However, still, from the output in Figs. 8 and 9 one can 
infer that there is a potential for this approach (see Note 6).

Computer-aided detection (CAD) systems offer prompts to alert 
the reader to potential abnormalities. Hierarchical Clustering- 
based Segmentation (HCS) goes further by identifying the more 
appropriate edges of a lesion and heterogeneous regions within. 
The following method was adopted to evaluate how the HCS pro-
cess outputs aid in the visualization of the details within the abnor-
malities in X-ray mammograms.

●● Since the main aim is to aid the user to visualize the finer details 
of an abnormal region, to start with the approximate location 
and extent of the abnormality is marked by the user (Fig. 10).

●● Since the original image data is of very high resolution and 
since the HCS process is processing intensive the original 
image data was subsampled (see Notes 3 and 4) (Fig. 11).

●● The HCS process was applied to the subsampled image data 
within the ROI and for the HCS process’s relevant segmenta-
tions following three types of output were created (see Note 7).

Boundary outlined dissimilar regions (Fig. 12).
Heat map of the dissimilar regions (Fig. 13).
Highlighted dissimilar regions (Fig. 14).

3.3 HCS Process 
as a Perception Aid 
in Delineating 
Abnormalities 
in X-Ray 
Mammograms

Fig. 9 Correlation of the HCS process’ highlighted inner details of the abnormality 
with the MALDI-MS image

Arul N. Selvan et al.
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We set out to determine whether the HCS process’s output 
would be useful and offer a potential computer-based decision aid 
in that it can aid in the identifying of the appropriate edges of a 
lesion and heterogeneous regions within that lesion area.

An initial pilot study was conducted as an online study.
[https://shusls.qualtrics.com/SE/?SID=SV_20oJptApsrst2xT].
The study participants were asked a few standard demographic 

questions and a couple of questions regarding their current use of 
computer-aided detection when interpreting mammograms. In the 

Fig. 10 Part of the original X-ray mammogram image with the part of the image 
having the abnormality enlarged

Fig. 11 Original size of the part of the image containing the abnormality and a 
reduced size of it after applying bilinear subsampling to the original data

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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Fig. 12 HCS process’ boundaries outlining the, hard to visualize, finer inner 
details of the abnormality

Fig. 13 Heat map image of the different dissimilar regions, within the abnormal-
ity, found by the HCS process

Fig. 14 Highlighted parts of the abnormality which are found to be dissimilar 
from the surrounding region

Arul N. Selvan et al.
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main task of the study the participants were presented with six 
mammograms, with a region of interest containing a suspected 
lesion already marked [12].

In condition 1, they were asked to examine this region and to 
indicate the extent of the lesion by using the mouse to place mark-
ers on the outer edges of the lesions. Participants were then asked 
whether or not they thought the lesion was multifocal and whether 
they thought it might be malignant.

In addition to the images shown on the screen, the original 
DICOM images were made available for them to download if they 
wish. After completing this they were then asked to repeat the task, 
but this time taking into consideration the additional information 
provided by the HCS process’s output aids (condition 2) [12].

In the pilot study, the absolute differences in lesion measure-
ments and the inter-subject reliability were compared between the 
two conditions. The intraclass correlation coefficient was used as 
an estimate of reliability and was similar between the two condi-
tions (0.59, 0.57) [12].

When the images were divided into two groups, lesions with 
distinct borders and lesions with diffuse borders, there was a sig-
nificant change in the absolute differences in the lesion measure-
ments when the lesion borders were indistinct, but not in the 
images where the lesion borders were clearly defined.

Posthoc tests showed a significant difference in the lesion mea-
surements when using the HCS output in cases when the lesion 
boundaries were indistinct (t(2) = −7.42, p = 0.018) than when the 
lesion boundaries were clearly defined (t(2) = −1.54, p = 0.263) [12].

HCS processing confirms the heterogeneous nature of seem-
ingly homogeneous tissue. The adjustment of the lesion extent and 
increased confidence in making diagnostic interpretations by the 
mammogram reader in this study suggests that this information 
would be of practical use, particularly in cases where the lesion 
boundary information is ambiguous or indistinct (Fig. 15). This 
facilitates the accurate targeting of biopsy to the core of suspected 

Fig. 15 Abnormality with regions having ill-defined boundaries and the HCS process’ outlining of their 
boundaries

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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abnormality. Another key application is in the monitoring of tissue 
during and after treatment to assess the effect of drug and/or 
radiotherapy [12].

Studies have demonstrated that information from the T2-weighted 
MR images has a diagnostic performance such that it complements 
a DCE T1-weighted-based computer-aided diagnostic (CADx) 
system in discriminating malignant lesions from normal and benign 
regions [13].

Prostate Imaging and Reporting and Data System Version 2 
(PI-RADS v2) recommends DCE should be included in all pros-
tate mpMRI exams so as not to miss some small significant cancers. 
The DCE data should always be closely inspected for focal early 
enhancement. If found, then the corresponding T2 W and DWI 
images should be carefully interrogated for a corresponding 
abnormality.

From the above discussion, it can be inferred that mpMRI 
plays a key role in the detection of Prostate cancer. In this section, 
we will discuss how the HCS process aids in the interpretation of 
mpMRI of the Prostate.

Following are the steps that are involved in the HCS process- 
aided interpretation of mpMRI of the prostate:

●● Time Intensity Curves (TIC)-based evaluation of DCE MRI 
Images.

●● HCS process analysis of the corresponding T2-weighted MR 
image section.

●● Correlating the HCS highlighted regions in the T2-weighted 
MRI image section, with the DCE-MRI TIC-based 
classification.

Each of the above steps will be discussed in detail below.

In prostate cancer, the leaky characteristics of the tumor angiogen-
esis are demonstrated in DCE-MRI by the early rapid high 
enhancement just after the administration of contrast medium fol-
lowed immediately by a relatively rapid decline. In comparison 
there will be a slower and continuously increasing enhancement for 
normal tissues [14]. The visual analysis of DCE-MRI data makes 
use of the above phenomena. However, the visual assessment is 
inherently subjective.

The above characteristics can also be demonstrated by the 
quantitative measurement of signal enhancement in DCE- MRI 
with time. The characteristic shapes of the Time intensity curves 
(TIC) (Fig. 16) may be used for supporting diagnosis (see Note 8).

To categorize the TIC the shape of the TIC is analyzed as 
follows:

3.4 HCS Process 
Aided Interpretation 
of Multi-Parametric 
MRI (mpMRI) 
of Prostate

3.4.1 Time Intensity 
Curves (TIC)-Based 
Evaluation of DCE MRI 
Images

Arul N. Selvan et al.
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●● The signal baseline (SB) was arbitrarily calculated as the aver-
age signal intensity of initial three time points before the posi-
tive slope occurs (tp = 0).

●● The Tail of the TIC was assumed as the last three quarters of 
the time points after (tp = 0).

●● The intercept (α) of the line fitted to the tail, with the axis 
crossing the time axis at the time tp = 0 and the tangent (β) of 
this line at the last time point was found.

To analyze the shape of the TIC the following features were 
used [15]

 (a) ME: (MSD/SB), where MSD (Maximum signal difference) is 
the difference between the signal intensity at its maximum 
S(max) and SB.

 (b) TTP: Time difference (in seconds) between the moment 
where the ME occurs and at (tp = 0). For increase-only TICs, 
the TTP is the last time point in the scan.

 (c) MSI: Largest positive signal difference between two successive 
scans.

 (d) RelFS: β/MSD. To describe the behavior of the curves in the 
last part of the scan: whether it is flat (RelFS =0), declining 
(RelFS <0), or increasing (RelFS >0).

For the DCE-MRI of the prostate the different TIC types 
(Fig. 16) are classified by a decision tree based on the above fea-
tures and their threshold values listed in Fig. 17.

The HCS process-based TIC shape analysis starts with the 
HCS process applied to the user-selected section within a ROI 
(Fig. 18). The HCS process output provides the heat map images 
based on the normalized average pixel value of the various dissimi-
lar regions and the regions’ boundaries (Fig. 19). TICs of the 

Fig. 16 Different shapes of the Time Intensity Curve (TIC) and their significance [15]

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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contrast wash-in, wash-out process are then plotted for suspicious 
regions confirmed by the user (Figs. 20, 21, and 22). All the 
regions in the image are classified and colored based on the type of 
TIC for that region (Fig. 23).

TIC Type ME

1 < ME threshold

< 1/2 tp(maximum)

< MSD/2.0 > 0.25

–0.25 < Re1FS < 0.25 (Flat Tail)

Re1FS < –0.25 (Declining Tail) 

Re1FS > 0.25 (Positive slope Tail) 

> MSD/2.0

> MSD/4.0

> MSD/2.0

> 1/2 tp(maximum)

> 1/2 tp(maximum)

> ME threshold

> ME threshold

> ME threshold

> ME threshold

2

3

4

5

TTP MSI Re1FS

Fig. 17 The values of the TIC curve parameters to differentiate the TIC and categorize them [15]

Fig. 18 DCE-MRI image section of the prostate with the region of interest (ROI) 
enclosing the Prostate marked. The HCS process will be applied within the ROI

Fig. 19 Heat map image to show the different regions identified by the HCS 
process. The regions are shaded (bright to dark) based on the average pixel value 
of the region. The boundaries are marked by random unique color

Arul N. Selvan et al.
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The corresponding T2-weighted MRI image section is identified. 
This can be done making use of the DICOM viewer and viewing 
the DCE-MRI image sections and the T2-weighted image sections 
side by side (Fig. 24). The HCS process is applied to the identified 
T2-weighted image section (Fig. 25) to process only the Prostate 
part of the section (Fig. 26).

From the HCS process output the relevant segmentation’s 
region image (Fig. 27) and the boundary image (Fig. 28) are 
identified.

The HCS process’s segmentation output of the T2-weighted 
image has outlined an area of signal loss (dark) (Fig. 28). Tumor in 
T2-weighted will appear as signal loss. But false positives occur in 
hemorrhage, calcification, inflammation, and fibrosis [post- 
inflammatory, postoperative, posthormonal (ADT), post-radiation, 
or following thermal ablation treatment].

3.4.2 HCS Process 
Analysis 
of the Corresponding 
T2-Weighted MR Image 
Section

3.4.3 Correlating the HCS 
Highlighted Regions 
in the T2-Weighted MRI 
Image Section, 
with the DCE-MRI 
TIC-Based Classification

Fig. 20 Parametric illustration of the TIC of the part of the organ which is healthy. The program has automati-
cally categorized the TIC, based on the curve’s parameters, as Type 2 (Benign)

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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So to confirm whether the signal loss in the T2-weighted 
image is due to tumor, the DCE-MRI TIC-based classification is 
made use of. In this case, the corresponding region, where there is 
signal loss in the T2-weighted image, is classified as Type-3 carci-
noma (Blue) (Fig. 23).

Thus by correlating HCS boundary outlined T2-weighted 
image with the DCE-MRI TIC-based classified regions (Fig. 29), 
it can be confirmed that the signal loss in T2-weighted image is 
indeed due to tumor.

To ease the viewing of the different HCS segmentation output 
interactively and view both the T2-weighted image and the 
 DCE- MRI image side by a GUI like the one shown in Fig. 30 can 
be used (Fig. 30).

Fig. 21 Parametric illustration of the TIC of the part of the organ which has got a malignancy. The program has 
automatically categorized the TIC, based on the curve’s parameters, as Type 3 (carcinoma)

Arul N. Selvan et al.
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4 Notes

 1. The images were acquired by an MR equipment (with perma-
nent magnet) having a magnetic field strength of 0.25 T and the 
pixel resolution was 500-μm (0.5-mm). In comparison diagnos-
tic MRI equipment (equipped with super-conductive magnets) 
normally has a magnetic field strength ranging from 1.5 to 3 T.

Fig. 22 Parametric illustration of the TIC of the part of the organ which is healthy. The program has automati-
cally categorized the TIC, based on the curve’s parameters, as Type 5 (Benign)

Fig. 23 The HCS process identified regions categorized as tumor (Blue) or healthy 
(Yellow, Green) based on the enhancement pattern (TIC shape) of the pixels 
within the region. The color coding is based on the six different types of enhance-
ment patterns (Fig. 16)

Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization
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 2. Normally, diagnostic images are used by the radiologists to iso-
late boundaries around a tumor but in this case an attempt was 
made to visualize the details within a tumor. Also because of 
the lower resolution of the acquired MRI image data there 
were not enough pixels to resolve the finer details within the 

Fig. 24 Vendor provided DICOM viewer to display different image slices side by side. Using this facility it is easy 
to identify matching T2-weighted and the corresponding DCE MRI image of the same section

Fig. 25 T2-weighted MRI image section of the prostate with the prostate part of 
the image outlined. The HCS process will be applied within the boundary

Arul N. Selvan et al.
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Fig. 26 The part of the T2-weighted MRI image which contains the prostate 
organ. The HCS process will be applied to this part of the image

Fig. 27 Heat map image showing the different regions identified by the HCS 
process in processing T2-weighted MRI image. The different regions are shaded 
(dark to bright) based on the average pixel value of the region

Fig. 28 The boundaries of the different regions identified by the HCS process in 
processing T2-weighted MRI image
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Fig. 29 Correlating HCS boundary outlined T2-weighted image (left) with the DCE-MRI TIC-based classified 
regions (right). The loss of signal in the T2-weighted image (left) matches with the DCE-MRI T2 region classi-
fied as carcinoma (Blue region), based on the six different types of enhancement patterns (Fig. 16)

Fig. 30 Graphical User Interface (GUI) implemented as part of the study to view T2-weighted along with the 
DCE-MRI image slices to correlate the different regions identified by the HCS process
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tissue sample. To address this issue of sparsity of data in the 
original MR image, the original MR image data was Up-Sampled 
to twice its original size using Bi-Non-linear process (along 
both x and y directions). The Bi-Non-linear process is detailed 
below with an example.

Each of the pixels in the original image at the location 
(DSX, DSY) was replaced by four pixels in the Up-Sampled 
image at the locations (USX0, USX0), (USX1, USY0), (USX0, 
USY1), and (USX1, USY1) (Fig. 31).

The pixel values in the Up-Sampled image for the above 
four locations are estimated making use of the pixel values in 
the original image as follows:
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Figure 32 illustrates the performance of the implemented 
Bi-Non-Linear Up-Sampling process where a 256 × 256 origi-
nal image was Up-Sampled to a 512 × 512 image.

 3. The original FFDM X-ray mammogram data was of high reso-
lution (70 μm pixel spacing). The HCS process is a processing 
intensive process (see Note 4). Hence to process the images in 
a reasonable time it was decided to down-sample the original 
image data to half its original resolution (along both x and y 
directions). For Down-Sampling the original image data Bi- 
Non- linear process as detailed below was adopted.

USX0,

USY0

USX0,

USY1

USX1,

USY1

USX1,

USY0

DSX,

DSY

Fig. 31 The locations of the pixels in an image whose values will be used either 
to Up or Down sample the original image (For details see the text.)
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The four pixels in the original image at the locations 
(USX0, USX0), (USX1, USY0), (USX0, USY1), and (USX1, 
USY1) were replaced with a pixel at the location (DSX, DSY) 
in the down- sampled image (Fig. 31).

The pixel value in the Down-Sampled image is estimated 
making use of the pixel values in the original image as follows:
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Figure 33 illustrates the performance of the implemented 
Bi-Non-Linear Down-Sampling process where a 512 × 512 
original image was Down-Sampled to a 256 × 256 size image.

 4. Other similar agglomerative hierarchical clustering or bottom-
 up methods suffer from the distorting phenomena, in which 
the cluster structures depend on order in which the regions 
are considered for merging [10]. But HCS process ensures 
that the segmentation of image into its constituent regions is 
always the same irrespective of the order in which image 
regions are processed [5]. This is achieved by the brute force 
approach, followed by the HCS process, where only those 

Fig. 32 Image illustrating the performance of the bilinear up-sampling algorithm
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regions with the smallest overall dissimilarity are merged in 
each step, which is the only solution to overcome the distort-
ing phenomena and achieve the same segmentation output 
consistently [16]. To accelerate the process of comparison of 
different regions in an image, the operation is done 
concurrently.

Border pixel reclassification is another unique feature of the 
HCS process (Fig. 7). Border pixel reclassification is considered 
only for those pixels on the boundary of the clusters which had 
been merged with other clusters. These boundary pixels are 
removed one at a time from their original clusters. The pixel 
removed is considered as a region of its own and the similarity 
between the one pixel region and the regions bordering it 
(which include the original cluster to which it belonged) is 
found and the single pixel region merged with the most similar 
bordering region. Border pixel reclassification aides in overrid-
ing local inhomogeneity while clustering similar pixels/regions. 
The positive effect of border pixel re-classification can be visual-
ized in Fig. 34. It can be seen from the border outlined images 
the HCS process with border pixel reclassification (top row) 
achieves far better results in delineating the different regions of 
an ill-defined abnormality presented in a X-ray mammogram 
(middle row) when compared to the segmentation without 
border-pixel-re-classification (bottom row) (Fig. 34).

Because of the brute-force approach adopted by the HCS 
process, to ensure consistent segmentation and because of the 
border- pixel-re-classification operation which is a sequential 
operation the HCS process is a processing intensive process.

Fig. 33 Image illustrating the performance of the bilinear down-sampling 
algorithm
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 5. The feature measure used by the HCS process, to estimate the 
similarity between locations or regions within an image, is the 
actual distribution of the pixel values within a neighborhood 
surrounding the locations or within the regions. This tech-
nique may be considered to work in a way similar to the human 
visual system where features for texture (region) segmentation 
are not consciously computed [17].

 6. The major limitation of the current study is that the acquired 
MRI image data was of low spatial resolution of only 500 μm 
(see Notes 1 and 2), while the MALDI-MSI image was 
acquired using raster/spot to spot imaging mode at 100 μm 
spatial resolution. However, still, HCS process segmented 
abnormal regions correlated with the MALDI-MSI. Hence, 
one can only expect improvements in the current results if 

Fig. 34 An abnormality having ill-defined boundaries (middle row) processed by the HCS process with border 
pixel reclassification operation (top row) and without border pixel reclassification (bottom row). This is to illus-
trate how border pixel reclassification operation ensures more appropriate delineation of the ill-defined inner 
details of the abnormality
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image data from higher field strength device, capable of higher 
resolutions like 100 μm, is used.

 7. Even though the original FFDM data was down-sampled 
before processing, the finer details of the image was still pre-
served. This is because to start with the original image data was 
of high resolution (70 μm) and subsampling resulted in an 
image of 140 μm pixels spacing that is still of high resolution.

Since the HCS process is robust enough to handle image 
data of very low resolution (250 μm), the processing of the 
down- sampled image data (140 μm) still facilitated visualiza-
tion of finer details within the abnormality (Fig. 12).

 8. To interpret the DCE-MRI data, by making use of TIC char-
acteristics, machine vendors provide the radiologists with the 
facility to select a region of interest (ROI) enclosing an area of 
the largest enhancement and subsequently observe how the 
average signal intensity of the voxels within the ROI varies 
with time (Fig. 35).

The ROI, normally chosen within an area of the largest 
enhancement, because of tissue heterogeneity, may enclose tis-
sues of different enhancement patterns (Green boundary 
Fig. 36a). Hence, the averaged TIC from the ROI may not 
represent the actual characteristics of the lesion.

To overcome the approximation, intrinsic to the TIC 
estimated on pixels averaged within the radiologist drawn 
ROI, recent studies have proposed to estimate and classify 
the TIC in every single voxel acquired by the DCE-MRI scan 
sequence [18].

Fig. 35 Region of interest (ROI) selected by the radiologist, enclosing an area of 
the largest enhancement and the corresponding enhancement pattern, of the 
locations within the ROI, with time (TIC). (This facility is provided by the MRI 
machine vendor)
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The limitations of the pixel by pixel analysis of the TIC are 
as follows:

●● Pixel-by-pixel analysis of the TIC is sensitive to pixels hav-
ing different enhancement patterns [19].

●● Pixel-by-pixel analysis of the TIC excludes the user from 
the diagnostic process.

●● The resulting classification does not provide any indication 
regarding how and why pixels are classified as belonging to a 
specific type which might lead to the situation where incor-
rect CAD can have a detrimental effect on human decisions 
[20, 21].

The demonstrated HCS process-based TIC classifier 
method offers the benefits of both the ROI and pixel-by-pixel 
analysis approaches. The HCS process segmented regions 
enable the user to objectively choose a more appropriate ROI 
(Red boundary Fig. 36a) and to view a more representative 
parametric illustration of the TIC (Fig. 36b).

Also, the HCS process-based method presents the user 
with the automated color-coded classification of the different 
regions based on the TIC enhancement pattern of the HCS 
process’s regions (Fig. 36c). The color coding is based on the 
six different types of enhancement patterns (Fig. 16).

Fig. 36 ROI selected by the radiologist, enclosing tissues of different enhancement patterns (Green boundary) 
(a). Making use of the HCS process segmented regions user objectively chooses a more appropriate ROI (Red 
boundary) (a). Parametric illustration of the TIC for the user chosen ROI (b). Automated color-coded classifica-
tion, of the HCS process’ different regions, based on the TIC enhancement pattern of the regions (c). (The color 
coding is based on the six different types of enhancement patterns (Fig. 16))
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