
Accurate shellcode recognition from network traffic data 
using artificial neural nets

ONOTU, Patrick, DAY, David and RODRIGUES, Marcos 
<http://orcid.org/0000-0002-6083-1303>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/15665/

This document is the Accepted Version [AM]

Citation:

ONOTU, Patrick, DAY, David and RODRIGUES, Marcos (2015). Accurate shellcode 
recognition from network traffic data using artificial neural nets. In: Electrical and 
Computer Engineering (CCECE), 2015 IEEE 28th Canadian Conference on. IEEE 
Canadian Conference on Electrical and Computer Engineering (CCECE) . IEEE. 
[Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Accurate Shellcode Recognition from Network
Traffic Data using Artificial Neural Nets

Patrick Onotu, David Day and Marcos A Rodrigues
Sheffield Hallam University

Sheffield, UK

Abstract—This paper presents an approach to shellcode recog-
nition directly from network traffic data using a multi-layer
perceptron with back-propagation learning algorithm. Using raw
network data composed of a mixture of shellcode, image files,
and DLL-Dynamic Link Library files, our proposed design was
able to classify the three types of data with high accuracy and
high precision with neither false positives nor false negatives.
The proposed method comprises simple and fast pre-processing
of raw data of a fixed length for each network data package and
yields perfect results with 100% accuracy for the three data types
considered. The research is significant in the context of network
security and intrusion detection systems. Work is under way for
real time recognition and fine-tuning the differentiation between
various shellcodes.

Keywords—Neural net, network security, intrusion detection
system, pattern recognition, shellcode, false positive

I. INTRODUCTION

Network Intrusion Detection Systems (NIDS) monitor,
identify and alert to the presence of network traffic indica-
tive of malicious or poor practices i.e, unethical hacking or
system misconfiguration. The increasing popularity of cloud
computing combined with the limitations of traditional host
based protection systems have added to the popularity of
NIDS implementation [1]. The most common method of NIDS
operation is signature based, in which packets are examined for
patterns which are associated with, or known to be hazardous.
An important example of what constitutes hazardous is that of
malicious shellcode. Malicious shellcode is a program written
for the purposes of opening a shell on a victims machine
and allowing a hacker unauthorised command line access.
Due to the ability to further leverage such a breach, their
successful execution is one of the principal objectives of
a hacker, and they are frequently used as the payload for
exploitations using system penetration tools such as Metasploit
[2]. They are usually executed as a result of exploiting stack or
heap-based buffer overflow vulnerabilities in system services
which subvert the legitimate flow of code execution to that
of the shellcode. Identifying shellcode as malicious traffic is
particularly challenging with signature based NIDS due to

Patrick Onotu is with Akanu Ibiam Federal Polytechnic, Ebonyi State,
Nigeria. He worked on this research for his MSc in Automation and Control
Engineering at Sheffield Hallam University. Email: b2040977@my.shu.ac.uk

David Day is with CENTRIC–Centre of Excellence in Terrorism, Re-
silience, Intelligence & Organised Crime Researh. Email: D.Day@shu.ac.uk,
Web: research.shu.ac.uk/centric/index.php/40-dr-david-day-network-security

Marcos A Rodrigues is with CENTRIC and GMPR–Geometric Modelling
and Pattern Recognition Research Group. Email M.Rodrigues@shu.ac.uk,
Web: www.shu.ac.uk/research/c3ri/people/marcos-rodrigues

false positives as shellcode patterns are often indistinguish-
able to that of some forms of benign traffic. For example,
while working as a network security consultant for the Shop
Direct Group (UK) using the network intrusion detection tools
Sguil and Snort from the Debian based Linux distribution
Security Onion, it was noticed that signatures designed to
match shellcode frequently also matched other non shellcode
binaries as well as jpg image files. The frequency of these false
positives was such that the signatures themselves ultimately
had to be disabled, rendering them useless. This experience
with the false positive problem with shellcode and signature
based systems is very common, Microsoft discuss this at length
in their patent of methods to detect malicious shellcode with
reduced false positives in memory [3].

The research discussed in this paper explores a new mecha-
nism to reduce false positives and negatives during detection of
malicious shellcode using Artificial Neural Networks (ANNs).
ANNs, biologically inspired by the human brain, are used
as modelling mechanism for solving non-linear problems. As
there has been significant established successes in using ANNs
for pattern recognition e.g. image and speech, it could be
argued that the potential to solve the false positive problem
when detecting shellcode would be high. As such this paper
will discuss our use of an artificial neural network using a
supervised feedforward network with back propagation algo-
rithm, to accurately identify shellcode traffic within custom
generated traffic samples.

The remainder of this paper is organized as follows. In
Section II we discuss, compare and critique both traditional
and statistical approaches to network intrusion detection. Sec-
tion III outlines the methodology and how samples were
generated for testing. In Section IV we describe the design and
implementation of the ANN solution with simulation results.
Finally in Section V, we critically evaluate the results obtained
with conclusions and recommendations for future work.

II. PREVIOUS WORK

A. Comparison of signature and anomaly based NIDS

Mainstream NIDS can be categorised as either signature
based or anomaly based. Signature based look for patterns in
packets which are indicative of an attack. Whereas anomaly
based NIDS look for a deviation away from a perceived normal
baseline which has been generated over a period of time.
Signature based systems can be seen to have two key issues,
firstly they are often ineffective against unknown (zero day)
attacks. This is due to these attack patterns being unknown



and thus not being used for comparison. Secondly, it relies
on a human interpretation of the root cause of the attack,
sometimes this is erroneous if the context of the attack is not
considered when creating the pattern matching rules. In these
instances it takes only a small deviation in attack method to
cause a false negative. Conversely anomaly based NIDS are
not associated as strongly with these limitations and have been
shown to be more effective against zero day attacks. However
there are issues concerning the behavioural model generated,
in the training phase, system performance and with the need
for administrator intervention.

B. Traditional statistical methods

Decades of research in intrusion detection for computer
system security revealed numerous possible approaches to the
problem. This was initiated by the introduction of the concept
that certain types of threats to the security of computer systems
could be identified through the examination of information
contained in the computer systems audit trail as seen in the
work of Anderson [4]. Three treats were identified as: external
penetrations; internal penetrations; and misfeasors. It was later
suggested that possible stealthy users could be detected by
monitoring the functions that turn off the audit systems, or
through a comparison of defined normal usage patterns of sys-
tem resources with those levels which are currently observed.
This method did not eventually prove effective against more
intelligent attackers of the system.

From the work of Denning [5], a statistical intrusion
detection model was introduced and became a landmark for
research in this area. The model was based on computer
system keystroke dynamics and which now forms the core
of most intrusion detection methodologies in use today. The
concept involves the development of an electronic signature
of a user based on their individual typing characteristics but
modern-day research has revealed better approaches. Lunt
[6] introduced a concept that involved anomaly detection,
misuse detection and their combined effects and was regarded
more effective than the existing methods until 1994. A more
advanced methodology that involved pattern recognition and
network monitoring was introduced in the work of Mukher-
jee et al. [7]. The pattern recognition concept involved the
recording of different penetration scenarios and coded into
the system in the form of knowledge representation. The
networking monitoring approach involves the use of various
network measuring techniques and is a more advanced method
of system intrusion detections currently in use. Its advantage
over the other methods lies in its independence of network
audit data.

C. The application of Artificial Neural Networks

The use of artificial neural networks in intrusion detection
emerged from the works of Fox et al. [8] and Denault et
al. [9]. Various networks were designed based on the Self-
Organizing Feature Map (SOFM) to learn the characteristics of
normal system activity and identify statistical variations from
the norm that may be an indication of a virus or malicious
activity. These methods were in use until Ryan et al. [10]
used the back-propagation algorithm to develop a system called
Neural Network Intrusion Detector (NNID). The network was
designed based also on user recognition and tested on a system

of 10 users. The network was about 85% accurate in detecting
malicious activities with about 15% false positive detection
rate.

Cannady [11] introduced a method for intrusion detection
based on the CMAC-Cerebellar Model Articulation Controller
which uses adaptive neural networks and the capability to learn
new attacks rapidly through the use of a modified reinforced
protected system. This was a modified reinforcement learning
approach which resulted in an average detection error of 4%
compared to 15% in existing intrusion detection.

A remarkable achievement in intrusion detection was
recorded when malicious shellcode detection approach was
introduced in the work of Toth and Kruegel [12]. Though this
approach recorded good success concerning the identification
of shellcode that is an indispensable part of an attack vector,
it was nevertheless limited regarding the detection of a wider
range of polymorphic shellcode exhibiting self-decrypting be-
haviour.

Aida et al. [13] proposed a framework using a Multi-Layer
Perceptron consisting of four phases: collection of intrusion
detection parameters; processing of the filtered parameters;
design of the system response manager; and the learning
model. A total of 145,587 normal and attack events were
collected, 70% of the data was used for training while the
remaining 30% was used for testing. Over 90% performance
on intrusion detection was recorded.

D. Malicious shellcode detection approach

This is regarded as a viable and potent approach for the
general detection of code injection system of attacks. It focuses
on the recognition of the shellcodes which are essentially part
of an attack vector, this technique was initially referred to as
abstract payload execution in the work of [12]. According
to Wang et al. [14] and [15] initially this approach was
implemented as an attempt to identify the presence of shellcode
in network data traffic using static code analysis. However,
methods that are based on static code analysis cannot handle
malicious code effectively especially if they employ advanced
polymorphic tactics such as self-modications. As a form of
improvement to this approach, dynamic code analysis using
emulation which cannot be hindered by such obfuscations
and can detect even extensively polymorphic shellcodes was
introduced by Polychronakis [16]. This kind of actual payload
execution has proven quite effective in practice and being
used in network-level and host-level systems for the zero-
day detection of both server-side and client-side code injection
attacks [17].

The above techniques have common limitation which is
that they are limited to the detection of certain class of self-
modifying shellcodes which are capable of exhibiting self-
decrypting behaviour. According to Polychronakis [18], to
evade signature based detectors shellcode encryption is very
often used, that notwithstanding, attackers can still achieve
good level of evasiveness without the utilization of any self-
decrypting codes and thus rendering the above systems also
ineffective. Besides code encryption, polymorphism can also
be achieved by transforming the actual contents of the shell-
code before initiating the attack – this technique is commonly
referred to as metamorphism. Metamorphism is widely utilized



by several virus programmers and thus can easily be used
for shellcode mutation. The authors in [18] stated surprisingly
that even plain or ordinary shellcodes, which do not mutate
across different platforms, can also evade detection by existing
payload execution methods. They also stated that in principle a
plain shellcode is no different from any form of metamorphic
shellcode, both neither contain a decryption property nor
exhibit any self-modications or dynamic code generation. In
effect, an attack that uses unknown plain shellcodes that
are resistant to static analysis could evade existing detection
systems, this was also previously stated in [19].

Boxuan et al. [20] proposed a model for intrusion detec-
tion by detecting malicious shellcodes with virtual memory
snapshots. From their proposed model, a malicious shellcode
detection methodology was designed and implemented. In the
method, snapshots of the target processs virtual memory are
taken immediately before input data are consumed and fed
into a lightweight Detection Before Consumption (DBC-based)
malicious code detector. These snapshots were also used to
instantiate a runtime environment that emulates the target
processs input data consumption. This environment facilitates
monitoring shellcodes behaviour. The snapshots helped to
examine system calls invoked by executable input data and
the parameters thereof as well as the processs execution ow to
detect malicious shellcodes. This model suffered set back in
its application as a result of significant rate of false positive
detections.

III. METHOD

A. The proposed approach and its significance

In order to improve the above existing intrusion detection
techniques, an approach involving the recognition of shellcode
programming patterns in the midst of other network data with
the help of artificial neural networks is proposed and demon-
strated in this paper. The detection of shellcode data within
network traffic containing a mixture of dynamic link libraries
(DLL), jpg image files and shellcode has eluded research thus
far with the standard outcome being large numbers of false
positives as described above.

The stated aim of this research is to be able to accu-
rately recognise those three classes of data (image, DLL
and shellcode) using appropriately designed neural networks
structures with minimum false positives. Thus, the significance
of the proposed approach lies in its ability to accurately
identify shellcode amidst other common data in computer data
traffic with absolutely no case of false positive detections
when applied using the offline detection-before-consumption
methodology. Once the desired performance of the neural
network is achieved, research can progress on further issues
such as real-time detection and optimization to a wide variety
of shellcodes.

B. Network traffic data collection

As previously alluded, it has been observed in both working
practice and academic research that image files and benign
binaries often cause false positives as shellcode using current
technology signature based intrusion detection systems. The
data collection involved the selection of 100 images, 160
variety of shellcodes and 140 Dynamic-Link Library (DLL)

files which were pseudo-randomised and transmitted over a
network between two machines, captured and saved as a
*.pcap. The exact order in which data packets were transmitted
was noted. At the receiving endpoint, packet payloads were
extracted, structured and used to train, validate and test the
neural networks.

As part of network design procedure, visual data analysis
was performed to get a feel for the structure of the data.
Figure 1 shows 2D plots of each file type as image, shellcode
and DLL. For clarity, only the first 1000 elements of 3 files
randomly selected from each class are plotted, padded with
zeros where required. The plots were produced by simply
converting each byte of data to its decimal equivalent. It can be
noted that the three classes of files are rather distinct and, in the
case of the images shown, each class can be uniquely identified
by visual inspection. We plotted 65% of all data for each class
and verified that the data display similar characteristics. These
observed pattern variations are used as the core enhancer of
the network performance in the classification task.

It is significant to note that a simple conversion from byte
to decimal equivalent defines the required pre-processing of
data; no other feature extraction, statistical measures, data
transformation or corrections are necessary. The data can be
used as is raising the possibility of a resulting neural network
suitable for real-time applications with raw computer network
payload input.

C. Neural network input and output data structure

All 400 collected samples (100 images, 160 shellcodes and
140 DLLs) were read into Matlab workspace as a column
vector of its corresponding pure decimal values. The first
100 elements of each sample were selected and assigned to
a variable DATA, forming a 400× 100 matrix. 70% of the 400
columns were evenly selected and randomised as training data
while the remaining 30 percent were retained for testing the
generalising power of the network after training. The selection
of data into training set and test set was performed using the
Matlab code below:

A=DATA(:,1:10:end); B=DATA(:,2:10:end);

C=DATA(:,3:10:end); D=DATA(:,4:10:end);

E=DATA(:,5:10:end); F=DATA(:,6:10:end);

G=DATA(:,7:10:end); H=DATA(:,8:10:end);

I=DATA(:,9:10:end); J=DATA(:,10:10:end);

P = [A B C D E F G]; %280 training patterns

TP = [H I J]; %120 test patterns

This means that for all groups A--J the following ground
truth for output classes apply: Image: vectors 1–10 Shellcode:
vectors 11–26 DLL: vectors 27–40. The expected neural net-
work outputs were structured as shown below in Table I.

TABLE I. NETWORK OUTPUT STRUCTURE

Output Nodes Class 1 Class 2 Class 3
(Image) (Shellcode) (DLL)

Node 1 1 0 0
Node 2 0 1 0
Node 3 0 0 1

Ground Truth
Vectors in A--J 1–10 11–26 27–40

The expected outputs (targets) were designed and selected
evenly and correspondingly with the patterns using the Matlab



Fig. 1. Example plot of 1,000 data points of collected data (padded with
zeros where required). Top: a jpeg image, middle: a shellcode, bottom: a DLL.

code below:

%Only one node go high per class:

T1=[1;0;0]; T2=[0;1;0]; T3=[0;0;1];

Target=[repmat(T1,1,100),repmat(T2,1,160)

, repmat(T3,1,140)];

%Define targets for A--J:

AA=Target(:,1:10:end); BB=Target(:,2:10:end);

CC=Target(:,3:10:end); DD=Target(:,4:10:end);

EE=Target(:,5:10:end); FF=Target(:,6:10:end);

GG=Target(:,7:10:end); HH=Target(:,8:10:end);

II=Target(:,9:10:end); JJ=Target(:,10:10:end);

T=[AA BB CC DD EE FF GG]; %Training target

TT=[HH II JJ]; %Test target for statistical purposes

IV. NETWORK DESIGN, TRAINING AND
SIMULATION RESULTS

A. Network design

To design or create a feed-forward back-propagation net-
work in Matlab, the function used is newff whose syntax
is net = newff(P,T,S,TFi,BTF) with input parameters as
follows:

• P is a matrix RxQ where R is the number of inputs
and Q equals 2, representing a 2-element row vector
of the minimum and maximum values in the in-
puts. For example, for Q = [0 255], P=[0 255;0
255;0 255] which is a 3 × 2 matrix describing the
number of network inputs. Q is calculated by the
minmax built-in function;

• T is a matrix of KxN where K is a column vector
describing the number of output nodes and N is the
number of patterns. For a successful design, every
node must switch values between high 1 and low 0
for classification. Therefore, for input patterns with 3
nodes (representing shellcode, image, and DLL) class
1 is represented with a target T1=[1;0;0], class 2
with T2=[0;1;0] and class 3 with T3=[0;0;1];

• S is the size of the hidden layers (the output layer size
is determined from T);

• TFi is the transfer function of ith hidden layer.
The transfer functions tansig was used for a single
hidden layer network while tansig and logsig were
used for a 2 hidden layer network. For the output layer,
purelin is used; and

• BTF is the back-propagation network training function,
both trainlm and trainscg were used.

The definitions of the functions used in the design are
as follows. The log-sigmoid (logsig) transfer function with
outputs between {0, 1} as the network input goes from negative
infinity to positive infinity:

f(x) = (1 + exp−βx)−1 (1)

The hyperbolic tangent sigmoid (tansig) transfer function
with outputs between {−1, 1} as the network input goes from
negative infinity to positive infinity:

f(x) = 2(1 + exp−2x)−1 − 1 (2)

And the linear (purelinear) transfer function in which output
neurons can take any value and are not limited to a small range:

f(x) = mx+ b (3)



The training algorithms used were the Reduced Memory
Levenberg-Marquardt (trainlm) which requires the storage
of some large matrices for training, but in general the algo-
rithm will have the fastest convergence. Furthermore, trainlm
also yields the lower mean square errors than most learning
algorithms. An alternative algorithm was also tested namely
the trainscg or scaled conjugate gradient algorithm. The
algorithm performs well on a large variety of problems with
reduced memory requirements especially on networks with
large number of weights.

A large number of possible designs can be realised. For
instance, using a network design with the input vector fixed to
100, one hidden layer of 10 nodes and one output layer with
3 nodes, we can permute the transfer functions and learning
algorithms as follows:

NET1=newff(repmat(minmax,100,1), [10 3],{tansig ’purelin’}, trainlm);
NET2=newff(repmat(minmax,100,1), [10 3],{logsig ’purelin’}, trainlm);
NET3=newff(repmat(minmax,100,1), [10 3],{tansig ’purelin’}, trainscg);
NET4=newff(repmat(minmax,100,1), [10 3],{logsig ’purelin’}, trainscg);

By the same token, alternative designs can be obtained by
changing the size of input vector, number of hidden layers,
and the number of nodes in each layer.

B. Network training and testing

The network configurations above were trained using the
Matlab function train as: NET = train(NET,P,T); where
P and T are the structured patterns and targets respectively.
A neural network can be trained several times in order to
improve its performance. After training, if the network has not
converged, it can be trained again carrying on from the last
weight values. It is possible also to start training afresh, in
that case the (init) initialization command must be executed
before each new train command. The (init) command
ensures that the network is initialised with new connection
weights and biases to be updated accordingly as training
progresses. As a result, the network performance consistently
varies for every training command executed. These variations
do not necessarily translate to better performance and so at the
end of every training, it is required to evaluate performance and
a decision be made on possible parameter alteration towards
performance improvement.

The networks were simulated with unseen data using the
function sim with the corresponding reserved test data as
Y=sim(NET,PT) where Y is the network outputs and PT the
unseen patterns. The number unseen patterns clearly classified
was used to determine the network performance. Out of the
120 test vectors reserved, some sample results are illustrated
in Tables II, III, and IV for network NET4 above where results
for image are highlighted in green and shellcode in red:

TABLE II. 1ST SAMPLE TEST DATA AS TP(:,1:13:end) WHERE
GREEN: IMAGE, RED: SHELLCODE, BLACK: DLL

Output Nodes Sample results for 10 test vectors
Node 1 0.99 0.00 0.00 0.00 0.99 0.00 0.01 0.99 0.00 0.01
Node 2 0.00 0.99 0.99 0.00 0.01 0.99 0.00 0.01 0.99 0.00
Node 3 0.00 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.00 0.99

TABLE III. 2ND SAMPLE TEST DATA AS TP(:,2:13:end) WHERE
GREEN: IMAGE, RED: SHELLCODE, BLACK: DLL

Output Nodes Sample results for 10 test vectors
Node 1 0.99 0.01 0.01 0.99 0.01 0.01 0.01 0.01 0.01 0.01
Node 2 0.01 0.99 0.00 0.01 0.99 0.00 0.00 0.99 0.99 0.00
Node 3 0.00 0.00 0.99 0.00 0.00 0.99 1.00 0.00 0.00 0.99

TABLE IV. 3RD SAMPLE TEST DATA AS TP(:,3:13:end) WHERE
GREEN: IMAGE, RED: SHELLCODE, BLACK: DLL

Output Nodes Sample results for 10 test vectors
Node 1 0.99 0.01 0.01 0.99 0.01 0.01 0.99 0.01 0.01 0.01
Node 2 0.01 0.99 0.00 0.01 0.99 0.00 0.01 0.99 0.00 0.00
Node 3 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 1.00

From Table II columns 1, 5 and 8 are clearly classified as
images (expected result as [1 0 0]T ) where the quoted results
of 0.99 are interpreted as 1 while 0.01 as zero; columns 2, 3,
6 and 9 classified as shellcodes (expected [0 1 0]T ); columns
4, 7 and 10 as DLLs (expected [0 0 1]T ). All results match
their respective set targets. From Table III columns 1 and 4 are
classified as images (expected [1 0 0]T ); columns 2, 5, 8 and
9 are classified as shellcodes (expected [0 1 0]T ); columns 3,
6, 7 and 10 as DLLs (expected [0 0 1]T ). These results also
match their set targets. From Table IV columns 1, 4 and 7 are
classified as images (expected [1 0 0]T ); columns 2, 5 and 8
are classified as shellcodes (expected [0 1 0]T ); columns 3,
6, 9 and 10 as DLLs (expected [0 0 1]T ). These also match
their set targets for each category. It is important to stress here
the actual level of confidence in the results, as error is within
0.01 which means that outputs equal or greater than 0.99 are
rounded off to 1 and equal or smaller than 0.01 are rounded
off to zero.

TABLE V. RESULTS SUMMARY

Total Data Collected Training Test Classified Percentage
Patterns Patterns Test Patterns Accuracy

400 280 120 120 100

Table V summarises the obtained classification results with
high accuracy and high precision as one of images, shellcodes
and DLLs without any false positives or false negatives.

V. DISCUSSION AND CONCLUSIONS

This paper represents a step improvement in shellcode
recognition from raw network traffic. The approach to convert
bytes to their decimal equivalent independent of their true
data type constitutes a simple pre-processing scheme. Also,
by selecting only the first 100 samples from each datapacket
from data streams leads to a design that is highly accurate
with high precision. A number of designs were tested and the
most appropriate design was a back propagation network with
Levenberg-Marquardt learning algorithm applied to a network
with 100 input nodes, a hidden layer of 10 nodes and an output
layer with 3 nodes with respective transfer functions of logsig
and purelin.

Although this approach holds high promise in intrusion
detection applications, it is important to stress a few limitations
of the current design for real-time applications as follows:

• Raw network traffic data need to be structured into
predetermined block size to fit the neural network



input data size: neural networks are trained with
specific input data sizes and they cannot be simulated
with data size different from the network input design.
This has been addressed through fixed size sampling
of data packets padded with zeros where required;

• The developed neural network has not been designed
for online intrusion detection tasks: the design has
not been optimised for integration with live network
data traffic as the purpose is to demonstrate its ability
to recognise shellcode that is randomly present in
network data;

• It requires the collection of computer network data
using data traffic capture for offline analysis: due to
the current inability of the trained network to be inte-
grated with a live streaming network traffic, malicious
detection in this reported research is achieved through
neural network simulation with collected or captured
data;

• The approach does not differentiate good shellcodes
from the bad (malicious) ones; all shellcodes are
flagged in the same way in the reported studies.

Due to the severity of the attack, detecting unauthorized
shell access is the one of the principal goals of network
intrusion detection, and obtaining shell access the primary ob-
jective of an attacker. Industry experience working on network
traffic analysis with The Shop Direct Group (UK) Ltd, while
processing terabytes of network traffic per minute, has shown
that dynamic link libraries (DLLs) which are often downloaded
as part of system upgrades, along with image files are the core
causes of false positives with traditional shellcode signatures.
Removing the false positive problem with shellcode detection
is one of the primary objectives in the research area and,
prior to this work, being able to do this both effectively and
economically has largely proved elusive. Thus, being able to
classify shellcode with the level of accuracy and precision
discussed here offers a significant move forward in resolving
the issues with shellcode detection. Current and future work
include re-training and testing the network ability to recognise
the various types of shellcode and thus, be able to pinpoint
malicious code. We plan even more extensive and vigorous
false positive testing against very large and sector diverse
benign traffic sets. Also, we are investigating a design in which
our trained network can be actually used and bench marked
for real time applications using streamed network traffic.
Success in these areas would lead to further investigations
into improving the hardware to allow for scalability with very
high speed networks, for example use of Field Programmable
Gateway Arrays and Application Specific Integrated Circuits.
We also envisage investigations into using the same methods to
detect other elements indicative of an attempted system breach
e.g. heap and stack based buffer overflow attacks.

REFERENCES

[1] DAY, D. and ZHAO, Z. (2011). ”Protecting Against Address Space
Layout Randomisation (ASLR) Compromises and Return-to-Libc

Attacks Using Network Intrusion Detection Systems”, International
Journal of Automation and Computing Vol. 8 no. 4, 472-83. Decem-
ber 6th 2011.

[2] ZHAO Z. and AHN G. ”Using Instruction Sequence Abstraction
for Shellcode Detection and Attribution” In: IEEE conference on
Communications and Network Security. National Harbour, MD.

[3] SHIN J., LAMBERT J.J. AND LACKEY J. ”Evaluating Shellcode
Findings.” U.S. Patent 8,413,246 issued date April 2, 2013.

[4] ANDERSON J.P. (1980). ”Computer Security Threat Monitoring and
Surveillance”. Annual Technical Report. Fort Washington, Pennsyl-
vania. J.P. Anderson Company.

[5] DENNING D. (1987). ”An Intrusion-Detection Model”. IEEE Trans-
actions on Software Engineering. Vol. SE-13, No. 2.

[6] LUNT T.F. (1989). ”Real-Time Intrusion Detection”. Proceedings of
IEEE COMPCON.

[7] MUKHERJEE B., HEBERLEIN L.T. and LEVITT K.N. (1994).
”Network Intrusion Detection”. IEEE Network. Pp. 26–41.

[8] FOX K.L., HENNING R.R. and REED J.H. (1990). ”A Neural
Network Approach Towards Intrusion Detection”. In: 13th National
Computer Security Conference. Washington D.C., USA.

[9] DENAULT M., GRITZALIS D., KARAGIANNIS D. and SPIRAKIS
P. (1994). ”Intrusion Detection: Approach and Performance Issues in
Computers and Security”. The Securenet System. Vol.13, No. 6, pp.
495-507.

[10] RYAN J., LIN M. and MIIKKULAINEN R. (1997). ”Intrusion
Detection with Neural Networks: AI Approaches to Fraud Detection
and Risk Management”. Papers from the 1997 AAAI Workshop
(Providence, Rhode Island). Pp. 72–79. Menlo Park, CA: AAAI.

[11] CANNADY J. (2000). ”Next Generation Intrusion Detection: Au-
tonomous Reinforcement Learning of Network Attacks”. In: 23rd
National Information Systems Security Conference. Baltimore, USA.

[12] TOTH T. and KRUEGEL C. (2002). ”Accurate Buffer Overow
Detection via Abstract Payload Execution”. In: 5th Symposium on
Recent Advances in Intrusion Detection. Zurich, Switzerland.

[13] AIDA O.A., AHMED S. and TAMER R. (2010). ”Multilayer Per-
ceptrons Networks for an Intelligent Adaptive Intrusion Detection
System”. International Journal of Computer Science and Network
Security. Vol.10, No.2.

[14] WANG X., PAN C.C., LIU P. and ZHU S. (2006). ”Sigfree: A
Signature-Free Buffer Overow Attack Blocker”. In: USENIX Security
Symposium. Vancouver B.C., Canada.

[15] WANG X., JHI Y.C., ZHU S. and LIU. P. (2008). ”Exploit Code
Detection via Static Taint and Initialization Analyses”. In: Annual
Computer Security Applications Conference (ACSAC). California,
USA.

[16] POLYCHRONAKIS M., ANAGNOSTAKIS K.G. AND
MARKATOS E.P. (2009). ”An Empirical Study of Real-World
Polymorphic Code Injection Attacks”. In: 2nd USENIX Workshop
on Large-scale Exploits and Emergent Threats. Boston M.A., USA.

[17] EGELE M., WURZINGER P., KRUEGEL C. and KIRDA E. (2009).
”Defending Browsers against Drive-By Downloads: Mitigating Heap-
Spraying Code Injection Attacks”. In: 6th international conference
on Detection of Intrusions and Malware, & Vulnerability Assessment.
Como, Italy.

[18] POLYCHRONAKIS M., ANAGNOSTAKIS K.G. AND
MARKATOS E.P. (2010). ”Comprehensive Shellcode Detection
Using Runtime Hauristics”. In: Proceedings of the Annual Computer
Security Applications Conference. Austin Texas, USA.

[19] CHUNG S.P. and MOK A.K. (2008). ”Swarm Attacks against
Network-Level Emulation and Analysis”. In: 11th International Sym-
posium on Recent Advances in Intrusion Detection. Massachusetts,
USA.

[20] BOXUAN G., XIAOLE B., ZHIMIN Y., ADAM C.C. and DONG
X. (2010). ”Malicious Shellcode Detection with Virtual Memory
Snapshots”. In: IEEE INFOCOM Conference. San Diego, C.A., USA.


