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1. Introduction

Electroadhesion [1, 2] is an electrically controllable attrac
tive effect between an electroadhesive pad and a substrate. 
Electroadhesion has been considered as an advanced adhesion 
mechanism for robots such as climbing robots [3] and a range 
of material handling applications [4, 5]. Compared to other 
adhesion mechanisms for handling materials, such as magn
etic adhesion, pneumatic adhesion, bioinspired adhesion, and 
mechanical gripping mechanisms [6], electroadhesion has 
several distinctive advantages including that: (1) it enables an 

enhanced adaptability as it can be used in vacuum environ
ments and adheres to both conductive and insulating surfaces; 
(2) it can bring lightweight and reduced complexity systems 
as pumps or motors are not required for the end effector actua
tion; (3) it features lownoisy, flexible, and gentle handling 
characteristics as noncontact suspension mechanisms and 
softcontact mechanisms can be applied to produce nondam
aging or lessdamaging grasping systems; (4) it is an ultralow 
energy consumption adhesion method as a small current, in 
the µA to mA range, runs through the electroadhesive pad, 
resulting a small energy consumption, usually in the µW to 
mW range [5, 7].

An electroadhesion system usually contains four main 
components: an electroadhesive pad, a high voltage power 
supply, a control system, and a substrate. The substrate is the 
material to which electroadhesion is applied, or a wall to hold 
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Abstract
Experimental investigation into the surface potential and electric field visualization of 
an electroadhesion system is presented for understanding the dynamic electroadhesion 
phenomenon. The indirect experimental approach has been based on measuring surface 
potentials on the surface of an electroadhesive pad by an electrostatic voltmeter. The direct 
approach has been based on charging and discharging the electroadhesive pad in a viscous 
oil mixed with lightweight particles. The visualization of the dynamic field distribution of 
electroadhesive pads can be a useful method to understand the dynamic electroadhesion 
phenomenon. In addition, indication of different field distributions of different pad geometries 
can be obtained through the method demonstrated here. Furthermore, the method is useful for 
instructors or lecturers to showcase or teach the dynamic electroadhesion phenomenon.
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on, or a piece of material to be picked. An electroadhesive 
pad typically consists of conductive electrodes embedded in 
one or more dielectric materials [8]. The conductive elec
trodes are connected with one or more high voltage sources, 
usually in the kV range. The dielectric material is useful for 
preventing charge neutralization and dielectric breakdown of 
the pad. The control system manages switching on and off the  
electroadhesion system [8].

Electroadhesion is a complex and dynamic electrostati
cally induced attraction phenomenon with over 33 vari
ables, including environmental factors, electrode parameters, 
pad dielectric parameters, substrate parameters, and voltage 
parameters [4, 9], influencing the electroadhesive forces 
obtainable between the electroadhesive pad and the substrate. 
One limitation of electroadhesion is that the electroadhesive 
forces obtainable may be unstable and unpredictable in a 
changing environment [8, 9]. Also, not all substrate materials 
are suitable for electroadhesive force generation [10, 11]. Both 
the electroadhesive clamping and declamping process have a 
dynamic nature, which is an additional limitation since at the 
start, when turning on the power source the electroadhesive 
force does not reach the maximum magnitude immediately. 
Also, when disconnecting the power supply the adhesion does 
not stop immediately and residual charges and hence residual 
adhesive forces remain for a period. Force against time is 
depicted in figure 1.

As shown in figure  1, when the electroadhesive pad is 
energized by the high voltage sources (t  =  t0), the elec
troadhesive force does not increase to its maximum mag
nitude immediately. Within a certain period (t  =  t1), the 
electroadhesive force increases to a magnitude (F  =  F1) 
that is slightly less than the maximum force (F  =  Fsaturated). 
The time (t1) may range from seconds to minutes. When 
the pad is placed on some semiconductive and conductive 
materials, t1 is of the order of seconds [3]. When the pad is 
placed on some insulating materials the time t1 can be min
utes or hours. For example, as can be seen in figure  2, at 
least 3 min of clamping time has been recorded when the 
polyimide side of an electroadhesive pad had been attached 
to a sheet of glass (the particular setup of this experiment has 
been described in Guo et al [4].). From F1 to the maximum 
magnitude (F  =  Fsaturated), the time can be relatively long, 
depending the electroadhesion property of the pad dielectric 
material and the substrate. When the pad is turned off the 
electroadhesive force does not disappear immediately. The 
declamping time can be fast if novel methods are employed 
such as exponentially decreasing reversion of the polarity 
[12]. If not, the declamping time can, however, be hours, 
as can be seen in figure  2. The examples of the variation 
in clamping and declamping times show the influence of 
materials used and their properties on the electroadhesive 
process, but these are just a few of the influencing variables. 
Normally an electroadhesive pad consists of two electrodes, 
one positive and one negative. However for industrial appli
cations an extended gripping surface is required to generate 
the appropriate gripping force, which poses questions about 
the geometrical design of such extended pads. The aim of 
the current paper is to aid the understanding of the dynamic 

electroadhesion phenomenon in particular for the pickup 
and release performance of electroadhesive material han
dling applications such as the handling of copper laminates, 
paper, or polyimide plates, among others [8].

At present, in the electroadhesion community, the 
dynamic electroadhesive clamping and declamping pro
cess has only been characterized by measuring forces 
between the pad and substrate [4, 13]. This method, how
ever, cannot provide a visualization of the dynamic electric 
field changing process nor does it show the electric field 
and charge distribution induced by the electroadhesive pad. 
Visualization of the dynamic electric field or charge distribu
tion is a useful alternative method to understand, apply and 
optimize the dynamic electroadhesion phenomenon. In addi
tion, indications of different field distributions of different 
pad geometries can be obtained. Furthermore, visualization 
is also useful for demonstrators or lecturers to showcase 
the dynamic electrostatic field distribution of the dynamic  
electroadhesion phenomenon.

Two field visualization methods for understanding the 
dynamic electroadhesion phenomenon have been presented 
in this paper. The visualization methods have been imple
mented using an indirect and direct approach. Although no 
specific dynamic field visualization work has been conducted 
concerning electroadhesion, others have used fluid based field 
visualization method to understand the dynamic pattern for
mation process of charged particles [14] and AC electrokin
etics [15]. The direct field visualization approach presented 
in this paper has been inspired by these. The indirect exper
imental approach, as described in section 2, has been based on 
measuring surface potentials on an electroadhesive pad using 
a commercial electrostatic voltmeter. The direct approach, as 
described in section 3, has been based on charging and dis
charging the electroadhesive pad when it is submerged in sun
flower oil mixed with semolina, i.e. lightweight solid particles 
suspended in a viscous medium. The focus of this paper has 
been on understanding the charging/clamping phase of the 
electroadhesion phenomenon. Finally, the conclusions and 
future work are summarized in section 4.

Figure 1. Schematic diagram of the dynamic electroadhesive 
clamping and declamping process.

J. Phys. D: Appl. Phys. 50 (2017) 205304
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2. Surface potential visualization of the  
electroadhesion phenomenon

2.1. Experimental setup

The electric field is the gradient of the potential field based 
on the Maxwell equation. The potential field distribution on 
the surface of an electroadhesive pad can be measured by an 
electrostatic voltmeter.

The experimental setup to visualize the surface potential 
distribution of the electroadhesive pad is shown in figure 3, 
where a commercial noncontact electrostatic voltmeter 
(TREK, Inc.) has been used. The noncontact electrostatic 
voltmeter employs a fieldnulling technique to capture the 
potential field and ensures accurate measurement not only 
for stationary surfaces but also for moving surfaces [16]. 
The sensing probe, connected with the voltmeter, has been 
fixed on a Kenya frame to measure the surface potentials on 
the electroadhesive pad. The recommended probetosurface 
separation distance is 3 mm  ±  1 mm [15]. The proximity dis
tance variability test has also shown that different proximity 
distances (2 mm, 3 mm, and 4 mm) generate similar results. 
The proximity distance has, therefore, been fixed here at 

2 mm. The probe has been earthed before the start of the 
experiments using an earthed metal plate. A specific probe 
holder has been designed following the instructions from ref
erence [16]. The holder has been specifically insulated using 
a polyethylene selfamalgamating tape (RS Components, 
Ltd) which has a 34 kV mm−1 breakdown voltage [17], 
as shown in figure 5. To minimize the error introduced by 
electrostatic induction the side view probe has been placed 
perpendicular to the surface instead of being parallel to the 
surface. The sampling rate of the data acquisition card, NI 
USB6218, connected with the PC Labview, has been fixed 
at 20 Hz.

The electroadhesive pad used in this indirect field meas
urement approach has been based on an interdigital design, 
with electrode width of 4 mm, spacing between electrodes 
of 9.3 mm, and effective pad area of 190 mm  ×  230 mm (see 
figure 5). The pad has been made inhouse based on a cost
effective pad design and manufacturing process [18]. The 
electrodes were made of copper. The dielectric covering the 
electrodes was polyurethane, which was the pad side facing 
the probe. The pad has been energised by a monopolar 
ETH DC power supply from Unilab. The power source has 

Figure 2. An example of the dynamic electroadhesive clamping and declamping process.

Figure 3. System diagram of the experiment setup for surface potential distribution visualization.

J. Phys. D: Appl. Phys. 50 (2017) 205304
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an output of 0–5 kV and a low current output value of 2 
mA (maximum). 4 kV has been applied to the pad (see the 
red electrode in figure 5). The electroadhesive pad has been 
fixed onto the pad holder of a Denso robot (see figure 4). 
The robot has been driven to move backward and forward 
and 15 profiles or scan locations, as shown in figure 5, have 
been selected on the pad for the measurements. The starting 
point of the surface potential measurement on the pad was 
12 mm before the first left electrode. The profile length was 
242 mm.

2.2. Experimental procedure and results

The robot speed variability test, based on the profile 8 on the 
pad (figure 5), has shown that different movement speeds 
would generate close results, as demonstrated in figure 6. The 
speed of the movement has been fixed at 1 mm s−1. It can be 
seen from figure 6 that different trends were obtained on the 
edge electrodes, compared to the middle electrodes. This is 
due to the fact that the voltage applied to the first electrode 
was 0 V and the last electrode was 4 kV.

The experimental procedure for each of the 15 profiles 
starts with turning on the pad. Taking the profile 8 as an 

example, over a period of 4 h, the robot moves the pad for
ward and backward, with the speed of 1 mm s−1, to obtain the 
surface potential distribution. As can be seen from figure 7, 
in total 31 different surface potential distributions of the pro
file 8 can therefore be obtained, manifesting and proving that 
the charging period of the pad is indeed a dynamic process. 
Also, during the pad saturation period, there is little differ
ence between the surface potential distribution results of the 
forward and backward movement. The very high measured 
potential of the electrode with the highest xposition (shown 
in figures  6–8) is due to this electrode being positively 
biased, and with no negative electrode on the far side. This 
result can therefore be explained and does not impact on any 
of the other results or the conclusions we are able to draw 
from this work.

Only the last surface potential distribution of each profile 
has been selected. The surface potential distribution of the pad 
after the pad saturation, based on the 15 profiles, is demon
strated in figure  8. This is useful for indicating the surface 
potential distribution of the electroadhesive pad. In addition, 
the result is useful for empirical modelling of the dynamic 
electroadhesion phenomenon.

Figure 4. Physical setup for surface potential distribution 
visualization.

Figure 5. Electroadhesive pad design.

Figure 6. Movement speed variability test result based on the 
profile 8 (central profile) of the pad.

Figure 7. Surface potential results of the 4 h charging of the pad 
based on the profile 8.

J. Phys. D: Appl. Phys. 50 (2017) 205304
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3. Electric field visualization of the electroadhesion 
phenomenon

3.1. Experimental setup

A lowcost and effective experimental setup has been designed 
and implemented to visualize the dynamic electric field distri
bution of the dynamic electroadhesion phenomenon, as shown 
in figure 9.

This setup has been based on a 640  ×  480, 250 frame per 
second (fps) high speed camera viewing the dynamic electric 
field distribution of the same pad used in section 2. The pad has 
been submerged in a container filled with semolina particles and 
sunflower oils. The semolina particles provide a lowdensity 
solid which is suspended in the viscous oil medium, providing 
the contrast necessary for visualizing the dynamic electric field. 
The semolina particles and sunflower oils have been mixed 
evenly before each experiment. The pad has been charged under 
potential difference of 4 kV based on one positive and negative 
EMCO high voltage converter (HVC). The EMCO HVC has an 
output from 0 V to 10 kV, with a reference input from 0 V to 5 V 
provided by a DC power supply unit (PSU).

3.2. Results and discussion

It can be seen from figures 10(a)–(f) that the electric field dis
tribution during the charging process of the pad is shown to 
be dynamic, which is illustrated by the dynamic alignment 
of the particles throughout the recording between the positive 
electrodes on the left and the negative electrodes on the right.

The semolina particles have been uniformly spread 
throughout the oil and a general haze can be seen in figure 10(a) 
before turning on the voltage. After turning on the voltage, the 
dynamic fields are shown to cause motion in the oil/semolina 
mixture, as demonstrated in figure 10(b). This wave motion 
has caused the reflection from the lighting source into the 
camera and at this point the particles have not started to align 
strongly. The particles have begun to clearly align with each 
other between the positive and negative electrodes, as shown 
in figures 10(c)–(e), before the settlement of this dynamic pro
cess, as shown in figure 10(f), where curved field distribution 
concentrations can be seen at the corners.

A 2D COMSOL electrostatic simulation of the elec
troadhesive pad has been conducted to compare the stable 
experiment electric distribution and with the electrostatic 

Figure 8. Surface potential distribution of the pad after the pad saturation: (a) 3D view and (b) contour plot.

J. Phys. D: Appl. Phys. 50 (2017) 205304
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Figure 9. Experimental setup for electric field distribution visualization of the pad.

Figure 10. Dynamic electric distribution during the charging process of the electroadhesive pad when: (a) t  =  0 s, (b) t  =  0.15 s,  
(c) t  =  0.5 s, (d) t  =  1 s, (e) t  =  1.5 s, (f) t  =  3 s. Yellow dots and arrows highlight starting positions and movement/alignment of  
semolina particles. Arrows shown in (f) indicate the steady alignment of the particles after applying the electric field for 3 s.  
A clearer view of this dynamic process can be seen in the supplementary video (stacks.iop.org/JPhysD/50/205304/mmedia).

J. Phys. D: Appl. Phys. 50 (2017) 205304
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distribution of the corner part of the pad. The materials used 
in the 2D electrostatic simulation were also copper and poly
ester (di electric constant of 3), as shown in figure 11(a). The 
electrode dimensions were the same with the parameters dem
onstrated in figure 6. The dimension of the polyester in the 
simulation was 210 mm  ×  297 mm. The Electrostatic module 
was used for this study and finer physicallycontrolled mesh 
was applied. The corner part of the electric potential dis
tribution of the simulation can be seen in figure  11(a). The 
results shown in figures  11(b) and (c) demonstrate that the 
electric field distributions of both methods are similar. The 2D 

COMSOL electrostatic simulation, however, is limited in its 
ability to simulate the dynamic process.

Different voltages (2, 4, 6, and 8 kV) have been applied 
to the pad. It can be seen in figure  12 that faster response 
times (from turning on the power until the settlement of the 
particles) have been obtained with increased voltages. Also, 
stronger movement of the oil/semolina mixture can be seen 
with higher voltages. Please note that this test was captured by 
a 50 fps Nikon D3300 SLR camera.

Figure 11. Comparison between the stable experiment electric 
distribution and the electrostatic distribution of the electroadhesive 
pad: (a) sectional electric potential distribution of the 2D COMSOL 
electrostatic model of the pad, (b) sectional stable experiment 
electric field distribution of the pad (yellow arrows show alignment 
of semolina particles), and (c) sectional 2D COMSOL static electric 
field distribution of the pad, where the length of the arrows was 
proportional to the electric field strength.

Figure 12. Relationship between the applied voltage and particle 
settlement time.

Figure 13. Indication of the electric field distribution of different 
pad geometries: (a) a sectional spiral pad and (b) a sectional 
concentric pad.

J. Phys. D: Appl. Phys. 50 (2017) 205304
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This direct field visualisation method can be used to verify 
the indicated electric field distribution of different pad geom
etries, examples of which can be seen in figure 13, where a 
sectional spiral and concentric pad were demonstrated. It must 
be noted that this method, however cannot enable people to 
fully appreciate the dynamic discharging phase of the elector
adhesive phenomenon as the viscous nature of the oil damps 
the response of the particles movement in both charging and 
discharging. It is in the relaxation phase where the force on the 
particles is weaker where the experiment will be most affected 
by the viscosity of the medium. The particles may maintain 
their positions after turning off the power to the pad.

4. Conclusion and future work

The work presented in this paper has focused upon presenting 
two field visualization methods for understanding the dynamic 
electroadhesion phenomenon based on an indirect and direct 
experimental approach. This understanding may aid the future 
optimized design of electroadhesive end effectors for material 
handling applications. The key findings from this work are as 
follows:

 • Visualization of the dynamic field distribution of elec
troadhesive pads can be indirect based on measuring 
surface potentials on the surface of an electroadhesive pad 
by an electrostatic voltmeter and direct based on charging 
and discharging the electroadhesive pad in a viscous oil 
mixed with lightweight solid particles.

 • Both the indirect and direct experimental approaches pre
sented in this paper are useful methods to understand the 
dynamic electroadhesion phenomenon and aid the com
plicated geometric optimization of electroadhesive pads 
based on field distributions. In addition, both methods are 
useful for demonstrators or lecturers to showcase or teach 
the dynamic electroadhesion phenomenon.

 • The indirect approach can also be used to verify the condi
tion of an electroadhesive pad before its usage. Unexpected 
results will occur if the pad is broken due to material degra
dation and under long time high voltage polarizations.

Future work of interest that will be published in future has 
been identified as:

 • Measuring more profiles on the pad surface to obtain a more 
comprehensive surface potential distribution of the pad.

 • Testing different pad designs and comparing their field 
distributions including both the charging and discharging 
process.

 • Modelling the dynamic electroadhesion phenomenon 
based on the results from the indirect and direct field 
visualization methods.
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