
A parallel version of the in-close algorithm

KODAGODA, Nuwan, ANDREWS, Simon <http://orcid.org/0000-0003-2094-
7456> and PULASINGHE, Koliya

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/15417/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

KODAGODA, Nuwan, ANDREWS, Simon and PULASINGHE, Koliya (2017). A
parallel version of the in-close algorithm. In: NCTM 2017 Proceedings of the 6th
National Conference on Technology and Management (NCTM). IEEE, 1-5.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A Parallel version of the In-Close Algorithm

Abstract—This research paper presents a new parallel

algorithm for computing the formal concepts in a formal context.

The proposed shared memory parallel algorithm Parallel-Task-

In-Close3 parallelizes Andrews’s In-Close3 serial algorithm. The

paper presents the key parallelization strategy used and presents

experimental results of the parallelization using the OpenMP

framework.

Keywords— FCA, In-close, parallel, OpenMP, formal concept

analysis

I. INTRODUCTION

Formal Concept Analysis (FCA) is a contemporary data
mining and data analysis technique for object-attribute
relational data. A formal context describes a binary
relationship between a set of objects and a set of attributes of a
domain. A precise definition of a formal context is given
below.

A formal context is defined as K (X,Y, I)

Where X is a set of objects, Y a set of attributes and I a binary

incidence relationship between X and Y with I X Y.
Since formal contexts are a binary relationship they can be
represented as cross tables. Here each object and attribute is
represented as a row and a column respectively [1][2]. A
mathematical definition of Formal Concepts is given below.

For a set of objects A ⊆ X the set A is defined as

A' ∶= { y ∈Y | y I x for all x ∈ A}

Similarly for a set of attributes B ⊆ Y the set B is defined as

B' ∶= { x ∈X | y I x for all y ∈ B}

(A,B) is a formal concept if A' = B and B' = A.

There are many formal concepts in a formal context. All the
possible formal concepts that are there in a formal context can
be generated and be represented in a concept hierarchy.

FCA has been applied a wide range of disciplines. A
comprehensive survey of the usage of FCA in the area of
Knowledge Processing in a wide range of domains which
includes software mining, web analytics, medicine, biology
and chemistry data is presented in [3][4].

II. NEED FOR PARALELIZATION

All computing devices used today are parallel machines.
The introduction of multicore processors commenced around
the year 2004 to solve the so called power wall problem. Prior
to this CPU manufacturers resorted to increase the clock speed
of each new generation of CPU eventually reaching the critical
power consumption of 130 Watts around 2004. Beyond this
point it was not economically possible to dissipate the heat
produced by the CPU’s. Over the last decade CPU
manufacturers have kept the clock speed and core size of a
CPU as constants and have resorted instead to add extra cores
to a single die in the CPU to get better performance [5]

Today’s laptops, desktop machines have at least two to four
cores in the CPU. High end Xeon Processors have up to 24
cores. The latest high end Xeon Phi processors have up to 72
cores, where each core has the power of a single Intel Atom
processor[6].

Computer programs must be designed and implemented
using a parallel approach to leverage on the multiple cores
available in the CPU[7]. Traditional serial programs can only
make use of one CPU core of the computer.

III. PARALELL ARCHITECTURES

Today’s computers are essentially Shared Memory
Multiple Instructions, Multiple Data (MIMD) machines. They
typically also support vector operations which are Single
Instruction, Multiple Data (SIMD). The shared memory model
simplifies the transactions between the CPUs. However this
also constitutes a bottleneck and limits the scalability of the
system[8]. Intel’s new highly parallel many core CPU the Xeon
Phi processor family have up to 72 cores running up to 288
threads with 512 bit vector instructions [6].

Distributed memory Multiple Instructions, Multiple Data
(MIMD) machines are the other type of parallel machines that
are available. These machines are made up of processors that
communicate by exchanging messages. The communication
cost is high, but since memory is not shared, such machines
can scale well. Clusters and Supercomputers are examples of
such machines [8].

The parallel algorithm presented in this research paper is a
shared memory parallel algorithm.

 Nuwan Kodagoda Simon Andrews Koliya Pulasinghe
 Department of IT Conceptual Structures Research Group Department of IT

 Faculty of Computing Communication and Computing Research Centre Faculty of Computing

Sri Lanka Institute of Information Faculty of Arts, Computing, Engineering Sri Lanka Institute of Information

 Technology and Sciences Technology

 Malabe, Sri Lanka Sheffield Hallam University, Sheffield, UK Malabe, Sri Lanka

 nuwan.k@sliit.lk s.andrews@shu.ac.uk koliya.p@sliit.lk

IV. SEQUENTIAL ALGORITHM – IN-CLOSE3

The In-Close3 algorithm was originally described by
Andrews [9]. Kodagoda and Pulasinghe[10] in their
comparison of eight different variations of Kuznetsov’s
CbO[11] family of algorithm confirmed that the algorithm
CbO-PC-ICF-BF (In-Close3) is the fastest serial FCA
algorithm. The pseudo code presented here has an additional
parameter level, which is used to keep track of the recursion
level.

Here (A,B) is the concept generated where A is the extent
and B is the intent. y is the attribute that is considered. In line
4 the next extent C is computed by intersecting the existing
extent A with each column of the formal context to find every
column that contains the extent. j ∉ B in Line 3, enables
skipping attributes in the current intent [12]. Here if the
currently considered attribute j is already a member of the
currently considered intent then the extent of this has already
been computed. This is due to the following observation [10]

{0,1,2,,,k,,n}
↓
={0,1,2,,,k,,n}

↓
 ∩{k}

↓

The key feature of the In-Close family of algorithms is the
use of partial closures [9]. Line 11 and 14 computes C

↑Yj
 , the

partial closure of C where the context I is examined upto the
current attribute j.

A full closure operator is equivalent to Y where Y is the
set of all attributes in context I. The partial closure operator Y
is defined as follows [9].

A
↑Z

 ∶= {y ∈ Z | ∀x ∈ A ∶ x I y}

Fig 1, In-Close3 algorithm pseudo code

The failed canonicity test is defined by the condition given
in line 3.

N
j ⋂ Yj ⊆ B ⋂ Yj

In essence the cannocity test prevents the recomputation of
previously generated concepts. This is due to the lexical order
of computing concepts in the CbO family of algorithms. Here
Yj is a set containing all the attributes upto attribute j. M

j
 and

N
j
 are used to capture the intent of failed cannocity tests in the

algorithm. Initially M
j
 is set to the intent of the previously

failed cannocity test N
j
 in line 2. If there are failed cannocity

tests at attribute level j, the value of C
↑Yj

 is captured in M
j
 in

line 11. This is passed to the algorithm during the recursion

call as parameter N
j
. Thus it implies that the concept has been

computed before and can be skipped. The extents are
computed in line number 4. The intents are incrementally
computed in line 6 and 14. A queue is used in line 9 and 13 to
use a combined depth first and breadth first strategy in
computing the concepts.

V. PARALLEL TASK – IN-CLOSE3 ALGORITHM

Huaiguo Fu had created a parallel implementation of the
NextClosure algorithm but it was limited to 50 attributes
[13]but this was subsequently greatly extended [14]. Krajca
[15] presented a parallel algorithm called PFCbO which
parallelizes the FCbO algorithm. This is also a variation of the
CbO algorithm[11]. Andrews’s best of breeds In-Close3 is an
improvement over the serial FCbO algorithm, where the key
difference is the use of partial closures instead of full
closures[9]. Krajca had used a queue specific to each thread to
capture parameters of recursive sub call trees of a specific level
of recursion[15]. Once all the sub call trees are captured,
instances of threads are spawned in a round robin fashion to
compute the remaining concepts in parallel.

In-Close3 is a naturally recursive algorithm. In the serial
implementation each of the recursive call will be executed by
the same processor. The recursion will occur in a combined
depth first and breadth first approach as showed in Fig 3. The
numbers indicate the order of execution. The breadth first
traversal is due to the use of a queue in line 9 and 13 of the
original In-Close3 algorithm.

A simple naïve parallelization strategy would be to spawn
each recursive call as a separate thread running on a separate
core. One of the challenges of parallel programming is to
allocate each thread sufficient work and solutions typically
scale well if the work assigned to each thread is uniform. The
naïve parallelization approach outlined above should in theory
support uniform workload distribution but has the two
following drawbacks. One being that the number of threads
spawned would be significant even for modest datasets.
Secondly the workload provided to the threads would be very
small resulting in the threads swapping the workload provided
frequently. An experimental evaluation of this naïve
parallelization approach yielded poor performance.

The proposed solution uses an approach similar to that of
Krajca’s PCbO[15] where an entire recursion subtree is
assigned to each thread. The parallel algorithm consists of two
functions Parallel_ComputeConceptsFrom() and
ComputeConceptsFrom().

The Parallel_ComputeConceptsFrom() function (See Fig 2)
is identical to the ComputeCoonceptsFrom() function (See Fig
1) with the exception of the first two lines. The
Parallel_ComputeConceptsFrom() function is invoked with
(A,B)=(X,X

↑
). Where X represents a complete set of extents.

Initial attribute y = 0 and a set of empty Ns,{N
y
 = ∅ | y ∈ Y}

and level = 0. These values are the same as that is used for the
serial algorithm presented in Fig 1. The parameter level is used
to keep track of the level of recursion. The constant LEVEL is
an optimization parameter that is used to determine the
recursion level at which separate processes are spawned with
the task of computing all the concepts in a given recursive sub

tree (See line 2 of Fig 2). For instance if the constant LEVEL
is set to two for the recursive call tree given in Fig 3, the tasks
that would be assigned to the parallel threads would be
{5,{6,{8,9,10}},7,{11,{14}},12,{13,{15,16}},17,{18,{19,20}.
The first available thread would be assigned the task of
computing concepts of the recursive sub tree 5. However since
there are no children in this sub tree the thread would complete
the task as soon as the concepts of 5 are computed. The next
available thread in the meantime would have been assigned the
task of computing the concepts of the recursive sub tree 6.
During the computation the same thread is used to compute the
concepts of 8,9 and 10 which are discovered and computed at
runtime. It is clear in this example that the workloads given to
each thread would be different. This is one of the
disadvantages of this proposed solution. Another is the fact
that concepts upto LEVEL two are computed serially. In the
above example the concepts for 1,2,3 and 4 are computed
serially. The same disadvantages are there in Krajca’s parallel
solution as well.

Fig 2, Parallel Task - In-Close3 algorithm
Parallel_Compute_Concepts_From() pseudo code

Krajca used separate queues to store each of the recursive
call subtree workloads that were later distributed to separate
threads in a round robin fashion[15]. The storing was done
serially and the spawning of threads was carried out only after
the computation of all the recursive call subtrees. The parallel
algorithm proposed in this research paper spawns new threads
as soon as they are discovered.

VI. IMPLEMENTATION DETAILS

The OpenMP command task was used to spawn new
threads. High level shared memory thread programming
frameworks such as OpenMP, Cilk+ have built in schedulers
that are used to spawn threads. Developers only implicitly
specify the intent of parallelization using appropriate
commands in the code[5]. A sophisticated runtime scheduler
in the background handles the creation, assigning work and
deletion of threads.

Fig 3, Combined Depth and Breadth First Recursive Call Tree
of In-Close3

The OpenMP task command has an inherent queue which
keeps track of requests made to spawn new threads. It retrieves
requests from its internal queue and distributes the workload to
threads which are free. This ensures that the implementations
scale well for different shared memory machines with varied
number of cores.

Table 1, No of threads called in parallel for different values of LEVEL

Level Mushroom Adult Ad

Example

0 1 1 1 1

1 35 91 371 3

2 398 1,505 2,041 8

3 2,307 8,722 4,051 8

4 8,261 22,259 4,138 0

5 20,358 26,167 3,003 0

Table 1, shows the number of threads that are executed in
parallel for different values of LEVEL. A LEVEL with a
higher value seem to be ideal to parallelize. However it
implies that the nodes above that LEVEL are computed
serially.

VII. EXPERIMENTAL RESULTS

The OpenMP implementation of the Parallel Task - In-
Close3 algorithm was executed on a single node of the
ARCHER Super Computer . An ARCHER node has two 2.7
GHz, 12-core E5-2697 v2 (Ivy Bridge) series Xeon processors.
The two processors are connected by two QuickPath
Interconnect (QPI) links. The memory is arranged in a non-
uniform access (NUMA) form, where each 12-core processor
is a single NUMA region with local memory of 32 GB. By
nature a super computer provides dedicated access of the
compute nodes required to run a program. The graph shown in
Fig 4 shows the relative speedup of running the real world
datasets Mushroom, Adult and Internet Ads[16].

The values were computed with the LEVEL set as two.
Speedup is defined as the ratio between the time taken to run
the dataset with one processor over the time taken to run the
same dataset with P processors[17]. Table 2, shows the best
time obtained for each of the different real world datasets.

Fig 4, Speedup vs No of Processors for the Mushroom, Adult and Internet
Ad real world datasets

There is a clear drop in performance when then core count
reaches thirteen (See Fig 3). This can be easily explained when
one looks at the CPU configuration of the machine used to run
the experiments. Access to the local memory by cores within
a NUMA region has a lower latency than accessing memory on
the other NUMA region.

Table 2, Best Time obtained for different datasets

Data Set Mushroom Adult Internet Ads

|X| x |Y| 8,124x125 32,561x99 3279x1565

Density 17.4% 11.29% 0.97%

Concepts 226,920 80,332 16570

Time (seconds)

Best Results (cores)

0.07667

12

0.02972

12

0.05771

04

The current codebase has room for optimization by the
removal of mutexes and avoiding false memory sharing. The
parallel algorithm is memory bound which is also another
reason why it doesn’t scale well.

Fig 5, shows how the implementation behaved for different
values of LEVEL. When LEVEL is zero all the concepts are
computed in one single thread. We can see a significant drop
in performance for this value. The best results are obtained
when LEVEL is set to one. However results when LEVEL is
set to two is similar for the mushroom and adult datasets.
Krajca had reported best results when LEVEL had the value of
two[15].

Fig 5, LEVEL vs Time for the Mushroom, Adult and Internet Ad real
world datasets

The original serial implementation of In-Close3 had a large
scratchpad of memory allocated at the start of the program to
capture the extents and intents produced. In shared memory
programming care should be taken to avoid data races. A data
race occurs when two or more threads in a single process
access the same memory location concurrently, and at least one
of the accesses is for writing[18]. For the parallel
implementation the scratchpad were separated so that each
processor would have separate access to its own scratchpad.

VIII. CONCLUSION

The results demonstrate that CbO based algorithms which
are naturally recursive by nature, can be easily parallelized
with only minor changes to the codebase. OpenMP tasks can
be used for this purpose where an entire recursive call sub tree
can be assigned to separate threads. Further research needs to
be carried out to compare the parallel implementation of In-
Close3 to other parallel implementations such as PFCbO.

ACKNOWLEDGEMENTS

This work used the ARCHER UK National
Supercomputing Service (http://www.archer.ac.uk).

REFERENCES

[1] R. Wille, “Restructuring lattice theory: an approach based on hierarchies

of concepts,” in Ordered sets, Springer, 1982, pp. 445–470.

[2] B. Ganter, G. Stumme, and R. Wille, “Formal concept analysis: Methods
and applications in computer science,” TU Dresden, http//www. aifb.

uni-karlsruhe. de/WBS/gst/FBA03. shtml, 2002.

[3] J. Poelmans and S. Kuznetsov, “Formal concept analysis in knowledge
processing: a survey on models and techniques,” Expert Syst. with …,

vol. 40, no. 2003, pp. 1–40, 2013.

[4] J. Poelmans, D. Ignatov, and S. Kuznetsov, “Formal concept analysis in

knowledge processing: A survey on applications,” Expert Syst. Appl.,
vol. 40, no. 16 SRC-GoogleScholar FG-0, pp. 6538–6560, 2013.

[5] S. Chappell and A. Stokes, Parallel Programming with Intel Parallel

Studio XE. John Wiley & Sons, 2012.
[6] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High

Performance Programming, 2nd Edition. Morgan Kaufmann, 2016.

[7] H. Sutter, “The free lunch is over: A fundamental turn toward
concurrency in software,” Dr. Dobb’s J., vol. 30, no. 3, pp. 202–210,

2005.

[8] G. Barlas, Multicore and GPU Programming: An integrated approach.
Elsevier, 2014.

[9] S. Andrews, “A ‘Best-of-Breed’ approach for designing a fast algorithm

for computing fixpoints of Galois Connections,” Inf. Sci. (Ny)., vol. 295,
pp. 633–649, 2015.

[10] N. Kodagoda and K. Pulasinghe, “Comparision Between Features of

CbO based Algorithms for Generating Formal Concepts”, Int. J.
Concept. Struct. Smart Appl., vol. 4, no. 1, pp. 1–34, 2016.

[11] S. O. Kuznetsov and S. a. Obiedkov, “Comparing performance of

algorithms for generating concept lattices,” J. Exp. Theor. Artif. Intell.,
vol. 14, no. 2–3, pp. 189–216, 2002.

[12] V. Vychodil, “A New Algorithm for Computing Formal Concepts,”

Proceeding 19th EMSCSR, pp. 15–21, 2008.
[13] H. Fu and E. M. Nguifo, “A Parallel Algorithm to Generate Formal

Concepts for Large Data,” in International Conference on Formal

Concept Analysis (ICFCA), 2004, pp. 394–401.
[14] H. Fu and M. O. Foghlu, “A distributed algorithm of density-based

subspace frequent closed itemset mining,” in High Performance
Computing and Communications, 2008. HPCC’08. 10th IEEE

International Conference on, 2008, pp. 750–755.

[15] P. Krajca, J. Outrata, and V. Vychodil, “Parallel recursive algorithm for
FCA,” in CLA, 2008, vol. 2008, pp. 71–82.

[16] A. Frank and A. Asuncion, “UCI machine learning repository.” 2010.

[17] M. D. McCool, A. D. Robison, and J. Reinders, Structured parallel
programming: patterns for efficient computation. Elsevier, 2012.

[18] A. Vladimirov and V. Karpusenko, “Parallel Programming and

Optimization with Intel Xeon Phi Coprocessors,” ColeFax Int., no. May,
p. 520, 2013.

