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Abstract 
This paper introduces a new method for 2D image compression whose quality is demonstrated through 

accurate 3D reconstruction using structured light techniques and 3D reconstruction from multiple 

viewpoints. The method is based on two discrete transforms: 1) A one-dimensional Discrete Cosine 

Transform (DCT) is applied to each row of the image. 2) The output from the previous step is transformed 

again by a one-dimensional Discrete Sine Transform (DST), which is applied to each column of data 

generating new sets of high-frequency components followed by quantization of the higher frequencies. The 

output is then divided into two parts where the low-frequency components are compressed by arithmetic 

coding and the high frequency ones by an efficient minimization encoding algorithm. At decompression 

stage, a binary search algorithm is used to recover the original high frequency components. The technique is 

demonstrated by compressing 2D images up to 99% compression ratio. The decompressed images, which 

include images with structured light patterns for 3D reconstruction and from multiple viewpoints, are of 

high perceptual quality yielding accurate 3D reconstruction. Perceptual assessment and objective quality of 

compression are compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the 

proposed compression method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and 

with equivalent perceptual quality to JPEG2000.  

 

Keywords: DCT, DST, High Frequency Minimization, Binary Search Algorithm  

 

 
 

1. Introduction 
Transform coding is at the heart of the majority 2D image/video coding systems and standards. Spatial 

image data (image samples or motion-compensated residual samples) are transformed into a different 

representation, the transform domain. There are good reasons for transforming image data in this way. 

Spatial image data is inherently ‘difficult’ to compress; neighbouring samples are highly correlated and 

the energy tends to be evenly distributed across an image, making it difficult to discard data or reduce the 

precision of data without adversely affecting image quality [1,2].With a suitable choice of transform, the 

data becomes ‘easier’ to compress in the transform domain. There are several desirable properties of a 

transform for compression. It should compact the energy in the image, i.e., concentrate the energy into a 

small number of significant values; it should de-correlate the data so that discarding ‘insignificant’ data – 

normally high frequency data – has a minimal effect on image quality; and it should be suitable for 

practical implementation in software and hardware [3,4]. 

 

The two most widely used image compression transforms are the discrete cosine transform (DCT) and the 

discrete wavelet transform (DWT) [3,4,5]. The DCT is usually applied to small, regular blocks of image 

samples (e.g. 8x8 squares) and the DWT is usually applied to larger image sections or to complete 

images. Many alternatives have been proposed, for example 3D transforms (dealing with spatial and 

temporal correlation), variable block size transforms, fractal transforms, and Gabor analysis. The DCT 

has proved particularly useful and it is at the core of most current generation of image and video coding 

standards, including JPEG, H.261, H.263, H.263+, MPEG-l, MPEG-2 and MPEG-4 [6,7].  

 

To demonstrate the effectiveness of our approach, we focus on compressing 2D image data appropriate 

for 3D reconstruction. This includes 3D reconstruction from structured light images, and 3D 

reconstruction from multiple viewpoint images. Previously, we have demonstrated that while geometry 
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and connectivity of a 3D mesh can be tackled by several techniques such as high degree polynomial 

interpolation [13] or partial differential equations [19,20], the issue of efficient compression of 2D images 

both for 3D reconstruction and texture mapping has not yet been addressed in a satisfactory manner. 

Moreover, in most applications that share common data, it is necessary to transmit 3D models over the 

Internet. For example, to share CAD/CAM assets, e-commerce applications, update content for 

entertainment applications, or to support collaborative design, analysis, display of engineering, medical 

and scientific datasets. Bandwidth imposes hard limits on the amount of data transmission and, together 

with storage costs calls for more efficient 3D data compression for exchange over the Internet and other 

networked environments. Using structured light techniques for 3D reconstruction, surface patches can be 

compressed as a 2D image together with 3D calibration parameters, transmitted over a network and 

remotely reconstructed (geometry, connectivity and texture map) at the receiving end with the same 

resolution as the original data [15, 21]. 

 

Related to the techniques proposed in this paper, our previous work on data compression is summarized 

as follows:1) Focused on compressing structured light images for 3D reconstruction, Siddeq and 

Rodrigues [15]proposed a method in 2014 where a single level DWT is followed by a DCT on the LL 

sub-band yielding the DC component and the AC-matrix. A second DWT is applied to the DC 

components whose second level LL2 sub-band is transformed again by DCT. A matrix minimization 

algorithm was applied to the AC-matrix and other sub-bands. Compression ratios of up to 98% were 

achieved. 2) Siddeq and Rodrigues in same year [16], proposed technique where a DWT was applied to 

variant arrangements of data blocks followed by arithmetic coding. The novel aspect of that paper is at 

decompression stage, where a Parallel Sequential Search Algorithm was proposed and demonstrated. 

Compression ratios of up to 98.8% were achieved. 3) In Siddeq and Rodrigues[18] a two-level DWT was 

applied followed by a DCT to generate a DC-component array and an MA-Matrix (Multi-Array Matrix). 

The MA-Matrix was then partitioned into blocks and a minimization algorithm coded each block 

followed by the removal of zero valued coefficients and arithmetic coding. At decompression stage, a 

new algorithm called Fast-Match-Search decompression was used to reconstruct the high-frequency 

matrices by computing data probabilities through a binary search algorithm in association with a look up 

table. A comparative analysis of various combinations of DWT and DCT block sizes was performed, with 

compression ratios up to 99.5%. 

 

 
 

Figure 1. The main steps of the proposed compression algorithm. 
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In this paper, we introduce a new method based on DCT and DST for compressing 2D images with 

structured light patterns for 3D surface reconstruction (i.e., the 2D images have embedded stripe patterns, 

and the detection and processing of such patterns are used to generate a 3D surface). Additionally, the 

method is applied to a series of 2D images (with no structured light patterns) and used to convert from 

multiple 2D images to a 3D surface [26]. Following the discrete transformations, a high-frequency 

minimization method is used to convert each three adjacent coefficients to a single integer, reducing the 

data size to a third of its original size. The final step is to apply arithmetic coding to the reduced data. The 

main steps in the compression algorithm are depicted in Figure 1. 

 

2. Using One-Dimensional Discrete Cosine Transform (DCT) 

The one-dimensional DCT is used to transform each row from an image (spatial domain) to obtain 

transform image called "Tdct", a shown in the following [3,4,5]:  
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Where i=0, 1, 2, 3, …, n-1 represents images row size from “I”, and the output is a set of DCT 

coefficients "Tdct". The first coefficient is called DC coefficient, and the rest are referred to as the AC 

coefficients. Notice that the coefficients are real numbers, and they are rounded off to integers. The 

important feature of the DCT is that it is useful in image compression [14]. It takes correlated input data 

and concentrates its energy in just the first few transform coefficients. If the input data consists of 

correlated quantities, then most of the "n" transform coefficients produced by the DCT are zeros or small 

numbers [8], and only a few are large (normally the first data). The early coefficients contain the most 

important (low-frequency) image information and the later coefficients contain the less-important (high-

frequency) image information [6,17]. This feature allows good compression performance as a proportion 

of the less important coefficient scan be discarded without much degradation of image quality. Figure 2 

shows the DCT applied to each row of a small image size 8x8 without using scalar quantization.  

  
Original data ( image data)                                    Tdct : DCT applied to each row 

 

(Coefficients are rounded off to integers) 
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Figure 2. (Left) Original block of data, (right) Tdct produced by DCT. 

 

3. One Dimensional Discrete Sine Transform (DST) 

Our research has indicated that a one dimensional DCT works together with a one-dimensional DST 

yielding large amounts of high-frequency components. These high frequency components are useful to 

obtain high compression ratios comparable to the JPEG technique. In this research, we will apply one 

dimensional DST to each column of the transformed matrix "Tdct" from previous section. The DST 

definition is represented as follows [8,9]: 
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Equation (3) is used to transform "n" values of "Tdct" matrix into "n" coefficients. These are the low and 

high frequency coefficients containing important and less important image information. The one-

dimensional DST is applied to each column of "Tdct" to produce a new transformed matrix "Tdst". The 

DST is equivalent to the imaginary part of the Discrete Fourier Transformation (DFT) and the results of 

the DST are real numbers [10,11]. The main advantage of using the DST for image compression in this 

context is that the DST preservers the image quality encoded by the low frequency components of "Tdct" 

and increases the number of zeros, which can be discarded without loss of quality. 

After the DST, we apply a quantization of the high frequency components of the transformed matrix 

"Tdst". In this way, the quantization means losing only insignificant information from the matrix. Each 

coefficient in the matrix is divided by the corresponding number from a “Quantization table” and the 

result is rounded off to the nearest integer. The following equation is proposed as a quantization table. 

Q(i,j)=(i+j) * F                                                                                                                              (5) 

Where: F>0 and i,j=1,2,3,...,n x m (image dimensions) 

In Equation (5) "F" is a real number greater than zero. This value affects image quality as for "F>1" 

image quality is decreased. There is no limit for F, however, from our experiments we suggest F from 0.1 

to 10. Figure 3 shows the DST applied to each column and quantized by Equation (5). 
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Figure 3. DST applied to each Column of Tdct followed by quantization with F=2 (See Equation (5)) 

In the above example, low and high frequency components are determined by the user. The low-

frequency ones are not compressed any further, we just represent them in fewer bytes by arithmetic 

coding. Meanwhile, the high-frequency components either horizontal or vertical are compressed by the 

High-Frequency Minimization algorithm described in the next section. 

 

4. High Frequency Minimization Algorithm 
 

In this section, we describe an algorithm to convert the high-frequency coefficients (i.e. from previous 

section results passed to Minimization algorithm) into a compressed array called Minimized-Array 

through a matrix minimization method involving eliminating zeros and triplet encoding whose output is 

then subjected to arithmetic coding. Normally, the high frequency components contain large numbers of 

zeroes with a few nonzero data. The technique eliminates zeroes and enhances compression ratio [14, 15, 

16, 17, 18]. 
 

The high-frequency minimization algorithm is applied further reducing the size of high-frequency sub-

matrix by 2/3.This process hinges on defining three key values and multiplying these by three adjacent 

entries in H (the matrix of high frequency coefficients) which are then summed over producing single 

integer values as shown in Figure 4 [16, 18]. 

 
 

 
 

Figure 4: High-Frequency Minimization Algorithm used to compress coefficients (D1, D2…, Dnm) from matrix H 

(i.e. matrix H scanned row-by-row for compression) 
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Thus, each set of the three entries from H are converted into a single value which are then stored into a 

new coded array (Minimized-Array). Assuming that 𝑁 is the length of H, 𝑖 = 1,2, … , 𝑁 − 3, and 𝑗 is the 

index of new coded array, the following transformations define the high frequency encoding[15-18]: 
 

 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆𝒅_𝑨𝒓𝒓𝒂𝒚𝒋 = 𝐾1𝑯𝑖 + 𝐾2𝑯(𝑖+1) +  𝐾3𝑯(𝑖+2)                                                                                           (4) 

 

The key values 𝐾1, 𝐾2, 𝐾3are generated by a key generator algorithm as in [17,18] described through 

Equations 5, 6, 7 and 8 below. Because the keys are data-dependent of max(H), each matrix will have 

their unique set of keys if their max(H) are distinct. 
 

𝑀 = 1.5 max(𝑯)                                                                                                                                                        (5) 

𝐾1 = 1                                                                                                                                                                            (6) 

𝐾2 = 𝐾1 + 𝑀 +  𝐹𝑎𝑐𝑡𝑜𝑟                                                                                                                                            (7) 

𝐾3 = 𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑀(𝐾1 + 𝐾2)                                                                                                                                     (8) 

Where 𝐹𝑎𝑐𝑡𝑜𝑟 ≥ 1 and K1 ≥ 1are integer values. The quantity Factor is a scaling factor to enlarge the 

degree of separation between the 3 generated keys. The keys themselves are the weights of each triplet 

summation in the minimized-array. The original values of each triplet can later be recovered by 

estimating the H values (See Section 5) for that Minimized-Array. Following the models above, the 

Minimized-Array for the example in Figure 3 can be illustrated in the following Table 1. 
 

 
Table 1: From the example of Figure 3: each high-frequency sub-matrix is compressed independently 

Assume M=2 (Maximum value in high-frequency sub-matrix: Horizontal) , the Keys values will be:  K1=1, 

K2=5, K3=18  for both high-frequencies components: Horizontal and Vertical 

High-Frequency Sub-matrix Compressed Size Comments 

Minimized-Array(Vertical)={-1,0,0, 0, ... 0} compressed size 16 48(original size)/3 =16 data 

Minimized-Array(Horizontal)={2,0,0, 0,0,0} compressed size 6  16(original size)/3 = 5.3 (last zero is alone)  

 

Our compression method creates a new array of header data H, which is used later by the decompression 

algorithm to estimate the original data values. This information is kept in the header of the compressed 

file as a string. Figure 5 below illustrates the concept through a numerical example. 

 

 

Figure 5: Limited-Data appearing in 𝑯 are kept in the header file for recovery. 

 

Per above example in Figure-3, the Limited-Data can be estimated from high-frequency sub-matrices 

(Horizontal and Vertical). Limited-Data(Vertical) = {-1,0} and Limited-Data(Horizontal)={2,0}.   
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The encoded triplets in the Minimized-Array may contain large number of zeros which can be further 

encoded through a process proposed by [18]. For example, assume the following encoded Minimized-

Array={125, 0, 0,0,73, 0, 0,0,0,0, -17}.The zero array will be {0,3,0,5,0} where the zeros in red refer to 

nonzero data existing at these positions and the numbers in black refer to the number of zeros between 

two consecutive non-zero data. To increase the compression ratio, the number 5 can be broken up into 3 

and 2 to increase data redundancy. Thus, the equivalent zero array would be {0,3, 0, 3, 2, 0} and the 

nonzero array would be {125,73,-17}. According to this method, the Minimized-Array both Horizontal 

and Vertical can be illustrated in Table 2. 
 

Table 2: Each Minimized-Array is coded to zero-array and nonzero-array 

High-Frequency Sub-matrix Zero-Array Nonzero-Array 

Minimized-Array(Vertical)={-1,0,0, 0 ... 0} Zero(Vertical)={0,5, 5, 5}  Nonzero-Array(Vertical)={-1} 

Minimized-Array(Horizontal)={2,0,0, 0,0, 0} Zero(Horizontal)={0, 5}  Nonzero-Array(Horizontal)={2} 

Note: the "0" refers to the nonzero data in Nonzero-Arrays   

 

The final step of compression is arithmetic coding which computes the probability of all data and assigns 

a range to each data (low and high) to generate streams of compressed bits [5].The arithmetic coding 

applied here takes a stream of data and converts into a single floating point value. The output is in the 

range between zero and one that, when decoded, returns the exact original stream of data.  
 

5. The Fast-Matching Search Decompression Algorithm 
The decompression algorithm is the inverse of compression. First, decode the Minimized-Array for both 

horizontal and vertical components by combining the zero-array with the non-zero-array. Second, decode 

high-frequencies from the Minimized-Array using the fast matching search (FMS) algorithm [18]. Third, 

inverse the DST and DCT to reconstruct the original 2D image. The images are then assessed on their 

perceptual quality and on their ability to reconstruct the 3D structures compared with the original images. 

Figure 6 illustrates the decompression method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Inverse DST applied to each column                                               Inverse DCT applied to each row (Final Decompressed Image) 
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Figure 6: The steps in the decompression algorithm. 

The Fast Matching Search Algorithm (FMS) has been designed to recover the original high frequency 

data. The compressed data contains information about the compression keys (K1,K2 and K3) and Limited-

Data followed by streams of compressed high frequency data. Therefore, the FMS algorithm picks up 

each compressed high frequency data and decodes it using the key values and compares whether the result 

is expressed in the Limited-Data. Given 3 possible values from Limited Data, there is only one possible 

correct result for each key combination, so the data is uniquely decoded. We illustrate the FMS-

Algorithm through the following steps A and B [18]: 

A) Initially, the Limited-Data is copied into three separated arrays given that we used three keys for 

compression. The algorithm picks three items of data (one from each Limited-Data) and apply 

these to Equation (4) using the three compression keys. The method resembles an interconnected 

array D,where each value is combined with each other value, similar to a network as shown in 

Figure7(a). 

 

Since the three arrays of Limited-Data contain the same values, that is A1=B1=C1, A2=B2=C2 

and so on  the searching algorithm computes all possible combinations of A with K1, B with K2 

and C with K3 that yield an intemdiate array D. As a means of an example consider that Limited-

Data1=[A1 A2 A3] , Limited-Data2=[B1 B2 B3] and Limited-Data3=[C1 C2 C3]. Then, 

according to Equation (4) these represent H(L), H(L+1) and H(L+2) respectively. The equation is 

executed 27 times (3
3
=27) testing all possibilites. One of these combinations in array D will 

match the value in the compressed data. The match indicates that the unique combination of A,B 

and C are the original data. If we apply this to our example, Limited-Data(vertical) ={-1,0} (See 

Table 1) number of possiblites for A=[-1,0], B=[-1,0] and C=[-1,0] as shown in Table 3. 

 

Table 3: All possible data computed according to Equation (4) to generate the D-Array (K1=1,K2=3 and K3=4) 

Limited-Data1(A) Limited-Data2(B) Limited-Data3(C) D-Array 

-1 -1 -1 -8 

-1 -1 0 -4 

-1 0 -1 -5 

-1 0 0 -1 

0 -1 -1 -7 

0 -1 0 -3 

0 0 -1 -4 

0 0 0 0 

 

B) The searching algorithm used in the decompression method is called Binary Search Algorithm. It 

finds the original data (A,B,C) for any input from compressed data file "Minimized-Array". For 

binary search, the D-Array should be arranged in ascending order.  

 

The decompression algorithm compares a value from the Minimized-Arraywith the middle of 

element of the array “D”. If the value matches, then a matching element has been found and its 

position is returned (i.e. the relevant A,B and C are the decompressed data we are after)[12]. 

Otherwise, if the search is less than the middle element of  “D”, then the algorithm repeats its 

action on the sub-array to the left of the middle element or, if the value is greater, on the sub-
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array to the right. There is no probability of  “Not Matched”, because the FMS-Algorithm 

computes all compression data possibilities as shown in Figure-7(b).   

 

(a) Estimate all possible compressed data saved in D-array (i.e. each possible compressed data connected with their relevent 

original data) 

 

 

 

 
(b) Decompression by using Binary Searching algorithm 

 

 
Figure 7: (a) and (b) FMS-Algorithm for reconstructing high frequency data from Limited-Data. A, B and C are the original data 

which are determined by the unique combination of keys. 

 

 

Once the horizontal and vertical high frequency components are recovered by the FMS-Algorithm, they 

are combined to regenerate the 2D matrix (See Figure 6). Then each data from the matrix is multiplied by 

each data in Q (Equation 5) followed by the inverse DST (Equation 4) applied to each column. Finally, 

we multiply each data by F followed by the inverse DCT (Equation 2) applied to each row to recover the 

original 2D image as shown in Figure 6. If we compare the results in Figure 6 with the original 8x8 matrix 

of Figure 2, we find that there is not much difference, and these differences do not affect image quality. 

For this reason, our technique is very attractive for image compression. 

 
 

6. Experimental Results  
The experimental results described here were implemented in MATLAB R2013a and Visual C++ 2008 

running on an AMD Quad-Core microprocessor. We describe the results in two parts: first, we apply the 

method to general 2D images of different sizes and assess their perceived visual quality and RMSE. 
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Additionally, we compare our compression method with JPEG and JPEG2000 through the visualization 

of 2D images, 3D surface reconstruction from multiple views and RMSE error measures. 

 

 

Second, we apply the compression and decompression algorithms to 2D images that contain structured 

light patterns allowing 3D surface data to be generated from those patterns. The rationale is that a high-

quality image compression is required otherwise the resulting 3D structure from the decompressed image 

will contain apparent dissimilarities when compared to the 3D structure obtained from the original 

(uncompressed) data. We report on these differences in 3D through visualization and standard measures 

of RMSE-root mean square error.  

 
 

 

6.1. Results for 2D Images 
 

In this Section, we apply the algorithms to generic 2D images, that is, images that do not contain 

structured light patterns as described in the previous section. In this case, the quality of the compression is 

performed by perceptual assessment and by the RMSE measure. We use images with varying sizes from 

2.25MB to 9MB. Also, we present a comparison with JPEG and JPEG2000 highlighting the differences 

in compressed image sizes and the perceived quality of the compression.  

 

Figure 8 (a) gives an indication of compression ratios achieved with our approach while in (b) is shown 

details with comparative analysis with JPEG2000 and JPEG. First, the decoded 'baby' image by 

JPEG2000 contains some blurring at places, while the same image decoded by our approach and JPEG 

are of higher quality. Second, the decoded 'eyes' image by JPEG algorithm had some block artefacts 

resulting in a lower quality compression. Also, the same image decoded by our approach and JPEG2000 

at equivalent compression ratios, has excellent image quality. Finally, the decoded 'girl' image by 

JPEG2000 is slightly degraded, while our approach and JPEG show good image quality. 

 

   
Compressed size: 107.7 KB 

Original size: 2.25 MB 

Compression ratio: 95% 

Compressed size: 59.4 KB 

Original size: 3 MB 

Compression ratio: 98% 

Compressed size: 59.9 KB 

Original size: 9 MB 

Compression ratio: 99% 

(a) Compressed and decompressed 2D images by our approach 
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Our approach: RMSE=5.95 

 
Our approach: RMSE=4.84 

 
Our approach: RMSE=5.94 

 
JPEG2000: RMSE=2.71  

JPEG2000: RMSE=2.83 
 

JPEG2000: RMSE=3.49 

 
JPEG: RMSE=3.2  

JPEG: RMSE=6.66  
JPEG: RMSE=5.02 

(b) Details of compression/decompression by our approach,JPEG2000 and JPEG respectively  

 

Figure 8: Compressed images by JPEG and JPEG2000 at equivalent compressed file sizes as with our approach. 

 

Additionally, we applied our compression techniques to a series of 2D images and used Autodesk 

123DCatch software to generate a 3D model from multiple images. The objective is to perform a direct 

comparison between our approach and both JPEG and JPEG2000 on the ability to perform 3D 

reconstruction from multiple views. Images are uploaded to the Autodesk server for processing which 

normally takes a few minutes. The 123D Catch software uses photogrammetric techniques to measure 

distances between objects producing a 3D model (i.e. image processing is performed by stitching a plain 

seam with correct sides together). The application may ask the user to select common points on the seam 

that could not be determined automatically [25, 26]. Compression sizes and RMSE for all images used are 

depicted in Table 4. 

Table 4: Compressed sizes and 2D RMSE measures 

Image 

Name 

Number 

of images 

 

Original 

image size 

(MB) 

Quantization 

parameters 

used in DST 

Compressed 

image size 

(MB) 

Average 

compressed size of each 

image 

(MB) 

Average 

2D 

RMSE 
Y Cb Cr 

Baby 1 

 

3  

 

0.5 5 5 0.0594  0.0594 5.95 

Eyes 1 9  0.5 5 5 0.0599  0.0599 4.84 

Girl 1 2.25  0.5 5 5 0.1077  0.1077 5.94 

Apple 48 336  2 5 5 1.94  0.0414 8.33 
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Face 28 200.7  1 5 5 1.72  0.0629  5.68 

 

Figure 9 shows two series of 2D images for objects “APPLE”, and “FACE” (all images are available from 

123D Catch website). We start by compressing each series of images whose compressed sizes and 2D 

RMSE measures are shown in Table 4. A direct comparison of compression with JPEG and JPEG2000 is 

presented in Table 5. It is clearly shown that our approach and JPEG2000 can reach an equivalent 

compression ratio, while the JPEG technique does not. It is important to stress that both our technique and 

JPEG depend on DCT. The main difference is that our approach is based on DCT with DST and the 

coefficients are compressed by the frequency minimization algorithm, which renders our technique far 

superior to JPEG as shown in the comparative analysis of Figure 10. 

 

 

 
 

Figure 9: (a) and (b) show series of 2D images used to generate 3D models by 123D Catch. 

 

In our method, DCT with DST are applied on an image as one block. The used low frequency block size 

for colour was 150x150, the scalar quantization for DCT was 1, 5 and 5 for each layer (Y,Cb and Cr) 

respectively. Furthermore, the quantization matrix used after DST performs an aggressive quantization, 

this means that approximately 50% of the coefficients are zeros (i.e. the left bottom of the image matrix 

contains lot of zeros after the quantization process – see Equation 5). 
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(a) 3D model for series of APPLE images decompressed by our approach (48 images, average 2D RMSE=8.33, total compressed 

size=1.94 MB). The compression ratio for the 3D mesh is 99.4% for connectivity and vertices 

 

 
(b) 3D model for series of FACE images decompressed by our approach (28 images, average 2D RMSE=5.68, total compressed 

size=1.72 MB). The compression ratio for the 3D mesh is 99.1% for connectivity and vertices 

Figure 10: (a) and (b) Successful 3D reconstruction following compression by our approach. Images were compressed to the 

same size by our approach, JPEG and JPEG2000. 

 

 

 
Table 5: Comparison of 3D reconstruction for images compressed to the same size. Note that JPEG failed to reconstruct the 3D 

structure as the images were too deteriorated. 

Multiple  

2D images 

 

Original size 

(MB) 

Compressed 

size 

(MB) 

2D RMSE 

Our approach JPEG2000 JPEG 

APPLE 336 1.94 9.5 6.58 FAIL 

FACE 200.7 1.72 5.1 3.39 FAIL 

 

 

 

6.2. Results for Structured Light Images and 3D Surfaces 
3D surface reconstruction was performed with our own software developed within the GMPR group [19, 

20, 21]. The justification for introducing 3D reconstruction is that we can make use of a new set of 
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metrics in terms of error measures and perceived quality of the 3D visualization to assess the quality of 

the compression/decompression algorithms. The principle of operation of GMPR 3D surface scanning is 

to project patterns of light onto the target surface whose image is recorded by a camera. The shape of the 

captured pattern is combined with the spatial relationship between the light source and the camera, to 

determine the 3D position of the surface along the pattern. The main advantages of the method are speed 

and accuracy; a surface can be scanned from a single 2D image and processed into 3D surface in a few 

milliseconds [22]. The scanner is depicted in Figure 11. 
 

 

Figure 11: (a) depicts the GMPR scanner together with an image captured by the camera (b) which is then 

converted into a 3D surface and visualized (c). Note that only the portions of the image that contain patterns (stripes) 

can be converted into 3D; other parts of the image are ignored by the 3D reconstruction algorithms. 

 

Figure 12 shows several test images used to generate 3D surfaces both in grayscale and colour. The top 

row shows two grayscale face images, FACE1 and FACE2 with size 1.37MB and dimensions 1392 ×

1040  pixels. The bottom row shows colour images CORNER and METAL with size 3.75MB and 

dimension 1280 × 1024  pixels. We use the RMSE measure to compute the differences between 

decompressed images and original ones. The RMSE however, cannot give an absolute indication of which 

is the ‘best’ reconstructed image or 3D surface, as errors may be concentrated in a region that may or may 

not be relevant to the perception of quality. To get a better assessment of quality, we analyse 3D surface 

images at various compression ratios. 
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Figure 12. Structured light images used to generate 3D surfaces. Top row grayscale images FACE1 and 

FACE2, and colour images CORNER and METAL respectively. Images were compressed to the same size by 

our approach, JPEG and JPEG2000. 

 

 
Table 6: Structured light images compressed by our approach 

Image 

Name 

Original Image  

Size 

(MB) 

Original Image size Compressed  

Size 

(KB) 

2D RMSE 3D RMSE 
DCT DST 

FACE1 1.37  
1 2 18.75 4.82 1.51 

1 6 11.7  6.22 1.54 

FACE2 1.37  
1 2 15.6  1.89 2.25 

1 6 7.8  2.56 2.67 

CORNER 3.75  
{1, 5, 5} {2, 2, 2} 21.2  5.56 1.36 

{1, 5, 5} {2, 3, 3} 14.7  7.0 0.5 

METAL 3.75  
{1, 5, 5} {1, 5, 5} 27.5  5.25 1.87 

{1, 5, 5} {2, 5, 5} 12.1  5.62 1.98 

 

 

Table 6 shows the compressed size for our approach using two different values of quantization. First, the 

quantization scalar for FACE1 and FACE2 is 1. This means that after DCT each coefficient is divided by 

1, this means rounding off each floating-point value to integer. Similarly, after DST the quantization 

equation is applied with F (Equation 5). 

 

The colour images are defined by using colour transformation [5, 23] into YCbCr format. We then apply 

the proposed approach to each layer independently. For this reason, after DCT the quantization scalar for 

colour images is {1, 5, 5} for each layer of Y, Cb and Cr respectively. 
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FACE1: Compressed size 18.75 Kbytes (texture and shaded) Compressed Size=11.7Kbytes (shaded) 

3D reconstructed FACE1 from decompressed image by our approach 

 

 

 
FACE2: Compressed size 15.6 Kbytes (texture and shaded) Compressed Size=7.8 Kbytes (shaded)                          

3D reconstructed FACE2 from decompressed image by our approach 

 

 

 
2D decompressed images zoomed-in, to show the details: FACE1 and FACE2 at higher compression ratio 

 

Figure 13: Top: FACE1 shows decompressed 3D surface with texture and shaded at compressed size 18.7KB and 

11.7KB. Middle: FACE2 shows decompressed 3D surface with texture and shaded at compressed size 15.6KB and 

7.8KB. Bottom: details of 2D images FACE1 and FACE2 respectively at the higher compression ratio. 

 

 

Figure 13 shows the visualization of the decompressed 2D images using different values for quantization. 

These decompressed images are converted to 3D surfaces. FACE1 on top of Figure 13 from left to right 

are higher quality surface per 3D RMSE. In fact, some parts of 3D surface have disappeared at higher 

compression ratio. But in FACE2 in the middle, the 3D reconstructed image at higher compression ratio 

is approximately the same as for low compression ratio. This means that 3D reconstruction depends on 

the structured light's quality in an image. Figure 13 (bottom) shows zoomed-in regions for the two 

images, the structure light patterns are clearly present at 99% compression ratio. 
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CORNER: Compressed size 21.2 Kbytes (texture and shaded) Compressed Size=14.7 Kbytes (shaded) 
3D reconstructed CORNER from decompressed image by our approach 

 

 
METAL: Compressed size 27.5 Kbytes (texture and shaded) Compressed Size=12.1 Kbytes (shaded) 

3D reconstructed METAL from decompressed image by our approach 

 

 
2D decompressed images zoomed-in, to show the details: CORNER and METAL at higher compression 

ratio 

 

Figure 14: (Top) shows decompressed 3D surface of CORNER with texture and shaded at compressed sizes 

21.2KBand 14.7KB. (Middle) shows decompressed 3D surface of METAL with texture and shaded at compressed 

sizes 27.5KB and 12.1KB. (Bottom) zoomed-in details for 2D images CORNER and METAL respectively at higher 

compression ratio.   
 

 

 

Figure 14 shows 3D reconstructed surfaces for CORNER and METAL images respectively. On top, the 

quality of CORNER 3D surface at 99% compression ratio. But the 3D surface (top right) has some 

artefacts; this type of artefacts not present in the original and decompressed 2D image at lower 

compression ratio. Artefacts appear when the structure light patterns are not clearly defined in the image, 

or are degraded after compression and decompression. In Figure 14 middle, the decompressed METAL 

image is converted to a 3D surface. The reconstructed 3D surface of middle right is degraded for all cases 

in which compression ratios exceed 99%.To analyse 2D colour image compression, we zoomed-in the 

decompressed 2D images. It is shown that the structure lights are clearly visible at higher compression 

ratios of 99%. 
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JPEG2000  - 18.75 Kbytes JPEG2000 - 11.7 Kbytes JPEG2000 - 15.6 Kbytes JPEG2000 - 7.8 Kbytes 

 

 

 
JPEG2000  - 21.2 Kbytes JPEG2000 - 14.7 Kbytes 

 

Figure 15: Top: 3D reconstructed surface for FACE1 and FACE2 respectively using JPEG2000. Bottom: CORNER 

image successfully 3D reconstructed, while METAL image failed 3D reconstruction. 

 

 

 

Table 7: Compression and decompression for 3D reconstruction by JPEG2000 and JPEG at higher compression 

ratios. All images were compressed to the same size by the techniques. 

Image  

name 

Compressed 

Size 

(KB) 

JPEG2000 JPEG 

2D 

RMSE 

3D 

RMSE 

2D 

RMSE 

3D 

RMSE 

FACE1 11.7 6.3 1.8 FAIL FAIL 

FACE2 7.8 3.2 2.66 FAIL FAIL 

CORNER 14.7 5.7 0.63 FAIL FAIL 

METAL 13.4 4.17 FAIL FAIL FAIL 

 

For a comparative analysis, we compressed and decompressed the 2D images by JPEG2000 and JPEG, 

then converted to a 3D surface. Table 7 and Figure 15 describe the compressed and decompressed results 

respectively for JPEG2000. The comparison is based on applying the same compression ratios between 

JPEG2000 and our approach and show the visualization for the two methods. While the JPEG algorithm 

simply failed to compress the images at the required ratio. Also, the important point to note is that 

JPEG2000 [24] cannot decompress some 2D images to equivalent quality for 3D reconstruction or if it 
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does, the 3D surface contains some degradation. Additionally, Figure 16 shows the compressed 2D 

images by JPEG2000 with zoomed in image details. 

 

 

 
 

Figure16: Details of 2D decompressed images by JPEG2000: Top: FACE1 on the left is clearly blurred leading 

to degraded 3D reconstruction. Bottom: METAL image on the right is blurred rendering it unable to reconstruct 

a 3D surface. 

 

 

 

 

7. Conclusions 
This paper has presented and demonstrated a new method for image compression and illustrated the 

quality of compression through 2D and 3D reconstruction, 2D and 3D RMSE. Our compression algorithm 

is based on DCT applied to each row of an image, then followed by DST which is applied to each column 

of the matrix.  After the transformation stage, the minimization of high frequency algorithm is used to 

reduce the number of high-frequency coefficients. The compression stage is then completed with 

arithmetic coding. In the decoding stage, the Fast-Matching-Search algorithm based on binary search is 

used to recover the original data. The results show that our approach introduces better image quality at 

higher compression ratios than JPEG and JPEG2000 as it can more accurately reconstruct 3D surfaces 

than both techniques. A slight disadvantage of the proposed method is that it is more complex than both 

JPEG2000 and JPEG. This is because our approach uses two types of transforms, and that neither JPEG 

nor JPEG2000 rely on a search method. 
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The most important aspects of the method and their role in providing high quality image with high 

compression ratios are identified as follows: 

 

1. The one-dimensional DCT can be applied to an image row (i.e. larger block sizes ≥ 8). Equally, 

the one-dimensional DST can be applied to each column of the output from DCT. 

2.  The user can ignore the scalar quantization to remove higher frequency coefficients (i.e. keeping 

more coefficients increases image quality). 

3. The two-dimensional quantization (cf. Equation 5) provides a more aggressive quantization 

removing most of matrix contents as about 50% of the matrix entries are zero. Applying this over 

the DST can keep image quality at higher compression ratios.      

4. The final transformed matrix is divided into: low-frequency sub-matrix, and horizontal and 

vertical high-frequency matrices.   

5. The minimization of high frequency algorithm produces a Minimized-Array used to replace each 

three values from the high-frequencies sub-bands by a single integer value. This process reduces 

the coefficients by 2/3 leading to increased compression ratios. 

6. Since the Minimized-Array for both vertical and horizontal high-frequencies contains large 

number of zeros, we applied a new method to eliminate zeros and keep nonzero data. The process 

keeps significant information while reducing data up to 80%. 

7. At decompression stage, the Fast-Matching-Search algorithm is the engine for estimating the 

original data from the minimized array and depends on the organized key values and the 

availability of a set of unique data. The efficient C++ implementation allows this algorithm to 

recover the high-frequency matrices very efficiently. 

8. The key values and unique data are used for coding and decoding an image, without this 

information images cannot be recovered. This is an important point as a compressed image is 

equivalent to an encrypted image that can only be reconstructed if the keys are available. This has 

applications to secure transmission and storage of images and video data. 

9. Our proposed image compression algorithm was tested on true colour and YCbCr layered images 

at high compression ratios. Additionally, the approach was tested on images resulting in better 3D 

reconstruction than JPEG2000 and JPEG. 

10. The experiments indicate that the technique can be used for real-time applications such as 3D data 

objects and video data streaming over the Internet. 

 

Future work is focused on efficient implementation of the decoding steps and their application to video 

compression. Research is underway and will be reported soon. 

 
 

 

References 

[1] A. Al-Haj, (2007) Combined DWT-DCT Digital Image Watermarking, Science Publications, Journal of Computer Science 

3 (9): 740-746. 

[2] C. Christopoulos, J. Askelof, andM. Larsson (2000) Efficient methods for encoding regions of interest in the upcoming 

JPEG 2000 still image coding standard, IEEE Signal Processing Letters,vol.7,no.9. 

[3] S. A. Martucci, Symmetric convolution and the discrete sine and cosine transforms, IEEE Trans. Sig. Processing SP-42, 

1038-1051 (1994). 

[4] I.E. G. Richardson (2002) Video Codec Design, John Wiley &Sons. 

[5] K. Sayood, (2000) Introduction to Data Compression, 2nd edition, Academic Press, Morgan Kaufman Publishers. 

[6] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image Data Compression Standard, Van Nostrand Reinhold, 

1993. 



21 
 

[7] H. B. Kekre, TanujaSarodeandPrachiNatu (2013), EFFICIENT IMAGE COMPRESSION TECHNIQUE USING FULL, 

COLUMN AND ROW TRANSFORMS ON COLOUR IMAGE, International Journal of Advances in Engineering & 

Technology, Vol. 6, Issue 1, pp. 88-100 

[8] EvaldoGonqalvesPelaesandYuzolano (1998), IMAGE CODING USING DISCRETE SINE TRANSFORM WITH AXIS 

ROTATION, IEEE Transactions on Consumer Electronics, Vol. 44, No. 4, pp 1284-1290 

[9] Discrete Sine Transform (2016) https://en.wikipedia.org/wiki/Discrete_sine_transform, last accessed Nov. 2016 

[10] Swati DhamijaandDr. Priyanka Jain (2011),Comparative Analysis for Discrete Sine Transform as a suitable method for 

noise estimation, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011 

[11] Malini. S and Moni. R. S (2014), Use of Discrete Sine Transform for A Novel Image Denoising Technique, International 

Journal of Image Processing (IJIP), Volume (8) Issue (4) 2014 

[12]  Knuth, Donald (1997). Sorting and Searching: Section 6.2.1: Searching an Ordered Table, The Art of Computer 

Programming 3 (3rd Ed.), Addison-Wesley.  pp. 409–426. ISBN 0-201-89685-0 

[13] M. Rodrigues, A. Robinson and A. Osman, (2010) Efficient 3D data compression through parameterization of free-form 

surface patches, In: Signal Process and Multimedia Applications (SIGMAP), Proceedings of the 2010 International 

Conference on. IEEE, 130-135. 

[14] M.M. Siddeqand G. Al-Khafaji, (2013) Applied Minimize-Matrix-Size Algorithm on the Transformed images by DCT 

and DWT used for image Compression, International Journal of Computer Applications, Vol.70, No. 15. 

[15] M.M. Siddeq and M.A. Rodrigues, (2014a) A New 2D Image Compression Technique for 3D Surface Reconstruction, 

18th International Conference on Circuits, Systems, Communications and Computers, Santorin Island, Greece: 379-386 

[16] M.M. Siddeqand M.A. Rodrigues(2014b) A Novel Image Compression Algorithm for high resolution 3D Reconstruction, 

3D Research. Springer Vol. 5 No.2.DOI 10.1007/s13319-014-0007-6 

[17] M.M. Siddeqand RODRIGUES, Marcos (2015a). Applied sequential-search algorithm for compression-encryption of 

high-resolution structured light 3D data. In: BLASHKI, Katherine and XIAO, Yingcai, (eds.)MCCSIS : Multi-conference 

on Computer Science and Information Systems 2015. IADIS Press, 195-202 

[18] M.M. Siddeq and RODRIGUES, Marcos (2015b). A novel 2D image compression algorithm based on two levels DWT 

and DCT transforms with enhanced minimize-matrix-size algorithm for high resolution structured light 3D surface 

reconstruction. 3D Research, 6 (3), p. 26. DOI 10.1007/s13319-015-0055-6 

[19] M. Rodrigues, A. Osman and A. Robinson, (2013a) Partial differential equations for 3D data compression and 

reconstruction, Journal Advances in Dynamical Systems and Applications.12(3), 2004, pp 371–378 

[20] M. Rodrigues, M. Kormann, C. Schuhlerand P. Tomek(2013b) Robot trajectory planning using OLP and structured light 

3D machine vision. Lecture notes in Computer Science Part II. LCNS, 8034 (8034). Springer, Heidelberg, 244-253. 

[21] M. Rodrigues, M. Kormann, C. Schuhlerand P. Tomek (2013c). Structured light techniques for 3D surface 

reconstruction in robotic tasks. In: KACPRZYK, J, (ed.) Advances in Intelligent Systems and Computing. Heidelberg, 

Springer, 805-814. 

[22] M. Rodrigues, M. Kormann, C. Schuhlerand P. Tomek (2013d). An intelligent real time 3D vision system for robotic 

welding tasks. In: Mechatronics and its applications. IEEE Xplore, 1-6. 

[23] R. C. Gonzalez and R. E. Woods (2001) Digital Image Processing, AddisonWesleypublishing company.  

[24] T. Acharya and P. S. Tsai. (2005) JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI 

Architectures. New York: John Wiley & Sons. 

[25] Autodesk 123D,https://en.wikipedia.org/wiki/Autodesk_123D, last accessed May-2016 

[26] 123D Catch,http://www.123dapp.com/howto/catch,last accessed May 2016 

 

https://en.wikipedia.org/wiki/Discrete_sine_transform
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Addison-Wesley
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0
http://link.springer.com/article/10.1007%2Fs13319-015-0055-6
http://link.springer.com/article/10.1007%2Fs13319-015-0055-6
http://link.springer.com/article/10.1007%2Fs13319-015-0055-6
http://shura.shu.ac.uk/7280/
http://shura.shu.ac.uk/7280/
http://shura.shu.ac.uk/7279/
http://shura.shu.ac.uk/7279/
https://en.wikipedia.org/wiki/Autodesk_123D
http://www.123dapp.com/howto/catch

