The role of perceptual factors in the reflexive attentional shift phenomenon.

SORANZO, Alessandro <http://orcid.org/0000-0002-4445-1968>, WILSON, Christopher and BERTAMINI, Marco

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/15023/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version


Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
The role of perceptual factors in the reflexive attentional shift phenomenon

Alessandro Soranzo, Christopher Wilson and Marco Bertamini - a.soranzo@shu.ac.uk

Introduction
Spatial cueing of attention occurs when attention is oriented by the onset of a stimulus at a specific location (exogenous cuing) or by a cue at a location (Posner, 1980). Certain cues such as eyes or arrows have been known to orient attention towards target stimuli due to their social or biological relevance (Ristic & Kingstone, 2012).

Interestingly, the presence of a cue in the visual scene can interfere with participants’ reporting of what they see. By using a dot perspective task paradigm, Samson et al. (2010) found slower reaction times and higher error rates when the number of stimuli that the cue points to is different from the overall number of stimuli visible to the participant (Samson et al. 2010).

Two explanations have been advanced regarding what causes this effect:
- the perceptual explanation argues that perceptual factors of the cuing task are sufficient to explain the interference.
- the social explanation argues that perceptual factors are not sufficient on their own to generate interference but additional social processes need to occur.

The social explanation claims that, in addition to other processes, the cue itself has to be believed to have a point of view; "participants might not experience interference from the presence of the avatar if they thought that the avatar could not see" (Samson et al. 2010, page 1263); or interference is "dependent on the attribution of a seeing mental state to the avatar" (Furuness et al. 2016).

Previous studies have examined this aspect, but they found conflicting results:
- Furuness et al. (2016) used different coloured glasses to denote "seeing" and "non-seeing" avatars. However, the meaning of the colours of the glasses does not convey directly any perceptually relevant information; rather, it needs to be learned.
- Cole et al. (2016) and Baker et al. (2016) obscured/opened the view of the avatar with a physical obstruction. However, there was an extra component into the visual scene that adds complexity.

In addition, these studies employed a within-groups design to alternate between "seeing" and "non-seeing" conditions, potentially indicating to participants that they have to do something different in each condition.

Experiment
One between-subjects variable:
Cue type (Sighted avatar - Blindfolded avatar)

Two within-subjects variables:
Consistency (Consistent - Inconsistent)
Perspective (First Person Perspective (1PP) - Third Person Perspective (3PP))

The dependent variables considered were RT and Error Rate.

Participants
Thirty-two participants took part in this experiment. Sixteen per each level of the Cue Type variable.

Method

Procedure
Participants had to confirm whether the number shown previously is equal to the number of discs visible from the prompted perspective ("YOU" or "SH"). In relation to the 3PP trials: "When the prompt is SHE, you have to indicate whether or not the avatar is pointing towards the number of discs previously indicated.

Results

Reaction time analysis
Cue type: ns
Cue Type - Consistency: ns
Int (Cue Type - Perspective): ns
Consistency: F(1, 30) = 55.16, p < 0.001; ηp² = 0.65
Inconsistent trials showing slower reaction times than Consistent trials
Perspective: ns
Int (Consistency - Perspective): F(1, 30) = 8.84, p = 0.001; ηp² = 0.23
[Smaller consistency effects in 1PP trials than 3PP trials]

Error rate analysis
Cue type: ns
Int (Cue Type - Consistency): ns
Cue Type - Perspective: ns
Consistency: F(1, 30) = 4.29, p = 0.05; ηp² = 0.13
Inconsistent trials showing lower error rates than Consistent trials
Perspective: ns
Int (Consistency - Perspective): F(1, 30) = 59.75, p < 0.001; ηp² = 0.66
[Smaller consistency effects in 1PP trials than 3PP trials]

Conclusions

The interference persisted even when the participants believed that the avatar could not see. The comparison of first-person interference between the sighted avatar and the blindfolded avatar revealed no difference.

The two conditions were equally powerful in eliciting the interference.

The results support a perceptual interpretation of interference and challenge previous findings that suggest interference is the result of an intrinsically social process. Consistent with previous research, we found that a form of interference emerges in certain instances when participants are asked to adopt a first-person perspective and a cue is present (1PP-interference).

These findings suggest that the effect is not modulated by mental state attribution. It can be concluded that the directional features of the cue, readily discernible by visual processes, are sufficient to orient attention leading to interference.

References