Sheffield
 Hallam
 University

Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets

DUNCAN, Oliver http://orcid.org/0000-0001-9503-1464, ALLEN, Tom, FOSTER, Leon http://orcid.org/0000-0002-1551-0316, SENIOR, Terry http://orcid.org/0000-0002-3049-5724 and ALDERSON, Andrew http://orcid.org/0000-0002-6281-2624

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/14650/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

DUNCAN, Oliver, ALLEN, Tom, FOSTER, Leon, SENIOR, Terry and ALDERSON, Andrew (2017). Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets. Acta Materialia, 126, 426-437.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Figure 8: Mechanical properties vs strain predictions. (a) Directional PR predictions (curves) and experimental $\mathrm{VCR}=1$ (gradient foam) data (symbols) vs loading strain: v_{xz} and v_{zx} predictions for $\mathrm{h}_{\mathrm{xz}}=1.2,1_{\mathrm{xz}}=1, \mathrm{~b}_{\mathrm{xz}}=0.2$, $\theta_{\mathrm{xz}}=-0.1^{\circ}, \varphi=10^{\circ}$ and $\mathrm{K}_{\mathrm{hf}} / \mathrm{K}_{\mathrm{s}}=0.004\left(\mathrm{~K}_{\mathrm{f}} / \mathrm{K}_{\mathrm{h}}=9, \mathrm{~K}_{\mathrm{s}} / \mathrm{K}_{\mathrm{h}}=225\right) ; v_{\mathrm{xy}}$ predictions for $\mathrm{h}_{\mathrm{xy}}=1_{\mathrm{xy}}=1, \mathrm{~b}_{\mathrm{xy}}=0.2, \theta_{\mathrm{xy}}=$ $30^{\circ}, \varphi=0^{\circ}$ and $\mathrm{K}_{\mathrm{hf}} / \mathrm{K}_{\mathrm{s}}=0.3\left(\mathrm{~K}_{\mathrm{f}} / \mathrm{K}_{\mathrm{h}}=9, \mathrm{~K}_{\mathrm{s}} / \mathrm{K}_{\mathrm{h}}=3\right)$; (b) Directional Young's moduli (normalised to undeformed E_{x}) predictions (curves) and experimental data (symbols) vs loading strain: model parameters as for (a). The E_{x} (x-z fit) model expression is shown as an exemplar.

