

Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets

DUNCAN, Oliver http://orcid.org/0000-0001-9503-1464, ALLEN, Tom, FOSTER, Leon http://orcid.org/0000-0002-3049-5724 and ALDERSON, Andrew http://orcid.org/0000-0002-6281-2624

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/14650/

This document is the Accepted Version [AM]

Citation:

DUNCAN, Oliver, ALLEN, Tom, FOSTER, Leon, SENIOR, Terry and ALDERSON, Andrew (2017). Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets. Acta Materialia, 126, 426-437. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Figure 8: Mechanical properties vs strain predictions. (a) Directional PR predictions (curves) and experimental VCR=1 (gradient foam) data (symbols) vs loading strain: v_{xz} and v_{zx} predictions for $h_{xz}=1.2$, $l_{xz}=1$, $b_{xz}=0.2$, $\theta_{xz}=-0.1^{\circ}$, $\phi=10^{\circ}$ and $K_{hf}/K_s=0.004$ ($K_f/K_h=9$, $K_s/K_h=225$); v_{xy} predictions for $h_{xy}=l_{xy}=1$, $b_{xy}=0.2$, $\theta_{xy}=30^{\circ}$, $\phi=0^{\circ}$ and $K_{hf}/K_s=0.3$ ($K_f/K_h=9$, $K_s/K_h=3$); (b) Directional Young's moduli (normalised to undeformed E_x) predictions (curves) and experimental data (symbols) vs loading strain: model parameters as for (a). The E_x (x-z fit) model expression is shown as an exemplar.