
Analytical solutions for semiconductor luminescence 
including Coulomb correlations with applications to dilute 
bismides

ORIAKU, C. I. and PEREIRA, Mauro <http://orcid.org/0000-0002-2276-2095>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/14602/

This document is the Accepted Version [AM]

Citation:

ORIAKU, C. I. and PEREIRA, Mauro (2017). Analytical solutions for semiconductor 
luminescence including Coulomb correlations with applications to dilute bismides. 
Journal of the Optical Society of America B, 34 (2), 321-328. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Analytical solutions for semiconductor luminescence 
including Coulomb correlations with applications to 
dilute bismides  

C.I. ORIAKU
1,2

 AND M.F. PEREIRA1* 
1Materials and Engineering Research Institute, Sheffield Hallam University, S1 1WB, Sheffield, United Kingdom 
2Department of Physics, Michael Okpara University of Agriculture, Umudike, P.M.B. 7267, Umuahia, Nigeria 
*Corresponding author: m.pereira@shu.ac.uk 

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 
In this paper we introduce analytical solutions of interband polarization, which is the selfenergy of the Dyson 
equation for the Photon Green's functions and apply them to study photoluminescence of Coulomb correlated 
semiconductor materials. The accuracy of the easily programmable solutions is proven by consistently explaining 
the low temperature s-shape of the luminescence peak of dilute bismide semiconductors. The different roles of 
homogeneous versus inhomogeneous broadening at low and high temperatures are described, as well as the 
relevance of many body effects, which are in very good agreement with experiments.   
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1. INTRODUCTION 

Photoluminescence is one of the main techniques to understand and 
develop new materials such as dilute bismides, where the 
incorporation of a small amount of Bi leads to a large bandgap 
reduction, making GaAs1-xBix an excellent candidate to extend GaAs-
based technology to create tunable mid-infrared laser diodes and 
detectors [1]. As a matter of fact, recent research suggests that trains of 
pulses from semiconductor disk lasers, that can be based on both 
dilute nitrides and bismides, when combined with photoconductors 
might lead even to THz generation [2,3]. In contrast to dilute nitride 
systems, where a small amount of nitrogen modifies the conduction 
bands [4], the corresponding band anticrossing effects in dilute 
bismides modify the valence bands [5-9].  An interesting feature of 
these materials is the anomalous energy emission peaks at low 
temperatures, following an unusual s-shape behaviour that is 
associated with disorder and localization effects, which have been seen 
in both dilute bismides [8] and nitrides [4]. A simple and efficient 
method to describe this and other light emission effects in those 
materials is missing and we propose analytical solutions for the Photon 
Green's functions approach [10-12], delivering a microscopic, fully 
quantum mechanical solution. Note that, in spite of its success to 
accurately explain experiments such as both single beam and 
nonlinear pump-probe photoluminescence [13], as well as being a 
powerful tool to design optical devices and solar cells [14] and multi-
photon absorption [15], the method usually requires intensive 
numerical methods. Therefore, in this paper, we aim at two goals: first 
we deliver analytical solutions of the Dyson equations for the Photon 

Green's functions to study photoluminescence of Coulomb correlated 
semiconductor materials. In contrast to previous approaches, our 
formalism does not require large numerical inversion schemes or 
Monte Carlo simulations, which have been applied to explain the 
(Stokes) shift between emission and absorption [16]. Second, the 
accuracy of the easily programmable solutions is proven by means of a 
consistent description of the luminescence spectra and the low 
temperature s-shape of the luminescence peak of dilute bismide 
semiconductors as function of scattering mechanisms. The different 
roles of homogeneous versus inhomogeneous broadening at low and 
high temperatures are explained as well as the relevance of many body 
effects in very good agreement with experiments. We explain the 
disappearance of the s-shape with decreasing homogeneous 
broadening, which can be attributed to different scattering channels 
such as electron-electron, electron-phonon, electron-impurity and 
electron-alloy disorder scattering.  This is consistent with recent 
experimental findings in which rapid thermal annealing improves the 
sample quality and reduces scattering mechanisms that contribute to 
the broadening, thus reducing the measured s-shape-like features in 
InAsN(Sb) samples [17].  Furthermore, it has been recently found 
experimentally that  the addition of antimony reduces the broadening 
of Photo luminescence  emission and Photo reflectance resonances  
[18].  This has been attributed to an improvement of the alloy quality 
after antimony  incorporation due to its reactive surfactant properties 
[19, 20]. The scattering processes cited above can all be described by 
selfenergies [21, 22]. The real and imaginary parts of the retarded 
selfenergies lead respectively to energy shifts (bandgap re 
normalisation) and to the dephasing that characterises homogeneous 
broadening. Depending on the approximation used for the scattering 



mechanisms, the resulting expressions may become sufficiently 
complex. Furthermore, the different samples had quite different levels 
of residual scattering, due to imperfections and impurities. Thus even if 
we had used the selfenergies in Ref. [21, 22], parameters would have to 
be adjusted.  Thus, since one of our main goals is to deliver expressions 
simple enough to be easily programmed by a broad audience, we 
describe dephasing/scattering globally by a simple density and 
anisotropy  parameter Γ, given in Appendix D.  Note however that, 
even though this reduces the fully microscopic approach, we are fully 
able to explain the origin of e.g. the s-shape in luminescence spectra. In 
our approach stronger disorder translates mostly into larger alloy 
disorder scattering that increases the homogeneous broadening 
described by the parameter Γ in the equations that follow. Our 
analytical solutions can thus simply and elegantly explain the evolution 
of the luminescence spectra as function of excitation, temperature and 
increasing level of disorder. This paper is organized as follows. We 
start with the equations in Ref. [11] and outline the derivation of 
analytical approximations, which are possible due to the screened 
Coulomb potential chosen. Next, we reproduce experimental 
luminescence from a number of independent teams with very good 
accuracy. A short summary follows. We focus on bulk dilute bismides, 
but superlattices can also in many cases be described with this 
formalism by treating them as anisotropic bulk media [23]. 

2. MATHEMATICAL FORMALISM 
The quantum mechanical Poynting vector describing light emission 
can be expressed in terms of the Photon Green's Function, leading to 
the optical power density spectrum, which can be directly compared 
with photoluminescence experiments [10,11], 
 
𝐼(𝜔) = ℏ𝜔2/4𝜋2𝑐𝑖𝑃<(𝜔).                                                                               (1) 
 
The transverse polarisation function P is the selfenergy in the Dyson 
equation for the Photon Green's Function and the lesser Keldysh 
component P< is proportional to the carriers recombination rate, while 
Pr is related to absorption/gain and refractive index change. To find 
analytical solutions, we start by following the step by step procedure in 
Ref. [11], where only numerical solutions are given and approximate 
the full frequency dependent population inversion factor by 

𝜗 = tanh(𝛽(ℏ𝜔 − 𝛽𝜇)). Under quasi-equilibrium in each band, the 

occupation functions are characterized by chemical potentials, 𝜇𝑒 and 
𝜇ℎ, 𝜇 = 𝜇𝑒 + 𝜇ℎ . Homogeneous broadening is accounted through 
Γ which is the dephasing due to the various possible scattering 

channels. The material resonance energy is Δ𝑒(𝑘) =
ℏ2𝑘2

2𝑚𝑟
+ 𝐸𝑔, where 

1
𝑚𝑟

⁄ = 1
𝑚𝑒

⁄ + 1
𝑚ℎ

⁄ . The bandgap Eg is given by the sum of the 

fundamental band gap  𝐸𝑔
0, and a many body renormalisation term 

Δ𝐸𝑔. The integro-differential equation for P< reduces to 

 

𝑃<(𝜔) =
−𝑖8𝜋|Π|2

Ω
𝐼𝑚{∑ Λ(𝑘, 𝜔}𝑘⃗ },                                                              (2)                                                   

 
(ℏ𝜔 − Δ𝑒(𝑘) + 𝑖Γ)Λ(𝑘, 𝜔) + ∑ 𝒲

𝑘⃗ −𝑘′⃗⃗⃗⃗ Λ(𝑘′, 𝜔) = 𝔅(𝜔),𝑘′⃗⃗⃗⃗      (3)     

 
where Π is the matrix element of the velocity operator. Numerical 
complications due to the singularity introduced by the Kubo-Martin-
Schwinger (KMS) relation [11], are eliminated exactly because the 

resulting factor 𝔅(𝜔) = 1/ (1 + 𝑒𝑥𝑝(𝛽(ℏ𝜔 − 𝜇))) is positive and 

finite, where 𝛽 =
1

𝐾𝐵𝑇
. The Yukawa potential is the approximation 

typically used for the screened potential in 3D. However, the 
corresponding Schrödinger equation does not have known analytical 
solutions. In contrast, the Hulthén potential, 𝒲(𝑟) = −2𝑒2𝜅𝜖0

′−1/

((exp (2𝜅𝑟) − 1)) has known analytical solutions which have 
successfully reproduced bulk nonlinear absorption spectra [32]. We 
thus used it here for luminescence calculations.  Its three-dimensional 
Fourier transform also has an analytical expression,   
 

𝒲𝑞 = −
2𝜋𝑒2

Ω𝜖0
′𝜅𝑞

𝐼𝑚 {𝜓′(1 +
𝑖𝑞

2𝜅
)} ,                                                                    (4) 

 
where Ω is the sample volume, 𝜓′ is the Trigamma function [24], 𝜅 is 
the screening wavenumber and 𝜖0

′ = 𝜖0/𝜗.  Analytical 
approximations for 𝜇 and 𝜅 are given in Appendix A. The bandgap 
renormalisation including Coulomb hole and screened exchange 
corrections reads  
 

Δ𝐸𝑔 = −
𝑒2𝜅

𝜖0
′ − ∑ 𝒲𝑞𝑞 (𝑓𝑒(𝑞) + 𝑓ℎ(𝑞)),                                                   (5)                                         

 
where the Fermi functions 𝑓𝑒 , 𝑓ℎ  are evaluated at the peak of the 
spectral function for each particle. More details are given in Appendix 
C.  This goes beyond previous analytical approaches for absorption in 
bulk and superlattices that had a phenomenological term for the 
bandgap shift [23, 25, 26] and also, in contrast to those, here we can 
take into account a reduction in the Coulomb interaction due to phase 
space filling through the factor 𝜗. Note however that in the range of 
carrier densities used in the numerical results presented in this paper, 
𝜗 ≈ 1 i.e. 𝜖0

′  ≈ 𝜖0.  Next we Fourier-transform Eq. [3] to real space 
and expand Λ(𝑟, 𝜔) in the basis of eigenstates of the Hamiltonian, 
 

− [
ℏ2∇2

2𝑚𝑟
+  𝒲(𝑟)]Ψ𝜈(𝑟) = 𝐸𝜈Ψ𝜈(𝑟),                                                                (6) 

 
leading to a closed expression for the output power density, 
 

𝐼(𝜔) =
4ℏ2𝑒2|Π|2/𝑐3

1 + exp (𝛽(ℏ𝜔 − 𝜇))
∑|Ψ𝜈(𝑟 = 0)|2𝛿Γ(ℏ𝜔

𝜈

− 𝐸𝑔 − 𝐸𝜈), 

                                                                                                                                                    (7) 
                      

where 𝛿Γ =
1

𝜋

Γ

(ℏω−Eg−Eν)
2
+Γ2

, but for practical applications, leading to 

feasible luminescence spectra without the need of a frequency and 
momentum dependent dephasing, we  replace it by any other 
analytical representation of the Dirac delta function to which it reduces 
for Γ → 0.  We choose  𝛿Γ(𝑥) = 1 𝜋Γ cosh (𝑥 Γ)⁄⁄  (see Appendix B). 
 
Real space representations of the Hulthén potential eigenstates are 
known [23-27] and among the various possibilities, we choose easily 
programmable forms of the solutions at r=0. 
 

𝐼(𝜔) =
𝐼0

1+𝑒𝑥𝑝(𝛽(ℏ𝜔−𝜇))
{∑

4𝜋

𝑛
(

1

𝑛2 −
𝑛2

𝑔2)
√𝑔
𝑛=1 𝛿Γ(𝜉 − 𝑒𝑛) +

2𝜋 ∫
sinh(𝜋𝑔√𝑥)

cosh(𝜋𝑔√𝑥)−cos(√4𝑔−𝑔2𝑥)
𝛿Γ(𝜉 − 𝑥)𝑑𝑥

∞

0
},                                          (8) 

 

where 𝐼0 =
ℏ𝜔2𝑒2|Π|2

𝜋𝑒0𝑐
3𝑎0

3 , 𝑒𝑛=−(𝑛−1−𝑛𝑔−1)2  , 𝜉 = (ℏ𝜔 − 𝐸𝑔)/𝑒0 , 

𝑔 = (𝜅𝑎0)
−1 and 𝑎0, 𝑒0 denote, respectively the exciton Bohr radius 

and binding energy. When a small fraction of As atoms is replaced by 

Bi, the resulting fundamental bandgap 𝐸𝑔
0 can be obtained from 𝑘⃗ ∙ 𝑝  

bandstructure combined with the valence band anticrossing model for 
GaAs1-xBix alloys. The interaction of the Bi impurity state with the 
valence band of GaAs can be described by a 4 × 4matrix obtained by 

diagonalising the full 12 × 12 𝑘⃗ ∙ 𝑝  free-carrier Hamiltonian [9, 28-
30]. Details of the solution are given in Appendix E. 



 
 

The effect of bismuth ions on the conduction band of GaAs1-xBix alloy is 
taken into account through the virtual crystal approximation. 
Fluctuations in the alloy composition are described here by a Gaussian 
distribution in the dilute Bi mole fraction x. If 𝑥0is the nominal Bi mole 
fraction, and 𝐼(𝑥, 𝜔) is the expression in Eq. 8, the inhomogeneously 
broadened spectrum reads 
 

𝐼𝑖𝑛ℎ(𝜔) =
1

√2𝜋𝜎
∫ 𝐼(𝑥, 𝜔)

𝑥0+3𝜎

𝑥0−3𝜎
𝑒

−(
𝑥−𝑥0

𝜎
)
2

𝑑𝑥.                                             (9) 

3. NUMERICAL RESULTS AND DISCUSSION 
Figure 1.a shows a comparison of our calculations with experiments 
for different compositions of dilute bismide and Fig. 1.b depicts the 
evolution of the spectra for different temperatures to demonstrate that 
by using standard material parameters taken from the literature, 
together with our many body corrections, we deliver the correct 
spectra and use the same parameters in all other curves.  Our theory is 
predictive. Furthermore, note that even though inhomogeneous 
broadening is necessary to obtain the correct spectral shape in Fig.1. 
and Fig.1.b, it is not used here as a fit parameter for fine tuning of the 
theory vs experiments comparison, since in all curves shown the same 
fixed value 𝜎 = 0.003 is used.  The choice of homogeneous 
broadening is explained in Appendix D. 

Fig.1. Top panel: Calculated Luminescence spectra of GaAs1-xBix on 
GaAs for different Bi mole fractions, from left to right x=1.16, 1.8, 2.34, 
3.04 and 3.83 % fractions at 10 K. The inset depicts experimentally 
measured data from Ref. [8]. The number of carriers used in the 
calculation is 1015 cm-3.  Bottom panel: Calculated Luminescence 
spectra of GaAs1-xBix on GaAs for with a Bi mole fraction x=1.4 %. From 
top to bottom the temperature is T=150, 175, 200, 225, 250, 275 and 
300 K. The right inset depicts experimentally measured data from Ref. 
[7].  The curves in the left inset compare the following cases:   many 
body calculations (black-solid), experiments (red-dashed) and free 
carrier calculations (blue-dot-dashed). 
 
Figure 2 depicts the evolution of the luminescence peak energy as a 
function of temperature, leading to the so called "s-shape" at low 
temperature.  It is clear that many body effects give much better 
agreement with experiment. 
 
 
 
 
 

 
 

Fig.2. Comparison of luminescence peak energy of GaAs1-xBix on GaAs 
as a function of temperature with experimental data extracted from 
Ref. [8] (red circles). Comparing our full expressions (black squares) 
shows the relevance of many body effects against free carrier 
calculations (blue diamonds).  The number of carriers used in the 
calculation is 1015 cm-3 and the temperature is 10K. 
 
We attribute the remaining deviations between theory and 
experiments to the fact that dephasing is actually carrier density, 
frequency and momentum dependent, while we have used a simple 
density and anisotropy dependent formula for Γ for all curves. As 
explained in Appendix A-C a full frequency and momentum 
dependence would not allow for analytical solutions.   Note that a 
density matrix approach would provide only momentum dependent 
occupation functions and the steps that allowed the introduction of the 
frequency dependent θ and ℬ would not be possible. This justifies 
using a Green's functions approach. The explicit expression for 
Γ is given in Appendix D.  Figure 3 shows that the "s-shape" feature 
vanishes with decreasing homogeneous broadening (→ smaller Γ). 
Thus if scattering channels such as electron-impurity and electron-
defect scattering are reduced, e.g. by rapid thermal annealing the 
feature should accordingly be smaller. This is qualitatively consistent 
with recent experimental findings in InAsN(Sb) systems, where s-like 
features disappear with annealing, improving the sample quality [17]. 

Fig.3. Comparison of luminescence peak energy for the GaAs1-xBix on 
GaAs sample of Fig.2 for increasing homogeneous broadening. The 
number of carriers used in the calculation is 1015 cm-3 and the 
temperature is 10K. From top to bottom, the homogeneous 
broadening increases by Γ = 0.01, 1, 1.5, 2 𝑒0. 



Note also that the s-shape dip towards lower energies for the peak 
luminescence is predicted only for sufficiently low excitation densities. 
It vanishes at sufficiently high carrier densities as seen in Fig.4, 
consistently with experiments [16]. 

 
Fig.4. Comparison of luminescence peak energy for the GaAs1-xBix on 
GaAs sample of Figs. 2 and 3 for increasing carrier density.  The circles 
squares and triangles are respectively for increasing carrier density n = 
0.0015, 0.15 and 1 × 1017 cm-3. 
 
In other words, by increasing the excitation power, the s-shape 
disappears. Mathematically the s-shape stems from an interplay 
between the density dependence and the homogeneous broadening, 
controlled by the occupation factor. If the chemical potential is 
removed from our calculations, a Varshni-like plot is obtained i.e. no s-
shape.  The analysis is completed by clarifying the role of 
inhomogeneous broadening in Fig.5. Note that, even though 
inhomogeneous broadening is not the origin of the s-shape, inclusion 
of some inhomogeneous broadening gives an overall better agreement 
between theory and experimental spectra and with the peak emission 
positions.  This is consistent with the fact that from fundamental 
thermodynamics, even high quality alloy samples are expected to have 
concentration fluctuations [31]. As previously discussed all plots in this 
paper have the same level of inhomogeneous broadening (𝜎=0.003), 

except of course the (blue-diamonds) curve in Fig.5. 
Fig.5. Comparison of luminescence peak energy for the GaAs1-xBix on 
GaAs with experiments from Ref. [8] (red circles). The number of 
carriers used in the calculations is 1015 cm-3 and the temperature is 
10K. The curves marked by black squares and blue diamonds are 
calculated respectively with inhomogeneous and homogeneous 
broadening only. 
 

In summary, in this paper we delivered analytical solutions for the 
interband polarization function, which is the selfenergy in the Photon 
Green's function equation and used them for a successful comparison 
with different types of luminescence experiments from independent 
research teams.   We have shown that the development of an s-shape 
feature for the peak luminescence can be controlled by the 
homogeneous broadening and is reduced with increasing excitation 
power in very good agreement with experiments as well as the 
interplay between a relatively small amount of alloy fluctuation 
described by inhomogeneous broadening and many body effects. This 
illustrates the power of our analytical solutions, which are sufficiently 
simple to allow a large number of researchers to reproduce and apply 
them to systematic simulations of experiments for a plethora of new 
optical materials and devices based on them.   
 
     
 
APPENDIX A: Analytical expressions for the chemical potential and 
inverse screening length 

Let’s assume that the electron (λ = e) and hole (λ = h) bands are in 
quasi-equilibrium with carrier density 𝑛 = 𝑛𝑒 = 𝑛ℎ at temperature T, 
or equivalently 𝛽 = 1/(𝐾𝐵𝑇) and thus characterized by chemical 
potentials 𝜇𝑒 and 𝜇ℎ.  Introducing the dimensionless density 𝜇𝜆 , a Padé 
approximation gives [33] 

𝛽𝜇𝜆 = 𝑙𝑛𝜈𝜆 + 𝐾1 ln(𝐾2𝜈𝜆 + 1) + 𝐾3𝜇𝜆.                                                     (A1) 

The screening wavelength is given by 𝜅 = 𝜅𝑒 + 𝜅ℎ , where 

𝜅𝜆 = √
4𝜋𝑒2

𝜖0

𝜕𝑛𝜆

𝜕𝜇𝜆
= √

𝛽𝜋𝑒2𝑛𝜆 𝜖0⁄
1

𝜈𝜆
+

𝐾1𝐾2
𝐾2𝜈𝜆+1

+𝐾3

,                                                                     (A2) 

with 𝐾1 = 4.897, 𝐾2 = 0.045 and 𝐾3 = 0.133. 𝜖0 and 𝑒 denote, 
respectively the background dielectric constant and the electron 
charge and   

 

𝜈𝜆 = 4𝑛𝜆 [(2𝑚∥,𝜆 𝛽𝜋ℏ2⁄ )(2𝑚⊥,𝜆 𝛽𝜋ℏ2⁄ )
1/2

]⁄ .                             (A3) 

APPENDIX B: Analytical expressions for the polarisation function 

We start from expressions in Refs. [10, 11], simplifed to the two band 
case 

𝑃𝑟∕<(𝜔) =
4𝜋𝑒2|Π|2

𝑐2Ω
∑ 𝒫𝑟∕<(𝑘, 𝜔),𝑘⃗                                                               (B1) 

where 𝑒, 𝑐, Ω and Π denote, respectively the electron charge, the speed 
of light, the sample volume and the velocity matrix element. The 
retarded matrix element satisfies the integro-differential equation [11], 

𝒫𝑟(𝑘, 𝜔) = 𝒫0
𝑟(𝑘, 𝜔) − ∑ 𝒫0

𝑟(𝑘, 𝜔)𝒲𝑘⃗ −𝑘⃗ ′𝒫
𝑟(𝑘′, 𝜔)𝑘⃗ ,                   (B2) 

where 𝒲 is the screened. Furthermore, 

2𝐼𝑚{𝒫0
𝑟(𝑘, 𝜔} = ∫

𝑑𝜔′

2𝜋
𝐺̂𝑒(𝑘, 𝜔′) 𝐺̂ℎ(𝑘, 𝜔 − 𝜔′){1 − 𝑓𝑒(𝜔

′) −

𝑓ℎ(𝜔 − ω′)}.                                                                                                                  (B3) 



Under quasi-equilibrium conditions 𝑓𝜆 denotes a Fermi function and  
spectral function for each particle (electron-e) or (hole-h) reads 

𝐺̂𝜆(𝑘, 𝜔) =
1

ℏ𝜔−𝑒𝜆(𝑘)+𝑖Γ𝜆
.                                                                                       (B4) 

Next, we use the relation 

1 − 𝑓𝑒(𝜔
′) − 𝑓ℎ(𝜔 − 𝜔′) = {[1 − 𝑓𝑒(𝜔

′)][1 − 𝑓ℎ(𝜔 − 𝜔′] +
𝑓𝑒(𝜔

′)𝑓ℎ(𝜔 − 𝜔′} tanh[𝛽(ℏ𝜔 − 𝜇)/2],                                                      (B5) 

neglecting the term in between braces and evaluating the dephasings 
at the peak of the corresponding spectral functions, the frequency 
integration can be performed analytically, leading to  

𝒫0
𝑟(𝑘, 𝜔) ≡

𝜃

ℏ𝜔−Δ𝑒(𝑘)+𝑖Γ
   .                                                                                     (B6) 

Here, 𝜇 = 𝜇𝑒 + 𝜇ℎ . Δ𝑒(𝑘) = 𝑒𝑒(𝑘) + 𝑒ℎ(𝑘),  Γ = Γ𝑒 + Γℎ and 
𝜃 = tanh[𝛽(ℏ𝜔 − 𝜇)/2]. The equation for 𝒫𝑟(𝑘,𝜔) reduces to 

(ℏ𝜔 − Δ𝑒(𝑘) + 𝑖Γ)𝒫𝑟(𝑘, 𝜔) + 𝜃 ∑ 𝒲𝑘⃗ −𝑘⃗ ′𝑘⃗ ′ 𝒫𝑟(𝑘, 𝜔) = 𝜃.        (B7) 

Using the version of the KMS relation derived in Ref. [11], 

𝑃<(𝜔) =
−2𝑖𝐼𝑚{𝑃𝑟(𝜔)}

1−𝑒𝑥𝑝[𝛽(ℏ𝜔−𝜇)]
,                                                                                       (B8) 

and introducing the auxiliary variable 

Λ(𝑘, 𝜔) =
𝒫𝑟(𝑘,𝜔)

1−𝑒𝑥𝑝[𝛽(ℏ𝜔−𝜇)]
,                                                                                     (B9) 

leads to the relation 𝒫<(𝑘, 𝜔) = −2𝑖{Λ(𝑘, 𝜔)}, and the 
corresponding integro-differential equation 

(ℏ𝜔 − Δ𝑒(𝑘) + 𝑖Γ)Λ(𝑘, 𝜔) + 𝜃 ∑ 𝒲𝑘⃗ −𝑘⃗ ′𝑘⃗ ′ Λ(𝑘, 𝜔) = ℬ,           (B10) 

where ℬ = −
tanh[𝛽(ℏ𝜔−𝜇)/2]

1−𝑒𝑥𝑝[𝛽(ℏ𝜔−𝜇)]
=

1

1+𝑒𝑥𝑝[𝛽(ℏ𝜔−𝜇)]
. 

Note that all numerical difficulties with typical applications of the KMS 
relation, such as the division by two small numbers are eliminated 
since ℬis always a positive number. Previous work has used a matrix 
numerical inversion technique to solve the equation for the retarded 
polarization for the absorption with further use of the KMS relation, 
successfully describing both single beam and pump and probe 
luminescence of quasi-two dimensional quantum wells [11, 12]. In 
contrast we show here an exact analytical solution. We start by 
simplifying the notation, including the phase space filling factor in the 
dielectric constant ϵ0

′ = ϵ0/ϑ as in Eq. 4 of the main text for the 
Hulthén potential. 

Next, we make a Fourier transform in a form that preservs units (Ω is 
the sample volume), 

𝑓(𝑟) =
Ω

(2𝜋)3
∫ 𝑓𝑞𝑒

−𝑖𝑞⃗ ∙𝑟 𝑑3𝑞 ,         𝑓𝑞 =
1

(2𝜋)3 ∫𝐹(𝑟)𝑒𝑖𝑞⃗ ∙𝑟 𝑑3𝑟,     (B11) 

[𝜔 + 𝑖Γ − 𝐸𝑔 +
ℏ2∇2

2𝑚𝑟
+ 𝒲(𝑟)] Λ(𝑟, 𝜔) = Ωℬ𝛿(𝑟),                           (B12) 

where 𝛿(𝑟)denotes the Dirac delta function. Next, we expand Λ(𝑟, 𝜔) 
in the basis of eigenstates of the Hamiltonian, 

− [
ℏ2∇2

2𝑚𝑟
+ 𝒲(𝑟)]𝜓𝜈(𝑟) = 𝐸𝜈𝜓𝜈(𝑟) ,       Λ(𝑟, 𝜔) = ∑ 𝑎𝜈(𝜔)𝜓𝜈(𝑟),𝜈        

                                                                                                  (B13) 

leading to 

Λ(𝑟, 𝜔) =  ∑ −
Ωℬ𝜓𝜈

∗(𝑟=0)

ℏ𝜔−𝐸𝑔−𝐸𝜈+𝑖Γ𝜈 𝜓𝜈(𝑟).                                                           (B14) 

At this point, we Fourier-transform back to k-space and introduce 
Λ(𝜔) = ∑ Λ(𝑘,𝜔)𝑘⃗ , obtaining 

 Λ(𝜔) = ∑ −
Ωℬ|𝜓𝜈(𝑟=0)|2

ℏ𝜔−𝐸𝑔−𝐸𝜈+𝑖Γ𝜈  .                                                                              (B15) 

The relations  

𝑃<(𝜔) = −𝑖
8𝜋𝑒2

Ω
|Π|2𝐼𝑚{Λ(𝜔)} and 𝐼(𝜔) = ℏ𝜔2/4𝜋2𝑐𝑖𝑃<(𝜔), yield                                                                 

𝐼(𝜔) =
4ℏ𝜔2𝑒2|Π|2

𝑐3 (1 − 𝑒𝑥𝑝[𝛽(ℏ𝜔 − 𝜇)])
∑|𝜓𝜈(𝑟 = 0)|2𝛿Γ(ℏ𝜔 − 𝐸𝑔),

𝜈

 

                                                                                                                                              (B16) 

where 𝛿Γ =
1

𝜋

Γ

(ℏ𝜔−𝐸𝑔−𝐸𝜈)
2
+Γ2

 reduces to a Dirac delta function for 

Γ → 0 and the velocity matrix element is expressed in terms of the 
dipole moment matrix element and the fundamental bandgap as 
|Π| = (𝐸𝑔

0 ℏ⁄ )|〈𝑆|𝑥|𝑋〉|. 

At this point we replace the Lorentzian by 𝛿Γ(𝑥) = 1 𝜋Γ cosh (𝑥 Γ)⁄⁄  for 
the following reasons: note that even though general conclusions can 
be drawn Refs. [10, 11] these are based on numerical solutions in 2-D 
k-space for which no know analytical solution exists.  A previous study 
[34], has shown that in order to obtain realistic looking luminescence 
spectra, the spectral function  𝐺̂   must retain its Lorentzian-like form, 
and a frequency and momentum dependent dephasing must be used.  
Such dephasing would introduce r-dependent terms when we Fourier 
transform the polarization equation to real space. These extra terms 
would lead to a problem without analytical solutions. Furthermore, in 
order to have a simple parameter Γ and the realistic-looking 
luminescence spectra, see Fig.1, the hyperbolic secant is necessary. 
Note that the most successful description of e.g. nonlinear absorption 
in the 3D case has been obtained with analytical approximations [28, 
29]. This cannot be done in a numerical solution because important 
spatial frequencies (high k-values) would be cut out of the matrix 
inversion and numerical integrations in k-space. The eigenstates and 
eigenvalues of the Hulthén potential are known [35] and as the 
expressions above show, we need solutions that do not vanish at r=0, 
so after the decomposing into radial and angular parts,  

𝜓𝜈(𝑟) = 𝑅𝑛𝑙(𝑟)𝑌𝑛𝑙(𝜃, 𝜙) ,                                                                                 (B17) 

we take l=0.  The contribution from bound states reads [35] 

∑ |𝜓𝜈(𝑟 = 0)|𝜈
2
=

1

𝜋𝑎0
3 (

1

𝑛3 −
𝑛

𝑔2) , 𝐸𝜈 = −𝑒0 (
1

𝑛2 −
1

𝑔
)
2

.              (B18) 



The integer 𝑛 runs from 0 to the maximum integer in √𝑔, 

𝑔 = (𝜅𝑎0)
−1 and 𝑎0, 𝑒0 denote, respectively the exciton Bohr radius 

and binding energy. The inverse screening length 𝜅 is given in 
Appendix A.  The contribution from the continuum is  

∑ |𝜓𝜈(𝑟 = 0)|𝜈
2
=  

1

𝜋𝑎0
3 ∫

sinh(𝜋𝑔√𝑥)

cosh(𝜋𝑔√𝑥)− cos(𝜋√4𝑔−𝑔2𝑥)

∞

0
𝑑𝑥,          (B19) 

giving rise to Eq. (8) in the main text, where 𝐼0 and 𝜉are defined. 

𝐼(𝜔) =

𝐼0

1+𝑒𝑥𝑝(𝛽(ℏ𝜔−𝜇))
{∑

4𝜋

𝑛
(

1

𝑛2
−

𝑛2

𝑔2
)√𝑔

𝑛=1 𝛿Γ(𝜉 −

𝑒𝑛) 2𝜋 ∫
sinh(𝜋𝑔√𝑥)

cosh(𝜋𝑔√𝑥)−cos(√4𝑔−𝑔2𝑥)
𝛿Γ(𝜉 − 𝑥)𝑑𝑥

∞

0
}.                       (B20) 

APPENDIX C: Bandgap shift with the Hulthén potential 

The poles of the spectral function Ĝ occur for each particle 𝜆 at 

𝑒𝜆(𝑘) =
ℏ2𝑘2

2𝑚𝜆
+ 𝐸𝑔

0𝛿𝜆,𝑐 + 𝑅𝑒{Σ𝜆
𝑟}. 

Within the random phase approximation and using a statically 
screened potential, the following approximation is possible for the real 
part of the retarded selfenergy. 

𝑅𝑒{Σ𝜆
𝑟} = Σ𝑒𝑥𝑐,𝜆

𝑟 + Σ𝐶𝐻,𝜆 
𝑟 , 

Σ𝑒𝑥𝑐,𝜆
𝑟 = −∑ 𝒲𝑞𝑞 𝑓

𝜆
(𝑞)  ,                                                                              (C1) 

Σ𝐶𝐻,𝜆 
𝑟 =

1

2
lim𝑟→0(𝒲(𝑟) − 𝑉(𝑟)) = −

𝑒2𝜅

2𝜖0
 , 

leading to Eq. 5 in the main text. Thus the bandgap is 

𝐸𝑔 = 𝐸𝑔
0 + Δ𝐸𝑔,                                                                                                            (C2) 

where 𝐸𝑔
0is the fundamental bandgap found in tables of material 

properties of semiconductors and  

Δ𝐸𝑔 = −
𝑒2𝜅

𝜖0
′ − ∑ 𝒲𝑞𝑞 (𝑓𝑒(𝑞) + 𝑓ℎ(𝑞)),                                               (C3)                                        

where the fermi functions are evaluated at the peak of the spectral 
function for each particle. Note that the fundamental bandgap for the 
electrons and the bandgap shift in each band cancels out with the 
corresponding correction to the chemical potential. 

Thus  

 𝑓𝜆(𝑞) =
1

exp(𝛽(
ℏ2𝑞2

2𝑚𝜆
−𝜇𝜆))+1

,                                                                                (C4) 

with chemical potentials given in Appendix A. 

APPENDIX D: Density and anisotropy-dependent dephasing 

In all curves and for all temperatures we have used the same 

phenomenological dephasing that depends on the anisotropy through 

the binding energy e0 given by 

Г = [Г0 + Г1
n

n0⁄ ] ∙ e0 ,         Γ1 = { 
2 × 10−23, n

n0⁄ < 1

2 × 10−24,   n n0⁄ ≥ 1
            (D1)                                                                

and n0 =  1015 cm−3. In all Fig.1a and its inset and Figs. 2 and 4, 

Γ0 = 1. In Fig.1.b and its insets that corresponding to a different 

sample with larger residual low density broadening, Γ0 = 2. In Fig.3 

the total homogeneous broadening Γ is increased arbitrarily to 

demonstrate its influence in the s-shape. 

APPENDIX E: Bandstructure  

The interaction of the Bi impurity state with the valence band of GaAs 
can be described by a 4 × 4 matrix obtained by diagonalising the full 

12 × 12 k⃗ ∙ p⃗  Hamiltonian [9, 28-30].  
  

(

𝐻 0
0 𝐿

𝑉𝐵𝑖 0
0 𝑉𝐵𝑖

𝑉𝐵𝑖 0
0 𝑉𝐵𝑖

𝐸𝐵𝑖 0
0 𝐸𝐵𝑖−𝑆𝑂

  ),                                                                             (E1) 

 
where H and L denote the valence band energy for the heavy and the 
light holes of the GaAs binary semiconductor. The solution of the above 
matrix equation yields four distinct energy levels heavy/light hole 
Ehh/lh± and spin orbit split-off ESO± energies [9]. The impurity levels 

of the heavy or light holes, and the spin orbit split off below the valence 
band maximum are given, respectively by EBi = 0.4 eV and 
EBi−SO = 1.9 eV [28]. The matrix element describing the coupling 

between the Bi- impurity level and the valence bands is   VBi = CBi√x 
with CBi = 1.6 eV [9, 25-27].  

𝐻 = −
ℏ2

2𝑚0
[(𝑘𝑥

2 + 𝑘𝑦
2)(𝛾1 + 𝛾2) + 𝑘𝑧(𝛾1 − 2𝛾2)] + ∆𝐸𝑉𝐵𝑀𝑥, 

𝐿 = −
ℏ2

2𝑚0
[(𝑘𝑥

2 + 𝑘𝑦
2)(𝛾1 − 𝛾2) + 𝑘𝑧(𝛾1 + 2𝛾2)] + ∆𝐸𝑉𝐵𝑀𝑥.  (E.2)      

The distinct energy levels that result from the valence anticrossing are 
thus  

𝐸ℎℎ/𝑙ℎ =
1

2
(𝐻/𝐿 + 𝐸𝐵𝑖 ± √(𝐻/𝐿 + 𝐸𝐵𝑖)

2 + 4𝑉𝐵𝑖
2 ) ,  𝑉𝐵𝑖 = 𝐶𝐵𝑖√𝑥.         

                                                                                                                  (E.3) 
Note that at high symmetry point k = 0, H = L and that the dilute 
GaAsBi alloy band gap is given by 
 
Eg,GaAsBi = Eg,GaAs − ∆ECBMx .                                                                       (E.4) 

 
∆EVBM and ∆ECBMare the difference in valence and conduction band 
maximum between the GaAs and GaBi binaries. Their values have been 
obtained earlier as 0.8 and -2.1 eV respectively [9] through model 
solid theory.  The effective masses of the degenerate bands are 

1

mhh,lh[GaAs1−xBix]±
∗ =

1

2mhh,lh[GaAs]
∗ {

EBi −H/L

√4VBi
2 +[EBi−H/L]2

∓ 1}                        

mhh,lh[GaAs]
∗ = (𝛾1 ∓ 2𝛾2)

−1                                                          (E.5) 

 

𝐸𝐺𝑎𝐴𝑠 = 1.519 +
5.41 ×10−4×𝑇2

𝑇+204
                                                                     (E.6) 

 
The remaining needful parameters are given in Table I below 
 
Table I. Material parameters  
me 𝛾1 𝛾2 𝜖𝑟  𝜖∞ 𝐶𝐵𝑖(eV) 
0.067 6.986. 66.98 2.06 13.71 10.89 1.7 
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