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Abstract 

The aim of this study was to apply si,nal processing techniques to a potential 
known as the contingent negative vanation (CNV) in order to aid detection of 
schizophrenia, Parkinson's disease (PO) and Huntington's Disease (lID). A data 
recording system was constructed and used to obtain data from 20 schizophrenic 
patients, 16 PO patients, 21 -at-risk- of HD patients, 11 HD patients and 43 
normal control subjects. The data included the CNV, electro-oculograms (required 
for the preprocessing of the CNV) and the subjects reaction times to an acoustic 
stimulus. The CNV waveforms were initially preprocessed. This reduced the 
effects of background electroencephalogram and ocular artefact potentials. 

The CNV waveforms were then processed using a method which involved the 
discrete Fourier transform (OFf) and discriminant analysis. This method 
developed from the work of Martin Nichols and Michael Coelho. It was possible 
to successfully identify the majoril¥ of the patients using this method. In order to 
reduce the complexity of patients' Identification a different method of CNV signal 
processing was considered. This involved obtaining the CNV features in the time 
domain and using them in neural networks. This method was as effective as the 
method which used OFf and discriminant analysis in identifying the patients. To 
establish whether HO could presymptomatically be detected In the at-risk of HD 
group, the CNV was analysed using principal component analysis (PCA) and 
Ward's clustering method. This resulted in identification of 7 patients who were 
suggested would develop HO. The subjects' reaction times were also analysed. 
This indicated that the reaction times of schizophrenic, PO, HO and some at-risk 
of HD patients were significantly different from the reaction times of their normal 
control subjects. 
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Chapter 1 Summary 

An instrumentation system was constructed and was used to record the data from 

20 schizophrenic, 16 Parkinson's disease (PO), 11 Huntington's disease, 21 -at­

risk- (AR) of HD patients and 43 normal control subjects. In order to improve the 

signal (ie. the contingent negative variation, CNV) to noise (ie. the background 

EEG activity and ocular artefact) ratio, the CNV waveforms were preprocessed 

using a method developed by Nichols [1982] and Coelho [1988]. The preprocessed 

CNV responses were then analysed by: i) using the Fourier transform and 

discriminant analysis, ii) using the CNV time domain features in neural networks 

and iii) applying principal component analysis and cluster analysis. The reaction 

times of the subjects to an acoustic stimulus were also analysed. 

1.1 Identification of Schizophrenic, Parkinson's Disease and Huntington's 

Disease Patients by Frequency Analysis and Discriminant Analysis of the 

CNV 

This method involved applying the discrete Fourier transform (OfT) to pre- and 

post-stimulus sections of the CNV waveforms and then applying four statistical 

tests to the resulting harmonic frequency components of the pre- and post-stimulus 

spectra. The four statistical tests were originally designed by Nichols [1982] to 

detect phase and amplitude changes in CNV spectra. This process produced a set 

of variables. A variable subset which best identified the patients was selected and 

then used in a discriminant analysis program. A leave-one-out method was used to 

ensure the data included during the calibration phase of the discriminant analysis 

program were not used during the test phase. The method successfully identified 

the majority of schizophrenic, PO and HD patients from normal subjects and it 

was useful in distinguishing between the patients from the above three categories. 

The performance of the discriminant analysis was best when distinguishing between 

the HO patients and normal subjects (ie. 100 %). This indicated that perhaps the 
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effects of HD on the CNV is more severe than the effects of schizophrenia and PD 

on the CNV. The success rates obtained when distinguishing the patients from 

their normal control subjects were higher than the success rates obtained when 

distinguishing between the patients from different categories. This might be 

because some of the CNV abnormalities in schizophrenia, PD and HD overlap. 

1.2 Identification of Schizophrenic, Parkinson's Disease and Huntington's 

Disease Patients by Usin& the CNV Time Domain Features in Neural 

Networks 

Neural networks were applied to the CNV waveforms of the schizophrenic, PD 

and HD patients and their normal control subjects. The CNV features (variables) 

used were obtained by averaging every four consecutive sample values from a 

CNV section 512ms prior to the imperative-stimulus. This generated 16 CNV 

features. As the time taken for the CNV to return to its baseline has been shown to 

be important in identifying patients with disorders such as schizophrenia, PD and 

HD (see chapter 2) a seventeenth feature which reflected this effect was also 

included. The patients from each category and their normal control subjects were 

divided into two groups. The CNV responses from the first group were used for 

training the neural networks and the CNV responses from the second group were 

used to test the effectiveness of the neural networks. The effect of changing the 

number of nodes in the hidden layer(s) of the neural networks was investigated. 

The neural networks successfully identified the schizophrenic, PD, and HD patients 

from normal subjects. They performed best when distinguishing between the HD 

patients and normal subjects (ie. 100% success rate). This was in line with the 

results obtained from the other two methods of patients I differentiation. 
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1.3 Presymptomatic Detection of Huntington's Disease and Identification of 

Schizophrenic, Parkinson's Disease and Huntington's Disease Patients by 

Applying Principal Component Analysis and Cluster Analysis to the CNV 

The presymptomatic identification of lID patients is valuable as it can help the 

individuals AR of lID decide whether they should have children. Discriminant 

analysis was not suitable for presymptomatic identification of lID patients as it 

was based on a supervised learning method. The clustering method is an 

unsupervised learning method and therefore was used for this purpose. The 

procedure for CNV feature extraction was the same as that used for the neural 

network method. The CNV features were transformed using principal component 

analysis. 

Initially principal component analysis and clustering were used to distinguish 

between schizophrenic, PD and HD patients and normal subjects. Application of 

principal component analysis and cluster analysis resulted in the identification of 

the majority of schizophrenic, HD and PD patients. In line with the other two 

methods of patients' differentiation this method was most effective in identifying 

the HD patients. 

The principal component analysis and cluster analysis were then applied to CNV 

responses of 21 AR of HD patients and their normal control subjects. Seven AR of 

HD patients were identified as -abnormal- and it was suggested that they would 

develop HD. The remaining 14 AR ofHD patients were identified as -normal­

AR of HD patients. 

A Two-tailed t-test was used to examine the CNV amplitudes in the abnormal AR 

of HD patients, normal AR of HD patients and their normal control subjects. The 

CNV amplitudes of abnormal AR of HD patients and their normal control subjects 

were significantly different (p<O.OOI, df=12). The CNV amplitudes of normal 
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AR of HD patients were not significantly different from those of their normal 

control subjects. 

The CNV amplitude analysis of the AR of HD patients also indicated that the 

changes in the CNV responses of HD patients appeared prior to the onset of HD. 

This finding is in agreement with the studies of ]osiassen et ale [1982], Oepen et 

ale [1982], ]osiassen et ale [1984], Noth et ale [1984], Hennerici et ale [1985] and 

Hamberg et al. [1986] when other event-related potentials (ERPs) were analysed 

in AR of HD patients (refer to chapter 2 for detail). 

1.4 Reaction Times Analysis of Schizophrenic, Parkinson's Disease, 

Huntington's Disease and At-Risk of Huntington's Disease Patients 

During the data recordings, 32 reaction times were recorded for each subject. The 

reaction times were averaged and used in a two-tailed t-test. It was found that the 

reaction times of schizophrenic, PO and HD patients were significantly different 

from the reaction times of their normal control subjects (p<O.OOI). 

The reaction times of the AR of HD patients were not significantly different from 

the reaction times of their normal subjects. A similar result was obtained when the 

reaction times of the AR of HD patients who were identified as WnormalW in 

chapter 9 were compared with their normal control subjects. But when the reaction 

times of the wabnormalw AR of HD patients were compared with the reaction times 

of their normal control subjects, they were significantly different (p<O.05, 

df=12). 

In several studies it has been shown that the reaction time tends to be shorter 

following a large CNV and longer following a low amplitude CNV [Thcce, 1972]. 

As the mean CNV amplitude of the abnormal AR of HD patient group was about 
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113 of that in the normal control group, this prolongation of the reaction 

times in the abnormal AR of HO patients was in agreement with findings related 

to the relationship between the CNV amplitude and the reaction time. 

1.5 Overall Remarks 

In this study three different methods were successfully used to differentiate 

schizophrenic, PO and HD patients. The results indicated that all three methods 

were valuable in identifying these patients. The patient differentiation method 

which involved the use of the discrete Fourier transform and discriminant analysis 

was the most complex method. Neural networks were used in order to fmd an 

effective but less complicated method of identifying the patients. The application 

of principal component analysis and clustering resulted in the identification of 7 

abnormal AR OF HD patients. The reaction times in the subjects were also 

analysed and it was found that the reaction times of schizophrenic, PO, HD and 

abnormal AR of HD were significantly different from the reaction times of their 

normal control subjects. 
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Chapter 2 Introduction 

This project was a continuation of previous studies [Nichols, 1982] [Coelho, 

1988]. Nichols [1982] recorded the contingent negative variation (CNV) 

waveforms of 8 Huntington's Disease (HD) patients and 6 normal subjects and 

devised a CNV preprocessing procedure. The preprocessing is necessary in order 

to retrieve the CNV from background noise sources (the CNV preprocessing is 

described in chapter 6). He then investigated the composition of the CNV by using 

signal processing and statistical methods. Coelho [1988] enhanced the Nichols' 

eNV preprocessing method. He also applied signal processing and statistical 

techniques to the data recorded by Nichols [1982] in order to differentiate between 

HD patients and normal subjects (see chapter 7 for detail). The main problem with 

the patients' identification method used by Coelho [1988] was that it required very 

complicated and time consuming analysis of the CNV. 

For this project the aim was to construct a data recording system and use it to 

record the CNV waveforms of HD, Wat-riskw (AR) of HD, Parkinson's Disease 

(PD), schizophrenic patients, and their age and sex matched normal control 

subjects. Then preprocess the CNV waveforms. It was intended to initially use the 

patient identification method employed by Coelho [1988] and differentiate between 

HD, PD, schizophrenic and normal subjects. Then develop another less 

complicated method of identifying the patients. Presymptomatic detection of HD 

patients is important as it could be used as a mean of reducing the number of 

individuals with that disorder. Therefore, it was planned to investigate whether 

HO could be presymptomatically diagnosed using the CNV. 

The reason for using the CNV to identify HD, PO and schizophrenic patients is 

that although these disorders could be related to some specific symptoms and 

pathological changes, it can sometimes be difficult for a neurophysiologist or 

psychiatrist to distinguish between them. This is because some of the symptoms 
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and pathological changes observed in the patients with these disorders can be 

similar. 

In this chapter the symptoms and the brain structural changes observed in 

schizophrenic, PO and HD patients are discussed. A description of the 

electroencephalogram (BEG), event-related potentials (ERPs) and the CNV is 

provided, and the relevant studies in ERPs in schizophrenia, PO, HD and AR of 

HD are reviewed. 

1.1 Description of the Disorders Included in this Study 

1.1.1 Schizophrenia 

The symptoms associated with schizophrenia can be grouped into -type 1- and 

-type 2- [Crow and Johnstone, 1987]. Type 1 includes psychotic symptoms which 

are generally referred to as -positive- because they cause abnormality by their 

presence ego hallucinations and delusions. Type 2 includes symptoms which are 

generally referred to as -negative- because a normal function is missing. 

Symptoms such as poverty of speech, lack of self-care and anergia are considered 
( 

as negative symptoms. The symptoms observed in a schizophrenic patient could be 

mainly positive, negative, or they can be a mixture. The positive and negative 

symptoms can be observed at different times in the course of the illness, or 

sometimes concurrently. Untreated schizophrenia tends to be progressive (with 

some exceptions) and may reach a state of irreversible defect [Miller, 1989]. 

There are some indications of a general increase in cerebral activity in some stages 

of schizophrenia. For example, an increased power in certain frequency bands of 

the brain's electrical activity has been observed in early stages of schizophrenia 

[Mukunda, 1986]. There are two possible causes for this excess neural activity. It 

may be due to excess connectivity in the forebrain, or in crucial parts of it 
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[Nasrallah et aI., 1986], or it may be as a result of neurochemical imbalances with 

respect to the neurotransmitters which control signal gain in the forebrain [Wong 

et aI., 1987]. Ben-Ari [1985] reported that the endogenous release of excitory 

transmitters led to the brain cell destruction, therefore suggesting that if the 

activity of neurons becomes too excessive, it might lead to their destruction. 

Several structural brain abnormalities have been observed in schizophrenic patients 

[Ron and Harvey, 1990]. The commonest were enlargement of the lateral and 

third ventricles (see Figures (2.1) and (2.2» and cortical atrophy [Revely, 1985] 

[Weinberger et aI., 1983]. There is also evidence for a reduction in volume of the 

hippocampus (see Figure (2.3» in schizophrenic patients [Falkai and Bogerts, 

1986]. Young et aI. [1991] using magnetic resonance imaging (MRI) found that 

the parahippocampal gyrus (see Figure (2.3» was smaller on the left side in 31 

schizophrenic patients but not in 33 age and sex matched normal control subjects. 

They reported that in schizophrenic patients, ventricular enlargement and cerebral 

atrophy were significantly related to severity of the symptoms. Some investigators 

found a distinct relationship between the structural brain abnormalities and 

positive and negative symptoms in patients with schizophrenia. Marks and Luchins 

[1990] provided a review of some of these reports. 

The identification of patients with schizophrenia has been based on monitoring the 

symptoms and observation of the structural brain abnormalities related to the 

disorder. 

2.1.2 Parkimon's Disease 

PD was originally described by James Parkinson [1817]. PD is a progressive 

neurologic disorder. Its main clinical symptoms are: i) body tremors at rest. The 

tremors mainly affect a limb or limbs but they may also be observed in other areas 

such as jaw and lips, ii) muscle rigidity. This may cause stiffness and muscle 
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discomfort, iii) slowness of active movements (such as rising from a chair) and iv) 

postural instability. This can cause patients to fall. A number of secondary clinical 

symptoms such as dementia and depression may also be observed in some PO 

patients. 

The cause of PO is unknown. The studies in progress to identify its cause include 

a search for an environmental toxin [Stern and Hurtig, 1988]. PO is characterised 

pathologically by: i) degeneration of the dopaminergic neurons from the 

substantia nigra [BeMett, 1988]. The substantia nigra (see Figure (2.4» is a small 

nucleus considered a part of the basal ganglia. The anatomy of the basal ganglia is 

complex and their details poorly known. The basal ganglia are composed of 

neuron cell bodies located deep within the white matter of the cerebrum and they 

form part the neural pathway that controls motor function [McKenzie et al., 1984] 

and ii) the appearance of Lewy bodies in the substantia nigra [Gibb, 1987]. 

Lewy bodies consist of structurally altered ftlaments, in part derived from 

neurofilament. There is no defmitivc laboratory test for diagnosing PO, therefore, 

its diagnosis has been based on a careful study of the patients' medical history and 

thorough physical and neurological examination [Vernon, 1989]. 

2.1.3 Huntin&ton's Disease 

HD is a fatal hereditary disorder of the central nervous system [Hayden, 1981]. 

The age of onset of the disease varies widely but usually it is during the third and 

fourth decades of life. Its clinical symptoms include progressive motor 

abnormalities (typically involuntary movement called chorea), intellectual 

deterioration and in most cases psychiatric disturbance. The average life span after 

the onset of the disease is between 15 and 20 years. The disease is inherited 

through a defective gene localised to the short arm of chromosome 4 [Gusella et 

al., 1983]. An offspring of an affected parent can have a 50% chance of receiving 

the defective gene. Studies using computed tomography (CT) and positron 
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emission tomography (PET) show neuropathological changes in several parts of 

the brains of HD patients. The affected areas include the globus pallidus (see 

Figure (2.5» and frontal cortex [Hayden, 1981] [Adams et al., 1984], but the 

brunt of the changes (typically severe neuronal loss) are in the striatum 

[Mazziotta, 1989]. The striatum (see Figure (2.5» is part of the basal ganglia and 

is referred to two masses of nuclei called the caudate nucleus and putamen. 

Several nerve pathways pass from the cerebral cortex (particularly the so-called 

"pre-motor areas") to the striatum. 

As there is no defmitive test for diagnosing HD, therefore, its diagnosis has been 

based on a positive family history (ie. if the patients have affected parents), 

indications of progressive motor disability and psychiatric disturbance, and 

observation of relevant structural abnormalities of the brain using PET and cr 

scans. 

A genetic presymptomatic test for individuals AR of HD is possible but it excludes 

some AR of HD patients. This is because the marker used in the test does not 

detect the gene itself and therefore testing is only possible if suitable family 

members are available so that the affected chromosome can be identified [Jackson, 

1987] [Harper et al., 1988] [Mirsa et al., 1988]. 

2.2 Description of Electroencephalogram and Event-Related Potentials 

The electroencephalogram (BEG) is the name given to electrical activity of the 

brain. The first reported observation of BEG was made by a British physiologist 

called Richard Caton. He studied the brains of rabbits and monkeys and reported: 

"the external surface of the (brain's) grey matter is usually positive in relation to 

the surface of the section through it. Feeble currents of varying direction pass 

through the multiplier when the electrodes are placed on two points on the external 

surface (of the brain), or one electrode on the grey matter, and one on the surface 
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of the skuU" [Caton, 1875]. Berger's [1929] discovery that BEG could be 

recorded from the intact scalp led to the development of modem . 

electroencephalography in man. The BEG provides information about underlying 

or ongoing brain functioning. 

ERPs are potential changes in BEG that occur in association with an eliciting 

event. In some articles the term evoked potential (EP) is used instead of ERP. In 

this thesis both terms are used and they are considered synonymous. There are 

several types of ERPs (Cooper et al. [1980] have provided a review of ERPs). 

They include auditory evoked potentials (AEPs), visual evoked potential (VEPs) 

and somatosensory evoked potentials (SEPs). 

SEPs are usually elicited by stimulating the left or right median nerves at the wrist 

with brief (O.lms duration) electrical pulses. The stimulator for eliciting VEPs 

may be a strobe flash or a checkerboard flash. The AEPs are elicited by clicks or 

tones presented to one or both ears. The early components (up to lOOms) of the 

ERPs are determined mainly by the nature of the evoking stimulus, while the 

following components (after lOOms) reflect more the cognitive processes. The 

widely reported cognitive BPs are the CNV, post-imperative negative variation 

(PINV), Bereitschafts (readiness) potential, Nl00 and P300. The letters "N" and 

"P" describe the polarities of the waves, ie. "P" represents a positive wave and 

"N" represents a negative wave. The number following the polarity letter indicates 

the wave's approximate peak latency. For example, NlOO is a negative wave that 

reaches its maximum amplitude at about lOOms after the onset of the evoking 

stimulus. 

The amplitude of NlOO is dependent on factors such as expectedness of the 

stimulus and the attention paid to it. The P300 is a positive wave that reaches its 

peak between 300 and 500ms after the onset of the eliciting stimulus. 1b evoke the 
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P300 in AEPs, the patient is requested to detect an infrequently occurring tone 

burst from a background sequence of another tone which has a different pitch. The 

P300 may reflect the ability of the individuals to process information [Baribeau­

Braun et al., 1983]. The Bereitschafts potential is generated as a result of a 

voluntary motor response and it may reflect preparatory activity in the 

supplementary motor area of the cortex [Dick et al., 1989]. The CNV is described 

in detail in the next section. The PINY is closely related to the CNV and is also 

described in the next section. 

2.2.1 Description of the Contingent Negative Variation 

The CNV was first described by Walter et ale [1964]. Since then it has been 

described in a number of articles. Recently McCallum [1988] and Tecce and 

Cattanach [1987] have provided a review of the nature of the CNV. The CNV is a 

negative shift in BEG as compared to the potential of the electrical reference 

electrode. Commonly electrodes placed on linked earlobes are used as the 

reference. The elicitation of the CNV involves presentation of a warning 

stimulus, SI (eg. a click) to warn the subject of the upcoming imperative stimulus, 

S2 (this can be a tone). The subject is requested to respond to the imperative 

stimulus by performing a motor function, ego by pressing a push-button to 

terminate the tone. 

The CNV is susceptible to contaminations, mainly by ocular artefact potentials. 

The causes of the ocular artefact potentials are eye movements and blinks and they 

are described in chapter (6). The CNV is also usually obscured by the background 

BEG. The CNV therefore, has to be preprocessed prior to analysis. The 

preprocessing method used was developed by Nichols [1982] and Coelho [1988] 

and it is described in chapter (6). 
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A schematic drawing of a preprocessed averaged CNV is shown in Figure (2.6). 

Figures (2.7)-(2.11) show the CNV response in a normal subject, a schizophrenic 

patient, a PO patient, an HD patient and an AR of HD patient respectively. 

Figures (2.12)-(2.16) show the preprocessed averaged (over 8 trials) CNV 

responses in the above subjects. The negative shift follows the onset of the 

warning stimulus and it normally returns to its original baseline rapidly after the 

subject response to the imperative stimulus. In some cases the CNV takes an 

abnormally longer time to return to its original baseline. The negative potential 

which appears as a continuation of the CNV following the imperative stimulus is 

known as the post-imperative negative variation (pINY). Figure (2.17) shows the 

PINV in a PO patient. 

The CNV was reported to have an early and a late component [Rohrbaugh et al., 

1976] [Rohrbaugh and Gaillard, 1983]. The early component develops in 

response to the warning stimulus, its magnitude is maximum over the frontal 

cortex, and it is dependent on the characteristics of the warning stimulus (eg. 

duration and modality) [Rohrbaugh and Gaillard, 1983]. The late component is 

believed to be related to preparation for motor response and it has a more central 

distribution over areas of the cortex Rohrbaugh et al. [1976]. The physiology of 

the CNV is complex and is not completely understood. The CNV has been 

suggested to originate from the frontal and central areas of the cortex. Some sub­

cortical areas of the brain such as the caudate nucleus of the thalamus were also 

believed to have a role in its production [Thcce, 1972] [Cohen, 1974]. 

The CNV was used for the identification of patients with schizophrenia, PO and 

HD because: i) the main source of the CNV (ie. the frontal cortex) is an affected 

area in schizophrenia, PO and HO [Goldman-Rakic, 1987], ii) several studies 

have indicated that the CNV was altered in patients with any of these disorders 

(see section 2.3 for detail) and iii) the CNV is considered to be a measure of the 
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brain-behaviour functions rreece, 1972]. 

2.3 Review of the Relevant Studies In Event-Related Potentials 

There have been numerous applications of ERPs in the medical field. Chiappa 

[1990] and Picton [1988] have provided a review of some of their applications. 

Although only the eNV was used in this study, whenever appropriate, the results 

of other relevant ERPs studies in schizophrenia, PO and HD are also included. 

2.3.1 Event-Related Potentia~ In Schizophrenic Patients 

The P300 amplitude has been reported to be significantly reduced in schizophrenic 

patients [Roth et al. 1980] [pfefferbaum et at. 1984] [Barrett et at. 1986] 

[Blackwood et al. 1987] [Romani et al. 1987] [pfefferbaum et al. 1989] [Wclrd et 

al. 1991]. A prolonged P300 latency has been reported by Pfefferbaum et at. 

[1984], Blackwood et at. [1987] and Romani et al. [1987]. 

P50 is a positive wave occurring 50ms after the onset of an auditory stimulus 

(such as a click). In an experiment Wclldo et at. [1988] presented a series of pairs 

of clicks to 13 schizophrenic patients and 32 normal subjects (each click pair 

generated two P50 waves). They reported that in normal subjects, the P50 wave 

generated as a result of the second stimulus was diminished compared with the 

P50 generated as a result of the first stimulus. This phenomenon was not observed 

in schizophrenic patients. Other alterations of auditory ERPs in schizophrenic 

patients include a reduced NlOO amplitude (\\aIdo et at., 1988] and a reduced 

P200 amplitude [Shenton et al., 1989]. 

Several studies have reported that the amplitude of the CNV in schizophrenic 

patients was significantly reduced compared with normal control subjects 

[Abraham et al., 1976] rrimsit-Berthier et al., 1984]. More recently, Abraham 

[1989] confirmed this finding by comparing the CNV amplitudes of 29 
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schizophrenic patients and 52 normal control subjects. Several studies have shown 

the presence of longer than normal PINY in the majority of schizophrenic patients 

[Roth, 1977] [Dubrovsky and Dongier, 1976] and there has also been evidence of 

abnormal PINY in schizophrenic children [Strandburg et al., 1984]. 

2.3.2 Event-Related PotentiaJs in Parkinson's Disease Patients 

The P200 and P300 components of auditory and the PIOO component of visual 

ERPs in 20 PO patients and 20 normal control subjects were studied by Hansch et 

al. [1982]. They reported that in the case of PO patients the latencies of both the 

P200 and P300 components were significantly increased and the amplitude of the 

PIOO component was significantly increased. Goodin and Aminoff [1986] analysed 

the N200 and P300 components of AEPs in 13 PO patients and 40 normal control 

subjects and reported a significant prolongation in the latencies of the N200 and 

P300 components in the PO patients. The amplitude of the VEP in 9 PO patients 

was reported to be significantly different from that of 12 age-matched normal 

control subjects [Calzetti et al., 1990]. 'Thchibana et al. [1988] studied the SEPs in 

PO patients and their normal subjects and found that the latency of the N20 

component in the PO patients was significantly abnormal. 

Oick et al. [1989] studied the Bereitschafts potential in 14 PO patients and 12 

age-matched normal control subjects and reported that the amplitudes of the early 

components of the Bereitschafts potential were smaller in the PO patients. 

McCallum et al. [1970] observed a general reduction in the CNV amplitude in PO 

patients. This fmding was later confmned by Cohen [1974]. 

2.3.3 Event-Related Potentials in Huntinaton's Disease Patients 

The SEPs in HD patients and AR of HD patients were investigated and compared 

with those of normal control subjects in several studies. An increase in latency 
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[Oepen et al., 1982] [Iosiassen et al., 1982] and a reduction in amplitude [Noth et 

al., 1984] [Ehle et al., 1984] [Bollen et al., 1985] [Abbruzzese et al., 1990] of 

some SEP components were generally observed in HD patients. Iosiassen et al. 

[1982] and Noth et al. [1984] also reported that some AR of HD patients 

exhibited amplitude reduction in their SEPs similar to that observed in HD 

patients, although the reduction tended to be smaller in the AR of HD patients. 

Oepen et al. [1982], Iosiassen et al. [1984] and Hennerici et ale [1985] have 

reported that the VEPs components in HD patients and some AR of HD patients 

were significantly reduced. 

The auditory evoked potentials (AEPs) in 21 HD patients and 21 normal control 

subjects were analysed by Iosiassen et ale [1984]. They reported the amplitudes of 

the AEPs components in HD patients were generally reduced. 

Rosenberg et al. [1985] compared the P300 components of both auditory and 

visual ERPs in 13 HD patients with those in normal subjects. Nine HD patients 

had abnormal auditory P300 latencies and 10 HD patients had abnormal visual 

P300 latencies. Goodin and Aminoff [1985] analysed the latencies of the N200 and 

P300 components of AEPs in 13 HD patients and 40 normal control subjects. 

They found a significant prolongation in the latency of both the moo and PJOO 

components in HD patients compared with those of normal control subjects. 

Hamberg et ale [1986] studied the P2oo, moo and P300 components of AEPs in 

30 HD patients, 40 AR of HD patients and 60 normal control subjects. They 

reported that the latencies of the P2oo, N200 and (especially) P300 components 

were prolonged in the majority of HD patients and to a lesser extend in AR of HD 

patients. 

Jervis et ale [1984] and [1989] reported that statistically significant differences 
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existed between the amplitude of some CNV harmonic frequency components in 8 

HO patients and those of 6 normal subjects (an account of these studies is included 

in chapter 7). 

Josiassen et al. [1988] studied the SBPs, YEPs and AEPs in 22 individuals AR of 

HD and reported that the generalised reduction in the amplitude of BPs in AR of 

HD patients was not due to emotional symptoms associated with knowledge of AR 

status. They suggested that the amplitude changes might reflect early and subtle 

changes of an organic nature. 

2.4 The Possible Effects or Medication on Event-Related Potentials 

Some of the patients included in this study were on medication related to their 

disorders. The possible effects of medication on ERPs have been investigated in 

several studies. Josiassen et ale [1984] reported that medication might further 

reduce the already lower than normal amplitude in the auditory and visual BPs in 

HD patients. Blackwood et ale [1987] found that the latency of the P300 

component in auditory ERPs obtained from un medicated schizophrenic patients 

was significantly prolonged and remained unchanged after a long term follow up 

of the patients on medication. They also reported that the amplitude of the P300 

component was reduced in schizophrenic patients not on medication and remained 

reduced following neuroleptic drug treatment. Wcud et ale [1991] reported a 

reduced P300 amplitude in un medicated schizophrenic patients. The amplitude and 

latency of YEPs in un medicated PO patients compared to normal subjects were 

also significantly different according to Calzetti et al. [1990]. 

2.5 Conclusion 

The articles reviewed in this chapter indicate schizophrenia, PD and HD cause 

structural brain abnormalities and some changes in the ERPs. The CNV was 
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described and the reasons for selecting this potential for detecting schizophrenia, 

PD and HD were discussed. 
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Chapter 3 Description of the lDstnunentation System 

In this chapter the instrumentation system used for data recording is 

described. An instrumentation system was required for simultaneous recording of 

the signals from eight analogue channels, to generate the stimuli necessary for 

recording of the CNV and to measure the subjects' reaction times to an acoustic 

stimulus. The signals of interest were the CNV (from two sites), electro­

oculogram (EOG) (from four sites), electrocardiogram (ECG) and psychogalvanic 

response (pGR). The magnitudes of these signals varied from a few microvolts 

to several millivolts. To increase the accuracy of digitisation of the signals a 

programmable gain amplifier (PGA) was required the gain of which could be 

software adjusted in accordance with the magnitudes of the signals. The system 

had to provide a sufficient data storage facility (about 1 megabytes per subject), 

and also had to process and analyse the data. An online paper chart recording of 

the signals was necessary to observe the signals during the recording and to have 

a hard copy of the data for future reference. It was important to minimise 

distortion of the signals during the acquisition, storage and processing. Portability, 

reliability, the cost of the instrumentation system, and patients' safety during the 

data recordings were also design considerations. 

The commercially available recording systems, such as analogue magnetic tapes, 

were not suitable as they did not meet the required specifications. Therefore a PC­

based instrumentation system was developed. The system consisted of an IBM PC 

(AT model, with a 20 megabytes hard disk and fitted with a Sysgen tape steamer), 

an Elema-Schonander BEG machine, an acoustic stimulator and a signal 

conditioning unit. The set-up of the system during a recording session is shown in 

Figure (3.1). 

The recorded CNV from one of the sites, the ECG data and the PGR data were 

not analysed during the course of this study and they were left for future studies. 
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3.1 The Instrumentation System Input Stage 

The signals from the electrodes were fed via the head-box (adaptor) into the 

electrode selector switches and the differential amplifiers of the EEG machine as 

shown in Figure (3.2). Each of these differential amplifiers had a fued gain of SO. 

Differential recording was necessary for compatibility with differential 

measurements between the electrode pairs and in order to attenuate the common 

mode noise. 

The analogue signals from the outputs of the differential amplifiers followed two 

paths. The first path led to the next section in the EEG machine, while the second 

path led to a 25-way D-type connector. The D-type connector was coupl~ to the 

section of the instrumentation system responsible for further amplifying, digiti sing 

and storing of the data on the hard disk of the PC. In this way the EEG machine 

provided the paper chart as usual and the signals were also conditioned, digitised 

and stored by the following hardware units. The EEG machine electrode selector 

switches made it possible to set the data recording montage. The EEG machine 

had an input impedance of 1.7MO with reference to earth [Elema-Schonander 

databook, 1968]. 

3.2 High-Pass Faltering Section 

It was necessary to high-pass filter the signals to reduce the d.c. offset in the 

signal. The d.c. offset was mainly due to the extracerebral potentials (eg. skin 

potentials). Cooper et al. [1980] suggested that the time constant of this filter 

should be at least three times the duration of the inter-stimulus interval (lSI) of the 

CNV (this interval was one second and the reason for selecting one second for this 

period is given in chapter S) to avoid distortion of the CNV. A first order lead 

network with c= lO",F and R= IMO was used for this 'purpose. This circuit had a 

time constant of ten seconds. This corresponded to a cut-off frequency (fe> of 
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0.0159Hz, where, 

1 

f -­c 
2trRC 

3.3 Second Stage Amplification Section 

••• (3.1) 

There was an instrumentation amplifier for each channel following the high-pass 

fllter section as shown in Figure (3.3). The function of each instrumentation 

amplifier was to further amplify and to convert its input signal to an unbalanced 

form. The instrumentation amplifier type was INAI10 [Burr-Brown, 1986]. The 

INAllO device is a monolithic FET input device. It was selected because it had a 

high common mode rejection ratio (about 1000B), low gain drift, low offset drift 

(2#,V/deg.C), fast settling time (4#,s to 0.01 %) and easily adjustable gain. The 

instrumentation amplifier circuit is shown in Figure (3.4). A fIXed resistor (Rap) 

and a potentiometer (Rav) were placed in series between pin 3 and pin 16 (the pins 

11, 12, and 16 were connected together). The net resistance of Rap and Rav (ie. 

Rov + Rap) was referred to as Ro. The value of Ro determined the gain of the 

instrumentation amplifier and it was calculated using [Burr-Brown, 1986], 
r 

40000 

Ra - - 50 0 ••• (3.2) 
Gain - 1 

For channels 1 to 6 (allocated for BEG and EOG recordings) the instrumentation 

amplifier gain was 52.5. It was necessary to adjust the Rov potentiometer to obtain 

this gain. For channels 7 and 8 (allocated for the ECG and PGR recordings), the 

instrumentation amplifier gain was set to 2.6. This was achieved by placing a 

10kO potentiometer in series with a 20k{) resistor between pins 3 and 16. 
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The instrumentation amplifier gains were decided after considering the amplitude 

range of each input signal and the gains provided by the other amplifiers in each 

channel (this is described in section 3.8). 

As the passive components attached to one input of each instrumentation amplifier 

were not completely matched with components at the other input (ie. the resistors 

and capacitors had a tolerance), a small d.c. offset appeared at the output of each 

instrumentation amplifier. This offset was zeroed by applying a voltage to the 

voltage reference pin (pin 6) of each instrumentation amplifier through a buffer. 

This method of adjusting offset has been described in Burr-Brown [1986]. 

3.4 Low-Pass Filtering Section 

Following each instrumentation amplifier there was a low-pass fllter. Low-pass 

filtering was necessary to prevent aliasing in the subsequent digitisation stage. The 

design considerations for the low-pass fllters were a linear pass-band phase 

response, a sufficiently flat pass-band frequency response, and a sufficiently steep 

gain roll-off. Three filter types were considered. They were the Chebyshev, 
r 

Butterworth and Bessel. The Bessel filter was selected as it had the best phase 

response among the three fllter types and it also had an acceptable frequency 

response. It was decided to use a cut-off frequency (fel) of 30Hz. This cut-off 

frequency was several times higher than the frequencies of the signals of interest. 

The low-pass filtering process also attenuated any 50Hz mains interference. 

Any aliasing component has to be attenuated to an acceptably low level below the 

pass-band components. Let fr denotes this aliasing signal and f. represent the 

sampling frequency (see Figure (3.S». It has been shown [Elliott, 1987] that, 

where 

f. = 2f,1 + f, 
f = f - f , r el 
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therefore f = f - f r I c:1 
••. (3.5) 

For fl = 125Hz (see section 3.5 for information related to sampling frequency) and 

f 1 = 30Hz, the value of f is 95Hz. c: r 

It was decided to use a fourth order filter. The attenuation (dB) for a fourth order 

Bessel low-pass fllter at a frequency f is given by [Vcm VcUkenburg, 1984], 

••• (3.6) 

where s jfffc:l. For largest aliasing component (ie. fr =95Hz), s-j95f30. 

Substituting s=j95f30 in (3.6) gives an attenuation of 47.6dB. This attenuation of 

the largest aliasing component was considered sufficient. 

The low-pass filter circuit was based on the voltage-controlled voltage source 

(VCVS) filter. The VCVS is a variation of the Sallen and Key filter [Chen, 1982]. 

The circuit diagram of the low-pass fllter is shown in Figure (3.6). The values of 

the resistor (R) and the capacitor (C) were calculated using, 

1 
RC· --- ••• (3.7) 

where f is the normalising factor. The values of the f for the first and second 
D D 

stages of the fourth order Bessel filter were 1.432 and 1.606 respectively 

[Horowitz and Hill, 1987]. The values of RI and Rf were calculated using, 
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. • •• (3.8) 

where k is the voltage gain. The values of k for the first and second stages of the 

fllter were 1.084 and 1.759 respectively [Horowitz and Hill, 1987]. This resulted 

in the filter gain of 1.907 (ie. 1.084 x 1.759). 

The operational amplifier type used for this fllter was TL074ICP. This type was 

selected because it had low noise and low distortion. 

3.5 Sample and Hold Section 

The signals from the eight channels were sampled simultaneously. This was 

because the removal of ocular artefact potentials from the CNV involved the 

correlation of the BEG and EOG signals and therefore it was important to 

maintain the phase relationship between the signals. A sample and hold (SIH) 

signal generated from the timing circuit (this circuit is described in section 3.9) 

was fed to the SIH unit of each channel resulting in the simultaneous sampling of 

the signals. The usual sampling rate for CNV recording is about 100Hz (for 

example, Prescott [1986] used a sampling rate of 100Hz in his CNV studies). The 

sampling rate used in this study was 125Hz. This also conformed with the 

sampling frequency used in previous studies [Nichols, 1982] [Coelho, 1988] and 

corresponded to a StH period of 8ms (ie. lIsampling rate), resulting in a 

multiplexing rate of about 1kHz. 

The S/H device type was LF398. This device had a sufficiently fast acquisition 

time (less than IOl's), low output noise in hold mode and low droop rate [National 

Semiconductor, 1988]. The type and the value of the hold capacitor (CH) were 

important as this capacitor determined the acquisition time and droop rate. A 
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O.OlJ'F polystyrene capacitor was selected for CH" The value of this capacitor 

provided an acceptable compromise between the acquisition time and droop rate and 

its type ensured a low dielectric absorption loss. The sample and hold circuit is 

shown in Figure (3.7). 

3.6 Multiplexing Section 

The output of the SIH unit from each channel was COMected to an analogue 

multiplexer (type HI506) as shown in Figure (3.3). It was decided to use a 16-

channel multiplexer (rather than an 8-channel multiplexer) to allow for any 

possible future expansion of the system. The multiplexer circuit is shown in Figure 

(3.8). The multiplexer chaMels were selected through a programmable peripheral 

interface (pPI) device (the PPI device is described in section (3.13». The PPI 

device was TTL logic compatible. The multiplexer was a CMOS device. 

Therefore, a TTL to CMOS voltage level shifter (type CD40109B) was 

incorporated to interface the multiplexer with the PPI device. 

3.7 Third Stage Amplification and Signal Digitisation Method 

A DT2805 card from the DT2801 Data Translation series [1985] was available 

and it was used to further amplify and to digitise the signals. The cards had a 

programmable gain amplifier (pGA) and a 12-bit analogue to digital convertor 

(AID). The PGA preceded the AID and its gain could be software adjusted to 1, 

10, 100 or 500. The conversion time of the AID was 25"s. This was sufficiently 

fast for the multiplexing time of lms. 
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The magnitudes of signals varied from a few microvolts (as in the case of the 

CNV) to several millivolts (as in the case of the PGR). To increase accuracy, 

before signal digitisation, the signal magnitude was estimated with the aid of a 

circuit known as a "window detector· (WD). The gain of the PGA was software 

adjusted after reading the WD output. The WD was designed to detect the 

threshold voltages of ±20mV, ±l00mV, ±lV and ±10V. These threshold 

voltages corresponded to the PGA gains of 500, 100, 10 and 1 respectively. Each 

threshold voltage multiplied by its corresponding PGA gain resulted in AID full 

scale range of ± lOY. The block diagram of the WD is shown in Figure (3.9) and 

the sections of its circuit are shown in Figure (3.10). The WD circuit composed of 

three pairs of comparators (type LM311). The inputs to each comparator were the 

multiplexer output and the relevant threshold voltage. The effect of varying the 

signal magnitude on the WD output is shown in Figure (3.11) and the relationship 

between WD output and PGA gain is shown in Thble (3.1). 
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Thble (3.1) WD outputs and the corresponding PGA gains. 

Signal Range e1 e2 eJ WD OUtput PGA Gain 

:I:lV to t10V 0 0 0 0 1 

:I:l00mV to t1V 0 0 1 4 10 

t20mV to t100mV 0 1 1 6 100 

OV to t20mV 1 1 1 7 500 

When the magnitude of input signal ( I Vi I ) to the WD was less than the 

threshold voltage ( I v, I ) for a comparator pair, the common output of that pair 

was logic ·1·. As I Vi I exceeded I v, I the common output of the pair was 

logic ·0·. 

After issuing a SIH signal the following steps were carried out: i) channel 1 of the 

multiplexer was selected, ii) the output of the WD was read through the PPI 

device, iii) the PGA gain was software adjusted to provide an appropriate gain (for 

example if the signal magnitude was below 20mV, the PGA gain was set to 500), 

iv) the signal was digitised, v) steps (i) to (iv) were repeated for channels 2 to 8. 

The value of the WD output (which was 1 byte) was stored with the corresponding 

digitised signal (which was 2 bytes). Therefore each sample produced 3 bytes. 

When processing the data, the magnitudes of the signals were adjusted according 

to the WD outputs. 

3.8 Total Gain Provided By Each Channel 

The total gain provided by each channel was calculated using, 

Total gain = G. x G1 X G3 X G4 

where 01 = rust stage amplification (= 50), 
G2 = second stage amplification, 

(for channels 1-6,°2=52.5, 
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for channels 6 and 7,°1=2.6), 
03 = effective gain of the low-pass filter (1.907), 

G" = amplification due to the PGA. 

For channels 1 to 6, the voltage gain range was from 5000 (when PGA gain was 

1) to 2.S x 1<r (when the PGA gain was SOO). The CNV amplitude was generally 

between -4#, V and -IS#, V, and the BOG potentials had a maximum magnitude of 

ImV. As the AID had a full-scale voltage range of ± 10V, sufficient gain was 

provided prior to the digitisation. For channels 7 and 8 the voltage gain was from 

250 (when PGA gain was 1) to 125000 (when PGA gain was 5(0). As the ECG 

and the PGA magnitudes were within ±3mV range, the allocated gain range for 

channels 6 and 7 were therefore sufficient. 

3.9 The Timin& Circuit 

A timing circuit was required for the following reasons: i) to provide the sample 

and hold signal, ti) to measure the random inter-trial interval between the 

successive CNV trials and iii) to measure the subjects' reaction times. The block 

diagram of the timing circuit is shown in Figure (3.12). This circuit was based on 

two Intel 82S3 software programmable interval timers. Each programmable 

interval timer contained three counters (ie. counters 0, I and 2) which could 

individually be programmed in several modes. Hall [1988] described in detail the 

structure and the modes of operation of the Intel 8253 device. The programmable 

interval timers were incorporated into the mM PC by adding them to a vero­

board which had the necessary address decoding circuits for the devices added to 

it. This board was placed in an expansion slot of the PC. 

Figures (3.13a) and (3.13b) show the intercoMections from the programmable 

interval timers to the various buses of the PC. The PC had a clock, the frequency 

of which was 6MHz. The frequency of this clock was divided by four using two 

87 



CD 
CD 

PC 6 
CLOC ~~Z ,... I R~~ 

1 1 

~!-!!:: l 1. '!iHHZ 
FLOP 

2 I COUNTER 0 
COATE 
SV ~ 

- y 1KHZ 

COUNTER 1 
SXC:NAl 
~~~ .. 
(PCO> 

KHZ 
COUNTER 2 

C:ATE 
'!iV 

PROC:RAHHABLE INTERVAL TIHER 1 

~~~TOR COATE 
COUNTER 0 

I COUNTER 1 I 

I COUNTER 2 I 
PROC:RAHHABLE INTERVAL TIHER 2 

INTER-TRIAL INTERVAL 
DATA 

Q 
_ S~PLE LD SIC:NAL 

Q . -- ..... 

~~~~LE .C >--0 

.... 

E ABLE/DISj: 
SAHPLINCO SI 

HPLINC: SIC:NAL 
TO IRQS 

(FROM PPI C 

REACTION TIHE DATA 

Fleur. 3.12 Ti~n. clrcuit block dl •• r.m. 



CD 
\0 

c: f'~: 1. l.CK 

2 l.CLR 

:5 l.K 

4 VCC 

5 2CK .. 2CLR 

7 2J 

~v 

~ .. __ ~o~ ~~~5. 

. 

7 
4 
H 
C 
7 
3 

, 

~V 

l.J 1.4 

l.Q --P 
1.Q 12 

aND 1.1. ~V 

2K 10 

2Q 9 

2Q -1l 

V.,-o-bo.,-d 
p1.n numb .... 

r-l 
7 

6 

5 

4 

:3 

2 

1. 

0 
1.'5HH'" 

t 

2 

~ 

4 

s .. 
7 

R 

9 

In 

+svo-LL-
OV~ 

07 

06 I 

05 
N 
T 
E 

04 L 

03 S 
2 

02 S 
3 

Ol. 

00 

CLKO 

OUTO 

C;ATEO 

aND 

24 VCC V 
WR ~3~ iON 

RO 22 i"O'R 

CS ~J. 

A1. 20 

AO 1.'" 

CLK2 --18 

OUT2 ~l 
~ ~V C:ATE2 

CLK1. 
1.'5 -..., -

C;ATE1. 1.4 

OUT 1 1.3 

Pr09r ........... TnT .... v.l 
1:1. .... r 1 (PIT 1:> 

~V 

. 

--
'" I 1/3 CO",075B' 

2 (V 
1 (V 

To S/H unl.1:.~ Q VCC I. 

..L. Ne NC -oL3 
7 

:'II --..l3 A1 4 NC 

" A2 
1 

.J.LJ""l ~ 2 RCEX ~ l.OOK 
'5 

1 10 T 1.00nF 
B CEXT 

6 Q RIMT 9 

7 C:NO NC -it. 

~ 
- c; 

r 4 c.) 
..... '-

1./4 74LS32 

Fl.Qure 3.13a F1.r.1: p.r1: or 1:he 1:l.mJ.no c1.rcul.1:. 

N 

A3 
A4 

EN 

V .... o-board 
p1 n numb.,-

Q 
26 

ro-board p1.n 20:> 
ro-bo.rd pln 21.:> 

PI, PCO 

PI. PB3 

To CLKO PIT2 
(1KHz s10nal:> 



~ 

o 

Si9"_1 1",.0 .. pi" 
1.3 01" 401.68 
device 
Cton. 
e.n. ci,-cuit) 

V ... o-bo.,-d 
pin nu ...... ,-

II 
7 

6 .~ 

S :3 

4 4 

:3 t:; 

2 " 
1. 7 

0 8 

07 

06 

OS 

04 

03 

02 

01 

DO 

vec 

I WR 
N 

RO T 
E es L 

I ;;: ;; :::~::::~:~ 
5 Ai 20 v.,-o-bo ... d) 
:2 
5 AO 21. v.,-o-bo ... d) 
:5 

CLK2 

OUT2 

20k ~ .1kHa clock CLKO ~ATE2 
.ion.1 

OUTO CLKJ. 

QATEO QATEJ. 

~HO OUT1 

l 
.10k 

OV~_I 

P,-o,.,..mmabl. int.,-v.1 
ti .... ,- 2 CPXT2) 

Flgur. 3.J.3b S.cond .... ,-1: 0" tk. tl~ng circuit. 

V.ro-bo.,.d 
pin nu ...... r 

..-_____ ,A3 r;;-, 
A4 26 

1/6 5H7404 ... 

L-____________ EH 



flip-flops (type 74HC73) connected together in series. The reduction in the clock 

frequency was necessary as the maximum permissible input clock frequency for 

the 8253 programmable interval timer was 2.6MHz. The resulting 1.5MHz clock 

signal was used as the clock signal for the counters 0 and 2 of the programmable 

interval timer 1. The function of each counter in the programmable interval timer 

1 follows. 

Counter 0 - this counter divided the 1.5MHz clock signal by 1500. The resulting 

1kHz signal was used as a clock signal for counter 1 of the programmable interval 

timer 1 and counter 0 of the programmable interval timer 2. 

Counter 1 - this counter measured the random inter-trial interval (ITI) period 

between successive CNV trials. The value of this period was generated in the 

software and was stored in this counter. 

Counter 2 - this counter was programmed to provide a 125Hz square wave signal. 

The 125Hz signal was converted to the required narrow sampling pulse by a 

mono-stable (type 74121). The SIR timing diagram is shown in Figure (3.14). The 

Q output of this mono-stable was used for the S/H signal and its Q output was 

connected to an input (input "a") of an "OR" gate. The other input (input "b") of 

this gate was connected to pin PA4 of the PPI device output port (ie. port A). The 

output of the gate was connected to IRQ5 of the PC system interrupt controller 1 

(type 8259A) in order to interrupt the PC at the required sampling rate. It was 

necessary that the sampling process could be enabled or disabled through the 

software. This was achieved by the inclusion of this "OR" gate in the timing 

circuit. In order to disable the sampling process the "b" input of this "OR" gate 

was set to "1" and the sampling was enabled by setting the "b" input of this "OR" 

gate to "0". The PC had several interrupt types but, IRQ5 was the most suitable 

91 



\.0 
I\) 

Ca) Programmabl. ~n~.rval ~~~r 1 • 

counter 2 output (OUT2) 

(conn.ct.d to p~n S or tn. 

MOno_tabl.) • 

(b) Q output or th. mono-stabl. 

Cconn.ct.d to OR .at. 

·'."-J.nAU't ). 

(C) Q output of' tha MOno-stabl. 

• to .a_l. and hoi d davie ••• 

C~) OutpUt of th. OR .ata 

to XRQS (th. ~nt.rrupt ~ • 

• nabl.d at A ~n thl. d~a.ram ). 

AI 

. :J: I f I 
Ie, 'f. cia 'IDS ~ 
I I 
I I 

t I r 
:J U U U 

~ 7",. +of 
I ~ .... 

I rl "0'. 'n" "0'. 'n" "0'. TL 

: U U U 
! ! ! 

Int.rrupt Int.rrupt Intarrupt 

F~9ur. 3.14 Sampl. and hold t~m1no diagram. 



type for this purpose (for more information refer to mM technical reference, 

[1985]). 

Only the counter 0 in the programmable interval timer 2 was used. This function 

of this counter was to measure the subjects' reaction times. A signal from the tone 

generator was fed to the gate of this counter. This signal started the counter at the 

onset of the tone and when the push-button was pressed, it stopped the counter. As 

the frequency of the clock input to this counter was 1kHz, the value read from it 

represented the reaction time in milliseconds (ie. 111kHz = Ims). The other two 

counters in this programmable interval timer may be utilised in the future 

expansion of the system. 

For each programmable interval timer, the data (00-0,), read (RD) and write 

(WR) buses were connected to the corresponding buses on the vero-board. The 

base address 300 (Hex.) is allocated for adding new devices to the mM PC 

system. The PC had a l~bit data bus while the programmable interval timers had 

an 8-bit data bus. When the address line Ao was ·0· data were read/written 

from/to °0-0, and when Ao was ·1· data were readlwritten from/to O.-Ow In 

this application the data lines 0o-D, were used, therefore whenever the timers 

were addressed, Ao was ·0·. The address lines AI and Az from the PC were 

connected to the programmable interval timers address lines Ao and AI 

respectively. The address lines AI and Az determined which counter was 

accessed. The control register of each programmable interval timer, which was 

used to program the counters, was also selected through Ao and AI. To select a 

programmable interval timer, the chip select input Ci of that timer was set to ·0·. 
The chip select input for the programmable interval timer 1 was obtained from the 

output of a 3-input ·OR· gate. The inputs to this gate were the address lines ~ 

and A., and the enable line (En) from the PC. For programmable interval timer 2, 

the Ca input was obtained from the output of another 3-input ·OR· gate. The 
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inputs to this "OR" gate were the address lines A3, A., and the En line from the 

pc. The address line A. had to be inverted to reflect the address decoding (refer 

to Thbles (3.2) and (3.3». 

'Thble (3.2) Addresses used to select the 
ports in the programmable interval timer 1. 

Addre.. Line. Addre •• 
in Port Selected 

A4 A3 A2 Al AO (Hex. ) 

0 0 0 0 0 300 counter 0 
0 0 0 1 0 302 counter 1 
0 0 1 0 0 304 counter 2 
0 0 1 1 0 306 control register 

Thble (3.3) Addresses used to select the 
ports in the programmable interval timer 2. 

Address Lines Addre •• 
in Port Selected 

A4 A3 A2 Al AO (Hex. ) 

1 0 0 0 0 310 counter 0 
1 0 0 1 0 312 counter 1 
1 0 1 0 0 314 counter 2 
1 0 1 1 0 316 control regi.ter 

3.10 Acoustic Stimuli Generator 

To elicit the CNV it was necessary to present a warning and an imperative 

stimulus to the subjects. Some investigators such as Tecce [1972] used a light flash 

for the warning stimulus and a tone for the imperative stimulus. It was decided to 

use a click and a tone for the warning and imperative stimuli respectively. The 

light flash was not used for the warning stimulus as it can cause blinking. This in 

turn results in ocular artefact. 
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3.10.1 Click Generator 

The click generator circuit is shown in Figure (3.15). The base of a transistor (this 

transistor performed as a digital switch) was connected to pin PA6 of the PPI 

device port A and its collector was connected to the input of a mono-stable multi­

vibrator (type HEF4528B). On the rising edge of a pulse sent to the base of this 

transistor, the mono-stable generated a narrow pulse (the width of which was set 

by the values of R and C). The output of the mono-stable was connected to the 

enable input (EI) of an analogue switch (type HEF4016B). The input terminal of 

the switch (YI ) was connected to the centre pin of a 500kO potentiometer and the 

output of the analogue switch (ZI) was connected to a power amplifier (the power 

amplifier is described in section (3.10.3». During the short period that the mono­

stable output was high (ie. logic -1-), a d.c. ~oltage was transmitted through the 

analogue switch to the power amplifier. This produced a click. The intensity of the 

click was adjusted by using a 500kO potentiometer. 

3.10.2 Tone Generator 

The tone generator circuit is shown in Figure (3.16). The base of a transistor (this 

transistor was used as a digital switch) was connected to pin PA 7 of the PPI 

device port A and its collector to the input (lob) of a mono-stable multi-vibrator 

(type HFE4528B). The mono-stable circuit produced a square pulse (the duration 

of the pulse was set to 6 seconds) on the rising edge of a pulse sent through the 

PPI device to the base of the transistor. The output of the mono-stable was 

connected to the enable input <Eo> of an analogue switch (type HEF4016B). 

During the period that the output of the mono-stable was logic -I - a waveform 

(frequency= 1kHz), produced by a circuit based on a 555N device, was 

transmitted to the power amplifier through the analogue switch. This produced a 

tone. The intensity of the tone was adjusted using a 500kO potentiometer. 
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A wire linked a push-button to the clear direct input (CDB) of the mono-stable. 

The subjects, by pressing the push-button, cleared the output of the mono-stable, 

thus terminating the tone. 

The output of the mono-stable (OS> was also connected to the gate of counter 0 in 

the programmable interval timer 2 (see section 3.9) in order to measure the 

subjects I reaction times. 

3.10.3 Audio Power Amplifier 

A circuit based on the TBA820 device provided the necessary power amplification 

of the click and the tone signals. This circuit was obtained from the RS data sheet 

[1985]. The output of this circuit was connected to an 80 loudspeaker. The audio 

power amplifier circuit is shown in Figure (3.17). 

3.11 Circuit to Detect Erroneous CNV Trials 

The CNV trial was erroneous if the subjects pressed the push-button prior to the 

onset of the tone. It was necessary to detect the erroneous trials and to discard the 

data associated with them. The circuit designed for this purpose is shown in 

Figure (3.18). It had two inputs, one was from the push-button (which was linked 

to the tone generator circuit) and the other was from pin PC1 of the PPI device 

port C. The output of the circuit was connected to pin PBS of the PPI device port 

B. 

The timing diagram of the circuit is shown in Figure (3.19). When the push-button 

was pressed the circuit output changed from logic "0" to "1". The software was 

designed so that the output of this circuit was checked prior to the onset of the 

tone and if this output was "1" (ie. the subject pressed the push-button before the 

onset of the tone), the tone was not generated and the data associated with that 

trial were discarded. The output of the circuit was cleared by the software to "0" 
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through pin PC1 of the PPI device port C at the end of each CNV trial recording. 

3.12 Operator Switch and System LED 

An operator switch was incorporated (as shown in Figure (3.20» so that if it .pn 

101 became necessary the operator could provide a pause in the data recording. 

An LED was included to indicate when the data recording was in progress. Figure 

(3.21) shows its circuit diagram. 

3.13 Digital Interfacing 

An Intel programmable peripheral interface (PPI) device (type 8255A) was used 

for the interfacing of the devices to the PC system. The PPI device had three 8-bit 

ports (A, B and C). The ports could be configured through the software in several 

modes to perform a variety of functions (as described by Hall [1988]). The mode 

selected was the basic input/output mode (ie. mode 0). In mode 0, the PPI device 

provided a simple input and output operation for each of the three ports. The PPI 

device had a write only control register. By entering 82 (Hex.) into this control 

register (through the software) ports A and C were set for output and port B was 

set for input. The functions of the ports are shown in Thble (3.4). 
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Thble (3.4) Functions of the ports in the PPI device. 

Port Bit Function 

0 

] 1 multiplexer channel .elect 
2 

A 3 
4 enable/di.able .ampling 
5 LED command 
6 click generator trigger 

·7 tone generator trigger 

0 

] 1 window detector output 
2 

B 3 programmable interval timer 1 counter 1 output 
4 operator .witch output 
5 CNV error detector circuit clear command 
6 ] 7 not used 

0 programmable interval timer 1 counter 1 gate 
1 CNV error detector circuit output 
2 

C 3 
4 not used 
5 
6 
1 

The PPI device was added to the PC system using the vero-board (described in 

section 3.9). Figure (3.22) shows the method of connecting the PPI device to the 

vero-board. The device data pins (Do-D7) were connected to the system data bus 

(Do-D
7
). The read (Re) and write (WR) pins were connected to the corresponding 

lines (iOR and iow) of the vero-board. The ports A, B and C and the control 

register were selected using the address lines Ao and AI. The Ao and Al pins were 

connected to the vero-board lines Al and ~ respectively. The PPI device was 

selected when the chip select pin (c.) was low. This was achieved using a circuit 

shown in Figure (3.23). The addresses used for selecting the ports and the control 

register are shown in Thble (3.5). 
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'Thble (3.5) Addresses used to select the 
PPI ports. 

Addre.. Line. Addre •• 
in Port Selected 

A4 A3 A2 Al AO (Hex. ) 

0 1 0 0 0 308 port A 
0 1 0 1 0 30A port B 
0 1 1 0 0 30e port e 
0 1 1 1 0 30E control register 

3.14 Data Storage Requirement 

The number of bytes (NJ for a recording containing 32 trials was calculated 

using, 

Nb = S xN xB xTxN, r 0 • 

where S was the sample rate = 125Hz, 
No was the number of channels = 8 channels, 
B was the number of bytes per sample = 3 bytes, r was the duration of a CNV trial = 12 seconds, 

and N, was the number of trials recorded = 32 trials. 

••. (3.10) 

Using (3.10), Nb was equal to 1.152 x l(f bytes (ie. 125 x 8 x 3 x 12 x 32). 

3.15 Data Storage Facility 

The recorded data related to the waveforms and the reaction time values for each 

subject were kept in a file. This file was initially stored on the hard disk of the 

PC and then copied into a 20 megabytes cassette using a Sysgen tape streamer. 

This data transfer was controlled by a commercially available program called 

FBACK. A description of this program and the procedure for the data transfer is 

provided in Sysgen Smart Image Subsystem Owner's Manual [1985]. 

3.16 Hardware Thsting 

Initially the sections of the hardware were separately tested to ensure they 

functioned in accordance with the specifications. The gain and d.c. offset of each 
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amplifier and the phase and frequency responses of the fllters were monitored. 

Signals with different amplitudes were applied to the WD and the output of the 

WD was examined. Tests were carried out to ensure the counters in the 8253 

programmable interval timers functioned as described in section 3.9. This included 

observing the 125Hz square wave signal generated by the counter 2 (in the 

programmable interval timer 1) on the oscilloscope. The timing diagram of the 

interrupt signal (shown in Figure (3.14» was observed on the oscilloscope and it 

was ensured it had a correct relationship with the sample and hold signal. The PPI 

device was tested through software by reading and writing digital test data to and 

from its ports. The operation of the stimuli generator unit was checked. The 

circuit responsible for detecting erroneous CNV trials was tested by pressing the 

push-button prior the onset of the tone. The device correctly detected the faulty 

CNV trials. 

The phase and frequency responses of the system up to the S/H units were 

obtained using a frequency analyser. The set-up used is shown in Figure (3.24). 

The phase and frequency responses obtained for channel 1 are shown in Figures 

(3.25) and (3.26) respectively. The operation of the DT2805 was tested by 

applying a calibration signal to the board, digitising the signal, storing the 

digitised data on the hard disk and then plotting the stored data. The operation of 

the complete recording system was tested by applying a calibration signal to the 

BEG machine head-box and recording the signals using the eight channels. This 

indicated that the system correctly recorded and stored the data on the hard disk. 
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Chapter 4 Description of the Data Recording Software 

The data recording software had two main sections. The frrst section was written 

in the Thrbo Pascal programming language and it was called" ACQ.PAS". The 

second section was written in assembly language (Intel 80286) and was linked to 

the Pascal program. The assembly language program was called 

"SAMPLE1.ASM". The listing of the data recording software is provided in 

Appendix (A). 

4.1 Description of the Pascal Program Section 

This section initialised and tested the DT2805 board (this board was used for its 

programmable gain amplifier (pGA) and analogue to digital converter (AID» and 

it acquired the following data recording information from the operator: 

- The pre-warning-stimulus record length (in seconds), 

- The inter-stimulus interval duration (in seconds). 

- The post-imperative-stimulus record length (in seconds). 

- The number of CNV trials to be recorded. 

- A filename for data storage. 

It then requested the operator to select an option. The options were familiarisation, 

practice and data recording. The purpose of familiarisation option was to ensure 

that the subjects could recognise the warning and imperative stimuli. When this 

option was selected a series of 10 click and tone pairs were generated by the 

instrumentation system and the subjects listened to the sounds. The practice 

option was for ensuring that the subjects were able to respond correctly to the 

imperative-stimulus. Selection of this option produced 15 click and tone pairs. The 

subjects terminated the tones by pressing a push-button. Selection of the data 

recording option initiated the recording of data. 
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When the operator selected one of the above options, the Pascal program called 

the assembly language program and the requested option was performed. After 

the completion of data recording, the ACQ Turbo Pascal program displayed the 

data (sample values) for recorded waveforms, values of the reaction times 

associated with the CNV trials and the averaged value of the reaction time. 

4.2.1 Description or the Assembly Lanaua&e Section 

This section received the durations of the pre-waming-stimulus record length, 

inter-stimulus interval, post-imperative-stimulus record length and the number of 

CNV trials from the Pascal program. It then followed the steps necessary for 

execution of the chosen option. The same assembly language program was used 

for familiarisation, practice and data recording options (files created after 

performing the familiarisation and practice options were automatically discarded). 

A flow chart illustrating the operation of the assembly language program is shown 

in Figure (4.1). 
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start 
I 

receive the data recording par-
ameters from the Pascal program 

I 
initialise the progranmable 
peripheral device 

I 
disable the hardware interrupt 
related to data sampling 

I 
store the starting address of 
the interrupt service routine 
(ISR) in the relevant vectors 
and initial i.e the interrupt 
controller 1 in the PC 
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initialise the variables I 

I 
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o and 2 in the programmable 
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I 
initialise the circuit 
responsible for detecting 
erroneous CNV responses 

I 
I 

generate a random number I 
I 

switch off the data 
recording .ystem LED 

I 
initialise the counter 0 in the 
programmable interval 
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switch on the system LED 
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C 

disable the sampling interrupt 

if the CNV was not erroneous 
read the value of the reaction 
time from the relevant counter 
and store it in the RAM 

wait for inter-trial interval 

if the CNV was not erroneous 
transfer the recorded data from 
the RAM to hard disk of the PC 

no 
>------.... A 

yes 

transfer the reaction 
times from the RAM to 
hard disk of the PC 

close the file containing 
the recorded data 

end 

Figure (4.1) Flow chart describing the operations of the assembly language 
program. 
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Before describing the operations carried out in the assembly language program it 

would be advantageous to briefly introduce a process known as "disk operating 

system (DOS) function call" [Disk operating system, 1985]. This process was used 

several times in the assembly language program to perform operations such as 

creating a file, opening a file, closing a file and transferring data from the random 

access memory (RAM) to the hard disk of the PC. DOS provides a wide variety of 

functions which can be accessed in assembly language program through the DOS 

function calls. This enables options such as character input/output, file 

management and memory management to be carried out. In order to perform a 

DOS function call specific registers and pointers must be initialised as described in 

DOS technical reference manual [1985]. The interrupt type 21 (Hex) is then 

issued. This causes the requested task to be performed. 

The operations performed in the assembly language program were as follows. 

1) The programmable peripheral interface (pPI, Intel 8255A-5) device was 

initialised so that it provided two 8-bit digital output ports (ie. ports A and C) for 

writing digital 'data to external devices and an 8-bit input port (ie. port B) for 

reading digital data from external devices. The PPI device initialisation was 

achieved by writing 82 (Hex.) into its control register as described by Hall [1988]. 

2) The hardware interrupt related to data sampling was disabled by setting the 

enable/disable sampling signal high (see Figure (3.12». 

3) The starting address of the interrupt service routine (lSR) was stored in the 

relevant vectors (ie. 34 (Hex.) and 36 (Hex.». These vectors were associated 

with the hardware interrupt request 5 (lRQ5). IRQ5 was selected after referring to 

the IBM technical reference manual [1985]. The instructions contained in the ISR 

were executed following an interrupt request. During the execution of the ISR, 
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signals from the 8 channels were sampled, digitised and stored in random access 

memory (RAM) of the pc. A variable (called SAMPNO) which contained the total 

number of samples obtained during the recording of the trial was also incremented 

by one. The ISR function is described in detail in section 4.2.2. 

4) The variables used in the assembly language program were initialised. 

5) A me was created and opened on hard disk of the PC. This me was used for 

storing data. 

6) The counters 0 and 2 in the programmable interval timer 1 were initialised. The 

counter 0 divided the frequency of its 1.5MHz clock signal by 1500, thus 

producing a 1kHz signal at its output. The counter 2 divided the frequency of its 

1.5MHz clock signal by 12000, thus producing a 125Hz signal at its output. The 

125Hz signal was used in the StH circuit and it also provided the necessary 

hardware interrupt to the main microprocessor of the PC. 

The operations (1)-(6) were performed only once during data recording. The 

following steps were repeated for every trial. 

7) The circuit responsible for detecting erroneous CNV trials (see chapter (3» was 

initialised by sending the necessary pulse to its initialisation input line through the 

PPI device port C (pin PC1). This caused the output of this circuit to be cleared to 

·0· . 

8) A random number was generated. This number was required as successive 

CNV trials were separated by a random period called the inter-trial interval. The 

value of this number was between 100 and 400 and was stored in the counter 1 of 
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the programmable interval timer 1. 

9) The LED of the data recording system was switched off. This was achieved by 

setting pin PAS in the PPI device port A low. 

10) The counter 0 in the programmable interval timer 2 was initialised to measure 

reaction times. This was achieved by loading this counter with FFFF (Hex.) and 

storing 30 (Hex.) in the control register of the programmable interval timer 2. At 

the onset of the tone, the gate of the counter 0 was set to -1- by the tone generator 

circuit. This caused the initial value of this counter (ie. FFFF (Hex.» to be 

repeatedly reduced by one at a rate equal to its clock input (ie. 1kHz). This 

continued until the push-button (which was attached to the tone circuit) was 

pressed, terminating the tone and stopping the counter. The value read from this 

counter indicated the reaction time. 

11) The operator switch circuit (referred to in chapter (3» was checked through 

PPI device port B (PB4) and if its output was -0-, the data recording was halted 

until the operator set the output of this circuit to -1- by using the switch. 

12) The instrumentation system LED was switched on to indicate the system was 

ready for data recording. This was achieved by setting the input to the LED circuit 

to -1- through PPI device port A (PAS). 

13) The hardware interrupt responsible for data sampling was enabled by setting 

the enable/disable line of its circuit (see Figure (3.12» to -0- through the PPI 

device port A (PA4). 

14) The variable SAMPNO was continuously monitored. Every 8ms the 

instructions in the ISR were executed and the value held in the variable SAMPNO 
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was incremented by one. Once SAMPNO reached a pre-defined sample number 

for the pre-warning-stimulus interval the operation proceeded to the next section. 

15) The click generator circuit was triggered to produce a click. This was 

performed by sending the necessary pulse to the click generator circuit through 

PPI device port A (PA6). 

16) The value of the SAMPNO was monitored to determine how many samples 

were recorded. This was repeated until the recording of the inter-stimulus interval 

was complete. 

17) The output of the circuit responsible for detecting erroneous eNV responses 

(refer to chapter (3» was read. A -1- at the output of this circuit indicated the 

individual pressed the push-button prematurely, causing the eNV to be erroneous. 

If the output of this circuit was -1-, the next operation (ie. generation of a tone) 

was skipped. 

18) If the eNV was not erroneous a tone was generated by sending a pulse 

through PPI device port A (PA 7) to the tone generator circuit. 

19) The variable SAMPNO was continuously monitored until recording of the 

post-imperative-stimulus section was complete. 

20) The enable/disable sampling signal (see Figure (3.12» was set to -1-. This 

disabled the sampling interrupt. 

21) The value of reaction time was read from the counter 0 of the programmable 

interval timer 2 and if the eNV was not erroneous this value was stored in the 
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RAM. 

22) The counter 1 of the programmable interval timer 1 was loaded with the value 

of random number (generated previously) and it was initialised to time the inter­

trial interval. Then the gate of this counter was set to wl w through PPI device port 

C (PCO). This caused this counter to start counting. The output of this counter was 

continuously monitored through the PPI device port B (PB3). A high level e lW) at 

the output of this counter indicated the end of the inter-trial interval. As the 

frequency of the clock to this counter was 1kHz, if this counter was loaded with a 

value N, it took N milliseconds for its output to change to wlw. 

23) If the CNV was not erroneous, the recorded data were transferred from RAM 

to the hard disk of the PC. 

24) The number of CNV trials recorded was examined. If the required number of 

trials was not recorded, the operations (7)-(23) were repeated. 

25) The reaction time values were transferred from RAM to hard disk. 

26) The CNV file containing the data was closed and control was returned to the 

Pascal program. 

4.2.2 Description of the Interrupt Senice Routine 

This routine was part of the assembly language program. Its flow chart is shown 

in Figure (4.2). 
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switch the 
multiplexer 
to the next 
channel 

no 

start 

increment the value of 
the variable holding the 
number of samples recorded 

switch the multiplexer 
to channel 0 

read the output of the 
window detector circuit 

determine an appropriate 
gain for the programmable 
gain amplifier (PGA) 

set the PGA gain, digitise 
the signal, and store 
the digitised data in RAM 

return 

Figure (4.2) Flow chart describing the operations of the interrupt service routine. 

A description of the operations performed during the execution of the ISR 

follows. 

1) The value of the variable SAMPNO was incremented by one. 

2) The multiplexer was switched to channel O. This was achieved by sending code 
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0000 to the address lines of the multiplexer circuit through the PPI device port A 

(PAO-PA3). 

3) The output of the window detector circuit was read through the PPI device port 

B (pBO-PB2). 

4) An appropriate gain which reflected the magnitude of the signal was selected. 

5) The gain of the PGA was adjusted and the signal from the selected channel was 

digitised. 

6) The output of the analogue to digital convertor was read. This together with the 

value of a code which represented the gain used for the PGA were stored in RAM. 

7) If digitisation of signals from the 8 channels was not complete, the multiplexer 

was switched to the next channel and operations (3)-(6) were repeated. 
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Chapter S Data RecordiJl& Procedure 

20 schizophrenic patients, 16 PO patients, 11 HD patients, 21 AR of HD patients 

and 43 normal control subjects were enrolled for the study. The age and sex of the 

subjects were noted (the data associated with the age and sex of the subjects are 

shown together with the analysis results in chapters 7 and 8). All subjects were 

able to co-operate for the experiment. The severity of the symptoms in 

schizophrenic patients was measured (by Dr S. Oke) using the Diagnostic and 

Statistical Manual of Mental Disorders [DSM m, 1980]. Nine symptoms were 

measured. Each schizophrenic patient was given a score for each measured 

symptom. The scores varied between 0 (when the symptom was not observed) and 

S (when the symptom was severe). Thble (S.l) shows the scores for the 

schizophrenic patients. 
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Thble (5.1) The scores/or assessment of symptoms for 
schizophrenic patients. 

Subject P08itive Symptom. 
Number 

a 

1 0 
2 4 
3 4 
4 4 
5 4 
6 0 
7 0 
8 0 
9 0 

10 3 
11 0 
12 0 
13 0 
14 0 
15 2 
16 0 
17 0 
18 3 
19 0 
20 0 

Key: 
a = hallucinations 
b = delusions 

b 

2 
4 
4 
4 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
5 
0 
4 
4 
0 
0 

c = bizarre behaviour 

c 

0 
0 
4 
0 
2 
0 
3 
3 
3 
4 
0 
2 
0 
0 
4 
0 
0 
4 
0 
0 

d = positive thought disorder 

d 

0 
0 
2 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 

Negative Symptom. 

• f 9 h i 

2 0 4 4 2 
0 1 0 0 0 
2 2 3 3 3 
3 3 4 4 2 
4 3 4 4 2 
0 0 4 4 2 
2 4 4 4 2 
4 4 5 4 3 
4 3 4 4 3 
4 3 5 4 4 
4 2 4 2 2 
0 4 4 4 4 
3 2 4 2 1 
3 3 4 4 2 
0 0 1 2 0 
2 4 4 4 3 
0 0 0 4 0 
3 4 4 4 3 
2 4 4 3 3 
4 4 4 4 3 

e = affective flattening 
f = alogia 
g = avolution-apath)' 
h = anhedonia-asoclality 
i = attention 

Sum of 
Scor •• 

14 
9 

27 
24 
26 
10 
19 
23 
21 
29 
14 
18 
12 
16 
14 
17 

8 
29 
18 
19 

The severity of disease in the HD and PD patients was assessed (by Dr E.M. 

Allen) using a grading scale which varied between 1 and 5. The grades are shown 

in Thble (5.2). 
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Thble (5.2) The severity of symptoms in HD and PO patients. 

Number of Patient. 
Grade. 

HD Patient. PD Patient. 

1 2 1 

2 1 2 

3 0 1 

4 5 12 

5 3 0 

Grade 1 included those newly diagnosed HD and PO patients for whom the 

disease had not affected their ability to lead a normal life (eg. they could work 

etc.). Grade 5 included those patients who had severe HD or PO and were totally . 
dependent on others. The severity of the disease in patients classed as grades 2, 3 

and 4 fell between grades 1 and 5, ie. those classed as grade 2 needed some 

assistance to lead a normal life, those classed as grade j could not live a normal 

life but they were self caring, and those classed as grade 4 needed significant help. 

The names of the drugs for the patients who were on medication were noted (refer 

to Appendix (B». The normal control subjects did not have any disorder which 

might have affected their CNV responses. The hardware and software used to 

record the data are described in chapters 3 and 4 respectively. The data were 

recorded in a normal EEG recording room. In order to minimise voltage drift, 

d.c. silver-silver chloride electrodes (see Figure (5.1» were used for the 

recording of the CNV and EOG. The CNV was recorded from two sites using the 

linked earlobes as the reference. The CNV recording sites were the vertex 

(convexity of the scalp) and at a point on the midline approximately 30mm 

anterior to the vertex. Only the CNV data recorded from the vertex were analysed 

in this study. Four channels were allocated for the recording of BOO. The 
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Figure 5.1 

Chlorided 

silver 

D.C. silver·silver chloride electrode. 
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electrode-pairs used for the EOG recordings are shown in Thble (5.3). The 

positions of the EOG electrodes are shown in Figure (5.2). 

Thble (5.3) The symbols used for electro-oculogram electrodes. 

Channel Electro-oculogram Position of 
Number (EOG) Electrodes 

1 vertical left EOG El -E2 

2 vertical right EOG E3-E4 

3 horizontal left EOG ES-E6 

4 horizontal right EOG ES-E, 

The electrodes were attached to the subjects using adhesive tape (for the facial 

electrodes) or glue (for the scalp electrodes). Each electrode was filled (through a 

hole at the centre of its cup) with -Neptic- electrode gel using a syringe which had 

a blunted needle. Whilst filling the electrodes, the blunted needle of the syringe 

was also used to abrade the skin under the electrodes. This reduced the impedance 

between the electrode and the skin. The impedances between an arbitrary 

electrode and all other electrodes were measured. If any impedance was more 

than 5kO the skin under the offending electrode was further abraded. The device 

used to measure the impedance indicated the modulus of the complex impedance at 

13Hz. It was important to avoid using an impedance meter with a d.c. internal 

source as this would have caused a degradation of the electrode stability [Cooper 

etal., 1980]. 

The warning and imperative stimuli were a click and a 1kHz tone. On hearing the 

imperative stimulus, the subjects pressed a handheld push-button to terminate the 

tone. In order to familiarise the subjects with the experiment, 10 presentations 

(ie. 10 click and tone pairs) were made, initially with the subjects only listening. 
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Figure 5.2 The positions of EOG electodes. 
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Then the subjects participated in 15 practice trials. Following that 32 CNV trials 

were recorded per subject. 

The subjects' reaction times to the imperative stimulus were also measured. The 

sampling rate was 125Hz. The cut-off frequencies for the high-pass and low-pass 

fllters in the hardware were 0.0159Hz and 30Hz respectively. The duration of 

each CNV trial was 12 seconds, corresponding to a 1 second pre-waming­

stimulus section, a 1 second inter-stimulus interval and a 10 seconds post­

imperative-stimulus section. The recording of the pre-warning-stimulus section 

was necessary for the baseline correction of the CNV (this procedure is described 

in chapter 6). Coelho [1988] investigated the effect of inter-stimulus interval 

duration on HD patients' identification. He compared the analysis results obtained 

when durations of the inter-stimulus interval were 1 and 4 seconds and suggested 

that duration of the inter-stimulus interval should be 1 second. The 

post-imperative-stimulus section was used for baseline correction of the CNV 

(refer to chapter 6) and a feature obtained from it was used in the identification of 

patients (this is described in chapter 8). The long period selected for the post­

imperative-stimulus section ensured that the CNV had sufficient time to return to 

its baseline. The successive CNV trials were separated by a random interval 

which varied between lOOms and 4OOms. The instrumentation system 

automatically rejected any faulty trials (a CNV trial was considered faulty if the 

subjects did not respond correctly to the imperative stimulus). The CNV trials 

grossly contaminated by ocular artefact in the sections of interest were also 

rejected. The instrumentation system had eight channels. The last two channels 

were allocated for the recording of the electrocardiogram (ECG) and the 

psychogalvanic response (PGR). The ECG was recorded by placing two ECG 

electrodes on the wrists of the subjects. The PGR electrodes were placed on the 

palm and the back of the subjects' hands. 
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Chapter 6 Contingent Negative Variation Preprocessing Method 

For the CNV to be clinically useful, it has to be preprocessed. The CNV 

preprocessing method used was originally developed by Nichols [1982] and then it 

was enhanced by Coelho [1988]. The method consisted of the following steps: 

mean level removal, baseline correction, digital low-pass flltering and 

ocular artefact removal. A description of each step follows. 

6.1 Mean Level Removal 

A d.c. offset (or mean level) can usually be observed in the CNV. This offset is 

mainly extracerebral in nature (eg. the skin potential) [Cooper et al., 1980] but the 

various components in the instrumentation system also contribute to it. It was 

desirable to have a baseline reference of zero so that comparisons over time could 

be made. Jervis et ale [1989] reported that the removal of d.c. offset from the 

eNV improved the effectiveness of the OA removal routines. As each CNV trial 

had a flXed duration, the d.c. offset was removed using, 

1 N 

xkr • xk - - E Xi 
N 1-1 

•• .(6.1) 

where N is the number of samples per CNV trial, xt is the Jrb sample value and 

Xu is the}('h sample value with the mean removed. 

6.2 Baseline Correction 

A side effect of the mean level removal was to cause a positive shift in the 

baselines of the pre- and post-stimulus sections of the CNV. It was therefore 

necessary to restore the true baseline. The mean of the pre-warning-stimulus 

section (y II) was calculated using, 
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1 P1 

Y.1 • - 2: xi 
P1 i-1 

••• (6.2) 

where PI is the sample number corresponding to the instant of the warning 

stimulus (Sl) and Xi is the ilb sample value. Further-more, to allow for any small 

d.c. drift during the data acquisition, the mean signal level (y 11) was also 

calculated from a point one second after the imperative-stimulus (S2) to the end of 

the CNV trial. The value of y 11 was subtracted from the same section (ie. the 

section from which y 11 was calculated). Thus, 

1 N 
Y.2 • 2: Xi 

N-P2-D i-P2+D 
••• (6.3) 

where P2 is the sample number corresponding to the instant of S2, D is the delay 

after S2 which was set to 125 samples (this delay was necessary to avoid the 

auditory evoked potential due to S2) and N is the number of samples per CNV 

trial. The section between PI and P2+D was corrected by subtracting Yiai' which 

was the appropriate fraction of the difference between Y.1 and Yll' therefore, 

P2+D-P1 
(k-Pl) + Y.l Pl $ k $ P2+D ••• (6.4) 

where k is the sample number. 

6.3 Digital Low-pass Filtering 

Digital low-pass flltering was necessary to filter out the unwanted high frequency 

components in the BEG. A finite impulse response (FIR) low-pass ftlter based on 

the design program of Rabiner and Gold [1977] was used for this purpose. FIR 

ftlters (unlike the infinite impulse response ftlters) do not distort the signals. The 

cut-off frequency of the digital low-pass filter used in the patients' identification 
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method as described in chapter 7 was 30Hz (fllter length =21). This cut-off 

frequency had to be reduced to 7.SHz (fllter length =29) for use in the patients' 

identification methods described in chapters 8 and 9. The frequency response of 

the digital low-pass fllter (cut-off frequency=7.SHz) is shown in Figure (6.1). 

The reasons for selecting these cut-off frequencies were related to the particular 

methods of analysing the CNV and therefore they are discussed in the relevant 

chapters (ie. chapters 7 and 8) .. 

6.4 Ocular Artefact Removal 

The eye has a positive cornea and a negative retina. This produces an electrical 

dipole. Whenever this electric field is changed due to the eye movement, eye 

rotation or blink, a change of potential develops around the eye. "Ibis potential is 

known as the electro-oculogram (BOG). The EOG spreads across the scalp to 

contaminate the EEG. The term OA is a collective reference given to a number 

eye-related potentials observed in the contaminated BEG. As the magnitude of the 

OA can be several hundred microvolts (compared to the magnitude of the eNV 

which is in the order of few microvolts), they are the main physiological sources 

of CNV contamination. 

There are several methods of OA removal [Jervis et al., 1988]. Jervis et ale [198S] 

showed that a method known as proportional BOG subtraction was the most 

suitable technique and therefore it was selected. This method of OA removal was 

based on the assumptions that the measured EOGs had negligible cross-correlation 

with the true BEG and the OA was a linear combination of the selected BOGs. 

The formula used for removing OA removal was, 

1 ::;; i ::;; N ... (6.S) 
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where EEGc' EEGm, HL(i), HR(i) and VR(i) are the ilb sample values of the 

corrected EEG, measured EEG, horizontal left BOG, horizontal right EOG and 

vertical right EOG respectively. N is the number of samples per CNV trial and 

9
1 
••• 9 4 are the transmission coefficients. This formula allowed for the effects of 

the vertical and horizontal eye movements and is the model recommended by 

Jervis et al. [1989]. The values of 9 1 ••• 9 4 were calculated off-line by a 

correlation technique described by Quilter et al. [1977]. 

6.5 Description of the Preprocessed Plots 

Figures (6.2)-(6.5) show the vertical left, vertical right, horizontal left and 

horizontal right BOGs. The OA potentials can be seen in the EOG plots in the 

time period between t=7 to t= 11 seconds. A single CNV trial prior to the 

preprocessing is shown in Figure (6.6). The OA potentials have contaminated the 

CNV (this is visible in the time period between t=7 to t= 11 seconds). The effect 

of OA contamination has been greatly reduced in the CNV trial following the 

preprocessing (Figure (6.7». 
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Chapter 7 Identification of Schizophrenic, PD and lID Patients by Frequency 

Analysis and Discriminant Analysis of the CNV 

In order to investigate the composition of evoked potentials, Nichols [1982] and 

Jervis et al. [1983] applied a series of statistical tests to the harmonic frequency 

components of the auditory evoked potentials and the CNV responses of a number 

of normal subjects and Huntington's disease (HD) patients. Jervis et al. [1984] 

envisaged that it might be possible to distinguish between HD patients and 

normal subjects using the techniques generated. They applied the four statistical 

tests to the first six CNV harmonic frequency components of eight HD patients, 

six normal subjects and three -at-risk- (AR) of HD patients. The statistical tests 

were: 

• Nearest and furthest mean amplitude test, 

• Pre- and post-stimulus mean amplitude difference test, 

• Rayleigh test of circular variance, 

• Modified Rayleigh test of circular variance. 

The above four statistical tests are described in section 7.1.1. Jervis et ale [1984] 

used the variables obtained from the application of the four tests to the flI'st six 

CNV harmonic frequency components in a logical flow chart. Using this flow 

chart they identified the majority of HD patients from normal subjects and 

suggested that one of the AR of HD patients would develop HD. Some of the 

problems associated with the use of flow chart for this purpose were as follows: 

i) It was not possible to differentiate between the HD patients and normal subjects 

whenever the application of the statistical tests to the CNV harmonic frequency 

components did not give any statistically significant result. This was the case for 

two of the HD patients. 
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ii) As the flow chart was designed by considering the CNV data from a limited 

number of individuals, a review of its structure was necessary following the 

inclusion of data from other HD patients and normal sUbjects. 

In an attempt to overcome the problems associated with the use of the flow chart, 

Coelho (1988) selected a set of harmonic frequency components by considering 

the averaged CNV energy spectrum plots of eight HD patients and six normal 

subjects (the CNV responses of these individuals were previously recorded by 

Nichols). He then applied the four statistical tests (referred to earlier) to the CNV 

harmonic frequency components and used the resulting variables in a stepwise 

discriminant analysis (SOA) program. The SOA program identified one variable 

among those variables as being most discriminatory. Coelho used this variable in a 

discriminant analysis (DA) program. Although he was able to identify the HD 

patients, his results had to be treated with caution as the DA program was 

calibrated and then tested on the data from the same individuals. For the 

assessment of the effectiveness of the method it is necessary to calibrate and test 

the OA program on the CNV responses from a different set of individuals 

[Grimsley, 1989). 

In this study the method developed by Coelho (1988) was applied to a larger 

number of HO patients and normal subjects and it was extended to differentiate 

between: 

- Parkinson's disease (PD) patients and normal subjects. 

- Schizophrenic patients and normal subjects. 

- HD patients and PO patients. 

- HD patients and schizophrenic patients. 

- PD patients and schizophrenic patients. 
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To evaluate the effectiveness of the method, a leave-one-out procedure was used. 

This ensured the CNV responses from individuals included during the DA 

program calibration phase were excluded in the test phase. 

A description of the procedure used to identify the patients follows. 

7.1 Generation of Variables 

32 CNV trials recorded from each individual were preprocessed as described in 

chapter 6. Two segments from each preprocessed CNV trial were analysed. The 

segments were: 

i) A 512ms segment prior to the imperative-stimulus (post-stimulus segment). This 

segment contains the CNV components which share features with the readiness 

potential and its nature is related to the dynamics of the motor response 

[Rohrbaugh, et al., 1976]. 

ii) A 512ms segment prior to the warning-stimulus (pre-stimulus segment). The 
( 

comparison of this segment with the post-stimulus segment allowed detection of 

possible amplitude and phase changes in the harmonic frequency components of 

the CNV in the patients and normal subjects. These changes develop as a result of 

the onset of the warning- and imperative-stimuli. 

Each selected segment contained 64 sample values. The next step was to transform 

the data segments into the frequency domain using the discrete Fourier transform 

(oFO. But prior to this operation, the segments were windowed and then 

augmented with zeros. The windowing was necessary in order to reduce the 

spectral leakage. Spectral leakage develops because the energy in the original 

spectral components leaks to the other frequency components after truncation in 
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the time domain [Stark and Thteur, 1979]. This can distort the frequency spectrum 

by introducing spurious peaks and cancelling out the true peaks. Coelho [1988] 

after investigating the performance of several windows on simulated data and the 

CNV responses suggested the use of the Kaiser-Bessel window. The trade-off 

between the side-lobes level and main-lobe width of a spectrum after it is 

subjected to the Kaiser-Bessel window is determined by a parameter, a [Harris, 

1978]. Coelho [1988] found that when a=0.75 it produced an acceptable 

compromise. Therefore the two segments were subjected to the Kaiser-Bessel 

window, using a=0.75. Following the OFT, any signal components which occur 

at a frequency between two adjacent harmonic frequency components will have its 

energy shared and thus distort the amplitude of the adjacent harmonic components. 

To reduce this effect the OFT harmonic separation was reduced by using 

augmenting zeros before the transformation. After the zero augmentation, each 

segment contained 64 CNV sample values and 960 zeros. The number of data 

points for the OFT had to conform to 2D, where n is an integer. In this case n was 

equal to 10, providing 1024 points. 

The four statistical tests were applied to the first 96 harmonic frequency 

components of the two frequency spectra (ie. the spectra of the pre- and post­

stimulus segments) • The first 96 harmonic frequency components represented the 

frequency range 0 to 11.72Hz·(ie. 961 (1024/64) x 11 (64 x 0.(08) = 1l.72Hz). 

Jervis et al. [1989] by Fourier analysis of the simulated CNV showed that most of 

the CNV energy was concentrated below 1 Hz and its energy spectral density fell 

to -6OdB at about 5Hz. Therefore the first 96 frequency harmonics were sufficient 

for this analysis. 

7.1.1 Description of the Statistical Tests Applied to the CNV Harmonic 

Frequency Components 

As mentioned in section 7.1 four statistical tests were applied to the selected CNV 
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harmonic frequency components. A description of these tests follows. 

7.1.2 Nearest and Furthest Mean Amplitude Test 

This test was designed for analysing the variation of amplitude with phase angle in 

the post-stimulus spectrum. As 32 eNV trials were recorded per subject, this 

produced 32 post-stimulus spectra. For each post-stimulus spectrum the magnitude 

(length) of the nib selected frequency harmonic was obtained. The mean length of 

that half of the vectors whose angles were within the smallest arc was calculated. 

This was repeated for the remaining vectors. A one-tailed t-test was then 

performed to determine whether the former mean was greater than the latter. The 

resulting value of the t-test was used as a variable. The above procedure was 

repeated for the remaining selected harmonic frequency components. 

7.1.3 Pre- and Post-Stimulus Mean Amplitude Difl'enmce Test 

The differences between corresponding pre- and post-stimulus phasor lengths for 

the nib selected harmonic frequency component of each of the 32 trials were 

calculated. The mean of the differences was computed. Using a two-tailed t-test, 

this mean was tested to determine whether it was significantly different from zero. 

The value of the resulting t-test was used as a variable. This procedure was 

repeated for the remaining selected harmonic frequency components. 

7.1.41be Raylei&h Test or Circular Variance 

This test was applied to the phase angles in the 32 post-stimulus spectra for each 

selected eNV harmonic frequency component to determine whether the phase 

angles (el ••• e N) were distributed in a non-uniform manner. The circular variance, 

So is given by [Mardia, 1972], 

••• (7.1) 

153 



R - (C2 + S2)1t ••• (7.2) 

1 N 

C -- E Coes1 ••• (7.3) 
N 1-1 

1 N 

S - - E SinSi ••• (7.4) 
N 1-1 

If the phase angles 9 1 =92 ••• =9N=9 then C = Cos9 and S = SinS. This gives, 

and S - 0 o 

••• (7.5) 

••• (7.6) 

This corresponds to the case where all the phase angles have the same value. 

Alternatively, when the phase angles are distributed uniformly over the range 0 to 

2 ... then the values ofR and So become, 

R - 0 

S - 1 o 

The value of So was used as a variable. 

7.1.S1be Modified Rayleigh Test of Circular Variance 

••• (7.7) 

••• (7.8) 

The modified Rayleigh test of circular variance encompassed both the amplitudes 

and the phase angles in the post-stimulus spectrum. For each selected harmonic 

frequency component, 32 vectors (one for each CNV trial) were obtained. The 

vectors were ranked in ascending order of magnitudes. Then the test was carried 

out using, 
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2 2 Is 
N N 
2: R1CO.e 2: R1S1ne1 

1-1 1-1 
U - 1 - + ••• (7.9) 

0 
N N 
2: R1 2: R1 

1-1 1-1 

where R. is the rank of the ilb phasor. U is closely related to the statistic R· 
I 0 

proposed by Moore [1980]. The value of Ua was used as a variable. 

7.2 Variable Reduction Procedure 

The application of the four statistical tests to the first 96 harmonic frequency 

components resulted in 384 variables (ie. 96 harmonics x 4 tests -= 384 variables). 

In order to identify the most discriminatory variables a series of tests were carried 

out using the Statistical Analysis Systems (SAS) [1982 and 1985] packages. A 

brief description of the tests follows. 

7.2.1 Normal Distribution Test 

A test for the statistical distribution of the variables was necessary as the 

succeeding procedures required the variables to have normal or approximately 

normal distributions. 

This test was carried out using the SAS procedure, Univariate. It computed a test 

statistic for the null hypothesis that the variables were from the normal 

distribution. It calculated the Shapiro-Wilk statistic, W [Shapiro and Wilk, 1965] 

and provided a probability value indicating whether the hypothesis should be 

accepted or rejected (the significance level was S ~). The Univariate procedure 

also plotted the variables together with a curve indicating where normally 
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distributed data would fall. The variables found not to be normally distributed were 

excluded from further analysis. 

7.2.2 T-test 

This was a two-tailed t-test for testing the hypothesis that the means of the 

variables from the two groups (ie. patients from a category against their normal 

control subjects or against the patients from another category) were equal. It 

computed the t-statistic based on the assumption that the variances from the two 

groups were equal. It also calculated an approximate t based on the assumption 

that the variances were unequal. For each test the degrees of freedom and 

probability level were computed. Satterthwaite's approximation (Satterthwaite, 

1946] was used to determine the approximate t. A folded (F) statistic (Steel and 

Torrie, 1980] was computed to test for equality of the two variances. The 

significance levels for the t-test and F-statistic test were 10% and 5 % respectively. 

7.2.3 Stepwise D~rim.inaDt Analysis 

The variables selected from the previous steps were used in the SAS stepwise 

discriminant analysis program, Stepdisc. This program selected a subset of the 

variables in order to form a good discrimination model using stepwise selection. 

The variables selected by this program are shown in Tclble (7.1). 
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Thble (7.1) The variables used to identify subjects. 

H T represents test y applied to harmonic x, where 
T; ~ nearest and furthest mean amplitude test, 
!2 = pre- and post-stimulus mean amplitude difference test, 
T. = Rayleigh test of circular variance and T! = modified Rayleigh test of circular variance. 

cat.gori •• Di.criminatory Variabl •• 

Huntington'. di ••••• HI4TJ , H26T2, B7lTl 
patient. v •• normal 
control .ubject. 

schizophrenic 
patients vs. normal 

BJTJ , BSTJ' BsaTI' H72T4 

control subject. HaSTJ , HaaTl 

Parkinson'. diseas. H6TI , HlaTJ , H26TI , HJ7T4 
patient. v •• norm.l 
control subject. B63T3, HS6T1, B91T4 

Huntington'. di •• a •• 
patient. v •• 

H24T2 , H2aT2 , H67Tl , H72TI 

schizophrenics H76Tl 

Huntington's dis.a •• 
vs. P.rkinson'. 

H20T2 , HJaTI , Ha3Tl , H93T2 

disease pati.nts 

schizophr.nics Hl3T2 , B26T2, BlaTI , B72Tl 
v •• J».rkinson'. 
dis.as. pati.nts 

7.3 Discriminant Analysis 

The classification of the individuals was carried out using discriminant analysis 

(DA). DA is a technique for classifying individuals into mutually exclusive and 

exhaustive groups on the basis of a set of independent variables. Only the case 

involving the identification of one group from another group was considered. In 

the linear DA method, the discriminant score for each individual is obtained using, 

, 
Y • b I ••• (7.10) 
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where Y is a lxn vector of discriminant scores, b' is a lxp vector of discriminant 

weights (note the symbol • indicates transpose), and X is a pxn matrix containing 

the values for each of the n individuals of the p independent variables. To assign 

the individuals, the discriminant weight vector needs to be computed. It has been 

shown [Morrison, 1976], 

••• (7.11) 

where! 1 and 12 are the mean vectors obtained from the data matrices, and S-l is 

the inverse of the pooled sample variance-covariance matrix and is obtained using 

[Morrison, 1976], 

1 • • 
8 • (- 1-1 + - 2-2' 

n1 + n2 - 2 
••• (7.12) 

The number of individuals in each group is represented by n. and ~. Xl is the 

(pxn.) mean corrected data matrix taken from group 1 and ~ is the (px~) mean 

corrected matrix taken from group 2. 

A formula for assigning the individuals to one of the two groups based on the 

above information is [Morrison, 1976], 

••• (7.13) 

The individuals are assigned to group 1 if W is greater than 0 otherwise to group 

2. The DA program provided by SAS, Discrim, gave the probabilities which 

indicated to which group an individual belonged. 

Initially the patients from each category (schizophrenia, PD and HD) were age and 
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sex matched with their normal control subjects and their eNV variables were 

processed by the DA program. Then the patients with HD were age and sex 

matched (as closely as it was possible) with schizophrenic patients and their 

variables were processed by the DA program. This was repeated for HD and PD 

patients, and PD and schizophrenic patients. Th make best use of the recorded 

data, a leave-one-out approach was followed. In this method the variables of n-l 

individuals (n is the number of individuals in a patient category and their normal 

control subjects or the patients from another category) were used in the DA 

program. The DA program used this data to setup a classification rule (ie. the 

calibration phase). Then the resulting information together with the variables from 

the individual not included in the calibration phase were used by the DA program. 

This generated a probability value which indicated to which group the individual 

belonged. This was repeated n times (for example, for the 20 schizophrenic 

patients and their 20 normal control subjects, this procedure was repeated 40 

times). 

7.4 Results and Discussion 

Thbles (7.2a) to (7.2f) show the probabilities obtained following the application of 

the DA program. 
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Thble (7.2a) Schizophrenic patient versus normal control subjects. peS) 
and P(N) represent the probabilities that an individual is schizophrenic 
or normal respectively. 

Schizophrenic Patient. Normal Control Subject 

Subject peS) peN) Subject peS) peN) 
Number Number 

1 1.0000 0.0000 21 0.0000 1.0000 
2 0.5753 0.4247 22 0.0477 0.9523 
3 0.9998 0.0002 23 0.0011 0.9989 
4 1.0000 0.0000 24 0.0000 1.0000 
S 0.9366 0.0634 2S 0.0184 0.9816 
6 0.9948 0.0052 26 0.0001 0.9999 
7 0.9016 0.0984 27 0.0049 0.9951 
8 1.0000 0.0000 28 0.2197 0.7803 
9 0.8269 0.1731 29 0.0000 1.0000 

10 1.0000 0.0000 30 0.0002 0.9998 
11 0.9968 0.0032 31 0.0047 0.9953 
12 1.0000 0.0000 32 0.0164 0.9836 
13 0.9999 0.0001 33 0.0010 0.9990 
14 0.9952 0.0048 34 0.0000 1.0000 
15 1.0000 0.0000 35 0.0001 0.9999 
16 0.9883 0.0117 36 0.0051 0.9949 
17 0.4600 0.5400 37 0.0000 1.0000 
18 1.0000 0.0000 38 0.0003 0.9997 
19 0.8960 0.1040 39 0.0436 0.9564 
20 0.9993 0.0007 40 0.1739 0.8261 
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Thble (7.2b) Parkinson's disease patients versus normal control subjects. 
PcP) and P(N) represent the probabilities that an individual has PD or is 
normal respectively. 

Parkin.on'. Di.ea •• Hormal Control 
Patient. Subject 

Subject P(P) P(H) Subj.ct P(P) P(N) 
Humber Humber 

1 0.6857 0.3143 17 0.0083 0.9917 
2 0.9975 0.0025 18 0.0000 1.0000 
3 1.0000 0.0000 19 0.3193 0.6807 
4 0.8060 0.1940 20 0.0008 0.9992 
5 0.9990 0.0010 21 0.0837 0.9163 
6 0.9401 0.0599 22 0.0005 0.9995 
7 0.8316 0.1684 23 0.0001 0.9999 
8 0.8445 0.1555 24 0.8776 0.1224 
9 0.9982 0.0018 25 0.0004 0.9996 

10 0.1969 0.8031 26 0.0049 0.9951 
11 0.9995 0.0005 27 0.0001 0.9999 
12 0.9995 0.0005 28 0.0000 1.0000 
13 0.9996 0.0004 29 0.0037 0.9963 
14 0.9905 0.0095 30 0.0003 0.9997 
15 1.0000 0.0000 31 0.0024 0.9976 
16 1.0000 0.0000 32 1.0000 0.0000 

Thble (7.2c) Huntington's disease patients versus normal control 
subjects. P(H) and P(N) represent the probabilities that an individual 
has HD or is normal respectively. 

Huntington'. Di.ea •• Hormal Control 
Pati.nt. Subj.ct. 

Subj.ct P(H) P(N) Subject P(H) P(N) 
Number Humber 

1 0.8493 0.1507 12 0.0002 0.9998 
2 1.0000 0.0000 13 0.0005 0.9995 
3 0.9963 0.0037 14 0.0000 1.0000 
4 1.0000 0.0000 15 0.0000 1.0000 
5 1.0000 0.0000 16 0.0000 1.0000 
6 0.9998 0.0002 17 0.0000 1.0000 
7 0.9998 0.0002 18 0.4313 0.5687 
8 0.9971 0.0029 19 0.0030 0.9970 
9 0.9507 0.0493 20 0.0000 1.0000 

10 1.0000 0.0000 21 0.0001 0.9999 
11 0.9999 0.0001 22 0.0231 0.9769 
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Thble (7.2d) Huntington's disease patients versus schizophrenic 
subjects. P(H) and P(S) represent the probabilities that an individual 
has HD or is schizophrenic respectively. 

Huntington'. Di •• a •• Schizophrenic Patient. 
Patient. 

Subject P(H) peS) Subject P(H) peS) 
Number Number 

1 0.9999 0.0001 12 0.0000 1.0000 
2 0.9742 0.0258 13 0.0000 1.0000 
3 1.0000 0.0000 14 0.0000 1.0000 
4 1.0000 0.0000 15 0.0001 0.9999 
5 1.0000 0.0000 16 0.0001 0.9999 
6 1.0000 0.0000 17 1.0000 0.0000 
7 1.0000 0.0000 18 0.0000 1.0000 
8 1.0000 0.0000 19 0.4477 0.5523 
9 1.0000 0.0000 20 0.0000 1.0000 

10 1.0000 0.0000 21 0.0000 1.0000 
11 1.0000 0.0000 22 0.0000 1.0000 

Thble (7.2e) Schizophrenic patients versus Parkinson's disease 
patients. P(S) and P(P) represent the probabilities that 
an individual is schizophrenic or has PD. 

Schizophrenic Parkin.on'. Di.ea.e 
Patient. Patient. 

Subject peS) PCP) Subject peS) PCP) 
Number Number 

1 0.9993 0.0007 17 0.0153 0.9847 
2 1.0000 0.0000 18 0.0010 0.9990 
3 0.9812 0.0188 19 . 0.0197 0.9803 
4 0.9999 0.0001 20 0.9940 0.0060 
5 0.3456 0.6544 21 0.0275 0.9725 
6 0.9824 0.0176 22 0.0009 0.9991 
7 0.9987 0.0013 23 0.0000 1.0000 
8 0.9365 0.0635 24 0.0379 0.9621 
9 0.9998 0.0002 25 0.0175 0.9825 

10 0.8068 0.1932 26 0.0409 0.9591 
11 0.9993 0.0007 27 0.0003 0.9997 
12 0.9999 0.0001 28 0.0000 1.0000 
13 0.2775 0.7225 29 0.0000 1.0000 
14 0.3056 0.6944 30 0.0000 1.0000 
15 0.9973 0.0027 31 0.0079 0.9921 
16 0.9995 0.0005 32 0.1398 0.8602 
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Thble (7.2f) Huntington's disease patients versus Parkinson's disease 
patients. P(H) and P(P) represent the probabilities that an individual 
has HD or PD. 

Huntington'. Di ••••• P.rkin.on'. Di ••••• 
Patient. P.ti.nt. 

Subject P(H) P(P) Subj.ct P(H) P(P) 
Number Number 

1 0.9999 0.0001 12 0.7003 0.2997 
2 0.9834 0.0166 13 0.0001 0.9999 
3 0.9993 0.0007 14 0.0005 0.9995 
4 1.0000 0.0000 15 0.0000 1.0000 
5 0.9999 0.0001 16 0.9642 0.0358 
6 0.9981 0.0019 17 0.0003 0.9997 
7 0.2019 0.7981 18 0.0000 1.0000 
8 0.9997 0.0003 19 0.0201 0.9799 
9 0.8555 0.1445 20 0.0001 0.9999 

10 1.0000 0.0000 21 0.0000 1.0000 
11 0.9995 0.0005 22 0.0000 1.0000 

As in each analysis the number of individuals in the two groups were equal, ie. 

n
l 
=n

2
, a probability threshold value of O.S was used. Therefore if the probability 

was less than O.S, the individual belonged to one group, otherwise the individual 

belonged to the other group. In Thble (7.2a) the probabilities of schizophrenic 

patients versus normal subjects are shown. As can be observed all normal subjects 

were identified correctly. One schizophrenic patient (subject number 17) was 

misclassified as normal. '!able (7.2b) indicates the probabilities for the PO 

patients versus normal subjects. A PO patient (subject number 10) and two 

normal subjects (subject numbers 24 and 32) were classified into the wrong group. 

'!able (7.2c) shows the probabilities for the HD patients versus normal subjects. 

Every one in these categories was classified correctly. The probabilities of the 

HO patients versus schizophrenic patients are shown in Thble (7.2d). Every HO 

patient was placed in the correct group but a schizophrenic patient (subject number 

17) was misclassified. 'Thble (7.2e) indicates the probabilities for schizophrenic 

patients versus PO patients. Three schizophrenic patients (subject numbers S, 13, 

and 14) were misclassified. One of the PO (subject number 20) patients was also 
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placed in a wrong category. Thble (7.2f) shows the probabilities for the HD 

patients versus PD patients. An HD patient (subject number 7) and two PD 

patients (subject numbers 12 and 16) were misclassified. 

The overall performance of the method in differentiating between the patients and 

normal subjects, and between the patients of different categories is included in 

Thbles (7.3a) to (7.3f). 

Thble (7.3a) The subjects' details and overall differentiation 
success rate for Huntington's disease versus normal 
control subjects. 

Subject.' Categorie. 
Parameter. 

Huntington'. Control 
Di.ea.e Subject. 

number total 11 (6 male) 11 (6 male) 
of 
.ubject. on drug 5 0 

mean 53.73 50.09 

age STD 10.97 10.53 

range 39 to 77 40 to 73 

differentiation 
.ucce.. rate in 100' 10o, 
the te.t domain 
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Thble (7.3b) The subjects' details and overall differentiation 
success rate for schizophrenic patients versus normal control 
subjects. 

Subj.ct.' C.t.gori •• 
Paramet.r. 

Schizophr.nic Control 
P.ti.nt. Subj.ct. 

nwnber tot.l 20 (15 mal.) 20 (15 mal.) 
of 
.ubj.ct. on drug 18 0 

mean 33.60 39.50 

age STD 12.22 13.66 

rang. 20 to 68 22 to 75 

differenti.tion 
.ucce.. r.t. in 95.0' 100' 
the teat domain 

Thble (7.3c) The subjects' details and overall differentiation 
success rate for Parkinson's disease patients versus normal 
control subjects. 

Subj.ct.' C.t.gori •• 
Paramet.r. 

P.rkin.on'. Control 
r Di ••••• Subj.ct. 

nwnber tot.l 16 (10 mal.) 16 (10 mal.) 
of 
.ubject. on drug 12 0 

me.n 63.63 50.81 

age STD 9.68 11.16 

rang. 42 to 80 35 to 75 

dif f.r.ntiat ion 
.ucc... rat. in 93.8\ 87.5\ 
the t •• t dom.in 
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'Dible (7.3d) The subjects' details and overall differentiation 
success rate for Huntington's disease patients versus 
schizophrenic patients. 

Subj.ct.' C.t.gori •• 
P.ramet.r. 

Huntington'. Schizophrenic 
Di ••••• P.ti.nt. 

number tot.l 11 (6 mal.) 11(7 m.l.) 
of 
subjects on druq 5 9 

me.n 53.73 40.64 

age STD 10.93 12.34 

rang. 39 to 77 27 to 68 

differenti.tion 
.ucc... rate in 100' 90.91\ 
the t •• t domain 

'!able (7.3e) The subjects' details and overall differentiation 
success rate for Huntington's disease patients versus Parkinson's 
disease patients. 

Subj.ct.' C.t.gori •• 
Parameter. 

Huntington'. P.rkin.on'. 
Di ••••• Dis •••• 

number total 11 (6 mal.) 11 (6 mal.) 
ot 
.ubject. on druq 5 9 

mean 53.73 60.91 

aqe STD 10.97 10.52 

rang. 39 to 77 42 to 80 

diff.rentiation 
succ... rat. in 90.91\ 81.82' 
the te.t domain 
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Thble (7.3f) The subjects' details and overall differentiation 
success rate for schizophrenic patients versus Parkinson's 
disease patients. 

Subject.' Categories 
Parameter. 

Schizophrenic Parkin.on'. 
Patient. Di •• a •• 

number total 16 (12 male) 16 (10 male) 
of 
.ubject. on drug 14 12 

mean 36.63\ 63.63\ 

age STD 11.83 9.68 

range 25 to 68 42 to 80 

differentiation 
.ucce.. rate in 81.25\ 93.75\ 
the teet domain 

The overall success rates were not always 100%. This could be because the CNV 

responses in some of the patients were not significantly different from the CNV 

responses in the normal subjects. When differentiating between the individuals 

from a patient category from another patient category (ie. HO patients versus PO 

patients, HO patients versus schizophrenic patients, and PO patients versus 

schizophrenic patients), it was not possible to age and sex match the individuals 

closely (this was mainly because the general ages of onset of the above disorders 

are different). This may have reduced success rates in differentiating between 

patient groups. 

7.5 Conclusion 

The results obtained in this chapter indicate that CNV frequency analysis and 

discriminant analysis provide an effective method for differentiating between HO, 

PO and schizophrenic patients and normal SUbjects. 
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Chapter 8 Identification or Schizophrenic, Parklmon's Disease and 

Huntington's Disease Patients by Usln& the CNV Time Domain Features in 

Neural Networks 

The brain contains a large number of information processing elements, called 

neurons. Neural networks (artificial neural networks) are computer models that 

simulate the functioning of the brain in a very simplified manner. Neural networks 

are capable of generalisation and, because of their highly parallel structure, they 

can offer real-time solutions to complex optimisation problems. Furthermore, the 

application of neural networks requires less restrictive assumptions about the 

statistical nature of the data (ie. the distribution of discriminatory variables) and 

they have been effective in cases involving noisy signals. 

It was decided to use neural networks because it was considered that they might 

provide a less complex method (compared to the method described in chapter 7) of 

identifying the patients. Neural networks use either supervised or unsupervised 

learning algorithms. In this stu~y neural networks with supervised learning 

algorithms (ie. multilayer perceptron networks) were used and therefore the 

discussion provided in this chapter relates to the supervised learning neural 

networks. Supervised learning neural networks operate in two modes. In the 

wlearningW (or wtrainingW) mode several input patterns and their corresponding 

output values are compared with the desired output values and the neural network 

parameters are adapted to cause the actual outputs to approximate the desired 

outputs. In the wtestW (or wuseW
) mode the neural network is used to classify 

patterns where their classes are not known (ie. the test patterns). The test patterns 

must belong to the classes included during the training phase. 

Neural networks have been widely used for pattern recognition, for example, 

Gorman and Sejnowski [1988] successfully used neural networks to classify 

sonar return signals from two undersea targets. 
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There is a rising interest in the use of neural networks in the medical field 

[McDonald and McDonald, 1991]. Bounds and Uoyd [1988] used neural 

networks to analyse data concerned with four classes of back pain. Neural 

networks were trained on 2S examples from each class of pain. The overall 

performance of the neural networks on the test pattern example set, which 

contained a similar number of examples as the training set, was 80%. Schizas et 

al. [1989) used neural networks for classification of electromyograpbic signals. 

They selected the amplitude, area, average power and duration of the signals as 

the features. The neural network success rate in correctly classifying the test 

patterns was about 60%. They suggested an improVed method of selecting the 

features could increase the success rate. An attempt was made to identify high risk 

cardiac cases from wno-riskw cases by Hart and Wyatt [1989]. They could not 

accurately differentiate the test cases. The complexity of the problem and lack of 

sufficient examples from the different cases were believed to have contributed to 

the low success rate [Hart, 1990]. Yoon et at. [1989] used a 3-layer neural 

network to aid the differentiation of 10 skin diseases. They represented the 

symptoms related to each skin disease by 18 variables and achieved an overall 

success rate of 70% in the test mode. Several attempts have been made to classify 

EEG patterns using neural networks [Choi et at., 1991) [Jarratt, 1991]. These 

results, seem to be promising. 

In this chapter a brief account of neural network theory is provided, a time domain 

feature extraction method suitable for the eNV is described and the results on 

patient identification obtained following the processing of the eNV waveforms of 

schizophrenic, Parkinson's disease and Huntington's disease patients and their 

normal control subjects by neural networks are discussed. 
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8.1 Theoretical Analysis or Neural Networks 

Figure (8.1) shows a node (neuron, or unit) used as a building block for a neural 

network. The input vector x brings the information from external sources. The 

amount of influence the inputs exert on a node is controlled by the weight vector 

w. The values of the inputs and their corresponding weights are combined using a 

combining function. A commonly used combining function is the weighted sum 

of the inputs. The procedure for this function is to multiply every input with its 

associated weight and then sum the results. The transfer function (or threshold 

function) interprets the combining function output. A traditionally used transfer 

function is the sigmoid function shown in Figure (8.2). The sigmoid function is 

defined as, 

1 
lex) - -------- ••• (8.1) 

9. is known as the bias or the threshold value and its effect is to shift the transfer 
J 

function to the left or right along the horizontal axis. The value of the constant 9 . o 

determines the slope of the sigmoid as shown in Figure (8.2). 

A single node on its own has little processing power. The capabilities of neural 

networks lie in several nodes being intercoMected to form structures such as the 

one shown in Figure (8.3). The neural network shown in Figure (8.3) has an 

input layer, an output layer and a layer not COMected directly to the input or the 

output, and so-called the -hidden layer-. The input layer distributes the input data 

to the hidden layer. The hidden layer (there may be more than one hidden layer) 

and the output layer are responsible for processing the data and presenting the 

results to the output. 
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Figure 8.1 A node in a neural network. 
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Figure 8.2 A sigmoid transfer function. 

114 



OUTPUT 

k OUTPUT LAYER 

j HIDDEN LAYER 

w(ji) 

INPUT LAYER 

INPUT 

Figure 8.3 A multilayer neural network. 
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If o. is the output of a node in the layer i then the input to a node in the layer j, • 
(in.) is, 

J 

•• .(8.2) 

where wji is the weight associated with the connection from a node in the layer i to 

a node in the layer j. The output of a node in the layer j, (0) is a function of the 

node's input. Using a sigmoid as the transfer function, 

••• (8.3) 

1 
ie. • •• (8.4) 

The input to a node in the layer k, (in.) is, 

ink • J: WkjOj ••• (8.5) 

and its output (0.), using a sigmoid transfer function is, 

ok • f(ink ) ••• (8.6) 

1 
ie. Ok • --------- • •• (8.7) 

1 + exp(-(ink+8k )/8o ) 

If a node in the output layer, for a pattern p, has an output Opt' and its desired 

output is tpk' then the sum of the squared errors (error function) will be, 

1 
I 

I • -- J: (t k - ° k) p 2 k P P 
••• (8.8) 

The factor th simplifies the mathematics during the succeeding stages of the 

analysis. 
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The weights and biases need to be adjusted in order to reduce the error function 

E . A widely used method of -learning- the weights and the biases is the 
p 

generalised delta rule sometimes referred to as the backpropagation rule 

[Rumelhart et al., 1986]. Initially the weights and biases are set to small random 

numbers. This is necessary for correct operation of the backpropagation rule 

[Rumelhart et al., 1986]. Then the weights and biases are adjusted so that the 

error E, is reduced as rapidly as possible. As a detailed analysis of the 

backpropagation rule can be found in several publications such as Rumelhart et al. 

[1987], Beale and Jackson [1990] and Aleksander and Morton [1990], derivation 

of the backpropagation rule is not given. 

Using the backpropagation rule, the change in the weights in the (n+1)1h step for 

the connections in the output layer is given by, 

... (8.9) 

where B is the learning rate. A large B produces a rapid learning but can also 

result in oscillation. ~Pt is, 

••• (8.10) 

The proportionality constant, a is called the momentum. The value of Apw~(n) is 

initially zero. 

The change in the weights in the (n+ 1)1h step for the connections in the hidden 

layer is given by, 

••• (8.11) 
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where ••. (S.12) 

Initially the value of a A w .. (n) is equal to zero. The bias values are treated as 
P JI 

incoming weights from a unit whose output is always 1 and they are adjusted in 

the same manner as the weight values. 

1b summarise, neural network learning phase involves: 

i) Setting all the weight and bias values to small random numbers. 

ii) Reading in a training pattern and its associated desired value. 

iii) Calculating the outputs of the nodes in the hidden and the output layers using 

(S.4) and (S.7). 

iv) Adjusting the weight and bias values using (8.9) and (S.l1). 

v) Repeating the process (ii) to (iv) for the remaining patterns in the training file. 

The learning process is repeated until the neural network is capable of accurately 

identifying the test patterns (ie. until it has generalised). 

8.2 Time Domain Feature Extraction Method Applied to the CNV 

In chapter 7, a method of feature extraction based on data transformation into the 

frequency domain was described. In order to reduce the complexity of the analysis 

and to reduce the processing time, it was decided to investigate whether it was 

possible to obtain the discriminatory features by analysing the CNV in the time 

domain. 

Shiavi and Bourne [19S6] described a series of parameters which could be used to 

represent electrophysiological signals. These included amplitude, slope and 

duration. However application of these parameters to the CNV could not provide 

sufficiently sensitive measures for identifying the patients. This was because 
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although the parameters provided a quantitative measure for the CNV, they did 

not accurately describe the shape of the CNV which was also believed to be 

important. A method applied to carotid pulse-wave (CPW) by Stockman et al. 

[1976] involved identifying the points on the waveform in such a way that they 

provided a reasonably complete description of the fundamental activity of the 

signal in the time domain. 

The method adopted, like the method used by Stockman et al. [1976], involved 

obtaining a set of time domain points which could best represent the section of the 

CNV relevant in the patient identification. Eight CNV trials not grossly 

contaminated by ocular artefact were used per subject. The CNV trials were 

subjected to a preprocessing procedure which carried out mean level removal, 

baseline correction, digital low-pass ftltering and ocular artefact removal. These 

steps were discussed in chapter 6 and they were carried out using a Turbo Pascal 

program called PROC.PAS (a listing of this program is included in Appendix C). 

The CNV trials were then averaged. The CNV response tends to follow a 

constant profile. By contrast the background BEG activity could be 
t 

considered to have a randomly distributed amplitude about zero. The effect of 

averaging is to reduce the unwanted background BEG (ie. noise) by a factor 

proportional to .Jn, where n is the number of trials averaged [Binnie, 1982]. The 

reduction in the number of CNV trials (compared to the method described in 

chapter 7) reduced the data recording and processing times. It also reduced the 

distortion due to the inter-trial CNV variability. It should be noted that the 

successive CNV trials are not 100" identical. The variations are caused by 

factors such as changes in patients' attention during the data recording and give 

rise to the inter-trial variability [Binnie et aI. 1982]. The digital low-pass filter 

cut-off frequency was reconsidered (this was 30Hz for the method described in 

chapter 7) to take into account the changes in the method of feature extraction and 
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therefore it was set to 7.5Hz. The frequency response of this fllter is shown in 

chapter 6. Ruchkin [1988] reported that the details of the CNV were preserved 

when the cut-off frequency of the digital low-pass filter was 5.5Hz. Therefore this 

reduction in the futer's cut-off frequency was acceptable. 

Seventeen CNV features were used as inputs to the neural networks. Sixteen 

features were extracted from a section 512ms prior to the imperative-stimulus in 

the preprocessed and averaged CNV waveform (listing of the program used for 

this purpose is given in Appendix (D». A moving average window, with a 

window size of four samples (corresponding to 32ms), was applied to this section. 

This averaged every four consecutive sample values producing sixteen CNV 

features (or variables). Figure (8.4) shows the effect of this process on the CNV 

section used in the analysis. This method was suitable as it further reduced the 

effect of the almost random background EEG and it also closely represented the 

CNV section of interest. In the majority of normal subjects the CNV returns to 

the baseline rapidly following the onset of the imperative-stimulus and the 

subject's response to that stimulus. It has been shown, however, that in 75% of 

schizophrenic patients and 37% of neurotic patients the CNV takes more than 2 

seconds to return to the baseline [Dubrovsky and Dongier, 1976]. Th include this 

effect, a seventeenth feature was obtained. This feature was the time difference 

between the onset of the imperative-stimulus and the point where the CNV 

returned to its baseline. This time period is shown in Figure (8.5). It should be 

noted that the PINV was measured manually by determining the point where the 

CNV trend crossed the baseline. 

8.3 Procedure for Obtaining the Results 

Twenty schizophrenic patients, sixteen Parkinson's disease (PD) patients, eleven 

Huntington's disease (HD) patients and their normal control subjects were 

included in the analysis (refer to Thbles (8.1)-(8.3) for more details). 
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Tclble (S.l) Details of schizophrenic patients and their 
normal control subjects. 

Subj.ct.' C.t.gori •• 
Paramet.r. 

Schizophr.nic Control 
P.ti.nt. Subj.ct. 

number tot.l 20 (15 m.l.) 20 (15 m.l.) 
of 
.ubj.ct. on drug 18 0 

me.n 33.60 39.50 

.g. STD 12.22 13.66 

rang. 20 to 68 22 to 75 

Tclble (S.2) Details of Parkinson's disease patients and 
their normal control subjects. 

Subj.ct.' C.t.gori •• 
P.rameter. 

P.rkin.on'. Control 
Di ••••• Subj.ct. 

number tot.l 16 (10 mal.) 16 (10 mal.) 
of 
.ubj.ct. on drug 12 0 

mean 63.63 50.81 

age STD 9.68 11.16 

r.ng. 42 to 80 35 to 75 
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'Thble (8.3) Details of Huntington's disease patients and 
their normal control subjects. 

Subject.· C.tegorie. 
Parameter. 

Huntington'. Control 
Dl ••••• Subj.ct. 

number tot.l 11 (6 male) 11 (6 m.le) 
of 
.ubject. on drug 5 0 

.... n 53.73 50.09 

age STD 10.97 10.53 

range 39 to 77 40 to 73 

Seventeen features were obtained from each preprocessed averaged eNV 

waveform as described in section (8.2). The selected features for the patients in 

each category and their normal control subjects were normalised between 0 and 1. 

The normalisation of the features was desirable as otherwise during the 

implementation of neural networks numbers with unacceptably large magnitudes 

could have resulted. Th normalise the selected features for the patients in a 

category such as schizophrenic patients and their normal control subjects, a 

computer program read the 16 features selected from the inter-stimulus intervals 

of the eNVs of these subjects. The maximum and minimum values of these 

features were identified. Then the normalisation of the features selected from the 

inter-stimulus interval (lSI) was achieved using, 

where NF Ui is the normalised feature, 
F.. is the feature not normalised, 
M1N .. is minimum value of the features, 
MA~Ui is maximum value of the features. 
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In order to normalise the 1"'fh feature, the maximum and minimum values of the 

PINY for the patients in each category and their normal control subjects were 

obtained. Then these features were normalised by, 

where 

"pinv - MINp1nv 
NFp1nv • 

MAXpinv - MINpinv 

NF. is normalised feature, 
F . ,lIlY is not normalised feature, 
tAm. is minimum value of the PINV, 
Md~ is maximum value of the PINY. ,lIlY 

••• (8.14) 

The patients in each category and their normal control subjects were divided into 

two groups in such away that an individual in the first group was age and sex 

matched with another individual in the second group. Two files were formed for 

each patient category. The first file contained the normalised CNV features of half 

the patients from a patient category and their normal control subjects and was used 

to train the neural networks. The order of subjects' entry in the training file was 

random, ie. a normal subject was randomly followed by either another normal or a 

patient. The second file contained the normalised CNV features of the remaining 

patients from that category and their normal control subjects and was used to 

evaluate the effectiveness of the neural networks in the test mode. This process 

was repeated for the two other patient categories. 

A commercially available package called Neural\\brks, was used to implement the 

multilayer neural networks. The manual accompanying it provided a 

comprehensive explanation of how to use that software [Neural\\brks Manual, 

1988]. The structure of the neural networks used is described in section (8.1). 

The NeuralWorks package permitted inclusion of up to two hidden layers. The 

number of nodes in the input layer was always 17 tie. one node per CNV feature. 

As the aim was to distinguish between the patients of a category and normal 
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subjects, one output node was sufficient. During the training this node took a 

value of 1 to represent normal subjects and 0 for the patients. The standard 

backpropagation method referred to in section (S.l) was used for the learning 

algorithm. A heuristic method is generally used to determine the number the nodes 

in the hidden layer(s). If sufficient nodes are not included in the hidden layer(s), 

the learning process will be hindered. Tho many nodes in the hidden layer(s), 

however can cause a degradation of the generalisation capability of the neural 

network [Bhagat, 1990]. The classification threshold level was 0.5. Therefore if 

the outputs of neural networks following training were between 0.5 and 1.0 the 

individuals were considered wnormalw, and if the outputs were between 0 and 0.5 

the individuals were considered wpatientw• 

The type of the transfer function used was sigmoidal (as shown in Figure (S.2». 

The weights for the coMections were initially randomised to lie between -0.1 and 

0.1. The NeuralWorks software recommended that the value of e to be 1, the o 

value of a to be 0.6 and the value of 8 to be 0.9 (see NeuralWorks Manual [198S] 

for detail). It was decided to keep these parameters to the recommended values 

and change them if it became necessary. A network with 17 units in the input 

layer, 10 units in the fmt hidden layer, 5 units in the second hidden layer and 1 

unit in the output layer was set up by following the instructions in NeuralWorks 

manual. The neural network was initially trained on 10 schizophrenic patients and 

their normal control subjects and tested the remaining 10 schizophrenic patients 

and their normal control subjects. The output of the neural network for each 

subject after 3000, 6000, 9000 and 12000 iterations were examined. This indicated 

that the neural network performed best (ie. least error) after 12000 iterations. It 

was then decided to keep the number of iterations to 12000 and investigate the 

effect of changing the number of units in the hidden layer(s). In the case HD 

patients and their normal control subjects, as in schizophrenic patients the number 
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of iterations was kept to 12000 and the effect of changing the number of units in 

the hidden layer(s) was investigated. For PD patients and their normal control 

subjects, the outputs of the neural networks after 12000,20000 and 24000 

iteration were analysed. 

Thbles (8.4)-(8.10) show the outputs of neural networks for the patients and their 

normal control subjects for different numbers of units in the hidden layer(s). The 

performance of neural networks in differentiating between patients is summarised 

in Thbles (8.11)-(8.13). 
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Thble (8.4) Neural Network outputs for schizophrenic patients and their 
normal control subjects. Number of units in the hidden layers 20 and 
20, and 30 and 20. 

Training Te.t 

Network Subject De. ired Network Subject De.ired Network 
Structure Number Value OUtput Number Value OUtput 

17-20-20-1 1 0 0.00507 21 0 0.00401 
2 0 0.00524 22 0 0.00153 
3 1 1.00000 23 0 1.00000 
4 0 0.00795 24 0 0.00143 
5 1 1.00000 25 0 0.21516 
6 0 0.03564 26 0 0.01292 
7 1 1.00000 27 0 0.00171 
8 0 0.00445 28 0 0.00176 
9 0 0.00286 29 0 0.00541 

10 1 1.00000 30 0 0.00161 
11 0 0.00427 31 1 1.00000 
12 1 0.97588 32 1 1.00000 
13 0 0.00147 33 1 1.00000 
14 1 0.99999 34 1 1.00000 
15 0 0.00210 35 1 1.00000 
16 1 1.00000 36 1 1.00000 
17 1 1.00000 37 1 0.99998 
18 0 0.00905 38 1 0.99539 
19 1 1.00000 39 1 1.00000 
20 1 0.99542 40 1 1.00000 

17-30-20-1 1 0 0.00494 21 0 0.00399 
2 0 0.00509 22 0 0.00183 
3 1 1.00000 23 0 1.00000 
4 0 0.00717 24 0 0.00173 
5 1 1.00000 25 0 0.18652 
6 0 0.03444 26 0 0.01116 
7 1 1.00000 27 0 0.00200 
8 0 0.00451 28 0 0.00204 
9 0 0.00302 29 0 0.00543 

10 1 1.00000 30 0 0.00190 
11 0 0.00439 31 1 1.00000 
12 1 0.97847 32 1 1.00000 
13 0 0.00177 33 1 1.00000 
14 1 0.99999 34 1 1.00000 
15 0 0.00234 35 1 1.00000 
16 1 1.00000 36 1 1.00000 
17 1 1.00000 37 1 1.00000 
18 0 0.00776 38 1 0.99675 
19 1 1.00000 39 1 1.00000 
20 1 0.99545 40 1 1.00000 
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Thble (8.S) Neural Network outputs for schizophrenic patients nd their 
normal control subjects. Number of units in the hidden 10 and S, and 8 
and 8. 

Training Te.t 

Network Subject De.ired Network Subject De. ired Network 
Structure Number Value Output Number Value Output 

17-10-5-1 1 0 0.00548 21 0 0.00478 
2 0 0.00566 22 0 0.00380 
3 1 0.99998 

\ 23 0 0.99994 
4 0 0.00886 24 0 0.00375 
5 1 0.99997 25 0 0.11894 
6 0 0.03153 26 0 0.01130 
7 1 0.99999 27 0 0.00388 
8 0 0.00517 28 0 0.00392 
9 0 0.00459 29 0 0.00551 

10 1 0.99994 30 0 0.00383 
11 0 0.00568 31 1 0.99997 
12 1 0.97790 32 1 0.99998 
13 0 0.00377 33 1 0.99998 
14 1 0.99991 34 1 0.99996 
15 0 0.00404 35 1 0.99994 
16 1 0.99998 36 1 0.99999 
17 1 0.99997 37 1 0.99984 
18 0 0.00724 38 1 0.99700 
19 1 0.99996 39 1 0.99996 
20 1 0.99766 40 1 0.99998 

17-8-8-1 1 0 0.00316 21 0 0.00299 
2 0 0.00332 22 0 0.00203 
3 1 1.00000 23 0 0.99999 
4 0 0.00596 24 0 0.00198 
5 1 1.00000 25 0 0.10060 
6 0 0.02255 26 0 0.00694 
7 1 1.00000 27 0 0.00207 
8 0 0.00291' 28 0 0.00210 
9 0 0.00254 29 0 0.00329 

10 1 1.00000 30 0 0.00204 
11 0 0.00371 31 1 1.00000 
12 1 0.98428 32 1 1.00000 
13 0 0.00199 33 1 1.00000 
14 1 0.99999 34 1 1.00000 
15 0 0.00218 35 1 0.99999 
16 1 1.00000 36 1 1.00000 
17 1 1.00000 37 1 0.99997 
18 0 0.00374 38 1 0.99842 
19 1 1.00000 39 1 1.00000 
20 1 0.99809 40 1 1.00000 
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Thble (8.6) Neural Network outputs for schizophrenic patients and their normal 
control subjects. Number of units in the hidden layer SO and 40. . 

Training Te.t 

Network Subject De. ired Network Subject De.ired Network 
Structure Number Value Output Number Value Output 

17-50-1 1 0 0.00191 21 0 0.00097 
2 0 0.00149 22 0 0.00000 
3 1 1.00000 23 0 1.00000 
4 0 0.00354 24 0 0.00000 
5 1 1.00000 25 0 0.35165 
6 0 0.02775 26 0 0.01580 
7 1 1.00000 27 0 0.00001 
8 0 0.00184 28 0 0.00001 
9 0 0.00072 29 0 0.00858 

10 1 0.99997 30 0 0.00000 
11 0 0.00180 31 1 1.00000 
12 1 0.97361 32 1 1.00000 
13 0 0.00000 33 1 1.00000 
14 1 0.99985 34 1 1.00000 
15 0 0.00007 35 1 0.99998 
16 1 1.00000 36 1 1.00000 
17 1 1.00000 37 1 0.99994 
18 0 0.01163 38 1 0.98862 
19 1 1.00000 39 1 1.00000 
20 1 0.99050 40 1 1.00000 

17-40-1 1 0 0.00197 21 0 0.00136 
2 0 0.00169 22 0 0.00001 
3 1 1.00000 23 0 1.00000 
4 0 0.00369 24 0 0.00000 
5 1 1.00000 25 0 0.35503 
6 0 0.02903 26 0 0.01541 
7 1 1.00000 27 0 0.00001 
8 0 0.00194 28 0 0.00002 
9 0 0.00064 29 0 0.00939 

10 1. 0.99997 30 0 0.00000 
11 0 0.00237 31 1 1.00000 
12 1 0.97303 32 1 1.00000 
13 0 0.00000 33 1 1.00000 
14 1 0.99982 34 1 1.00000 
15 0 0.00009 35 1 0.99998 
16 1 1.00000 36 1 1.00000 
17 1 1.00000 37 1 0.99994 
18 0 0.01188 38 1 0.98874 
19 1 1.00000 39 1 1.00000 
20 1 0.99087 40 1 1.00000 
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Thble (8.7) Neural Network outputs for Parkinson's Disease patients and 
their normal control subjects. Number of units in the hidden layers 40 
and 60. 

Training Te.t 

Network Subject De.ired Network Subject De.ired Network 
Structure Number Value OUtput Number Value output 

17-40-1 1 0 0.01831 17 0 0.00073 
2 0 0.05613 18 0 0.00131 
3 1 0.99984 19 0 0.00162 
4 0 0.00016 20 0 0.35689 
5 1 0.96716 21 0 0.00000 
6 0 0.00000 22 0 0.00000 
7 0 0.04357 23 0 0.25433 
8 1 0.99950 24 0 0.04962 
9 0 0.01580 25 1 1.00000 

10 1 1.00000 26 1 1.00000 
11 0 0.00010 27 1 0.99919 
12 1 0.97249 28 1 0.99999 
13 1 0.97540 29 1 1.00000 
14 0 0.00016 30 1 1.00000 
15 1 0.97204 31 1 0.09948 
16 1 1.00000 32 1 1.00000 

17-60-1 1 0 0.07926 17 0 0.05851 
2 0 0.61806 18 0 0.27015 
3 1 0.99962 19 0 0.08742 
4 0 0.17059 20 0 0.61578 
5 1 0.96600 21 0 0.00001 
6 0 0.00018 22 0 0.00041 
7 0 0.47536 23 0 0.65005 
8 1 0.99673 24 0 0.02517 
9 0 0.53862 24 1 1.00000 

10 1 1.00000 26 1 0.99999 
11 0 0.05447 27 1 0.99881 
12 1 0.96628 28 1 0.99991 
13 1 0.94782 29 1 1.00000 
14 0 0.03650 30 1 1.00000 
15 1 0.97175 31 1 0.62900 
16 1 0.99992 32 1 0.99997 
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'Thble (8.8) Neural Network outputs for Parkinson's Disease patients and 
their normal control subjects. Number of units in the hidden layers 20 and 20, 
2S and 25. 

Training Te.t 

Network Subject De.ired Network Subject De.ired Network 
Structure Number Value OUtput Number Value OUtput 

17-20-20-1 1 0 0.00250 17 0 0.00241 
2 0 1.00000 18 0 0.00134 
3 1 1.00000 19 0 0.95752 
4 0 0.00234 20 0 0.12137 
5 1 1.00000 21 0 0.00066 
6 0 0.00067 22 0 0.00085 
7 0 0.00908 23 0 1.00000 
8 1 0.99997 24 0 0.00224 
9 0 0.02473 25 1 1.00000 

10 1 1.00000 26 1 1.00000 
11 0 0.00070 27 1 1.00000 
12 1 0.99919 28 1 1.00000 
13 1 0.98142 29 1 0.99983 
14 0 0.00070 30 1 1.00000 
15 1 0.99983 31 1 1.00000 

16 1 0.99957 32 1 1.00000 

17-25-25-1 1 0 0.00634 17 0 0.00413 
2 0 1.00000 18 0 0.00292 
3 1 1.00000 19 0 0.87640 
4 0 0.00455 20 0 0.31919 
5 1 1.00000 21 0 0.00157 
6 0 0.00159 22 0 0.00201 
7 0 0.00888 23 0 1.00000 

I 8 1 0.99995 24 0 0.00755 
9 0 0.03521 25 1 1.00000 

10 1 1.00000 26 1 1.00000 
11 0 0.00165 27 1 1.00000 
12 1 0.99820 28 1 1.00000 
13 1 0.97569 29 1 0.99993 
14 0 0.00164 30 1 1.00000 
15 1 0.99940 31 1 1.00000 
16 1 0.99929 32 1 1.00000 
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'Thble (8.9) Neural Network outputs for Parkinson's Disease patients and 
their normal control subjects. Number of units in the hidden layers 10 and 10, 
and 20 and 10. 

Training Te.t 

Network Subject De.ired Network Subject De. ired Network 
Structure Number Value output Number Value Output 

17-10-10-1 1 0 0.00592 17 0 0.00475 
2 0 0.99997 18 0 0.00343 
3 1 1.00000 19 0 0.90638 
4 0 0.00485 20 0 0.23380 
5 1 0.99995 21 0 0.00255 
6 0 0.00256 22 0 0.00281 
7 0 0.01132 23 0 0.99999 
8 1 0.99985 24 0 0.00566 
9 0 0.03728 25 1 1.00000 

10 1 1.00000 26 1 0.99999 
11 0 0.00260 27 1 1.00000 
12 1 0.99862 28 1 1.00000 
13 1 0.97329 29 1 0.99972 
14 0 0.00260 30 1 1.00000 
15 1 0.99945 31 1 1.00000 
16 1 0.99925 32 1 1.00000 

17-20-10-1 1 0 0.00716 17 0 0.00492 
2 0 0.99999 18 0 0.00345 
3 1 1.00000 19 0 0.91211 
4 0 0.00579 20 0 0.20454 
5 1 0.99996 21 0 0.00243 
6 0 0.00244 22 0 0.00273 
7 0 0.01216 23 0 1.00000 
8 1 0.99983 24 0 0.00538 
9 0 0.03823 25 1 1.00000 

10 1 1.00000 26 1 1.00000 
11 0 0.00249 27 1 1.00000 
12 1 0.99887 28 1 1.00000 
13 1 0.97313 29 1 0.99926 
14 O· 0.00248 30 1 1.00000 
15 1 0.99961 31 1 1.00000 
16 1 0.99885 32 1 1.00000 
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'Thble (8.10) Neural Network outputs for Huntington's Disease patients and 
their normal control subjects. Number of units in the hidden layers 20 and 20, 
25 and 25, and 10 and 10. 

Traininq Te.t 

Network Subject D •• ired Network Subject De.ired Network 
Structure Number Value Output Number Value Output 

17-20-20-1 1 0 0.01732 13 0 0.05641 
2 1 0.99886 14 0 0.24174 
3 0 0.00168 15 0 0.00088 
4 1 0.98986 16 0 0.24912 
5 0 0.01301 17 0 0.22759 
6 0 0.00133 18 1 1.00000 
7 1 0.98934 19 1 0.79412 
8 0 0.00358 20 1 0.99975 
9 1 0.99968 21 1 0.99950 

10 1 0.99164 22 1 0.99899 
11 0 0.00481 
12 1 0.99969 

17-25-25-1 1 0 0.01725 13 0 0.05661 
2 1 0.99898 14 0 0.25233 
3 0 0.00162 15 0 0.00078 
4 1 0.98987 16 0 0.26518 
5 0 0.01302 17 0 0.22297 
6 0 0.00122 17 1 1.00000 
7 1 0.98959 19 1 0.76972 
8 0 0.00343 20 1 0.99979 
9 1 0.99971 21 1 0.99957 

10 1 0.99191 22 1 0.99902 
11 0 0.00455 
12 1 0.99972 

17-10-10-1 1 0 0.01625 13 0 0.05088 
2 1 0.99875 14 0 0.23384 
3 0 0.00231 15 0 0.00155 
4 1 0.99085 16 0 0.24379 
5 0 0.01245 17 0 0.21647 
6 0 0.00197 18 1 0.99999 
7 1 0.99057 19 1 0.81479 
8 0 0.00400 20 1 0.99968 
9 1 0.99960 21 1 0.99939 

10 1 0.99256 22 1 0.99897 
11 0 0.00512 
12 1 0.99961 
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Thble (8.11) Summary of patients' differentiation success rate for 
schizophrenic patients and their normal control subjects. 

Number ot Training Hode Te.t Hode Number Of 
unit. Iteration. 

Patient. control. Patient. COntrol. 

17-20-20-1 100' 100' 90\ 100' 12000 

17-30-20-1 100' 100' 90\ 100' 12000 

17-50-1 100' 100' 90\ 100' 12000 

17-10-5-1 100' 100' 90\ 100' 12000 

17-8-8-1 100' 100' 90' 100' 12000 

17-40-1 100' 100\ 90\ 100\ 12000 

Thble (8.12) Summary of patients' differentiation success rate for 
Parkinson's disease patients and their normal control subjects. 

Number ot Training Hode Te.t Mode Number ot 
unit. Iteration. 

Patient. control. Patient. Controb 

17-20-20-1 87.5\ 100\ 75\ 100\ 20000 

17-25-25-1 87.5\ 100' 75' 100\ 12000 

17-10-10-1 87.5' 100' 75' 100\ 12000 

17-20-10-1 87.5' 100' 75\ 100' 12000 

17-40-1 100' 100' 100' 87.5\ 24000 

17-60-1 75' 100' 75' 100' 12000 
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Thble (8.13) Summary of patients' differentiation success rate for 
Huntington's disease patients and their normal control subjects. 

Number Of Training Mode Te.t Mode Number Of 
Unit. Iteration. 

Patient. Controla Patient. Controla 

17-20-20-1 100\ 100\ 100\ 100\ 12000 

17-25-25-1 100\ 100\ 100\ 100\ 12000 

17-10-10-1 100\ 100\ 100\ 100\ 12000 

8.4 Discussion 

The success rate for the differentiation between HD patients and their normal 

control subjects was 100% in both the training and test modes. The alteration of 

the number of units in the hidden layers did not affect the success rates. 

In the case of schizophrenic patients and their normal control subjects, one patient 

was falsely classified as normal. All the normal subjects were classified correctly. 

The alteration of number of units in the hidden layer(s) did not affect the success 

rates. In this branch of medicine the misclassification of a patient as normal is 

known as a -false-negative-. In medical term the false-negative diagnosis is less 

serious than a -false-positive- diagnosis (ie. misclassification of a normal subject 

as patient) [Allen, 1989]. 

For PD patients and their normal control subjects, when the number of units in the 

hidden layer was 40, one normal subject was misclassified in the test mode but all 

the patients were classified correctly both in the training and test modes. 

The alteration of number of units did not affect the success rates of identifying the 

patients because in each case a sufficient number of units were included in the 

neural networks. 
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8.5 Conclusion 

The results indicated the particular time domain method of eNV feature extraction 

used in this chapter was effective in representing the CNV waveforms, and the 

application of neural networks was successful in identifying the schizophrenic, 

Parkinson's disease and Huntington t s disease patients. The high success rates 

achieved were also due to the use of an evoked-potential (ie. the CNV) which was 

thought to be affected by the diseases under investigation. 
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Chapter 9 Presymptomatic Detection of Huntlnaton's Disease and 

Identification of Schizophrenic, PD and HD Patients by Applyln& Principal 

component Analysis and Cluster Analysis to the CNV 

The methods described in chapters 7 and 8 to identify patients required a prior 

knowledge about the category of some of the patients. This enabled the methods to 

be trained on known patients and their normal control subjects. Then the 

classifiers used the information gained during the training together with the 

necessary CNV variables to identify test (unknown) patients. Some patients who 

are -at-risk- (AR) of HD may wish to know whether they will develop HD. This 

could help them to decide whether they should have children (a person diagnosed 

as HD gene carrier can pass on the faulty gene to hislher children). The methods 

described in chapters 7 and 8 could not be employed for presymptomatical 

detection of HD. This was because in order to form a classification (calibration) 

rule, they required the variables from the AR of HD patients who could be 

confirmed as the HD gene carriers (ie. the AR of HD patients who would develop 

HD). As this knowledge could not be obtained due to the difficulties associated 

with genetic testing and the unwillingness of many of the AR of HD patient to 

undergo it, it was decided to consider an alternative technique which did not 

require prior information about the patients (ie. an unsupervised learning). 

The application of principal component analysis (PeA) and cluster analysis to the 

CNV waveforms of the schizophrenic, Parkinson's disease (PD) and Huntington's 

disease (HD) patients in order to evaluate their effectiveness in identifying the 

patients is described. These techniques were also applied to the CNV waveforms 

of the AR of HD patients with the aim of presymptomatically detecting HD. The 

CNV amplitudes of the AR of HD patients were also analysed using t-tests. 

Cluster analysis is an unsupervised pattern recognition tool which could be used to 

discover possible associations and structure in the data. Didayand Simon [1976], 
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Everitt [1981] and Devijver [1982] have provided a review of clustering. 

Generally, the technique attempts to group the elements in such a way that there 

are high associations among the elements within a cluster, while different clusters 

are relatively distinct from each other ie. it aims at maximising the between­

cluster variation relative to the within- cluster variation (see Figure (9.1». 

Before applying cluster analysis, a PCA of the discriminatory variables (ie. the 

CNV features) was carried out. This was necessary as otherwise a large number of 

clusters would have resulted making the interpretation of the results complicated. 

PCA transformed the variables in such a manner that the transformed variables (or 

the principal components) were linear combinations of the original variables. The 

successive linear combinations were uncorrelated with each other and accounted 

for successively smaller amounts of the total variation. PCA is described in more 

detail in section 9.1. 

9.1 The Theory of Principal Component Analysis 

The correlation matrix of the variables forms the starting point of a method for 

obtaining the principal components. If there are n individuals, and p variables 

(features) are obtained from the CNV response of each individual, the nxp data 

matrix can be represented by, 

X11 x12 ••• x1p x21 x22 ... x2p 
X • • • 

• • • 
• • • 

xn1 xn2 • xnp 

where Xu represents the value of variable j obtained from individual i. The 

method of calculating the correlation matrix (R) is described in Appendix (E). 
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Figure 9.1 Representation of between - and within­
cluster variation. 
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The procedure for computing the principal components using the correlation 

matrix is as follows. 

i) The eigenvalues (ie. EI ••• E) of the correlation matrix are obtained by solving, 

la - ell • 0 ••• (9.1) 

where I is a matrix whose entries along the main diagonal are 1 and whose non­

diagonal elements are 0 (ie. the unit matrix). 

ti) The eigenvalues are then used in (9.2). For each eigenvalue (E) a 

corresponding eigenvector (a~ is obtained. 

• •• (9.2) 

iii) The eigenvector corresponding to the largest eigenvalue (ie. a l ) is used to 

generate the frrst principal component (Y I) for each individual. If a'i (note, the 

symbol' indicates transpose) is, 

then, Y1 can be obtained by, 

••• (9.3) 

iv) The eigenvector corresponding to the next largest eigenvalue is used to 

generate the second principal component for each individual. This is repeated until 

all p principal components are generated. 

205 



The sum of the eigenvalues is equal to p (ie. the number of variables). The total 

variance of the variables provided by ilb principal component is indicated by E/p, 

where EI is the ilb eigenvalue. 

Mardia et al. [1979] and Morrison [1976] have provided a detailed analysis of 

PCA. 

9.2 Theoretical Analysis or Clusterina 

Cluster analysis has been valuable in several applications in the medical field. 

Kendell [1968] applied clustering procedures to some depressive mental patients in 

order to examine the nature of depression. Jansen [1979] divided the EEG into 

segments and used a hierarchical clustering approach to group EEG segments of a 

number of types. A clustering algorithm has been incorporated in a computer 

system to aid clinicians in the interpretation of cranial magnetic-response images 

[Herskovits, 1990]. Farmer et al. [1983] used clustering methods to investigate 

whether schizophrenia is a heterogeneous condition. Morrison et al. [1990] used a 

hierarchical cluster analysis method in order to investigate positive and negative 

symptoms in schizophrenia. 

There are numerous clustering methods. Gordon [1981] groups them into four 

types: partitioning methods, hierarchical methods, clumping methods and 

geometrical methods. Generally, a clustering method has some distinct 

characteristics which determine its applications. The main factors distinguishing 

the clustering methods are the parameters used to measure the distance between 

the elements and the algorithms applied to the distance measures to obtain the 

clusters [Cormack, 1971]. The hierarchical methods have been dominant in terms 

of their applications and the frequency of use [Blashfield and Aldenderfer, 1978]. 

A widely used hierarchical clustering method is Vhrd's method [Mojena, 1977] 
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[Bayne et al., 1980] and it was the method selected. 

\\Wd [1963] proposed that the loss of information which resulted from clustering 

of elements could be measured by the within sum of square deviations of every 

point from the mean of the cluster it belonged. At each stage of the process, the 

fusion of every possible pair of existing clusters is considered and their respective 

within sum of square deviations (w) are calculated. The pair whose fusion results 

in the minimum increase in the w possible at that stage is selected and combined. 

Consider a sample of n individuals to be partitioned into g groups. Then the value 

of w for the g-group partition is [Anderberg, 1973], 

••• (9.4) 

Where n. is the number of elements in the ilb group, I. is the mean of the variables 
I I 

in the ilh group and Xu is the jib variable in the ilb group. 

\\Wd's method can efficiently be implemented by an algorithm described by 

Wishart [1969]. This algorithm is based on a stored matrix of squared Euclidean 

distances between the centroids of the clusters. Let d, be the squared Euclidean 

distance between the centroids of clusters i and j ie. 

• •• (9.5) 

where Xii is the Ith variable on the ilb element, xjI is the Ith variable on the jib 

element and n is the number of elements. Then the distance between the fused 

clusters i andj, and a new cluster k has been shown to be [Anderberg, 1973] 

[Gordon, 1981], 
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1 

dk(i,j) • [(nk+ni)dki + (nk+nj)dkj - nkdij ) ••• (9.6) 
nk+ni+nj 

where n., n., and nk are the number of elements in the clusters i, j and k 
I J 

respectively, dki, ~ and dij are the squared Euclidean distances between the 

clusters k and i, k and j, and i and j respectively. 

The steps to implement the above recursive algorithm can be summarised as: 

i) Obtain the squared Euclidean distance matrix for each pair of elements in the 

data set using the formula (9.S). 

ii) Amalgamate (fuse) the two elements with smallest value of squared Euclidean 

distance. 

iii) Recalculate the distances between the new cluster and every other cluster 

(initially other clusters contain only one element) using the formula (9.6). Fuse 

the two clusters with smallest value of ~(iJ) or dif 

iv) Repeat step (iii) until all elements are fmally within one cluster. 

9.3 Experimental Procedure 

Seventeen variables (features} were extracted from the preprocessed averaged 

(over 8 eNV trials) eNV waveform from each individual. The method was 

described in chapter 8. The details related to the age, sex, medication and the 

number of patients and their normal control subjects were given in chapter 8, 

'Thbles (8.1)-(8.3). 

PCA was implemented using the SAS [19~] procedure, Princomp. For each 

patient category a program was written in the format described in SAS [1985]. In 

the programs the procedure Princomp was invoked. The method generated 
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seventeen principal components (the number of principal components were equal 

to the number of original variables), sorted by descending order of eigenvalues 

which were equal to total variance for the variables representing each subject 

category. Generally, the fltSt few principal components account for most of the 

total variance of the variables. In order to determine how many components 

should be retained the eigenvalues of the principal components may be considered 

[SAS, 1985]. Thble (9.1) shows the eigenvalues of the seventeen principal 

components for each subject category. 
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Table (9.1) The eigenvalues for schizophrenic (sch.), 
Parkinson's disease (PO), Huntington's disease (HD) and 
at-risk (AR) of HO patients and their normal control 
subjects. 

Principal Bigenvalue 
Component 

Number Sch. PD HD AR OP' HD 

1 13.9620 13.7598 14.1895 13.5663 
2 1.1098 1.3174 1.0647 1.2998 
3 0.8683 0.7656 0.9269 0.7361 
4 0.2773 0.4635 0.5650 0.4653 
5 0.2462 0.2633 0.1122 0.3774 
6 0.2132 0.1701 0.0932 0.2154 
7 0.1388 0.1145 0.0283 0.2014 
8 0.0666 0.0945 0.0121 0.0687 
9 0.0567 0.0305 0.0040 0.0376 
10 0.0499 0.0100 0.0022 0.0192 
11 0.0091 0.0073 0.0017 0.0099 
12 0.0017 0.0030 0.0001 0.0021 
13 0.0005 0.0003 0.0000 0.0006 
14 0.0000 0.0001 0.0000 0.0001 
15 0.0000 0.0000 0.0000 0.0000 
16 0.0000 0.0000 0.0000 0.0000 
17 0.0000 0.0000 0.0000 0.0000 

As can be seen from the Table (9.1), the first principal component accounted for 

82.13% (ie. 13.9620 x 17/1(0),80.94% (ie. 13.7598 x 17/1(0), 83.47% (ie. 
I 

14.1895 x 17/1(0) and 79.80% (ie. 13.5663 x 17/1(0) of total variance for 

schizophrenic, PO, HO and AR of HD patients respectively. Tables (9.2)-(9.5) 

provide a list of the first three principal components for the patients and their 

normal control subjects. 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Thble (9.2) The first three principal components for the 
schizophrenic patients and their normal control subjects. 

Schizophrenic Patient. Normal COntrol Subject. 

Prin1 Prin2 Prin3 Prin1 Prin2 Prin3 

3.1439 0.6188 -0.0166 -6.4906 0.8735 -0.5572 
0.7557 1.4672 2.0356 -1.4385 -1.3162 0.1802 
4.9198 -0.6122 -0.4076 0.2079 1.2097 -1.1990 
4.0882 2.0208 2.5334 -1.4772 0.7222 -1.3836 
4.6672 -1.6697 0.5902 -2.3331 0.6742 -0.3407 
1.2497 -0.1707 1.2813 -1.3937 0.3666 -1.1251 

-0.7849 -1.4605 0.4416 -1.0188 -0.1795 -0.4162 
6.1618 -1.7724 -0.1197 -5.9887 -0.3671 0.6989 
3.6784 -0.7551 0.1059 -2.4373 -0.8361 0.3666 
3.0878 -0.8129 0.2222 -9.4948 -0.2699 1.8302 
4.8197 0.5211 0.0171 -2.2191 -1.0371 0.1824 
1.4378 -1.5897 0.6431 1.2139 0.4149 -0.4228 
2.9294 -0.6146 -0.5826 -4.5109 0.3544 -0.7263 
2.5190 -0.8141 -0.6021 -3.9725 -0.4772 -0.3424 
5.6023 -0.1583 -1.0533 -1.4803 0.1963 -0.9400 
2.7751 1.6170 1.9050 -0.4616 0.6249 -1.5605 

-2.5536 -1.8421 0.2197 -3.5131 0.4028 0.0318 
1.7452 2.1328 -0.3339 -2.8858 0.8438 -0.8836 
2.7525 1.5865 -0.1293 -6.2068 -0.1333 0.5708 
4.3294 0.7192 -0.2525 -1.4234 0.1220 -0.5212 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

'Thble (9.3) The frrst three principal components for Parkinson's 
disease patients and their normal control subjects. 

Parkin.on'. Di.ea.e Patient. Normal COntrol Subject. 

Prinl Prin2 Prin3 Prinl Prin2 Prin3 

-2.7164 2.5151 0.2937 1.3655 -0.2754 -0.8598 
0.8067 -0.7438 -0.3671 -3.1420 -1.7281 0.7468 

-0.0722 -0.4517 0.4310 -6.0761 -0.0114 -0.6934 
2.1997 -1.5230 -0.1309 -2.1241 -2.2266 0.8024 
3.0660 1.2585 1.2932 -8.3803 -0.6864 1.1519 
4.4560 -1.6549 1.0678 -2.0374 0.9020 -1.6084 
3.4589 1.1835 0.0726 -2.0067 -0.0918 -1.0734 
6.0574 0.0489 0.3626 -0.3864 -1.1807 0.0948 
7.3420 0.3296 0.2573 1.3715 0.1183 -0.0292 

-3.2442 1.8487 1.7611 -2.0955 -0.1580 -0.8437 
5.0973 0.9983 0.3616 -3.9974 1.1033 -0.1555 

-3.7084 1.6599 0.8432 -1.1847 0.6524 -1.3280 
1.3913 -0.5667 -0.2010 3.3615 0.5128 -1.7409 
1.4412 1.2461 0.6644 -5.4337 -1.1489 -0.0911 
5.4170 -0.8926 -0.0752 -0.7781 0.1823 -1.5936 
1.0778 0.1017 0.5330 -0.5262 -1.3214 0.0537 

'Thble (9.4) The first three principal components for the Huntington's 
disease patients and their normal control subjects. 

Huntington'. Di.ea.e Patient. Normal COntrol Subject. 

Prin1 Prin2 Prin3 Prinl Prin2 Prin3 

1.8409 3.2200 1.0080 -2.6636 -0.0471 0.2307 
-0.1936 0.7218 -3.5513 -1.8322 -0.3416 -0.0947 

0.8721 0.3163 0.1501 -5.9894 0.4334 0.0688 
5.6909 0.5613 -1.4752 -2.1769 -0.0879 -0.2552 
3.9022 -0.0143 -0.3494 -2.4530 -0.9007 0.5138 

-1.1992 1.4641 0.6457 -3.19&0 0.0693 0.1848 
-0.7307 1.1075 0.7348 0.5472 -1.5773 0.2049 

1.6552 -0.0176 0.2118 -2.6332 -0.8075 0.3585 
11.3673 -0.6912 1.2257 -3.4531 -0.4984 -0.0259 

4.1069 -1.1885 -0.4527 -1.6673 -0.3585 0.3977 
0.6091 -0.3524 0.0571 -2.4017 -1.0107 0.2119 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Thble (9.5) The first three principal components (or the 
at-risk o( Huntington's disease patients and their normal control 
subjects. 

AR or HD Patient. Normal Control Subject. 

Prinl Prin2 Prin3 Prinl Prin2 Prin3 

-2.1980 -0.8940 -1.1799 -1.2639 0.4959 0.5352 
-7.1123 -1.0787 0.6781 -8.3460 1.8752 -0.1492 
-0.7756 0.6503 2.1144 -5.2044 -0.5877 -0.4017 

6.4037 0.0179 -0.0847 -1.8097 -0.4033 -0.2940 
5.1512 -0.2440 -0.9720 2.3617 -1.7546 0.6369 
0.5698 -1.2822 -0.3554 -3.5237 -0.0830 -0.7131 
3.0356 -0.3529 -0.9810 1.1724 -1.0623 0.0683 
0.9374 0.3776 1.2092 0.2625 0.4508 -0.9820 
4.4420 1.1833 0.5425 -2.4105 -1.1313 0.6714 
1.0391 1.3914 -0.7114 -0.6818 -0.6648 -0.3197 
6.4191 0.3081 0.0889 -4.4313 0.5522 -0.1051 
4.2718 1.8809 0.0625 1.1811 -0.2544 0.2640 
1.3321 -1.3167 0.5414 -0.5195 -1.3738 -0.0871 

-1.0447 0.2922 0.4182 2.4911 -0.0127 -0.9429 
-3.4573 0.4005 -0.5521 3.1268 -0.9514 1.8443 

3.4998 2.1746 0.4779 -4.4050 2.6182 1.5008 
3.0911 2.3037 0.5568 -4.7351 -1.1590 0.2320 

-2.3812 1.8358 -2.2575 1.7342 -0.3975 -0.5955 
4.4145 -0.9284 -0.7160 -4.1468 0.5132 -0.9314 
5.4499 -0.3876 -0.6534 1.2640 -1.2993 0.4317 

-4.6896 -1.1961 0.0595 -0.5146 -0.5061 1.0508 

It was decided first to investigate the use of the first principal component in the 

cluster analysis as it accounted (or about 80% of the total variance for all four 

subject categories (ie. schizophrenia, PO, HD and AR of HD). Each of the 

remaining principal components accounted for less than 8 % of the total variance. 

The effects of the second and third principal components were also examined. 

They did not improve the analysis result. Therefore the fltSt principal component 

was the only component retained. 

A clustering computer package program called Clustan [Wishart, 1987] [Using 

Clustan under VMlCMS, 1987] was available. Wc1rd's clustering method was 

implemented by using a Clustan procedure called Cluster. For each patient 

category a program was written in accordance with the Clustan instructions. The 
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listings of these programs are shown in Appendix (F). In each program the 

procedure Cluster was invoked. The execution of each program produced a tree­

diagram called the -dendrogram-. The subjects' identifiers were printed at the end 

of the branches and the fusion coefficients as indicated by the formulae (9.S) and 

(9.6) were shown on the sides of the dendrograms. 

9.4 Results and Discussion 

9.4.1 Schizophrenia 

The dendrogram for the schizophrenic patients and their normal control subjects is 

shown in Figure (9.2). The schizophrenic patients were labelled 1 to 20 and their 

normal control as 21 to 40. Two main clusters, C. and C2 were identified 

corresponding to the fusion coefficient of 0.440. The cluster C. contained 18 

schizophrenic patients and 2 normal subjects. The cluster C2 contained 18 normal 

subjects and 2 schizophrenic patients. 

9.4.2 Parkinson's Disease 

The dendrogram for the PO patients (labelled as 1-16) and their normal control 

subjects Oabelled 17-32) is shown in Figure (9.3). Two main clusters, C. and C
2 

were identified corresponding the fusion coefficient of 0.326. C. contained 13 

normal subjects and 4 PO patients and C2 contained 12 PO patients and 3 normal 

subjects. 

9.4.3 Huntington's Disease 

The dendrogram for the HD patients Oabelled as 1 to 11) and their normal control 

subjects as (12 to 22) is shown in Figure (9.4). Three clusters C
l
• C

2 
and C

3 
were 

identified corresponding to the fusion coefficient of 0.131. The clusters C. and C3 

contained all the HD patients. The normal subjects, with the exception of subject 

18 were included in cluster Cr 
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9.4.4 At-risk or Huntington's Disease 

The dendrogram for the AR of HD patients is shown in Figure (9.S). The AR of 

HD patients were labelled as 1 to 21 and their normal control subjects were 

labelled as 22 to 42. Four clusters Cl , C2, C3 and C4 were identified 

corresponding to the fusion coefficient of O.14S. Seven AR of HD patients were in 

C
3

• The other clusters contained a mixture of AR of HD patients and normal 

subjects. Therefore it was concluded that the 7 AR of HD patients in cluster C3 

had CNV responses which were significantly different from the CNV responses of 

normal subjects and the remaining AR of HD patients. The AR of HD patients in 

cluster C3 were labelled as abnormal AR of HD patients, the remaining AR of HD 

patients were labelled as normal AR of HD patients. 

9.S CNV Amplitude Analysis or the At-Risk or Huntinaton's Disease Patients 

The CNV amplitudes of the AR of HD patients and their normal control subjects 

were analysed using a two tailed t-test in order to determine whether the results 

would agree with the principal component analysis and cluster analysis fIndings. 

In order to reduce the effect of the background EEG, the CNV amplitude is 

generally expressed as a mean value of the samples from a section prior to the 

imperative-stimulus [McCallum and Wcllter, 1968]. Therefore, the CNV 

amplitudes were obtained from preprocessed averaged (over 8 trials) CNV 

waveforms by averaging 16 samples values prior to the imperative stimulus. The 

listing of the program used to obtain the CNV amplitude is given in Appendix (0). 

As the data used in a t-test analysis should have a normal distribution [Kennedy 

and Neville, 1986], the variables were initially examined for statistical 

distribution using the SAS [198S] Univariate procedure. If they did not have a 

normal distribution, they were transformed using the function f(x) I: -lIx. This 

function is effective when there are a number of variables with values much larger 

than the group's mean [Bland, 1987]. 
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The eNV amplitudes of the AR of HD patients were compared with the eNV 

amplitudes of their normal control subjects (refer to Thble (9.6». 

Thble (9.6) The eNV amplitude analysis of the AR of HD 
patients and their normal control subjects. 

Category Number Hean Number Mean CNV T-Te.t 
Age (STD) On Drug Amplitude Re.ult 

at-ri.k of 21 36.43 2 -13.21I1V p<O.01 
HD patient. (17.12) 

df-40 
normal control 21 37.57 0 -18.53I1V 
.ubject. (10.22) 

It was found their amplitudes were significantly different from the eNV 

amplitudes of the normal subjects (p<0.01. df-40). 

The mean eNV amplitudes of the normal and abnormal of AR of HD patient 

group and those of their normal control subjects are shown in Thble (9.7) and 

their t-test analysis results are shown in Thble (9.8). 
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Thble (9.7) The mean eNV amplitudes of the normal and 
abnormal AR of HD patient groups and those of their normal 
control groups. 

Mean Age Number 
Category Number (STD) On Drug 

AR abnormal 7 41.6 1 
of (13.0) 
HD 

normal 14 33.9 1 
patient. (18.8) 

normal for the 40.3 
abnormal AR of 7 (10.0) 0 

control HD patient. 

.ubject. for the normal 36.2 
AR of HD 14 (10.5) 0 
patient. 

Thble (9.8) The eNV amplitude analysis results of 
the normal and abnormal AR of HD patients. 

Category T-Te.t De<Jr ... 

Mean CNV 
Amplitude 

(8TD) 

-6. 23IJV 
(1.15 ) 

-16. 7OIJV 
(5.57) 

-18. 16IJV 
(3.73) 

-18.71IJV 
(5.07) 

Re.ult Of Preedom 

abnormal AR of lID ver.u. p<O.OOl 12 
normal control. 

normal AR of HD ver.u. p-0.328 26 
normal control. 

abnormal AR of HD ver.u. p<O.OOl 19 
normal AR of HD 

The mean CNV amplitude of the abnormal AR of HD patient group was less than 

the mean eNV amplitude of their nonnal control group. It was also less than the 

mean eNV amplitude of the normal AR of HD patient group. T-test analysis 

indicated that the differences between the eNV amplitudes of the abnormal AR of 

HD patients and their normal control subjects were significant at I" level, 

df= 12 (refer to Thble (9.8». The differences between the CNV amplitudes of the 
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abnormal and normal AR of HD patients were also significant (p<O.OOI, df= 19). 

The difference between the mean CNV amplitude of the normal AR of HD patient 

group and their normal control group was not significant. Therefore, the results 

of the CNV amplitude analysis were in agreement with the principal component 

analysis and cluster analysis findings. 

As the HD patients have abnormal CNV waveforms [Jervis et al., 1984] [Jervis et 

et., 1989] and considering the above results it might be possible to suggest that 

the 7 abnormal AR of HD patients would develop HO. 

9.6 Conclusion 

It was possible to identify the majority of schizophrenic, PO and HO patients by 

applying principal component analysis and cluster analysis to the CNV 

waveforms. The application of the method to 21 AR of HD patients resulted in the 

identification of 7 abnormal AR of HD patients. The CNV analysis indicated that 

the CNV amplitude in the 7 abnormal AR of HD patients was significantly 

different from that in normal control subjects. 

The effectiveness of this method in presymptomatically detecting HD patients will 

have to be further evaluated to establish the sensitivity and the reliability of the 

method. 
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Chapter 10 Reaction T'lDles Analys~ or Sch1zophrenlc, Parkinson's Disease, 

Huntington's Disease and At-~k or Huntinaton's Disease Patients 

Reaction time represents the ability of a subject to respond to a stimulus. This 

process may be affected by brain structural abnormalities caused by disorders such 

as schizophrenia, PD and HD. For example, YoJrochi et ale [1985] reported the 

prolongation of reaction times in PD patients. The prolongation of reaction times 

in PO patients has been attributed to the changes in the functional loops of the 

basal ganglia related to motor behaviour [DeLong et al., 1983]. 

Reaction time may also represent the efficiency of a subject in processing 

information. Baribeau-Braun et ale [1983] analysed the reaction times of 

schizophrenic patients in an experiment involving the detection of an occasional 

target tone among frequent standard tones. They reported that the reaction times of 

the schizophrenic patients were longer than the reaction times of their normal 

control subjects. In the same study it was suggested that the prolongation of 

reaction times of schizophrenic patients might be due to the inefficiency of the 

schizophrenic patients in organising and processing information. 

Some studies have indicated that there may be a relationship between CNV 

magnitude and reaction time value. A review some of these findings was 

provided by Thcce [1972]. The general view has been that reaction time tends to 

be shorter following a CNV with large amplitude and longer following a low 

amplitude CNV. 

During the data recording, the reaction times of each subject to 32 stimuli were 

measured. In this chapter the reaction times of schizophrenic, PD, HD and AR of 

HD patients are compared with the reaction times of their normal control subjects. 

The aim was to investigate whether schizophrenia, HD and PD alter the reaction 

time of the patient to the stimulus. This analysis is then extended to consider how 
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the findings relate to the two groups of AR of HD patients identified in chapter 9. 

10.1 The Method or Analysis and Results 

The mean of 32 reaction times (in seconds) for the patients and their normal 

control subjects are shown in 'Thbles (lO.la)-(lO.ld). 

'Thble (lO.la) The averaged 
reaction times of the schizo­
phrenic (Sch.) patients and 
their normal control subjects. 

Subject Sch. Normal 
Number Patient. Control. 

1 0.449 0.187 
2 0.388 0.309 
3 1.845 0.168 
4 0.633 0.206 
5 0.654 0.260 
6 0.285 0.176 
7 0.321 0.273 
8 0.653 0.177 
9 0.261 0.264 

10 0.393 0.179 
11 0.268 0.302 
12 0.477 0.272 
13 0.324 0.201 
14 0.299 0.139 
15 0.329 0.197 
16 0.192 0.156 
17 0.203 0.150 
18 0.630 0.326 
19 0.312 0.175 
20 0.171 0.177 
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Thble (lO.lb) The averaged 
reaction times of the Parkinson t s 
disease (PO) patients 
and their normal control 
subjects. 

Subject PD Normal 
Number Patient. Control. 

1 0.288 0.275 
2 0.397 0.302 
3 0.366 0.201 
4 0.566 0.309 
5 0.261 0.175 
6 0.300 0.206 
7 0.325 0.176 
8 0.319 0.214 
9 0.589 0.272 

10 0.309 0.197 
11 0.347 0.386 
12 0.247 0.212 
13 0.350 0.320 
14 0.271 0.139 
15 0.381 0.156 
16 0.340 0.196 



Thble (IO.le) The averaged 
reaction times of the 
-at-risk- of Huntington's 
disease (AR of HD) patients 
and their normal control 
subjects. 

Subject AR OF HD Normal 
Number Patient. Controh 

1 0.365 0.150 
2 0.256 0.179 
3 0.313 0.221 
4 0.308 0.139 
5 0.261 0.156 
6 0.279 0.566 
7 0.267 0.197 
8 0.265 0.272 
9 0.288 0.275 

10 0.581 0.207 
11 0.244 0.175 
12 0.207 0.177 
13 0.184 0.326 
14 0.204 0.393 
15 0.242 0.168 
16 0.246 0.346 
17 0.305 0.187 
18 0.141 0.273 
19 0.151 0.177 
20 0.244 0.176 
21 0.320 0.386 

Thble (lO.ld) The averaged 
reaction times of the 
Huntington's disease (HD) 
patients and their normal 
control subjects. 

Subject HD Normal 
Number Patient. Control. 

1 0.501 0.309 
2 0.915 0.393 
3 0.731 0.175 
4 0.651 0.181 
5 4.935 0.176 
6 0.826 0.302 
7 1.192 0.320 
8 0.529 0.175 
9 2.495 0.386 

10 0.278 0.214 
11 0.369 0.206 

Thble (10.2) shows the mean reaction time and its standard deviation (STD) for 

each subject category. 
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Thble (10.2) The mean reaction time values and the standard 
deviations (STDs) of the patients and their normal control subjects. 

Me.n Number R •• ction Time. ( •• c.) 
Category Ag. of 

(STO) Subj.ct. Me.n STe 

.chizophrenic 33.60 20 0.454 0.362 
pati.nt. (12.22) (15 mal.) 

normal control 39.50 20 0.215 0.058 
.ubj.ct. (13.66) (15 mal.) 

Parkin.on'. 63.63 16 0.354 0.097 
di ••••• (9.68) (10 mal.) 
p.tients 

norm.l control 50.81 16 0.234 0.069 
.ubj.ct. (11.16) (10 mala) 

.t-rhk of 36.43 21 0.270 0.090 
Huntington'. (17.12 ) (10 mal.) 
di ••••• 
Patient. 

norm.l control 37.57 21 0.245 0.107 
subjects (10.22) (10 mal.) 

Huntington'. 53.73 11 1.220 1.373 
di •••• e (10.97) (6 mal.) 
patient. 

normal control 50.09 11 0.258 0.086 
.ubj.ct. (10.53) (6 mal.) 

Tests were carried out using the SAS [1985] Univariate procedure to examine the 

statistical distribution of the reaction times. The Univariate procedure plotted the 

distribution of each data set together with a cure indicating where normally 

distributed data should fall. It also provided a parameter W which indicated 

whether or not the data had a normal distribution. The value of W was between 0 

and 1. Small values of W indicated that the data were not normally distributed. 

The test for distribution of the data was necessary as the t-test was applicable 

when the reaction times had a normal or nearly normal distribution, though the 

two-tailed t-test used is less affected by this condition compared with the one-
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tailed t-test [Kennedy and Neville, 1986]. The Univariate procedure indicated the 

statistical distributions in all subject categories were not normal and therefore they 

required transformation to the normal distribution. Two transformation 

functions, f(x)=-lIx and f(x)-log.(x) were suitable for this purpose [Bland, 

1987]. They were selected as in each case a few reaction times were 

comparatively much larger than the rest, and these transformation functions reduce 

the large values more than those of central or small values. The distributions of 

each data set after transformation by -l/x and log.(x) were examined. The 

transformation which provided a closer fit to the nonnal distribution was then 

selected. After transformation the distributions in all cases were close to the 

normal distribution. Thble (10.3) indicates the transformation function used for 

each patient category. 

'Thble (10.3) The t-test results for the reaction times of 
the patient categories. 

Category Tran. format ion T-Te.t 
Function fex) Re.ult • 

• chizophrenic patient. p<O.OOl 
v.r.u. normal control -l/x (df-38) 
.ubject. 

Parkin.on'. di.ea.e p<O.OOl 
patient. ver.u. normal 
control .ubject. 

l0ge (X) (df-30) 

at-ri.k of Huntington'. paO.U80 
di •• a.e patient. v.r.u. -l/x (df-40) 
normal control .ubject. 

Huntington'. di •• a.e p<O.OOl 
patient. ver.u. normal -l/x (df-20) 
control .ubject. 

A two-tailed t-test was then applied to the (transformed) reaction times. This test 

was uSed as the aim was to establish whether the mean reaction time of each 

patient category differed significantly from the mean reaction time of the nonnal 
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control category. The t-test was carried out using the SAS [1985] Ttest procedure. 

The results are shown in Thble (10.3). 

In chapter 9 the AR of HD patients were divided into abnormal (n -7) and normal 

(n=14) groups and it was suggested that the 7 abnormal AR of HD patients 

would develop HD. The mean reaction times of the two groups of AR of HD 

patients and their normal control subjects are shown in Thble (10.4). 

Thble (10.4) The mean reaction time values in the normal and 
abnormal at risk of Huntington's disease (AR of HO) patients and 
their normal control subjects (std = standard deviation). 

Mean Number a.action Time. (.ec.) 
category Age of 

(STD, Subject. Mean STD 

normal AR of 33.86 14 0.284 0.103 
HD patient. (18.74) (4 male, 

normal control 36.21 14 0.277 0.116 
.ubject. (10.45) (4 male) 

abnormal AR of 41.57 7 0.243 0.052 
HD patient. (13.02) (6 male) 

normal control 40.29 7 0.182 0.043 
.ubject. (9.96, (6 male) 

The reaction times did not have a normal distribution and therefore they were 

transformed using the function f(x)=-I/x. The t-test results are shown in Thble 

(10.5). 
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Thble (10.5) The t-test results for the reaction times 
of the abnormal and normal AR of HO patients. 

Cat.gory Tran. format ion T-T •• t 
Funetion f(x) R •• ult 

abnormal AR of 
HD pati.nt. -l/x p<O.OS 
ver.u. normal (df-12 ) 
eontrol .ubjeet. 

normal AR 
of HD patient. -l/x p-O.626l 
ver.u. normal (df-26) 
eontrol .ubject. 

10.2 Discussion 

The mean reaction times in descending order of magnitude were: 1.2205 (for HO 

patients), 0.454s (for schizophrenic patients), 0.3545 (for PO patients) and 0.2705 

(for AR of HO patients). 

The mean reaction times of the schizophrenic, PO and HO patient groups were 

significantly different from the mean reaction times of their normal control groups 

(p<O.OOI). 

The mean reaction times of the AR of HD patients were not significantly different 

from the mean reaction times of their normal control subjects. But the mean 

reaction times of the 7 abnormal AR of HO patients were significantly different 

from the. mean reaction times of their normal control subjects (p<0.05, dC-12). 

The mean reaction times in the 14 normal AR of HO patients on the other hand 

were not significantly different from their normal control subjects. 

Although the reaction times of the schizophrenic, PO and HD patients were 

significantly different from the reaction times of normal control groups, the value 
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of the reaction time on its own might not provide an accurate measure for 

identifying the patients. This is because factors not related to the diseases may 

affect its value, ego if a person has been involved for a long period in a task which 

required responding to a stimulus then the reaction time of that person would 

generall y be less than others. 

10.3 Conclusion 

The results in this chapter indicated that the reaction time may well be affected by 

schizophrenia, PD and HD. The reaction time analysis of the normal and 

abnormal AR of HD patients indicated the reaction time was affected in the 

abnormal AR of HD patients. This result was in agreement with the finding of 

chapter 9 which indicated that the eNV amplitude was also affected in that 

category. 

Whether it would be desirable to include the reaction time as one of the 

discriminatory features (described in chapters 7, 8 and 9) for identifying the 

patients requires further investigation. 
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Chapter 11 Comparison or the Methods Used to Identify Schlzophreok, 

Parkinson's Disease and Huntlnaton's Disease patients 

The method which involved application of discrete Fourier transform and 

discriminant analysis was as effective as the neural network method in 

distinguishing the patients from normal control subjects. It also made it possible 

to differentiate between the individuals from one patient category from another. 

The neural network method reduced the complexity of distinguishing between the 

patients from the three categories and their normal control subjects. It also 

reduced the processing time. The leave-one-out method of analysing data used in 

the discriminant analysis method was not implemented when using neural 

networks because neural networks required a much longer time for their training 

phase. 

The method involving the application of principal component analysis and 

clustering was not as effective as the other two methods in identifying the 

schizophrenic, PO and HO patients. But, it made it possible to identify 7 abnormal 

AR of HO patients from 21 AR of HO patients. This method required the least 

processing time compared to the two other methods of patient identification. 

1kking into account the implementation complexity and success rates of each 

method in identifying the patients, it is preferable to use the neural network 

method for the identification of schizophrenic, PO and HD patients. 
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Chapter 12 Further Studies 

As this study was based on a limited number of patients and normal subjects, it 

will be necessary to test the methods on a larger number of individuals in order to 

establish whether they can be used as routine clinical tests for differentiating 

between schizophrenic, PD, HD patients and normal subjects. 

Some of the patients included in this study were on medication related to their 

disorders. Therefore an analysis of the effects of medication on the patient 

identification results should be carried out to determine if the medication had any 

effect on the test results. 

It would be useful to include patients with other disorders, such as manic 

depression, and investigate whether the methods discussed could be used for their 

detection. The CNV responses of two patients with manic depression were 

recorded during the course of this study and a prolonged PINV was observed in 

one of them (see Figure (12.1». 

A follow up of the AR of HD patients is required to establish the effectiveness of 

the principal component analysis and clustering in presymptomatically identifying 

HD patients. As some neural networks such as Kohonen networks [Aleksander and 

Morton, 1990], can operate in an unsupervised learning mode, an investigation 

could be carried out, based on the CNV, to determine the effectiveness of those 

neural networks in presymptomatically detecting HD. 

The application of neural networks could be extended to distinguish between the 

schizophrenic, PD and HD patients. 
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Chapter 13 Conclusion 

An 8-channel instrumentation system suitable for the recording of the contingent 

negative variation (CNV), electrooculogram (EOG), electrocardiogram (ECG) and 

psychogalvanic response (PGR) was designed, constructed and tests showed that it 

met the required specifications. The system was successfully used to record the 

above named signals from 20 schizophrenic patients, 16 Parkinson's disease (PO) 

patients, 11 Huntington's disease (HD) patients, 21 at-risk of HD patients, and 43 

normal control subjects. A feature of this instrumentation system was that it had a 

gain scheduling circuit. This caused the magnitude of the signal recorded from 

each channel to be checked for each sample and thus an appropriate gain which 

reflected the magnitude of the signal for that particular sample to be utilised. The 

gain scheduling was important as the signal of interest (ie. the CNV which has on 

average a magnitude of about -20#, V) is susceptible to contaminations by much 

larger ocular artefact potentials. The ocular artefact potentials can have a 

magnitude of several hundred microvolts. Therefore, the gain scheduling process 

improved the accuracy of digitising the CNV signal. 

Three different methods were successfully employed to differentiate between 

schizophrenic, PO, HD patients and normal subjects. The first method 

involved frequency analysis and discriminant analysis of the CNV waveform. 

It provided the following success rates: 

- All HO patients were successfully distinguished from normal subjects (ie. 

100% success rate). 

- When differentiating between schizophrenic patients and normal subjects, 

all but one schizophrenic patients (ie. 9S~) and all normal subjects (100%) 

were successfully identified. 

- When differentiating between PO patients and normal subjects, IS out of the 
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16 PD patients (93.8%) and 14 out of the 16 matched normal control subjects 

(87.5%) were successfully identified. 

The method of frequency analysis and discriminant analysis of the CNV 

waveform was also effective in differentiating between schizophrenic, HD and 

PD patients. The success rates obtained when differentiating between the 

patients from these three patient categories were always higher than 81 % and 

on average less than the success rates achieved when differentiating between 

the patients and normal subjects. This may suggest that some of the CNV 

abnormalities produced as a result of these disorders may overlap. Generally 

the probability values which indicated to which category a subject belonged 

were not correlated with the severity of the disorders but two schizophrenic 

patients which appeared to have relatively low sum of scores for the 

symptoms related to schizophrenia (their scores for symptoms were 8 and 9) 

did also have a relatively low probabilities of being schizophrenic 

(probabilities of them being schizophrenic were 0.58 and 0.46 respectively). 

The second method of identifying the schizophrenic, PD and HD patients 

from normal subjects was a novel method of extracting CNV features in the 

time domain and using the features in neural networks. During the training 

mode the neural networks always successfully identified all the patients from 

the three categories from normal subjects. The success rates achieved during 

the test mode of the neural networks were: 

- When differentiating between HD patients and normal subjects all HD 

patients (100%) and all normal subjects (100%) were correctly identified. 

- When differentiating between schizophrenic patients and normal subjects all 

but one of the patients (90%) and all the normal subjects (100%) were 
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correctly classified. 

- When differentiating between PO patients and normal subjects, all PO 

patients (100%) and all but one of the normal subjects (93.75%) were 

correctly identified. 

The schizophrenic patient misclassified by the frequency analysis and 

discriminant analysis of the eNV was classified correctly by the neural 

network method, and the schizophrenic patient misclassified by the neural 

network method was classified correctly be the frequency analysis and 

discriminant analysis method. A similar finding was observed when differentiating 

between PO patients and nonnal subjects ie. the PO patient misclassified by the 

neural network method was classified correctly by the frequency analysis and 

discriminant analysis method. These observations suggest that the amalgamation of 

the two techniques may further increase the success rate of identifying the 

patients. 

The third method of identifying the schizophrenic, PO, and HO patients involved 

the application of principal components analysis and cluster analysis to the eNV 

waveforms. The eNV features used in this method of identifying patients were the 

same as those used in neural networks. This method was not as effective as the 

other two methods of identifying the schizophrenic, PO and HO patients. This 

method was also applied to 21 at-risk of HO patients and it resulted in identifying 

7 at-risk of HO patients as abnormal at-risk of HD patients. As it is established 

that the eNV in known HD patients is abnormal (references were given in the 

introduction chapter) therefore it was suggested that these 7 abnormal at-risk of 

HD patients would develop HD. These results then led to analysing the eNV 

amplitude in the 7 abnormal and the remaining 14 at-risk of HO patients. It was 

shown that the eNV amplitude in the 7 abnormal at-risk of HD patients was 

significantly different from those in their normal control subjects (p<O.OOI, 
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df= 12). The CNV amplitude in the remaining 14 at-risk of HD patients was not 

significantly different from the CNV amplitude in normal control subjects. 

The reaction time analysis of the schizophrenic, PD, and HD patients 

indicated that the reaction times in all three patient categories are 

significantly different from the reaction times in their normal control subjects 

and therefore these results indicate that the brain structural abnormalities 

observed in the above named patients can alter the patients' motor response 

to stimuli. The reaction time analysis of the at-risk of the HD patients 

indicated that the reaction time in the 7 abnormal at-risk of HD patients 

(these were identified as abnormal using principal components analysis and 

cluster analysis) is significantly different from the reaction time in normal 

control subjects (p<O.OS, df-12). The reaction time of the remaining 14 at· 

risk of HD patients were not significantly different from the reaction time of 

their normal control subjects. These results were in agreement with the 

results obtained when the CNV amplitude was analysed in the at-risk of HD 

patients. The results obtained involving the application of principal 

components analysis and cluster analysis, and following findings related to the 

CNV amplitude analysis and reaction time analysis in the at-risk of HD 

patients are indicative that the structural brain abnormalities observed in the 

HD patients may start to develop well prior to the onset of the disease causing 

changes in the CNV and reaction time. 

Overall, three different methods of identifying schizophrenic, PD and HD 

patients were successfully implemented during the course of the project. The 

method which involved the use of neural networks was considered to be the 

more suitable for use by neurophysiologists and psychiatrists as its 

implementation does not require a detailed knowledge of signal processing. 
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Since identification of the 7 abnormal at-risk of HD patients, one of the 7 

abnormal at-risk of HD patients has developed HD and non of the 14 normal at­

risk of HD patients have developed HD. 
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Appendices 

Appendix A Listing or Data RecorcJ.in& Programs 

PROGRAM DATA_ACQUISmON (INPUT, OUTPUT, DATA_FILE); 

{Program name = ACQ.PAS 

This p'rogram initialises the DT2805 board used for its programmable gain 
amplIfier and analogue to digital convertor. It then obtains the recording 
parameters. 

The program is linked to the assembly language program SAMPLEl.ASM which 
acqUires the signals from 8 channels and stores them on the hard disk of 
the PC. 

During the execution of this program a menu appears and the operator is 
asked for an entry. The list of options available is described in chapter 4.} 

{global parameters} 

CONST 
{DT2805 board addresses} 
BASE_ADDRESS - S2EC; {base address} 
COMMAND REGISTER - S2ED; {command register address} 
STATUS_ROOISTER - S2ED; {status register address} 
DATA_REGISTER - BASE_ADDRESS; {data register address} 

{Bit position of 01'2805 board status register} 
COMMAND WAIT - $4; {ready bit} 
WRITE wAiT - S2; {data in full bit} 
READ_WAIT - SI; {data out ready bit} 

{PC warning to indicate experiment is over} 
HZ == 200; {frequency of the sound} 
US == 1000; {duration of the sound} 

{cursor initial positions on the VDU of the PC} 
X == 5; {x axis} 
Y = 5; {y axis} 

{----------------------} 

TYPE 
NAME = STRING [12]; 

{-----------------------} 
VAR 

STATUS, TEMP, RESULT, VALUE, TRIAL: INTEGER; 
PRE CNV, CNV, POST CNV : INTEGER; 
ORcf FILE : FILE OF INTEGER; 
CHOCK, OK, EXISTS, TRY_AGAIN, RUN: BOOLEAN; 
DECISION: CHAR; 
DISK FILE, PAT NAME: NAME; - -
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DATA_FILE: TEXT; 
{--.--------------------_.} 
LABEL EXIT; 
{_ .. _._u ___________________ } 

{the external assembly language program definition} 

PROCEDURE SAMPLE (pRE_CNV,CNV,POST_CNV,TRIAL : INTEGER); 
EXTERNAL'SAMPLEl.BIN'; 

{_n._n _____________________ } 

PROCEDURE LEGAL_STATUS (VAR ERROR :BOOLEAN); 

{Check the status register of the DT280S board} 

CONST 

BEGIN 

FATAL_ERROR = $70; {code for examining possible error} 

STATUS: = PORT(STATUS REGISTER]; 
IF Nor «STATUS AND FATAL ERROR) :. 0) TIlEN 
BEGIN -
ERROR: &: FALSE; 
WRITELN ('Fatal error, run aborted.'); 
END 
ELSE ERROR: = TRUE; 

END; {procedure legal status} 

{_.--------------------_.} 

PROCEDURE WAIT_SET (SBIT: INTEGER); 

{Procedure to wait for the specified bitls to be set} 

VAR 

BEGIN 

BIT SET: BOOLEAN; 

BIT SET : = FALSE· - , 
REPEAT 
STATUS:= PORT(STATUS_REGISTER); 
RESULT: = (STATUS AND SBIT); 
IF (RESULT = SBIT) THEN 
BIT SET : -= TRUE; 
uNTIL BIT SET; 

END; {Procedure bit 'Set} 

{-----------------------} 

PROCEDURE WAIT_CLEAR (CBIT : INTEGER); 
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{procedure to wait until the specified bit is cleared} 

VAR 

BEGIN 
BIT CLEAR: == FALSE; 
REPEAT 
STATUS: = PORT[STATUS_REGISTER]; 
RESULT: = (STATUS AND CBIT) XOR CBIT; 
IF (RESULT = CBIT) TIffiN 
BIT CLEAR : = TRUE; 
UNfIL BIT CLEAR; 

END; {procedure walt clear} 

{- -------------} 
PROCEDURE CHECK_ERROR(VAR CHECK: BOOLEAN); 

{procedure to check for error after an operation} 

CONST 

BEGIN 

ERROR_BIT = $80; {O1'2805 board operation check code} 

WAIT CLEAR(WRITE WAIl); 
WAIT:SET(COMMANfi _WAIT); 
STATUS: == PORT[STATUS REGISTER]; 
IF (STATUS AND ERROR_nIT) - 0 THEN 
CHECK: = TRUE 
ELSE CHECK: = FALSE; 

END; {procedure operation check error} 

{_n _______________________ } 

PROCEDURE RESET BOARD; 

{procedure to reset the 01'2805 board} 

CONST 

BEGIN 

CSTOP = $F; {stop command code} 
CCLEAR = $1; {clear command code} 

PORT [COMMAND REGISTER] : = CSTOP; 
TEMP:= PORT [DATA REGISTER]; 
WAIT_CLEAR (WRITEWAIT); 
WAIT SET (COMMANfi WAIT); 
PORTlcOMMAND_REGlSTER] := CCLEAR; 

END; {Procedure reset} 

{-----------------------} 

FUNCTION EXIST (FILE_NAME: NAME) : BOOLEAN; 
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{function to safeguard the fileS on hard disk} 

VAR 

BEGIN 
ASSIGN (OLD FILE, FILE NAME); 
{SI-} {disable error handler}-
RESET (OLD FILE); 
lSI +} {enable error handler} 
EXIST: = (lORESULT -0); {if file exist, exists - true} 

END; {exist function} 

{-----------------------} 
PROCEDURE DELETE_FILE (FILE_NAME: NAME); 

{procedure to delete a file} 

VAR 

BEGIN 

OLD FILE: FILE; 

ASSIGN (OLD FILE, FILE_NAME); 
CLOSE (OLD fILE); 
ERASE (OLD:FILE); 

END; {procedure delete file} 

{-----------------------} 
PROCEDURE USER_INPUT (VAR 

PRE CNV, CNV, POST CNV, TRIAL : INTEGER; 
VARPAT NAME: NAME; 
VAR RU~: BOOLEAN); 

{this procedure asks the user for the recording parameters} 

VAR 

BEGIN 

REPLY, DEL : CHAR; 
READY : BOOLEAN; 

READY:= FALSE; 
CLRSCR; 

REPEAT 
ooroXy (X, Y); 

WRITELN (' DATA RECORDING ROUTINE'); 
ooroXy (X, Y + 3); 
WRITE (' •••••••••••••••••••••••••••••••••••••••• ); 
WRITELN (' ••••••••••••••••••• ); 
ooroXY (X, y +S); 
WRITE ('Please reply to the followings, '); 
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WRITELN ('Enter an integer number :-'); 
REPEAT . 

GaroXY (X, Y + 7); 
WRITE (,Pre-waming-stimulus recording time'); 
WRITE (" Enter -1- to -6- seconds: I); 
READLN (PRE CNV); 

UNTIL (PRE_ CNV > 0) AND (PRE_ CNV < == 6); 

REPEAT 
GaroXY (X,Y+9); 
WRITE ('lSI recording time, I); 
WRITE ('Enter -1- to -3- seconds: I); 
READLN (CNV); 

UNTIL (CNV > 0) AND (CNV < a 3); 

REPEAT 
oaroXY (X, Y + II); 
WRITE (,Post-imperative-stimulus time, I); 
WRITE ('Enter -1- to -12- seconds: I); 
READLN (POST CNV); 

UNTIL (pOST_CNV > 1» AND (POST_CNV < -= 12); 

REPEAT 
oaroXY (X,Y+13); 
WRITE (,Number of trials required, '); 
WRITE ('Enter -1- to -32-: I); 
READLN (TRIAL); 

UNTIL (TRIAL > 0) AND (TRIAL < .. 32); 

GaroXY (X,Y+IS); 
WRITE (' ••••••••••••••••••••••••••••••••••••••• '); 
WRITELN (' •••••••••••••••••• '); 

GaroXY (X,Y+I7); 
WRITELN ('Do you wish to reenter above data '1 I); 
GaroXY (X,Y+19); 
WRITE ('If so type in -Y-, if not type -N- I); 
READLN (REPLY); 

IF (REPLY a 'N') OR (REPLY - In') THEN 
READY: == TRUE; 
IF (REPLY -= lye) OR (REPLY .. lye) TIiEN 
CLRSCR; 

IF (REPLY -= 'N') OR (REPLY .. In') TIiEN 
IF (PRE_ CNV + CNV + POST _CNV) > 12 THEN 
BEGIN 

END; 

CLRSCR; 
READY: == FALSE; 
GaroXY (X, Y-2); 
WRITE ('The CNV paradigm should not exceed'); 
WRITE (' 12 seconds'); 

UNTIL READY -= TRUE; 

CLRSCR; 
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END; 

READY: == FALSE;' 
REPEAT 

GoroXY (X, Y); 

WRITE C········································'); 
WRITELN C·············'); ooroXY (X,Y+2); 
WRITELN CPlease enter the data fue name I); 
WRITE (' in this format: NNNNNNNN.DAT I); 
READLN (PAT_NAME); 

GoroXY (X, Y +5); 
WRITE (' •••••••••••••••••••••••••••••••••••••••• '); 

WRITELN C··············); GoroXY (X,Y+7); 
WRITELN ('Do you wish change the above name 1'); 
WRITE C If no enter eN-, else enter RET key'); 
READLN (REPLy); 
IF (REPLY == 'N') OR (REPLY -= 'n') THEN 
READY: ==TRUE; 

{Check if a file with similar name already exists} 
RUN:== TRUE; 
EXISTS :== EXIST (pAT_NAME); 
IF EXISTS THEN 
BEGIN 

GoroXY (X, Y + 11); 
WRITELN ('Above file already exists I'); 
GoroXY (X,Y+12); 
WRITELN ('Do you wish to delete it "); 
oaroXY (X, Y + 13); 
WRITE (,If so enter _ye , otherwise -N- : I); 
READLN (DEL); 

IF (DEL -= tv') OR (DEL == 'y') THEN 
BEGIN 

END 
ELSE 

WRITELN (,File t ,PAT NAME,' is deleted·); 
DELETE_FILE (pAT_NAME) 

BEGIN 

END; 

GoroXY (X, Y); 
CLRSCR; 
WRITELN ('Run aborted as file exists'); 
RUN:== FALSE; 
END; 

CLRSCR; 
UNTIL READY == TRUE; 

{_n __ .. _____________________ } 
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PROCEDURE SUB_FILE; 

{procedure to form a me containing only a specified trial} 

CONST 

VAR 

BEGIN 

BASE FACTOR III: 4096; {2 to the power 12} 
RANGE = 20; {range of input signals, -10 to + to} 
MAX VOLTAGE III: 10; {maximum input voltage allowed} 
SAMPLE RATE III: 125; {sampling rate} 
MIC SCALE - 200; {microvolt scale} 
MIL:SCALE - 4000; {millivolt scale} 

NOI, N02, NUMBER, AD_GAIN, CHANNEL, TRI_SEL : 
INTEGER; 
FACTOR, RESOLlITION, BI_ VOLT, I, N : REAL; 
DURATION, Nt, N2, TIME: REAL; 
COMP OUTPUT, ELEMENTl, ELEMENT2, DECISION: CHAR; 
OLD fiLE, NEW_FILE: STRING [12]; 
SUB FILE, DATA FILE: TEXT; 
CHECK: BOOLEAN; 

CHECK: = FALSE; 
CLRSCR; 
REPEAT 

GoroXY (X,V); 
WRITELN (' •••••••••••••••••••••••••••••••••• '); 
GoroXY (X,Y+1); 
WRITELN (' Sub_file Routine'); 
GoroXY (X, Y +2); 
WRITELN (' •••••••••••••••••••••••••••••••••• '); 
GoroXY (X, Y +4); 

WRITELN (,Routine to form a sub_file. I); 
GoroXY (X, Y + 5); 
WRITE ('This me will contain the data from '); 
WRITELN ('one trial of the experiment. '); 

GaroXY (X,Y+8); 
WRITELN (,Please enter the followings:'); 
GoroXY (X,Y+lO); 
WRITE ('The main me name : I); 
READLN (OLD_FILE); 
GaroXY (X,Y+l1); 
WRlTE (,The sub me name : '); 
READLN (NEW ~ILE); 
GaroXY (X, Y +12); 
WRITE ('The trial number selected : I); 
READLN (TRI SEL); 
GaroXY (X, Y+ 13); 
WRITE ('The duration of the trial in seconds : '); 
READLN (DURATION); 

GaroXY (X, Y + IS); 
WRlTE (,If vou wish to fe_enter above data, '); 
WRITELN ('tenter ·Y·'); 
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GaroXY (X,Y+16); 
WRITE ('Otherwise enter -N- : '); 
READLN (DECISION); 
IF (DECISION = 'N') OR (DECISION = 'n') THEN 
CHECK: = TRUE; 
CLRSCR; 

UNTIL CHECK = TRUE; 

GaroXY (X, Y); 
WRITELN (' •••••••••••••••••••••• '); 
GaroXY (X,Y+2); 
WRITELN (,Please wait ••••• '); 
GoroXY (X, Y +4); 
WRITELN (' •••••••••••••••••••••• '); 

ASSIGN (DATA FILE, OLD_FILE); 
RESET (DATA_PILE); 
ASSIGN (SUB FILE, NEW_FILE); 
REWRITE (SUB_FILE); 

N:= (TRI SEL -I)· (SAMPLE RATE· DURATION); 
RESOLUTION: = RANGE I BA"SE FAClOR; 
1:-=1; -
WHILE (I-I) < N DO 

BEGIN 
FOR CHANNEL : = 1 10 8 DO 

READ (DATA FILE, COMP OUTPUT, 
ELEMENT I , - -
ELEMENT2); 

1:=1+1; 
END; 

N2 : = SAMPLE RATE· DURATION; 
1 := 0; -
REPEAT 

TIME:- Nil SAMPLE RATE; 
WRITE (SUB FILE, TIME:3:S,' '); 
NI := NI +f; 

FOR CHANNEL: = 1 TO 8 DO 
BEGIN 

READ (DATA FILE, COMP OUTPUT, ELEMENT 1 , 
ELEMmn); -

NOI : == ORD(ELEMENTI); 
N02 : - ORD(ELEMENT2); 
NUMBER:= NOI + (N02· 256); 
FACTOR: - RFSOLUfION • NUMBER; 

CASE ORD (COMP OUTPUT) OF 
0: AD GAIt1:= 1; 
1 : AD-GAIN:- 10; 
2 : AD-GAIN: - 100; 
3 : AD-GAIN: = SOO; 

END; {case} -

BI VOLT: = (FACTOR - MAX VOLTAGE) I 
AD GAIN- -- , 
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IF CHANNEL < 7 TIlEN 
BI VOLT: - BI VOLT· MIC SCALE 
WE - -
BI VOLT: = BI VOLT· MIL SCALE; 
wRITE (SUB_FILE, BI_ VOL'f:6:6, I I); 

END; {for} 
WRITELN (SUB_FILE); 

UNTIL NI = N2; 

CLOSE (DATA FILE); 
CLOSE (SUB_FILE); 

END; {procedure sub_file} 

{_n _____________________ } 

PROCEDURE RESPONSE_TIMES; 

{procedure to display the reaction times in the record} 

CONST 

VAR 

BEGIN 

SAMPLE_RATE - 125; {sample_rate} 

INDEX, TRIAL, NOI, N02, CHANNEL, N: INTEGER; 
TIME, SAMPLES, K, DURATION, AVERAGE RI': REAL; 
FILE_NAME, RESP FILE NAME: STRING (12]; 
DATA FILE, RESPONSE FILE: TEXT; 
ELEMENTl, ELEMENT.[, DECISION, RESPONSE, A : CHAR; 
CHECK: BOOLEAN; 

CHECK: .. FALSE; 
AVERAGE RI' : .. 0; 
CLRSCR; -
REPEAT 

GoroXY (X,¥); 
WRITELN (I Reaction Time Routine'); 
ooroXY (X, y + 3); 
WRITE (I = .... = .. _ -= l1li _ = a __ • _ • ____ •• __ .... ____ a a ____ ,I); 

WRITELN (1----=-_-_-1); 
ooroXY (X, Y +4); 
WRITELN (,Rootine to display the reaction times l

); 

ooroXy (X, Y + 5); 
WRITE (' __ -= = .... = ___ = a .. a ___ • _______ a ... _ .. a aa .. a _a'); 

WRITELN (I.a _____ ._al); 

GoroXY (X, Y + 7); 
WRITE (,Please enter the filename: I); 
READLN (FILE_NAME); 
GoroXY (X, Y +9); 
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WRITE ('The number of trials in the record: '); 
READLN (TRIAL); 
GaroXY (X,Y+ll); 
WRITE ('The trial duration: '); 
READLN (DURATION); 
GaroXY (X, Y + 13); 
WRITE ('For a reaction time me enter -Y-, '); 
WRITE ('otherwise enter -N-: '); 
READLN (RESPONSE); 
IF (RESPONSE - 'Y') OR (RESPONSE - 'y') TIlEN 
BEGIN 

END; 

GaroXY (X,Y+IS); 
WRITE ('The reaction time mename: I); 
READLN (RESP _FILE_NAME); 

GaroXY (X, Y + 17); 
WRITE ('lb re enter the above data, enter -Y-, I); 
WRITE ('otherWise enter -N-: '); 
READLN (DECISION); 
IF (DECISION = 'N') OR (DECISION = In') TIlEN 
CHECK:= TRUE; 
CLRSCR; 

UNTIL CHECK = TRUE; 

IF (RESPONSE" 'Y') OR (RESPONSE = 'y') THEN 
BEGIN 

ASSIGN (RESPONSE FILE, RESP FILE NAME); 
REWRITE (RESpoNSE_FILE); - -

END; 

WRITELN(,Patients reaction times are :'); 
WRITELN; 
WRITELN(' - _ .. - _ .. - - - - .. - - .. _ .. - - - ...... - - -I'); 
WRITELN(, 1iia1 Number I Time (Seconds) I'); 
WRITELN(' .. - - .. - - - - - .. - - - - - - - -1- - - .. - -I'); 
ASSIGN (DATA FILE, FILE NAME); 
RESET (DATA_PILE); -

SAMPLES: = 0; 
{skip the CNV data} 
K : -= (DURATION • SAMPLE RATE • TRIAL); 
REPEAT -

FOR N : .. 1 TO N DO 
READ (DATA FILE, A); 
SAMPLES : -~AMPLES + l; 

UNTIL SAMPLES - K; 

FOR INDEX: =: 1 TO TRIAL DO 
BEGIN 

READ (DATA FILE, ELEMENTl, ELEMENT2); 
NOt: =: ORD('ELEMENTI); 
N02 : -= ORD(ELEMENT2); 
TIME: =: NOl + (NOl • 2S6); 
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TIME : =TIME I 1000; 
AVERAGE_RT : -= AVERAGE_RT + TIME; 

WRITELN(, I ',INDEX:2,' 
,TIME: 1:3,' I'); 

WRITELN(·I-------I·); 

I' , ' 

IF (RESPONSE .. lye) OR (RESPONSE .. 'y') THEN 
WRITELN (RESPONSE_FILE, INDEX:2,' " 

TIME:l:3); 

END; 

AVERAGE RT : = AVERAGE Rr I TRIAL; 
WRITELN; -
WRITELN; 
WRITE (' Average RT based on ',trial,' ','trials is I); 
WRITELN (average rt:S:3); 
CLOSE (DATA FI~); 
IF (RESPONSE = 'Y') OR (RESPONSE -= 'y') THEN 
CLOSE (RESPONSE_FILE); 

END; {procedure response_time} 

{----------------------} 
{main section} 
BEGIN 

TRY AGAIN: = FALSE; 
REPnAT 

CLRSCR; 
GoroXY (X,V); 
WRITELN (' DATA ACQUISmON PROGRAM'); 
GoroXY (X,Y+l); 
WRITELN(' -= - -= .. = -= - - -= -= - - l1li - - -= l1li .. = = = -= '); 
ooroXY (X,Y+4); 
WRITE (' •••••••••••••••••••••••••••••••••••• '); 
WRITELN (' •••••••••••••••••• ); 
GoroXY (X,Y+S); 
WRITE ('. '); 
WRITELN (' • '); 
GoroXY (X, Y+6); 
WRITE ('. Please enter: wFw to FAMIUARISE'); 
WRITELN (' • '); 
GoroXY (X,Y+7); 
WRITE ('. wpw to PRACTICE the '); 
WRITELN ('experiment .'); 
GaroXY (X, Y + 8); 
WRITE ('. wRw to RECORD data I); 
WRITELN (' .'); 
oaroXY (X,Y+9); 
WRITE ('. wSw to form a SUB_FILE'); 
WRITELN (' form main file .'); 
GaroXY (X, Y + 10); 
WRITE ('. wTw to display the'); 
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,,' 

WRITELN (' . response TIMES .'); 
GaroXY (X, y + 11); 
WRITE ('. 
WRITELN (' 
GaroXY (X, Y + 12); 
WRITE ('. 
WRITELN (' 
GaroXY (X, Y + 13); 

'); 
.'); 

WRITE (' •••••••••••••••••••••••••••••••••••••••• '); 
WRITELN (' ••••••••••••••••• '); 

GaroXY (X, Y+16); 
WRITE (,Decision please > '); 
READ (DECISION); 

IF (DECISION - 'F') OR (DECISION a 'r) 
OR (DECISION a 'P') OR (DECISION = 'p') THEN 

BEGIN 
{check for legal status register condition} 
LEGAL STATUS (OK); 
IF Nor-OK THEN 
GaroEXIT; 

{reset the DT280S board} 
RESET_BOARD; 

CLRSCR; 
GaroXY (X+3,Y+4); 
WRITELN (' •••••••••••••••• '); 
GoroXY (X+3,Y+6); 
WRITELN(, Please wait ••••• '); 
GoroXY (X+3,Y+8); 
WRITELN (' •••••••••••••••• '); 

IF (DECISION = 'F') OR (DECISION 1:1 'r) THEN 
SAMPLE (1, 1, 10,5); 

IF (DECISION - 'P') OR (DECISION - 'p') THEN 
SAMPLE (1, 1, 10, 15); 

CLRSCR; 
GaroXY (X +5, Y); 
WRITELN (' ••••••••••••••••••• '); 
GoroXY (X+5, Y+2); 

WRITELN(,The end of practice '); 
GoroXY (X+5,Y+4); 
WRITELN (' ••••••••••••••••••• '); 

TEMP:- 0; 
REPEAT 

SOUND (HZ); 
DELAY (US); 
NOSOUND; 
TEMP:- TEMP + 1; 

UNflL TEMP .. 2; 
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{delete the teSt me} 
DISK FILE:- ·CNVAMP.DAT·; 
DELETE FILE (DISK FILE); - -

END; {if} 

IF (DECISION = 'R') OR (DECISION = 'r') TIlEN 

BEGIN 
{check for legal status register condition} 
LEGAL STATUS(OK); 
IF Nor-OK TIIEN 
GoroEXIT; 

{reset the DT280S board} 
RESET_BOARD; 

{get user input} 
USER INPUT (PRE CNV, CNV, POST CNV, TRIAL, 

-PAT NAME, RUN); -
IF RUN - "J:ALSE THEN 
GaroEXIT; 

CLRSCR; 
GaroXY (X+3,Y+4); 
WRITE (' •••••••••••••••••••••••••••••••••••• ); 
WRITELN (' •••••••••••• ); 
GoroXY (X+3,Y+6); 
WRITE ('Signal is being recorded. '); 
WRITELNC Please wait ••••• '); 
GaroXY (X + 3, Y + 8); 
WRITE (' •••••••••••••••••••••••••••••••••• ); 

WRITELN C············); {call assembly language procedure} 
SAMPLE (PRE_CNV, CNV, POST_CNV, TRIAL); 

CLRSCR; 
GoroXY (X +5, y): 
WRITELN (' •••••••••••••••••••••••••• '); 
GoroXY (X +5, Y +2); 

WRITELNCThe signal is recorded '); 
GoroXY (X+5,Y+4); 
WRITELN (' ••••••••••••••••••••••••••• ); 

SOUND (HZ); 
DELAY (US); 
NOSOUND; 

{rename the me} 
DISK FILE: - 'CNVAMP.DAT'; 
ASS ION (ORG FILE, DISK FILE); 
RENAME (ORO_FILE, PAT:NAME); 

END; {recording} 
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EXIT: 

END. 

IF (DECISION == IS"~) OR (DECISION == IS') THEN 
SUB FILE; 

IF (DECISION II: 'T') OR (DECISION" It') THEN 
RESPONSE TIMES; 

IF (DECISION .. 'Q') OR (DECISION - 'q') THEN 
GaroEXIT; 
WRITELN; 
WRITE ('If you wish another go, enter -y .. ); 
WRITE (' otherwise enter -N- : > I); 
READLN (DECISION); 
IF (DECISION" 'N') OR (DECISION" In') TIlEN 
TRY_AGAIN:- TRUE; 

UNTIL TRY_AGAIN -TRUE; 
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Appendix A Continued 

TITLE SAMPLEI 

Procedure to sample the signals and to store the data 
on the hard disk of the PC. The signals are acquired 
from 8-analogue channels. The output of the multiplexer 
is connected to a window detector and a programmable 
gain amplifier (PGA). The function of the window 
detector is to determine the gain setting for the PGA. 
The output of the PGA is connected to a 12-bit analogue 
to digital converter (AID). The PGA and the AID are on 
the Uf2805 board. 

The timing and sampling signals are provided by two 
programmable interval timers. The dIgital interfacing 
IS achieved using a programmable parallel port device. 
Assembly language: 80286 
Program name : SAMPLE1.ASM 
This program is called from ACQ.PAS Pascal Program. 

Registers used : AX, BX, CX, DX, CS, DS, DI, SI and BP. 
Ports used : The digital ports A, B, and C of 8255A-5. 

Parameters received: Number of trials and CNV paradigm. 
Parameters returned: None. 

, .. 

. , ........... . 
; Constants • . , ........... . 
; DT2805 board addresses 
DTBADDR EQU 02ECH 
DATARG EQU DTBADDR 
STCDRG EQU DTBADDR + 1 

ADMODE EQU OCH 

; DT2805 board status register bit position 
DOUTRDY EQU OlH 
DINFULL EQU 02H 
RDYBIT EQU 04H 

; DT2805 multiplexing channel 
CHANNEL EQU OOH 

; 8259 interrupt controllers I I port addresses 
; Controller II 
INTAOO 
INTAOI 
EOI 

EQU 20H 
EQU 21H 
EQU 20H 

IS 

;Base address 
;Data register 
;StatuslCommand register 

;AID command mode 

;Data out ready bit 
; Data in full blt 
;Ready bit 

;Channel zero 

;End of interrupt command 



; 8254 counter/timer #1 addreSses, external 
COUNTRO EQU 300H ;Counter 0 
COUNTRI EQU 302H ;Counter 1 
COUNTR2 EQU 304H ;Counter 2 
CONTREG EQU 306H ;Common control register 

; 8253 counter/timer #2 address, external 
PfM2CRO EQU 310H ;Counter 0 
PTM2CRI EQU 312H ;Counter 1 
PfM2CR2 EQU 314H ;Counter 2 
PfM2CRG EQU 316H ;Common control register 

; 8255A_S programmable parallel ports 
PORrA EQU 308H ;Port A 
PORm EQU 30AH ;Port B 
PORfC EQU 30CH ;Port C 
CONREG EQU 30EH ;Control register 

; Maximum number of input channels 
MAXCHN EQU 08H ;8 channel differential 

; Codes for DOS function calls 
CREFILE EQU 3CH 
FlLEATR EQU OOH 
WRCODE EQU 40H 
CLOSFIL EQU 3EH 
OPENFIL EQU 3DH 
ACCODE EQU 82H 

; Create file code 
;File attribute code 
;Write code 
; Close file code 
;Open flIe code 
;Access me code 

; Addresses where the AID output is stored 
ADSEG EQU 3000H ; Segment 
ADOFFST EQU 000IH ; Offset 
RESPTME EQU 65400 ;Reaction time location 

EOI 
SAMPKf 

. , 
CODE 

EQU 020H 
EQU 125 

Code Segment 

SEGMENT BYTE 
ASSUME CS:CODE 

;End of interrupt command 
;Sampling rate 

;Initialise code seg. reg. 

; PROCEDURE SAMPLE (pAGES: INTEGER); 

SAMPLE PROC 
PUSH 
MOV 

NEAR 
BP 
BP,SP 

; Get the starting address of the procedure 

16 

;Define the procedure 
;Save bp register 
;Initialise bp with sp 



STAKI': 

. , .••......••• 
; Vclriables • . 

PUSH 
CALL 
POP 
SUB 
JMP 

AX 
. STAKI' 
AX 
AX,7 
CONT 

, .••....••... 
CNVFILE 
NETPATH 
GCODE 
CHNNO 
FLAG 

DB ·C:CNVAMP.DAT· ,0 
DB 'C:CNVAMP.DAT' ,0 
DB ? 
DB ? 
DB? 

STAKI'AD DW? 
RANDNO DW? 
FILEHDL DW? 
TRIAL DW? 
TRIALST DW? 
POS1CNV DW? 
CNV DW? 
PRECNV OW? 
SAMPNO OW? 
DlREG OW? 
RESPTR OW? 
BYTESUM DW? 

;Save ax reg. 
;Put IP on stack 
;Transfer IP into ax 
;Get proc. starting addr. 
;Skip the variable section 

;CNV file name 
;CNV file network path 
;Gain code 
;Channel number 
;Error flag 

;Proc. starting address 
;Random no. for m 
;File handle of file 
;Number of trials 
;Trials recorded 
;Post-imperative-sti. time 
;ISI time 
;Pre-waming-sti. time 
;Sample number 
;Byte counter 
;Reaction time byte pointer 
;Total no. of bytes/trial 

; Save the starting addr. of proc. &. the contents of regs. 
CONT: MOV STARfAD,AX ;Starting addr. of proc. 

PUSH BX ;Registers used 
PUSH CX 
PUSH DX 
PUSH DS 
PUSH DI 
PUSH SI 

JMP ENDISR ;00 to start of proc. 
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'====================================== , . 

; Sampling interrupt service routine 
ISRSAM PROC FAR 

· 

ell 
PUSH DX 
PUSH BX 
PUSH DX 
MOV AL,EOI 
OUT INTAOO,AL 

MOV CHNNO,O 
ADD SAMPNO, 1 

MOV DI,DIREG 

;Save the registers 

;Enable interrupt 

;Set the staring channel 
;Update sample number 

;lnitialise byte pointer 
, ...............................••...........•.•........• 

; Switch the multiplexer to the required channel 
; (The multiplexer address lines are connected to 
; port A: bits 0, 1, 2 & 3 ) 
NEXTCH MOV DX,POIUA 

IN AL,DX 
AND AL,11110000B 
OR AL,CHNNO 
OUT DX,AL 

· 

; Get port A address 
;Read port A 
;Set 1st 4 bits to 0 
;Set the channel number 
;Write the bit pattern 

, .•....•...•......•........••••......•....•••......••••.• 

; Provide delay for the window detector to settle 
MOV BL,3 

DELAY: DEC BL 
JNZ DELAY 

· , ....................................................... . 
; Read the window detector output 
; (the window detector output is connected to port B 
; bits 0, 1, & 2) 

MOV DX,POIUB ;Get port B address 
IN AL,DX ;Read port B 
AND AL,OOOOO111B ;Mask out unwanted bits 

· , ..........•.....•....................••....•...........• 

; Determine & store gain code from the window detector 
MOV BL,O ;Determine gain code 
SHR AL,1 
JNC ADDI 
INC BL 

ADDl: SHR AL,1 
ADC AL,BL 

· 

MOV ES:[DI],AL 
MOV AH,AL 

INC DI 

;Store the gain code 

;Update byte counter 

, •.••.•.••.••••..........•••............••...•......•...• 
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; Set Uf2805 board AID parameters 
; AID mode 

MOV DX,STCDRG 
WAITAD: IN AL,DX 

AND AL,RDYBIT 

; Gain code 
WAITG: 

lZ WAITAD 
MOV AL,ADMODE 
OUT DX,AL 

IN AL,DX 
AND AL,DINFUU. 
INZ WAITG 

MOV DX,DATARO 
MOV AL,ah 
OUT DX,AL 

; Channel number 
MOV X,STCDRG 

AL,DX 
AL,DINFULL 
WAITC 

WAITC: IN 

. 

AND 
INZ 

MOV DX,DATARG 
MOV AL,CHANNEL 
OUT DX,AL 

;Get status reg. address 
;Repeat: read status reg. 
; Check the ready bit 
;Until ready bit is high 
;Get command mode 
;Output to command reg. 

;Repeat : read status reg. 
; Check data in full bit 
;Until data in full is low 

;Get data reg. address 
; Get the gain code 
;Write it to data reg. 

;Get statu~. addr. 
; Repeat : status reg. 
;Check data in full bit 
;Until data in full is low 

; Get data reg. address 
;Get channel number 
;Write it to data reg . 

, ................•.......•....•................•••••..•.. 

; Read &. store AID output 
; Low byte 

WAITL: 

; High byte 

WAlTH: 

MOV 
I IN 

AND 
lZ 
MOV 
IN 
MOV 

OX , STCDRG 
AL,DX 
AL,DOUTRD 
WAITL 
DX,DATARG 
AL,DX 
AH,AL 

MOV DX,STCDRG 
IN AL,DX 
AND AL,DOUTRDY 
JZ WAlTH 
MOV DX,DATARG 
IN AL,DX 
XCHGAH,AL 

; Store the AID output 

. 

MOV ES:[DI],AL 
INC DI 
MOV ES:[DI],AH 
INC DI 

;Get status reg. address 
;Repeat : read status reg. 
; Check data out ready bit 
;Until data out ready high 
;Get data register address 
;Read low byte of AID 
;Store the value in AH reg. 

;Get statu~. address 
;Repeat : status reg. 
; Check data out ready. bit 
;Until data out ready high 
; Get data register address 
;Read high byte of AID 
;Store high byte in AH reg. 

;Store the low byte 

;Store the high byte 

, ...............•......•................................• 
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; Switch multiplexer to next channel 
INC CHNNO 
MOY DX,PORTA 
IN AL,DX 
AND AL, 1111 OOOOB 
OR AL,CHNNO 
OUT DX,AL 

· 

;Update channel number 
;Get part A address 
;Read port A 
;Mask 4 LSBs 
;Set the channel number 
;Write the bit pattern 

, ••••••••••••••••••••••••••••••••••••••••••••••••••••••• e 

; Provide delay for the window detector to settle 
MOV BL,3 

DELAY2: DE BL 
INZ DELAY2 

· , ....•.......•.......•.........•••••••.••.•••••••••••.••. 
; Read window detector 

MOY DX,PORTB 
IN AL,DX 
AND AL,OOOOOlllB 

· 

; Get port B address 
;Read port B 
;Mask unwanted bits 

, ...............••......•.......•••.••..•....•...••..•••• 
; Determine and store the gain code 

MOV BL,O 
SHR AL,l 
JNC ADD2 
INC BL 

ADD2: SHR AL,1 
ADC AL,BL 

· 

MOV ES:[DI],AL 
MOV AH,AL 
INC DI 

;Store the gain code 

;Update byte counter 

, ...............................••...•................•.. 

; Set DT280S board parameters 
; AID mode 

WAITA2: 

; Gain code 
WAITG2: 

MOV 
IN 
AND 
lZ 
MOV 
OUT 

IN 
AND 
INZ 
MOV 
MOV 
OUT 

;Channel number 

DX,STCDRG 
AL,DX 
AL,RDYBIT 
WAITA2 
AL,ADMODE 
DX,AL 

AL,DX 
AL,DINFULL 
WAITG2 
DX,DATARG 
ALtAH 
DX,AL 

MOV DX,STCDRG 
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;Get status reg. address 
;Repeat : read status reg. 
; Check ready bit 
;Until ready bit is high 
;Get command mode 
;Output to command reg. 

;Repeat : read status reg. 
; Check data in full bit 
; Until it is low 
;Get data reg. address 
;Get gain code 
;Write to data register 

;Get status reg. address 



WAITC2: IN AL,DX ;Repeat : read status reg. 
AND AL,DINFULL ; Check data in full bit 
JNZ WAITC2 ;Until it is low 
MOV DX,DATARG ; Get data reg. address 
MOV AL,CHANNEL ;Get channel number 
OUT DX,AL ;Write it into data reg. 

· , ........................................•....••..•••.••. 

;Read & store AID output 
; Low byte 

MOV DX,STCDRG ;Get status reg. address 
WAITL2: IN AL,DX ;Repeat: read status reg. 

AND AL,DOUTRDY ; Check data out ready bit 
JZ WAITL2 ;Until it is high 
MOV DX,DATARG ; Get data reg. address 
IN AL,DX ;Read low byte of AID 
MOV AH,AL ;Store it in AH register 

; High byte 
MOV DX,STCDRG ;Get status reg. address 

WAITH2: IN AL,DX ; Repeat : read status reg. 
AND AL,DOUTRDY ; Check data out ready bit 
JZ WAITHl ;Until it is hi~h 
MOV DX,DATARG ; Get data regIster address 
IN AL,DX ;Read hi,h byte of AID 
XCH AH,AL ;Store it m AH register 

; Store result 
MOV ES:[DI),AL ;Store the low byte 
INC DI 
MOV ES:[DI],AH ;Store the high byte 
INC DI 
INC CHNNO 

· , .....•.•.•......................••...••...••••••...••.•• 

; Next channel 
;- .. 
; Switch multiplexer 

MOV 
IN 
AND 
OR 
OUT 

· 

DX,PORI'A 
AL,DX 
AL,11110000B 
AL,CHNNO 
DX,AL 

;Get port A address 
;Read port A 
;Set 4 LSBs to zero 
;Set the channel number 
;Write the bit pattern 

, ..................................•......•......•.......• 

; Provide delay for the window detector to settle 
MOV BL,3 

DELAY3: DEC BL 
JNZ DELAY3 

· , ....................................................... . 
; Read window detector 

MOV DX,PORrB 
IN AL,DX 
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;Get port B address 
;Read port B 



AND AL,OOOOO111B ;Mask unwanted bits 

· , .•......••.....•.•...........••.••...•.•••..••••...•.••• · , 
; Determine and store the gain code 

MOV BL,O 
SHR AL,l 
INC ADD3 
INC BL 

ADD3: SHR AL,l 
ADC AL,BL 
MOV ES:[DI],AL ;Store the gain code 
MOV AH,AL 
INC DI ;Update byte counter 

· , ...........................................••••.•..•••.• 

; Set DT2805 board AID parameters 
; AID mode 

DX,STCDRG ; Get status register addr. MOV 
WAlTA3: IN AL,DX ;Repeat: read status reg. 

AND AL,RDYBIT ; Check the ready bit 
JZ WAlTA3 ;Until it is high 
MOV AL,ADMODE ;Get command mode 
OUT DX,AL ;Output it to command reg. 

; Gain code 
WAITG3: IN AL,DX ;Repeat: read status reg. 

AND AL,DINFULL ; Check data in full bit 
INZ WAlTG3 ;Until it is low 
MOV DX,DATARG ;Get data register addr. 
MOV AL,AH ; Get the gain code 
OUT DX,AL ; Write it to data register 

; Channel number 
MOV DX,STCDRG ;Get statu~ister addr. 

WAITC3: IN AL,DX ;Repeat : status reg. 
AND AL,DINFULL ; Check data in full bit 
JNZ WAITC3 ;Until it is low 
MOV DX,DATARG ; Get data register addr. 
MOV AL,CHANNEL ;Get channel number 
OUT DX,AL ;Write it into data reg. 

· , ...................................................•.... 

; Read and store AID output 
; Low byte 

WAITL3: 

; High byte 

MOV 
IN 
AND 
lZ 
MOV 
IN 
MOV 

DX,STCDRG 
AL,DX 
AL,DOUTRDY 
WAITL3 
DX,DATARG 
AL,DX 
AH,AL 

MOV DX,STCDRG 

22 

;Get statu~5ister addr. 
;Repeat : status reg. 
; Check data out ready bit 
;Until it is hi~h 
; Get data regIster addr. 
;Read low byte of AID 
;Store the value in AH reg. 

; Get status register addr. 



WAITH3: 

; Store result 

· 

IN AL,DX 
AND AL,DOUI'RDY 
JZ WAITH3 
MOV DX,DATARG 
IN AL,DX 
XCHGAH,AL 

MOV FS:[DI],AL 
INC DI 
MOV FS:[DI],AH 
INC DI 
INC CHNNO 

;Repeat : read status reg. 
; Check data out ready bit 
;Until it is hi,h . 
; Get data regIster addr. 
;Read high byte of AID 
;Store high byte in AH reg. 

;Store the low byte 

;Store the high byte 

, ...............•................••.•••••••..•••......... 

; Next channel 
; .. 
; Switch multiplexer to next channel 

MOV DX,POKfA 
IN AL,DX 
AND AL, 1111 OOOOB 
OR AL,CHNNO 
OUT DX,AL 

· 

; Get port A address 
;Read port A 
;Mask 4 LSBs 
;Set the channel number 
; Write the bit pattern 

, ...•••••................••••.......•.•••••.•....••.•••.. 

; Provide delay for the window detector to settle 
MOV BL,3 

DELAY4: DEC BL 
JNZ DELAY4 

· , ....................................................... . 
; Read window detector output 

MOV DX,POKfB 
IN AL,DX 
AND AL,OOOOO1118 

· 

; Get port B address 
;Read port B 
;Mask out unwanted bits 

, ....................................................... . 

; Determine the store the gain code 
MOV BL,O 
SHR AL,l 
JNC ADD4 
INC BL 

ADD4: SHR AL,l 

· 

ADC AL,BL 
MOV FS:[DI],AL 
MOV AH,AL 
INC DI 

;Store the gain code 

;Update byte counter 

, .......................................•................ 

; Set DT280S AID board parameters 
; AID mode 

MOV DX,STCDRG 
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; Get status register addr. 



WAITA4: IN AL,DX ;Repeat: read status reg. 
AND AL,RDYBIT ; Check the ready bit 
JZ WAITA4 ;Until ready bit is high 
MOV AL,ADMODE ;Get command mode 
OUT DX,AL ;Output it to command reg. 

; Gain code 
;Repeat : read status reg. WAITG4: IN AL,DX 

AND AL,DINFULL ; Check data in full bit 
JNZ WAITG4 ;Until it is low 
MOV DX,DATARG ; Get data register addr. 
MOV AL,AH ; Get the gain code 
OUT DX,AL ; Write it to data register 

; Channel number 
MOV DX,SlCDRG ;Get status register addr. 

WAITC4: IN AL,DX ;Repeat : read status reg. 
AND AL,DINFULL ; Check data in full bit 
JNZ WAITC4 ;Until it is low 
MOV DX,DATARG ;Get data register addr. 
MOV AL,CHANNEL ;Get channel number 
OUT DX,AL ;Write it into data reg. 

. , ....................................•••.••..•......•...• 

; Read & store AID output 
; Low byte 

WAITIA: 

; High byte 

WAITH4: 

MOV 
IN 
AND 
JZ 
MOV 
IN 
MOV 

DX,SlCDRG 
AL,DX 
AL,DOUfRDY 
WAITIA 
DX,DATARG 
AL,DX 
AH,AL 

MOV DX,SlCDRG 
IN AL,DX 
AND AL,DOUTRDY 
JZ WAITH4 
MOV DX,DATARG 
IN AL,DX 
XCHGAH,AL 

; Store AID output 

. 

MOV F.S:[DI],AL 
INC DI 
MOV ES:[DI],AH 
INC DI 
INC CHNNO 

;Get status register addr. 
;Repeat : read status reg. 
; Check data out ready bit 
;Until it is hi~h 
;Get data regIster address 
;Read low byte of AID 
;Store it in AH register 

;Get status register addr. 
;Repeat : read status reg. 
; Check data out ready bit 
; Until it is hi~h 
; Get data regIster addr. 
;Read hi~h byte of AID 
;Store it In AH register 

;Store the low byte 

;Store the high byte 

, .................•...................................... 

CMP CHNNO,MAXCHN ;If channel no < 8 then 
JE ENDINT ;Read next channel 
JMP NEXTCH 
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ENDINf: 

ISRSAM 

MOV DIREG,DI 
POP DX 
POP BX 
POP AX 
IRET 

ENDP 

jRestore registers 

;Return from interrupt 

.=============---=---===--=-=========== , 

j Initialise 82SSA-S PPI & disable interrupts 
; Initialise PPI for ports A:OIP, B:IIP and C:OIP-IIP 
ENDISR: MOV AX,CS 

MOV DS,AX 
MOV DX,eONREG 
MOV AL,82H 
OUT DX,AL 

; Disable interrupts 
eu 
MOV 
IN 
JMP 
OR 
OUT 
JMP 

DX,PORI'A 
AL,DX 
$+2 
AL,OOO 1 OOOOB 
DX,AL 
$+2 

;Get PPI cont. reg. addr. 
;Get control reg. value 
;Output bit pattern 

;Disable interrupt 

jSet sampling enable high 

;====================================== 

; Store the ISR address at the interrupt vectors 
PUSH DS jSave DS reg. 
MOV AX,OO ;Set DS to zero 
MOV DS,AX 

; Sampling ISR vectors 
; (For sampling ISR, hardware interrupt IRQS is used) 

MOV BX,36H ;CS ofISR at vector 36H 
MOV WORD PTR [BX],CS 
MOV BX,34H ;Offset at vector 34H 
MOV DX,STARI'AD 
ADD DX,OFFSET ISRSAM 
MOV WORD PTR [BX],DX 

pop DS 
STI 

;Restore DS 

·================~============a==_==== , 

; Initialise the interrupt controller #1 
MOV AL,llH 

; Master with icw4 
OUT INfAOO,AL 

2S 

;ICWl, edge trigger, -



JMP $+2 . 
MOY AL,8 
OUT INTAOl,AL 

JMP $+2 
MOV AL,4 

; Master controller level 2 
OUT INTAOt,AL 

JMP $+2 
MOV AL,t 
OUT INTAOt,AL 

JMP $+2 
IN AL,INTAOI 

; Mask register imr contents 
AND AL,llOl1l1tB 
OUT INTA01,AL 

;Wclit state for i/o 
;ICW2, interrupt type 2 

;Wclit state for i/o 
;ICW3, -

;Wclit state for i/o 
;ICW4, master, 80286 mode 

;Wclit state for i/o 
;Get interrupt 

;Fnable interrupt levelS 
;Put new bit pattern in imr . 

. ===================================== , 

;Initialise the program variables 
MOY SI,RESPTME 
MOY RESPTR,SI 
MOY DI,ADOFFST 
MOY DIREG,DI 

MOY SAMPNO,O 
MOY CHNNO,O 
MOV AX,ADSEG 
MOY ES,AX 

MOV AX,[BP+4] 
MOV TRIAL,AX 
MOV TRIALST,AX 

; Determine sample number 
MOY AX,[BP+6] 
MOY BX,SAMPRr 
MUL BX 
MOY POSTCNV,AX 

MOV AX,[BP+8] 
MOV BX,SAMPRr 
MUL BX 
MOY CNV,AX 

MOV AX,[BP+ to] 
MOV BX,SAMPRr 
MUL BX 
MOV PRECNV,AX 

MOY AX,PRECNV 
ADD AX,CNV 
MOV CNV,AX 
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;SI reg. == 1 st Rr location 

;DI reg. == 1st CNV ampl. 

;Initialise sample number 
;Initialise channel number 
;Initialise es register 

;Get trial number 
;Record trial number 

;Get post-imp.-sti. time 
;Sampling freq == 125 
;AX:- AX· BX 
;Post-imp.-sti. sam. no. 

;Get lSI time 

;ISI sample no. 

;Get pre-war.-sti. time 

;Pre-war.-sti. sam. no. 

;Adjust pre-war.-sti. 



MOV AX,CNv 
ADD AX,POSTCNV 
MOV POSTCNV,AX 

;Adjust post-imp.-sti. 

e===============_=a=================== , 

; Determine total number of bytes I trial 
MOV AX,POSTCNV 
MOV BX,24 

; (8-channel • 3 bytes I sample I::: 24) 
MUL BX 

; (Total bytes I trial = total sample • 24) 
MOV BYTESUM,AX 

;Add to post-imp. sam. no. 

;Store the result 

-===================================== , 

; Create CNV file on hard disk 
MOV AX,CS ;Initialise ds reg. 
MOV DS,AX 

MOV DX,STARI'AD ;Get proc. start addr. 
ADD DX,OFFSET CNVFILE ;Initialise dx reg. 
MOV AH,CREFILE ;Ah reg. = create code 
MOV CX,FILEATR ;Cx reg. = file attribute 
INT 21H ;Call dos function 

.===================================== , 

; Open the CNV flle created 
MOV DX,STARI'AD ;Get proc. starting addr. 
ADD DX,OFFSET NETPATH ;Initialise dx reg. 

MOV AH,OPENFIL 
MOV AL,ACCODE 
INT 2lH 
MOV FILEHDL,AX 

; Get open file code 
;Al reg. = access code 
; Call dos function 
;Store flle handle 

;===================================== 

; Initialise counters #0 and #2 
; Counter #0 
; (This counter is used to divide the 1.SMHz clock signal 
; by ISOO) 

MOV AL,OOIIOl10B ;Set counter 0 cont. reg. 
MOV DX,CONTREG ;Get control reg. address 
our DX,AL ;Write bit pattern 

MOV AL, 11 0 III OOB ;Set counter 0 to ISOO 
; (ISOO = OSDCH) 

MOV DX,COUNTRO ; Get counter 0 address 
our DX,AL ; Write the low byte 
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IMP $+2 
MOY AL,OOOOOlOlB 
OUT DX,AL ;Write the high byte 

• COUNTER #2 
; (This counter is initialised to provide the sampling 

signal, initial counter value 12000, 2EEOH) 

MOV AL,lOllOllOB 
MOV DX,CONTREG 
OUT DX,AL 
MOV AL,l1100000B 
MOV DX,COUNTR2 
OUT DX,AL 
IMP $+2 
MOV AL,00101110B 
OUT DX,AL 

;Set counter2 control reg. 
;Get control reg. address 
; Write bit pattern 
;Write counter LSB 

; Write counter MSB 

.===================================== , 

; Push_button error detection initialisation routine 
REPEAT: MOY DX,PORI'C ;Get port C address 

IN AL,DX ;Read port C 
IMP $+2 
AND AL,llllllOlB 

; Set error detector circuit output low 
OUT DX,AL 
IMP $+2 
IMP $+2 
IMP $+2 
IMP $+2 
MOV DX,PORI'C 

; Enable the error detector circuit 
IN AL,DX 
OR AL,OOOOOOIOB 
OUT DX,AL 
IMP $+2 
MOV FLAG,O ;Clear error det. flag 

; Generate a random number. 
; The number is produced by reading the two l.s.b.s of the 
; system clock then adding one to it and multiplying the 
; result by 100, providing 100 to 400. 

MOY AH,OO ;Prepare ah register 
INT lAH ;Call bios to read clock 

; Low byte of the clock output is in dx register 
MOY AX,DX 
AND AL,OOOOOO11B ;Mask out unwanted bits 
ADD AL,1 ;Add one to the result 
MOV AH,oo ;Reset AH reg. 
MOY BX,loo 
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MUL BX ;AX:= AX *BX 
MOY RANDNO,AX ;Save the number generated 

;===================================== 

; Initialise 8253, PTM #2 counter #0. 
; This counter is used for reaction time measurement 
; Its gate is connected to tone generator circuit. 

MOV AL,OOllOOOOB ;CTRO, mode 0, 16-bit 
MOV DX,PTM2CRG ;Get control reg. address 
OUT DX,AL ; Write the bit pattern 

; Counter initial value = FFFFH 
MOY AL,OFFH 
MOV DX,PTM2CRO 
OUT DX,AL 
IMP $+2 
OUT DX,AL 

;====================================== 

; Switch the operator LED off 
; (This LED is connected to port A bit 5) 

MOY DX,PORTA 
IN AL,DX 
AND AL,llOlllllB 
IMP $+2 
OUT DX,AL 

; Get port A address 
;Read port A 
;Set bit 5 low 

.===================================== , 

; Check the operator switch for initiation of trials 
; (Operator switch is connected to port B bit 4) 

MOV DX,PORTB ;Get port B address 
NOTRDY: IN AL,DX ;Repeat: read port B 

IMP $+2 
AND AL,OOOIOOOOB ; Check bit 4 
IZ NOfRDY ;Until ready condition 

.===================================== , 

; Switch the LED on to indicate recording started 
MOV DX,PORrA ;Get port A address 
IN AL,DX ;Read port A 
OR AL,OOIOOOOOB ;Set bit 5 high 
IMP $+2 
OUT DX,AL 

e===================================== , 

; Enable sampling interrupt 
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STI 
MOV DX,PORfA 
IN AL,DX 
AND AL,1l10l111B 
OUT DX,AL 
IMP $+2 

;Enable processor interrupt 
;Enable sampling interrupt 

; WcUt until pre-warning-stimulus recording is complete 
MOV AX,CS 
MOV DS,AX 

PRECS: STI 
MOV AX,PRECNV 
CMP AX,SAMPNO 
JNE PRECS 

.===================================== , 

; Trigger click generator 

HCLICK: 

LCLICK: 

MOV DX,PORfA 
IN AL,DX 
OR AL,Ol()()()()()()B 
OUT DX,AL 

MOV BL,3 
DEC BL 
INZ HCUCK 

AND AL,10111111B 
OUT DX,AL 

( MOV BL,3 
DEC BL 
INZ LCUCK 

OR AL,OlOOOOOOB 
OUT DX,AL 

; Get port a address 
;Read port A 
;Set bit 6 high 

;Provide delay 

;Set bit 6 low 

;Provide delay 

;Set bit 6 high again 

;===================================== 

; WcUt until inter-stimulus-interval recording is complete 
CNVS STI 

MOV 
CMP 
INE 

AX,CNV 
AX,SAMPNO 
CNVS 

;===================================== 

; Check if error has occurred in pressing push-button 
MOV DX,PORrB ;Get portB address 
IN AL,DX ;Read portB 
JMP $+2 
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; Check the output of the error detector circuit 
AND AL,OOI00000B 
IZ TONE 
MOV FLAG,1 
IMP SHORr PCNVS 

;If no error then tone 
;Else set error flag to 1 
;No tone if error 

; Generate the tone (if no error in pressing push-button) 
TONE: MOV DX,PORrA ;Get port A address 

IN AL,DX ;Read port A 
OR AL,I0000000B ;Set tone line high 
OUT DX,AL 

MOV BL,3 
HTONE: DEC BL 

INZ HTONE 

IMP 5+2 
AND AL,OI111111B ;Set tone line low 
OUT DX,AL 
IMP 5+2 

MOV BL,3 
DEC BL LTONE: 

;Provide delay 

INZ LTONE 
IMP 5+2 

OR AL,I00000008 ;Set tone line high again 
OUT DX,AL 

;===================================== 

; Wait for post-imperative-stimulus recording 
PCNVS STI 

MOV 
CMP 
INE 

AX,POSTCNV 
AX,SAMPNO 
PCNVS 

.===================================== , 

; Disable sampling 
Cll 
MOV 
IN 
IMP 
OR 
OUT 
JMP 

DX,PORrA 
AL,DX 
5+2 
AL,OOO1 OOOOB 
DX,AL 
5+2 

;Get port A 

;Set sampling line( 4) high 

;===================================== 

; Read and store reaction time (RT) from PTM2 counter #0 
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MOY AL,OOOOOOOOB 
MOY DX,PTM2CRG 
OUT DX,AL 
MOY DX,PTM2CRO 
IN AL,DX 
IMP $+2 
MOV AH,AL 
IN AL,DX 
XCHGAL,AH 

;Control reg. read mode 

;Read lower byte 

;Read most sig. byte 

MOV CX,AX ;RJ' : = FFFFHex - AX 
MOV AX,1111111111111111B 
SUB AX,CX 

CMP FLAG,O 
JE STRESP 
IMP SHORT INITPS 

; Store the reaction time 
STRESP: MOY SI,RESPTR 

MOY ES:[SI],AX 
ADD SI,2 
MOV RESPTR,SI 

;Check if error occurred 

;If flag = 1 then error 

;Store reaction time 

;===================================== 

; Initiate the lSI random time 
; lSI timing is done by PTMI counter #1 
INITPS: MOV DX,POlUC 

IN AL,DX 
AND AL,11111110B 
OUT DX,AL 

; Control register: mode 0, 16-bits 
MOV AL,OI110000B 
MOV DX,CONTREG 
OUT DX,AL 

MOV 
MOV 
OUT 
IMP 
MOV 
OUT 

; Enable counter #1 
MOV 
IN 
OR 
OUT 

AX,RANDNO 
DX,COUNfRI 
DX,AL 
$+2 
AL,AH 
DX,AL 

DX,POlUC 
AL,DX 
AL,OOOOOOO IB 
DX,AL 

; Get port C address 
;Read port C 
;Disable the counter 

;Get random number 
;Get counter! address 
;Write the low byte 

;Write the high byte 

;Get port C address 

;Set counter gate high 

.============-=-------===~===-======== , 

; Wclit until lSI is over by looking at port B bit 3 
MOY DX,PORI'B ;Read port B 
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PAUSE: IN AL,DX 
AND AL,OOOOIOOOB 
IZ PAUSE 

;If Bit = 0 then 
;WcLit 

;=================-=================== 

; Write AID output to hard disk 
WRITE: CMP FLAG,l 

IE CHECK 
MOV BX,FILEHDL 
MOV DX,ADOFFST 
MOV CX,BYTESUM 
MOV DI,ADSEG 

MOV DS,DI 

;Check for trial error 
;If error then skip data 
;Get file handle into BX 
;DX ~ offset address 
;CX ~ no. of bytes/trial 
;DS - segment address 

MOV H,WRCODE ;Get write code 
; (N.B. the AH reg. value is changed after into 2Ih) 

STI 
!NT 2IH 

MOV AX,CS 
MOV DS,AX 

; Call dos function 

;Reinitialise ds reg. 

.===============================~===== , 

; Check the number of trials recorded 
CHECK CMP FLAG,l ;Check for error 
; If error has occurred, do not decrease trial no. 

NOIDEC: 

IE NOIDEC 

DEC 
IMOV 

MOV 
MOV 
MOV 
CMP 
IE 
IMP 

TRIAL 
SAMPNO,O 
DI,ADOFFST 
DlREG,DI 
AX ,TRIAL 
AX,O 
RESPT 
REPEAT 

;Update trial no. 
; Update sample number 
; Update the byte pointers 

;Get no. of trials recorded 
;If trial ~ 0 then 
;Experiment complete 
;EIse do next trial 

;============~~=~=~=================== 

; Routine to store the reaction times on the hard disk 
RESPT: MOV AX,TRIALST ;Determine the no. of -

MOV BX,2 ; reaction time bytes 
MUL BX 
MOV CX,AX 
MOV BX,FlLEHDL 
MOV DX,RESPTME 
MOV DI,ADSEG 
MOV DS,DI 
MOV AH,WRCODE 
!NT 2IH 
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;Store byte no. into CX 
; Get the file handle 
; Get RTs 1 st location 
;Get segment address 

; Get the write code 
;Transfer the data 



MOY AX,CS 
MOY DS,AX 

;===================================== 

; Close the CNVAMP.DAT file 
EXIT: MOV BX,FILEHDL 

MOV AH,CLOSFIL 
INT 21H 
JMP POPREG 

; Restore the registers 
POPREG: POP 

POP 
POP 
POP 
POP 
POP 
POP 
MOY 
POP 

SI 
Dl 
DS 
DX 
CX 
BX 
AX 
SP,BP 
BP 

; Get the file handle 
; Get code for closing file 
; Call dos function 

;===================================== 

; Deallocate variable from stack and return to Pascal prog. 
REf 8 

SAMPLE ENDP 

CODE ENDS 
END SAMPLE 

;End sample procedure 

;End code segment 
;End routine 

; •••••••••••••••• END OF SAMPLEl PROCEDURE •••••••••••• 
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Appendix B List of Patients~ Medication 

The type of medication for the schizophrenic patients included chlorpromazine 

(n=5), trifluoperazine (n=4), haloperidol (n=3), clopenthixol (n=2), droperidol 

(n=l), sulpiride (n==4), pimozoide (n-l), fluphenazine decanoate (n==5) and 

haloperidol decanoate (n ==2). The daily dosage of these drugs in chlorpromazine 

equivalents ranged from l00mg to 3025mg, mean was 1178mg and standard 

deviation was 933.32mg. The type of medication for the Parkinson's disease 

patients included sinemet, madopar, bromocriptine, domperidone and selegiline. 

The type of medication for the Huntington's disease patients included motipress 

and kurispas. 
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Appendix C Listing of the Program Used to Preprocess and Average the 
CNV Wavefonns and to Convert the Data Recordings for Tramfer to the 
Mainframe Computer 

PROGRAM PROC; 

{ Program name = PRoc.PAS 
This Thrbo Pascal program can preprocess and average the CNV 
waveforms using a PC or if is required it can prepare the data 

} 
to be preprocessed on the mM main frame computer. 

CONST 

TYPE 

VAR 

XP = 5; 
yP == 5; 

DATA_ARRAY = ARRAY [1..1500] OF INTEGER; 
MATRIX = ARRAY [1 •• 4, 1 •. 4] OF REAL; 
VECTOR == ARRAY [1..4] OF REAL; 
REAL_ARRAY == ARRAY [1..100] OF REAL; 
REAL_DATA = ARRAY [1 •• 1500] OF REAL; 

OPTION: CHAR; 
HN FIL : TEXT; 
VL -RE, VR RE, HL RE, HR RE: REAL DATA; cm _RE, CNY, AVERAGE_CN\' : REAL_DATA; 

{ _____ n ______________________ } 

PROCEDURE MATRIX_SOL (A : MATRIX; 
B: VECTOR; 
VAR X : VECIOR; 

BOOLEAN); 
VAR SINGULARITY_DETECTED : 

CONST 
N == 4; 

TYPE 
SUBSCRIPT = 1..N; 

PROCEDURE ELIMINATION 

CONST 

(N : INTEGER; 
VAR A : MATRIX; 
VAR B : VECIOR); 

ASSUMED_ZERO = 0.00001; 

VAR 
1,1, K : SUBSCRIPr; 
MULTIPLIER: REAL; 
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PROCEDURE SWAP (VAR X, Y : REAL); 

VAR 

BEGIN 

END; 

T: REAL; 

T:= X; 
X:= Y; 
Y:= T 

PROCEDURE REORDEREQUATIONS (N, I : INTEGER; 
VAR A : MATRIX; 
VAR B : VECTOR); 

VAR 

BEGIN 

K, L, I : SUBSCRIPT; 

L:= I; 
FOR K : = 1+1 TO N DO 
IF ABS(A[K,I]) > ABS(A[L,I]) THEN 
L:= K; 

IF ABS (A[L,I]) < = ASSUMED ZERO THEN 
SINGULARITY DETECTED : = TRUE 
ELSE -

IFI <> LTHEN 
BEGIN 

FORI:= lTONDO 
SWAP (A[I,I], A[L,I]); 
SWAP(B[I], B[L]) 

. END 
END; {reorderequations} 

BEGIN {eliminations} 
SINGULARITY_DETECTED: = FALSE; 
1:= 1; 
REPEAT 

REORDEREQUATIONS (N ,I,A,B); 
IF Nor SINGULARITY DETECTED THEN 
FOR K : = 1+1 TO N 00 
BEGIN 

MULTIPUER : = A[K,I] I A[I,I]; 
FORI:= 1+1 TO N DO 
A[K,I] : = A[K,I] - MULTIPUER • A[I,I]; 
B[K] : = B[K] - MULTIPUER • B[I]; 
A[K,I] := 0; 
END; 
1:=1+1; 

UNTIL (I = N) OR SINGULARITY DETECTED; 
IF Nor SINGULARITY DETECTE!> THEN 
SINGULARITY DETECTED : = ABS(A[N,N]) < = ASSUMED ZERO - -
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END; {elimination} 

PROCEDURE BACK SUBST (N : INTEGER; 
- VAR A : MATRIX; 

VAR B,X : VECroR); 

VAR 

BEGIN 

END; 

BEGIN 

END; 

1,1: SUBSCRIPT; 
S: REAL; 

FOR 1:= N DOWNTO 1 DO 
BEGIN 

END 

S := B[I]; 
FOR 1 := I + 1 TONDO 
S : = S - A[I,J] • X[J]; 
X[I] : = S I A[I,I] 

{main procedure} 

ELIMINATION (N,A,B); 
IF SINGULARITY DETECTED THEN 
BEGIN -

WRITELN; 
WRITELN ('The equations are singular. '); 
WRITELN ('Corrective action taken. ') 

END {begin} 

ELSE 

{-------------------------} 
PROCEDURE MEAN (SAMPLES: INTEGER; 

VAR DATA: DATA_ARRAy); 

{Procedure to remove the mean from data} 

VAR 

BEGIN 

END; 

I: INTEGER; 
MEAN VALUE: REAL; 

MEAN VALUE: = 0; 
FOR I :-=1 TO SAMPLES DO 
MEAN_VALUE:= MEAN_VALUE + DATA [1]; 
MEAN VALUE: = MEAN VALUE I SAMPLES; 
FOR 1:- 1 TO SAMPLES bo 
DATA[I] : = ROUND(DATA[I] • MEAN_VALUE); 
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{--.---------------------} 

PROCEDURE OARM (SAMPLES: INfEGER; 
VAR VL, VR, HL, HR : DATA ARRAY; 
RAD, NEW MONT: CHAR; -
VAR CNV :DATA ARRAY; 
VAR SINGULARITY _DETECfED : BOOLEAN); 

{Procedure to correct CNV data by removing OA} 

VAR 

BEGIN 

I: INTEGER; 
PVL, B, CCL, C, PVR, D, CCR, PHL : REAL; 
MVL, MVR, MHL, MHR, A, PHR : REAL; 
X: MATRIX; 
Y, K : VECIOR; 

{convert signals from uV to mY} 
FOR I : = 1 TO SAMPLES DO 
BEGIN 

END; 

VL_RE[I] := VL[I] • 0.001; 
VR_RE[I] :== VR[I] • 0.001; 
HL_RE[I] :== HL[I] • 0.001; 
HR_RE[I] := HR[I] • 0.001; 
CNV _RE[I] := CNV[I] • O.O(H 

IF «NEW_MONT='Y')OR(NEW MONT='y'» AND 
«RAD< > 'R')AND(RAD< > 'r'» THEN 
{new montage, without rad. components} 
BEGIN 

FOR I : = 1 TO SAMPLES DO 
VL_RE[I] : = HL_RE[I] • HR_RE[I] 

END 
ELSE 
IF (RAD < > 'R ') AND (RAD < > 'r') THEN 
{old montage} 
BEGIN 

{calculate VL components} 
FOR I : == 1 TO SAMPLES DO 
VL_RE[I] : = HL _ RE[I] • HR_ RE[I] 

END; 

{calculate correlation sum of product} 
PVL:= 0; 
B := 0; 
CCL:= 0; 
C := 0; 
PVR:= 0; 
D := 0; 
CCR:= 0; 
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PHL:= 0; 
A := 0; 
PHR:= 0; 
MVL:== 0; 
MVR:= 0; 
MHL:== 0; 
MHR:== 0; 

FOR I : == 1 TO SAMPLES DO 
BEGIN 

PVL : == PVL + VL _ RE[I] * VL RE[I]; 
B :== B + VL RE[I] * VR RE[I]; 
CCL:I:II CCL + VL_RE[I] *HL_RE[I]; 
C :== C + VL RE[I] * HR RE[I]; 
PVR:-= PVR + VR RE[I] * VR RE[I]; 
D : == D + VR ~ * HL RSp); 
CCR : == CCR + VR_ RE[I] * HR RE[I]; 
PHL : == PHL + HL_RE[I] * HL RE[I]; 
A : == A + HL RE[I] * HR RE[I]; 
PHR : == PHR + RR_RE[I] * RR_RE[I] 

END; 

FOR I : == 1 TO SAMPLES DO 
BEGIN 

END" 

MVL : == MVL + CNV RE[I] * VL RE[I]; 
MVR : == MVR + CNVRE[I] * VR-RE[I]; 
MHL : == MHL + CNV-RE[I] * HL -RE[I]; 
MHR:== MHR + CNV:RE[I] * HR:RE[I] 

, 

{find KI, K2, K3 and K4} 

X[l,l] :== PVL; 
X[l,2] :== B; 
X[l,3] : == CCL; 
X[l,4] : == C; 
X[2,1] :== B; 
X[2,2] : == PVR; 
X[2,3] :== D; 
X[2,4] : == CCR; 
X[3,1] :== CCL; 
X[3,2] :== D; 
X[3,3] :== PHL; 
X[3,4] : == A; 
X[4,1] :== C; 
X[4,2] :== CCR; 
X[4,3] :== A; 
X[4,4] :== PHR; 

Y[l] :== MVL; 
Y[2]:== MVR; 
Y[3]:== MHL; 
Y[4]:== MHR; 

MATRIX_SOL (X, Y, K, SINGULARITY_DETECTED); 

IF Nor SINGULARITY_DETECTED THEN 
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BEGIN 
{correct the CNV channel} 
FOR I : -= 1 TO SAMPLES DO 
CNV RE[I] : == CNV RE[I] -
(K[1f* VL RE[I] + f([2] * VR_RE[I] + 

K[3f* HL_RE[I] + K[4] * HR_RE[I]); 

{convert CNV signal back to u V} 
FOR I : == 1 TO SAMPLES DO 

CNV[I] :== ROUND (CNY_RE[I] * 10(0); 
END; {BEGIN} 

END; {OAR procedure} 

{---------------------------} 
PROCEDURE SECfAV (NPA, NPB : INfEGER; 

CNV : REAL DATA; 
VAR SAY : REAL); 

{procedure to average the points between NPA & NPB 
of the eNV data} 

VAR 

BEGIN 

I: INTEGER; 

SAY := 0; 
FOR 1:= NPA TO NPB DO 
SAY : = SAY + CNV[I]; 
SAY : = SAY I (NPB - NPA); 

END; {procedure sectav} 
{_. ____ ._n_._n_n _________________ } 

PROCEDURE BAS_LNE (N, NPI, NP2, NP3, NP4 : INTEGER; 
VAR CNV : REAL_DATA); 

{procedure to correct the baseline of the CNV signal} 

VAR 

BEGIN 

I, ZI, Z2 : INTEGER; 
SAVI, SAV2, GRAD: REAL; 

SECfAV (NPI, NP2, CNV, SAVI); 
SECfAV (NP3, NP4, CNV, SAV2); 
GRAD: = (SAV2 - SAVI) I (NP3 - NP2); 

FOR I : = I TO NP2 DO 
CNV[I] : = CNV[I] - SAVI; 

ZI:=NP2+I; 
FOR 1:= ZI TO NP3 DO 
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CNV[I] : = CNV[I] - SAVI - GRAD * (1- NP2); 

Z2:= NP3 + 1; 
FOR I : = Z2 TO N DO 
CNV[I] : = CNV[I] - SAV2; 

END; {procedure bas_lne} 

{-----_._--------------------------} 

PROCEDURE FILTER (SAMPLES, M: INTEGER; 
H : REAL ARRAY; 
VAR CNV : REAL DATA); 

{procedure to low-pass filter the CNV data using FIR. 
The number of data points is equal to samples and 
the data is returned is eNV array} 

VAR 

BEGIN 

K, NEW, N, FILT_SAMP: INTEGER; 
SUM : REAL; 
YOUT : REAL DATA; 
X : ARRAY [1..100] OF REAL; 

{initialise the filter buffer} 
FOR K := M DOWNfO 1 DO 
BEGIN 

END; 

N:= 1; 
X[K] := CNV[N]; 
N:=N+l; 

NEW:= M; 
FILT SAMP : = SAMPLES - M; 

{do the flltering} 
FOR N : = 1 10 FILT SAMP DO 
BEGIN -

SUM:= 0; 
FOR K : = 1 TO M DO 

SUM ::= SUM + H[K] * X[K]; 
YOUT[N] ::= SUM; 

{shift new data into x[n] buffer} 
FOR K:= M D0WNT02 DO 

X[K] := X[K-l]; 
NEW:= NEW + 1; 
X[1] : = CNV[NEW]; 

END; {for} 

FILT SAMP : = FILT SAMP + 1; 
SUM-:= 0; -
FOR K : = 110M DO 
SUM: = SUM + H[K] * X[K]; 
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YOUT [FILT_SAMP] .:= SUM; 

FILT SAMP : == FILT SAMP + 1; 
FOR N : = FILT SAMP TO SAMPLES DO 
YOUT[N] : = 0;-

FOR K : == 1 TO SAMPLES DO 
CNV[K] : == YOUT[K] 

END; {procedure filter} 

{--.. --------------------} 
PROCEDURE CONVERr; 

{procedure to convert a data file to the format 
required for preprocessing on the mainframe 
computer or preprocess the data on a PC} 

CONST 

TYPE 

VAR 

BEGIN 

SAMPLE RATE = 125; 
CHANNEL_NO == 8; 
RANGE = 20; 
BASE FACTOR = 4096; 
MAX-VOLTAGE = 10; 

{baseline correction points} 
NP1 = 1; {initial ~int} 
NP2 == 125; {SI polOtl 
NP3 = 250; {S2 point 
NP4 = 1500; {final point} 

NAME = STRING [12]; 

N01, N02, NUMBER, AD_GAIN, TRIAL: INTEGER; 
CHANNEL, BI_ VOLT, N, M, I, SAMPLES: INTEGER; 
MAX BATCH, BATCH NO, DURATION, TRIAL NO: INTEGER; 
PCHl: PCH2, PCH3, PCH4, PCHS : INTEGER; -
FACTOR, RESOLUTION, TIME: REAL; 
VL, VR, VRC, VRR, HL, HR, CNVl, CNV2: DATA ARRAY; 
H:~LARRA~ -
ORG FILE NAME, CONY FILE NAME, SIN TRI NAM : NAME; 
ORG-FILE:-CONV FILE, S"IN TiU FIL: TEXT; -
COMP OUTPUT, El..EMEN'f1:-ELEMENn, A, RAD: CHAR; 
BASE UNE, FILTERING, DECISION, OAR INC: CHAR; 
NEW-MONT, OAR OPTION, SIN TRI OP :CHAR; 
RE ENTER : BOOLEAN; --
K :"'VEcToR; 
TRIAL SET : SET OF 1 .• 32; 
SINGu'LARrrY_DETECTED : BOOLEAN; 

REPEAT 
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ELSE 

CLRSCR; . 
WRITELN (' •••••••••••••••••••••••••••••••••••••• '); 
WRITELN ('. Routine to preprocess the CNV data .'); 
WRITELN ('. on the PC or prepare the CNV data .'); 
WRITELN ('. for processing on the mainframe .'); 
WRITELN (' •••••••••••••••••••••••••••••••••••••• '); 
RE ENTER:= FAlSE; 
wRiTELN'; 
WRITELN; 
WRITELN (,Please enter the following : I); 
WRITELN; 

WRITE ('The original data filename: I); 
READLN (ORO_FILE NAME); 
WRITE (,The convertea file name: I); 
READLN (CONV FILE_NAME); 
WRITE (,Channell to S polarities 1/-t : I); 
READLN (PCHt, PCH2, PCH3, PCH4, PCHS); 
WRITE (,The number of trials in the recording: '); 
READLN (TRIAL); 
WRITE ('Include all trials ? Enter -Y- or -N- : '); 
READLN (DECISION); 
TRIAL SET : = 0; 
IF (DOCISION -'Y') OR (DECISION ='y') THEN 
BEGIN 

FOR N : - 1 TO TRIAL DO 
TRIAL_SET: - TRIAL_SET + [N]; 

END 

BEGIN 
WRITE (,How many trials to be included: '); 
READLN (TRIAL NO); 
FOR I: -1 TO TRiAL NO DO 
BEGIN -

WRITE (,The required trial number: '); 
READLN (NUMBER); 
TRIAL SET : - TRIAL SET + [NUMBER]; 

END; {for} - -
END; {else} 

WRITE (,The duration of each trial : '); 
READLN (DURATION); 

WRITE (,Is recording done with new montage?'); 
WRITE (" Y or N: '); 
READLN (NEW MONT); 
IF (NEW MONT - 'N') OR (NEW_MONT ='n') THEN 
RAD:- TN' 
ELSE 
BEGIN 

WRITE ('To include radial components in OAR'); 
WRITE (' enter -R-, else -N- : '); 
READLN (RAD); 

END; {else} 

WRITE (,PC preprocessing, enter -P-, '); 
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WRITE (' MF preprocessing enter -M- : I); 
READLN (OAR_OPTION); 

IF (OAR_OPrION = 'Pi) OR (OAR_OPTION = 'pi) THEN 
BEGIN 

WRITE ('For Baseline correction enter -B-, I); 
WRITE (' else -N- : I); 
READLN (BASE_UNE); 
WRITE ('Carry out OAR 1, -Y- or -N- : I); 
READLN (OAR INC); 
WRITE ('For diptal filtering, enter -F-, I); 
WRITE ('else -N- : I); 
READLN (FILTERING); 

WRITE ('For single trial file I); 
WRITE ('enter -S-, else -N- : I); 
READLN (SIN TRI OP); 
IF (SIN_TRI_OP = TS')OR(SIN TRI OP = IS') THEN 
BEGIN - -
WRITE ('Enter single trial filename: I); 
READLN (SIN TRI NAM); 

END; {if} --
END; {if} 

WRITELN; 
WRITELN; 
WRITE(' Above entries OK? -Y-, or -N- : I); 
READLN (A); 
IF (A='Y') OR (A='y') THEN 
RE ENTER : = TRUE; 
UNTIL RE ENTER = TRUE' - , 
CLRSCR; 

ASSIGN (ORG FILE, ORG FILE NAME); 
RESET (ORG_FILE); - -
ASSIGN (CONV _FILE, CONY _FILE_NAME); 
REWRITE (CONV _FILE); 

IF (SIN_TRI_OP = IS') OR (SIN_TRI_OP = IS') THEN 
BEGIN 
ASSIGN (SIN TRI FIL, SIN TRI NAM); 
REWRITE (SI1'CTRI_FIL); - -
END; {if} 

IF (FILTERING = 'F') OR (FILTERING = 'r) THEN 
{if filtering option then read the coefficients} 
BEGIN 

ASSIGN (HN FIL, IHNVALS.DAT'); 
RESET (HN r;IL); 
READLN (HN FIL, M); 
FOR N : = 110M DO 
READLN (HN FIL, H[N]); 
CLOSE (HN_FlL); 

END; {for} 
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RESOLUTION: = RANGE I BASE FACTOR; 
SAMPLES: = SAMPLE_RATE • DURATION; 

{initialise variables} 
BATCH NO: = 0; 
FOR I: = 1 10 SAMPLES DO 

AVERAGE CNV[I] : = 0; 

FORN :=llOTRIALDO 
BEGIN 
IF (N IN TRIAL_SET) mEN 
BEGIN 

GaroXY(xp+ 13, YP+8); 
WRITE ('Processing trial number • ,n:3); 

{read data for one trial} 
I : = 1; 
REPEAT 

FOR CHANNEL: = 110 6 DO 
BEGIN 

READ (ORO FILE, COMP OUTPUT, 
ELEMENT 1 ,-ELEMENT2);-
NOI : = ORD(ELEMENTl); 

N02 : = ORD(ELEMENT2); 
NUMBER:= NOl + (N02· 256); 
FACTOR: = RESOLUTION • NUMBER; 
CASE ORD(COMP OUTPUT) OF 

0: AI>_GAIN: = 1; 
1 : AD GAIN:= 10; 
2 : AD:GAIN : == 100; 
3: AD_GAIN:= 500; 

END; {end} 

BI_VOLT:= ROUND « (FACTOR­
MAX VOLTAGE)/AD GAIN)· 200); 
CASECHANNEL OF-

END; {case} 
END; {for channel} 

1 : VL [I] := PCHI • BI_ VOLT; 
2 : VR [I] : = PCH2 • BI VOLT; 
3 : HL [I] : = PCH3 • BeVOLT; 
4 : HR [I] : = PCH4 • BI VOLT; 
5 : CNVl [I] := PCHS ·BI VOLT; 
6 : CNV2 [I] : II: PCHS • BeVOLT; 

READ (ORG_FILE, A,A,A,A,A,A); 

1:=1+1; 
UNTIL I = SAMPLES + I; 

{process the data if radial components is included} 
IF (RAD='R') OR (RAD='r') OR (NEW_MONT='Y') 
OR (NEW_MONT='y') TIIEN 
BEGIN 

FOR I: = 1 10 SAMPLES DO 
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BEGIN 
{calculate the radial right, VL 
and VR components} 
VRC[I] : = VL[I] - VR[I]; {ver. right} 
IF (RAD='R') OR (RAD=lr') THEN 
{radial right} 
VRR[I] : = ROUND (0.5 • (VL[I] + VR[I]» 
ELSE 

VRR[I]:= 0; 
{vertical or radial right} 
VL[I] : = VRR[I]; 
VR[I] : = VRC[I]; {vertical right} 
{reorder channel 3 and 4} 
VRR[I] : = HL[I]; 
HL[I] : = HR[I]; 
HR[I] : = VRR[I]; 
{when rad. compo is included VRR refers to 
to rad. compo and VRC refers to vert. 
right comp.} 

END; {for} 
END; {if) 

{if MF OAR is required, form a converted file} 
IF (OAR OPTION =IM') OR (OAR OPTION ='m') THEN 
BEGIN - -

{write data for one trial into the 
converted file} 
WRITELN (CONY FILE, BATCH NO:4); 
FOR 1:= 1 TO 1024 DO -
BEGIN 

WRITE (CONV _FILE, VL[I]:S); 
IF I MOD 16 = o THEN 
WRITELN (CONV FILE); 

END; -
BATCH_NO:= BATCH_NO +1; 

WRITELN (CONV FILE, BATCH NO:4); 
FOR I : = 1 TO 1024 DO -
BEGIN 

END; 

WRITE (CONV_FILE, VR[I]:S); 
IF I MOD 16 = o THEN 
WRITELN (CONV FILE); 

BATCH_NO:= BATCH_NO +1; 

WRITELN (CONY FILE, BATCH_NO:4); 
FOR 1:= 1 TO 1024 DO 
BEGIN 

END; 

WRITE (CONV FILE, HL[I]:S); 
IF I MOD 16 =-0 THEN 
WRITELN (CONV_FILE); 

BATCH_NO:= BATCH_NO +1; 

WRITELN (CONV _FILE, BATCH_NO:4); 
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END; 

FOR I: = 1 TO 1024 DO 
BEGIN 

WRITE (CONV _FILE, HR[I]:S); 
IF I MOD 16 = o THEN 
WRITELN (CONV _FILE); 

BATCH_NO:== BATCH_NO +1; 

WRITELN (CONV FILE, BATCH NO:4); 
FOR 1:== 1 TO 1024 DO -
BEGIN 

WRITE (CONV _FILE, CNVl[I]:5); 
IF I MOD 16 == 0 mEN 
WRITELN (CONV _FILE); 
END; 
BATCH_NO:- BATCH_NO +1; 

WRITELN (CONV FILE, BATCH NO:4); 
FOR I : &: 1 TO 1024 DO -
BEGIN 

WRITE (CONV FILE, CNV2[I]:5); 
IF I MOD 16 =-0 THEN 
WRITELN (CONV FILE); 

END; -
BATCH_NO:= BATCH_NO +1; 

END; {if oar_option=m} 

IF (OAR OPTION &: 'Pi) OR (OAR_OPTION == 'pi) THEN 
Tprocess CNV on the PC} 
BEGIN 
{remove the mean from data} 
MEAN (SAMPLES, VL); 
MEAN (SAMPLES, VR); 
MEAN (SAMPLES, HL); 
MEAN (SAMPLES, HR); 
MEAN (SAMPLES, CNVI); 

IF (OAR_INC &: lye) OR (OAR_INC == lye) THEN 
{call OAR procedure} 
OARM (SAMPLES, VL, VR,HL,HR,RAD,NEW _MONT, 
CNVI, SINGULARITY_DETECrED); 

FOR I : == 1 TO SAMPLES DO 
CNV[I] : == CNVI[I]; 

IF Nor SINGULARITY DETECrED THEN 
{if singularity is not deteCted in OAR 
process} 
BEGIN 

IF (FILTERING &: 'F') OR 
(FILTERING == 'f) THEN 
{filter the CNV data} 
FILTER (SAMPLES, M, H, CNV); 

IF (BASE_LINE = 'B') OR (BASE_LINE = 'be) 
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END 

ELSE 
BEGIN 

THEN 
{remove the base line from data} 
BAS LNE (SAMPLES, NPl, NP2, NP3, 
NP4-;-CNV); 

FOR I : = 1 10 SAMPLES DO 
{average the CNV data} 

AVERAGE_CNV [1]:= AVERAGE_CNV[I] 
+ CNV[I]; 

IF (SIN_TRI OP = 'S') OR (SIN_TRI_OP 
-= '5') fiIEN" 
{if single trial file is required 
then form the me} 
BEGIN 

FOR I : = 110 SAMPLES DO 
WRITE (SIN TRI FIL, CNV[I] 
:12:8,' '); - -
WRITELN (SIN TRI FIL); 

END; {if} - -
END; {if not singularity detected} 

END; {oar on pc} 

END-, 

{skip the unwanted trial} 
FOR I : = 1 TO SAMPLES 00 
READ (ORO FILe, A,A,A,A,A,A,A,A,A,A,A,A 

,A,A,j\,A,A,A,A,A,A,A,A,A); 

END; {for n} 

IF (OAR_OPTION = 'P') OR (OAR_OPTION = 'p') THEN 
BEGIN 

FOR I : = 110 SAMPLES DO 
BEGIN 

IF (DECISION = 'Y') OR (DECISION = 'y') THEN 
CNV[I] : = AVERAGE CNV[I] I TRIAL 
ELSE -
CNV[I] : = AVERAGE CNV[I] I TRIAL NO 

END; {for i} - -

FOR I : = 110 SAMPLES 00 
BEGIN 

TIME : = (I·12)/SAMPLES; 
WRITELN (CONV FILE, TIME:2:S, 
',CNV[I]:S:4); -

END {for i} 
END; {if} 

CLOSE (ORO_FILE); 
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CLOSE (CONV FILE); 
IF (OAR OPTION ='P') OR (OAR_OPTION ='p') THEN 
CLOSE (SIN_TRI_FIL); 

END; {convert procedure} 

{=====================================} 

{main section of the program} 

BEGIN 
OPTION: = 'R'; 
REPEAT 

CLRSCR; 
GaroXY (xp,YP); 
WRITELN (,Please enter: '); 
GaroXY (xp,YP+2); 
WRITELN (' ·C· for MF Conversion or PC processing'); 
GaroXY (xp, YP+4); 
WRITE (' ·E· to End'); 

GaroXY (xp, YP+6); 
WRITE ('option required? I); 
READLN (OPTION); 
IF (OPTION = 'C') OR (OPTION = Ie') THEN 
CONVEKI'; 

{declare the process is complete} 
SOUND (500); 
DELAY (1000); 
NOS OUND; 

UNTIL (OPTION = 'E') or (OPTION = Ie') 
END. {program proc} 
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Appendix D Listing of the Program Used to Obtain CNV Features From the 
Inter-Stimulus Interval Section of the CNV 

PROGRAM ISIFEA; 

( Program Name: ISIFEA.PAS 
This program is used to extract features from the inter­
stimulus section of the CNV. 

The features are obtained by averaging every 4 consecutive 
sample values in a section from sample number 174 to 237. 
This process produces 16 features. 

This program asks for: 
1) the name of a file for storing the CNV features 
2) the number of subjects to be included 
3) the names of the averaged preprocessed files. 
} 

CONST 

VAR 

BEGIN 

TRIAL_LENGTH = 1500; 

SAMPLE_NUMBER, SAMPLE, N, K, SUBJECT, SUBJ_NO : 
INTEGER; . 
TIME, FEATURE: REAL; 
DATA: ARRAY [I .. TRlAL_LENGTH] OF REAL; 
IN FILE, OUT FILE: TEXT; 
IN:FILE_NAME, OUT_FILE_NAME : STRING [12]; 

WRITE ('Enter out-file name: > I); 
READLN (OUT FILE NAME); 
ASSIGN (OUT FILE, 'OUT_FILE_NAME); 
REWRITE (OlIT FILE); 
WRITE ('Enter the number of subjects > I); 
READLN (SUBJ_NO); 
FOR SUBJECf : = 1 10 SUBJ NO DO 
BEGIN -

WRITE ('Enter in-file name > ',SUBJECT:3,' I); 
READLN (IN FILE NAME); 
ASSIGN (IN FILE, IN_FILE_NAME); 
RESET (IN_FILE); 

{read the CNV samples} 
FOR SAMPLE NUMBER: = 1 10 TRIAL LENGrH DO 
READLN (lNJ~~ILE, TIME, DATA[SAMPLE_NUMBER)); 

{generate the eNV features} 
SAMPLE: = 174; 
FEATURE: = 0; 
FOR K:= 110 16 DO 
BEGIN 

FOR N : = 1 10 4 DO 
BEGIN 
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END. 

END; 

END; 

. FEATURE: = DATA [SAMPLE] + FEATURE; 
SAMPLE: = SAMPLE + 1; 

FEATURE: = FEATURE I 4; 
WRITE (OUT_FILE, FEATURE:9:4); 
FEATURE : = 0; 
IF K=8 THEN 
WRITELN (OUT_FILE); 

WRITELN (OUT_FILE,' • ,IN_FILE_NAME); 

CLOSE (IN_FILE); 
END; 
CLOSE (OUT_FILE); 
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Appendix E Procedure to Compute Correlation Matrix 

If there are n individuals, and p variables (features) are obtained from the eNV 

response of each individual, The nxp data matrix can be represented by, 

X11 x12 ••• x1p 
x21 x22 ... x2p 

X • • • • • 
• • 
• • 

xn1 xn2 • xnp 

where x.. represents the value of variable j obtained from individual i. 
IJ 

The procedure for calculating the correlation matrix (R) is as follows: 

i) The row vector of the means of X, denoted by:l: (ie. the centroid) is computed 

using, 

1 

x' • - l'X 
n 

where the row vector II denotes a lxn unit row vector (note the 

symbol' indicates transpose). 

ii) The mean corrected matrix X. is determined by, 

••• (1) 

••• (2) 

iii) The mean corrected sums-of-squares and cross-products matrix (S) is 

calculated using, 

••• (3) 
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iv) The matrix whose entries aiong the main diagonal are the reciprocals of the 

square roots of the standard deviations of the variables in X is obtained. Let this 

matrix be n-~, therefore, 

1/"-11 0 0 ••• 0 

D-It • 0 1/"-22 0 ••• 0 

• 
• • • 

0 0 • • 1/"_pp 

vii) The correlation matrix R can be found from pre- and post-multiplying S by 

D-~ . , Ie., 

1 
R • --- (D-It 8 D-It ) 

n-l 

S4 

••• (4) 



Appendix F Listing of the Programs Used to Carry Out Cluster 
Analysis 

Note: 
PIS = I" Princi~ component for nlll schizophrenic patient 
P Irf = I" PrinCIpal component for nlll normal subject 
Plp

D = I" Princi~ component for nlll PD patient 
Pilf = I" PrinCIpal component for nlll HD patient 
PIA: = I" Principal component for nth AR OF HD patient 

Appendix Fl Cluster Analysis of Schizophrenic Patients and 
Nonnal Subjects 

NOfE 
20 SCHIZOPHRENIC PATIENTS 
FOLLOWED BY 20 NORMAL CONTROL SUBJECTS 
17 FEATURES 
PRINI 

ENDNOrE 
READ DATA, VARIABLES CONTINUOUS 1, CASES 40 

PISI PIS1 

. 
PN 

CLUS~, METHOD WARDS, PRINT FUSIONS 
TREE 
SlOP 
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Appendix Fl Cluster Analysis of Parkinson's Disease Patients 
and Nonnal Subjects 

NOTE 
16 PARKINSON'S DISEASE PATIENTS 
FOLLOWED BY 16 NORMAL SUBJECTS 
17FEATURES 
PRINI 

ENDNOrE 
READ DATA, VARIABLES CONTINUOUS 1, CASES 32 

PIPI 
PIP:z 

. 
PN 

CLUSfE\t, METHOD WARDS, PRINT FUSIONS 
TREE 
STOP 

Appendix F3 Cluster Analysis of Huntington's Disease Patients 
and Nonnal Subjects 

NOrE 
11 HUNTlNGfON'S DISEASE PATIENTS 
FOLLOWED BY 11 NORMAL SUBJECTS 
17FEATURES 
PRINI 

ENDNOrE 
READ DATA, VARIABLE CONTINUOUS 1, CASES 22 

PIHI 
PI~ 

. 
PN 

CLUSfEii, METHOD WARDS, PRINT FUSIONS 
TREE 
STOP 
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Appendix F4 Cluster Analysis of At-Risk of Huntington's 
Disease Patients and Normal Subjects 

NOTE 
21 AR OF HD PATIENTS 
FOLLOWED BY 21 NORMAL SUBJECTS 
17 FEATURES 
PRINI 

ENDNOTE 
READ DATA, VARIABLES CONTINUOUS 1, CASES 42 

PIAl 
PI~ 

. 
PN 

CLUSm, METHOD WARDS, PRINT FUSIONS 
TREE 
STOP 
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Appendix G Listing or the Program Used to Obtain the CNV 
Amplitudes 

PROGRAM CNVAMP; 

{Program name = CNVAMP.PAS. 
This program calculates the eNV amplitude from 
a preprocessed averaged CNV waveform. 

} 

The CNV amplitude is calculated by averaging 
16 consecutive sample values prior to the 
imperative stimulus. 

This program asks for: 
1) the name of a flIe for storing the CNV amplitudes 
2) the number of subjects to be included 
3) the names of the flIes containing the averaged 

preprocessed CNV data 

CONST 

VAR 

BEGIN 

TRIAL_LENGTH = 1500; 

SAMPLE_NUMBER, SAMPLE, N, SUBJECT, SUBJ _NO: INTEGER; 
TIME, FEATURE: REAL; 
DATA: ARRAY [l..TRIAL_LENGrH] OF REAL; 
IN_FILE, Our_FILE: TEXT; 
IN_FILE_NAME, Our_FILE_NAME: STRING [12]; 

WRITE' ('Enter filename for storing CNV amplitude > '); 
READLN (our FILE NAME); 
ASSIGN (our FILE, 'Our FILE NAME); 
REWRITE (OUT FILE); - -
WRITELN· -, 
WRITE ('Enter the number of subjects > '); 
READLN (SUBJ_NO); 

FOR SUBJECT : = 1 TO SUBJ NO DO 
BEGIN -

WRITE ('Enter input flIename > ',SUBJECT:3,' '); 
READLN (IN FILE NAME); 
ASSIGN (IN FILE, IN FILE NAME); 
RESET (IN_PILE); - -

{calculate the CNV amplitudes} 
FOR SAMPLE NUMBER: = 1 TO TRIAL LENGTH DO 
READLN (IN PILE, TIME, -
DATA[SAMPCE_NUMBER)); 

SAMPLE: = 222; 
FEATURE: = 0; 
FOR N : = 1 TO 16 DO 
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END-, 

BEGIN 
FEATURE: = DATA [SAMPLE] + FEATURE; 
SAMPLE: = SAMPLE + 1; 

FEATURE: = FEATURE I 16; 

END; 

WRITE (OUT_FILE, SUBJECT:S,' " IN FILE_NAME); 
WRITELN (OUT_FILE, • CNV AMP = T, FEATURE:9:4); 

CLOSE (IN_FILE); 

CLOSE (OUT_FILE); 
END. {cnvamp} 
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Appendix H Documentation, 

The method and the procedure for generating the results included in this thesis are 

described in detail in the relevant chapters. Some operations which were not 

directly related to the techniques involved but they had to be carried out to obtain 

the test results are not included in the main text of this thesis. They are described 

in this Appendix. 

The CNV data for each subject and the reaction times for that subject were held in 

the same data file. All data files were stored on cassettes. It was necessary to 

transfer the data files from the cassettes to the hard disk of the PC. The method 

followed was similar to that for transferring data from the PC to the cassettes and 

it required the use of a commercially available tape streamer called SYSGEN and 

a program called FBACK. These are described in chapter 3 (section 3.15). 

Once the data files were on the hard disk they were processed by either the PC or 

they were transferred to an IBM mainframe computer. The PC was connected to 

the mainframe computer by a wire link. 

HI Documentation for Chapter 7 

The test results included in chapter 7 were obtained by using a number of 

programs on the mainframe computer. These programs were either written by 

Nichols [1982] and Coelho [1988] or they were commercially available programs. 

Therefore the data files had to be transferred to the mainframe computer for the 

required analysis. In order that this data transfer can take place correctly the 

format of the data files had to be changed from binary to ASCll. This was 

achieved by using one of the options available in the Turbo Pascal Program 

PROC.PAS (see Appendix C for the listing of this program). The data transfer 

from the PC to the mainframe computer was carried out using a commercially 

available program called MS-DOS Kermit [MS-DOS KERMIT, 1988]. A full 
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description of the steps necessary to ensure the data transfer from a PC to a 

mainframe computer is provided in MS-DOS Kermit [1988]. Coelho [1986] 

produced a report which indicated the steps necessary to run his (and Martin 

Nichols') programs on the mainframe computer. Those steps were followed. The 

operations performed by the execution of those steps were described in detail in 

chapter 7 and they resulted in the test results included in chapter 7. 

III Documentation for Chapter 8 

By looking at the hardcopy of the data recordings (this was produced by the EEG 

machine during the data recordings) 8 eNV trials not grossly contaminated by 

ocular artefact were identified for each subject. One of the options available in the 

Thrbo Pascal program PRoc.PAS (see appendix C for the listing of this program) 

enabled the preprocessing of the eNV data as described in chapter 6. The 

preprocessed eNV waveforms were also averaged by the program PROC.PAS. 

Sixteen features were extracted from the inter-stimulus interval section of each 

preprocessed averaged eNV waveform as described in chapter 8 by using the 

Thrbo Pascal program ISIFEA.PAS. A listing of this program is included in 
I 

Appendix D. A 1 Th feature which was the time difference between the onset of 

the imperative stimulus and the eNV returning to its baseline was obtained 

manually as described in chapter 8. The selected features were normalised using 

the formulae given in chapter 8. They were then used in a commercially available 

neural network package called NeuralWorks [1988]. The method of using 

NeuralWorks is provided in NeuralWorks Manual [1988]. The details related to 

the implementation of the neural networks are included in chapter 8. 

H3 Documentation for Chapter 9 

Seventeen features were obtained from preprocessed averaged CNV waveforms of 

the subjects as described in Appendix H2 (these feature were not normalised for 
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the analysis carried out in chapter 9). A flIe was formed containing the 17 features 

for the subjects in a patient category (such as schizophrenic patients) and their 

normal control subjects. A similar flIe was formed for each of the other patient 

categories (ie. Parkinson's disease, Huntington's disease, and at-risk of 

Huntington's disease) and their normal subjects. These fues were transferred to 

the mainframe computer using MS-DOS Kermit [1988] and were analysed by a 

number of software packages described in chapter 9. These generated the principal 

component analysis and cluster analysis results included in chapter 9. 

The CNV amplitude results were obtained from the preprocessed averaged (over 

8 trials) CNV waveforms using a program called CNVAMP.PAS. A listing of this 

program is provided in Appendix G. The CNV amplitudes were then transferred 

to the mainframe computer for analysis by various software packages described in 

chapter 9. 

H4 Documentation for Chapter 10 

One of the options available in the Turbo Pascal program ACQ.PAS (see 

Appendix A for its listing) read from the data flIes the values of the reaction times 

for each subject and produced an averaged reaction time value. The averaged 

values of the reaction times for the subjects were transferred to the mainframe 

computer using MS-DOS Kermit and were analysed by the software packages 

described in chapter 10. 
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Proceedings of the EEG Society Scientific meeting held 

at Aston University, Birmingham (21st June, 1989). 

4. A PC· based instrument for recording C:"JVs. R. 
Saatchi. B.W. Jef\'is Sheffield Cil~' Poh1echnic. 
Sheffield. 

A modular. multi· purpose instrumentation system 
for recording C:-:V responses has been developed and is 
now in use. It comprises an IBM PC. a signal 
conditioning box. a stimulator. a timing and interface 
section. and an EEG machine. 

The system can acquire up to :0 Mbytes of data from 
8·analogue channels whilst Storing them at pre-defllled 
intervals onto the PC hard disk. The data can then be 
displayed on a VDU or can be processed by various 
programs. A tape streamer facilitates the down-loading 
of the data from hard disk to tape for pennanent 
storage. 

The special features of this system are: 
(i) it controls the production of stimuli according 

to the stimulus paradigm chosen; and 
(ii) it has an automatic gain control circuit to 

enhance the accuracy of AID conversion for 
each sample by fuUy utilising the dynamic 
range of the AID convener which is 
particularly useful as EEG sisnals can vary 
from a few J.I V to several hundred J.I V, when 
contaminated by ocular anefaru. 

Special consideration was also Jiven to the problems 
of noise and drift. 

The instrument detectS false CNV responses and I 
pause switch enables the sampling to be halted 
temporarily. The sampling rate can be altered throu&h 
software. Beside EEGs. the system is being wed to 
measure electro-oculosrams. reaction times, ECGs and 
the PORe 

the instrument may be reprogrammed to measure 
other types of £EO response. 
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IEE Colloquium on PC-Based Instrumentation, Digest 

no: 1990/025 (31 JanuarJ 1990, London). 

------------.- _ .. _-
:~_ -1~~e~a1;ed_system_ for process control and the acq,uisition_storage ... and._ .. 
processing of data 

B V Jervis and R Sutchi 

.-1.0- Introduction 
--Th~sys teDt- vas- developed- -to- au toma te- a programmable- experimental -s Umttlus­
paradigm and to record the resulting eight analogue signals and to enable 
subsequent signal processing. The recorded signals consisted of an REG, 
some EOGs, an ECG and the PGR (psychogavanic sway) of a subject who was 
required to respond by pressing a button. The signals vere to be cross 
correlated so simultaneous sampling was necessary. Both continuous and 
discontinuous recordings vere required. Erroneous responses were to be 
discarded and the reaction time to button press was to be measured. AID 
overload was to be avoided and the AID converter sensitivity was to be 
maximised. The system wu required to. communicate with a mainframe 
computer. It was to be compatible with an- EEG machine. The resultant design 
had to have general appllc.aUon: wi th some software and hardware 
modification as necessary. 

2.0 Raquira.ents 
All the present requirements (control, recording, and processing ete.) can 
be achieved using a PC plus Signal conditioning electronics. An REG machine 
was incorporated to satisfy the elinicians. The parts cost excluding the 
BEG machine vill be about £5000. 

3.0 Syst_ block d1agraa 
The signals after amplification by SO by the BEG machine are high-pass 
filtered (fc.O.01S9Hz), amplified by 80, low-pass filtered (fc.30Hz) and 
are fed to sample and hold units, see figure (1). The multiplexed signal is 
fed into both a Window detector and the AID card to be digitized. Th. 
click/tone generator provides the necessary acoustic stimuli. The bode 
plots of the complete sytem are shown in figure (2). 

4.0 Kaory requireMllt for recording and data storap 
Using sampling rate fs of 12SH%, 8 c:hannels, trial length 12 seconds 
consisting of experimental paradigm for CNV recording 1 second pre­
stimulus, 1 second inter-stimulus-interval (ISI), 10 seeonds post-stimulus, 
repeated 32 times for evey subject and considering three bytes per sample 
(2 bytes AID output and a byte for the PGA gain), and 2 bytes per trial for 
reaction time then a trial requires 36002 bytes of RAM. Por 32 trials the 
minimum data storage requirememt is 1.12SKBytes per subject. 

Department of Electrical and Electronic Engineering, Sheffield City 
Polytechnic. 
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-'-:O-Pre':'process1iig- ----------_ .. - -_ .. __ .. _ .. __ ._----
5.1 Aapllflcatlon by BIG .achlne 
The signals are amplified by 50 at the BEG machine by differential 
amplifiers which have CMMR of 1000:1. Differential recording is used for 
compatibility with the differential measurements between electrode pairs 
and to attenuate common mode noise. 

5.1 High pass filtering 
Low frequency high pass filtering is carried out to remove the DC drift 
[1]. The filter time constant should be at least three times the duration 
of the signal of interest, here the Is inter stimulus interval, lSI [2]. A 
simple CR circuit with CaluP and R.lO~ provides a lOs time constant. Being 
a first order single-lag circuit it has a constant gain above fc.0.0159Hz 
and constant phase shift above 0.159Hz. The CNV response has a fundamental 
harmonic at about 1Hz, other BEG components of interest lie at higher 
frequencies and most EOG frequency components will be above 0.159Hz. The CR 
circuit will therefore not distort the signals in the frequency range of 
interest. : .:'~ .. : :-. . ~.' : .; .. - .~ - .. -:- ~ ... ': 

5.2 Instru.entation aaplifiers (lAs) 
The lAs used are based on the INA110KP IC from BURR-BROVN. INA110KP has a 
CKHR of about 106dB and has very loy drift and fast setting time (4ps to 
0.001%). A gain of SO was used in order to have a total signal 
amplification of 4000 (ie 50 x SO) at the AID card. This allows use of the 
~20mV input of the AID converter. 

5.3 LoY pass filtering 
Low-pass filtering is used to prevent aliasing. The filter is required to 
have a sufficiently steep roll-off to avoid aliasing combined with a 
sufficiently linear phase to prevent distortion. A cut-off frequency of 
30Hz was chosen which .xceeded the highest frequencies of interest and 
which would also attenuate any 50Hz mains noise. The sampling frequency was 
125Hz. A fourth order Bessel low-pass filter provided the necessary roll­
off and phase linearity. The attenuation (dB) at frequency f is given by 
[3J; 

1 
a(f) • 20 10glO 

where s • f/fc. So for fc • 30Hz and the largest aliasing component at f • 
95Bz, s • j95/30 • j3.l67. This gives a(95) of about -47.87dB and an 
aliasing voltage of 4.0SmV ie an error of 0.4OS% which is considerd 
acceptable. This filter design was based on the Sallen-Key equivalent 
circuit [4] using TL0741CP IC unit. 

5.4 s..ple and hold (SIB) 
The duration of the sample and hold period for every sample is SmS ie 
1/125s. The LF39S SIB units used are of ultra-high DC accuracy with fast 
signal acquisition and low droop rate. The SIB capacitor used is of the 
polystyrene type with a value of O.Olp'. Vlth this capacitor and available 
sample time of lmS, the droop rate is about 0.OS3mV/s giving a negligible 
error during AID conversion cf aliasing error of 0.4%. Simultaneous 
sampling ensures that the time phase relationship of the signals is 
preserved during multichannel sampling [5]. 
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'-,5.S -HUltipleXing·--··--------- -------- -, 
An analogue multiplexer (aI506) was used after the SIB so that only one 
AID, programmable gain amplifier and window detector was necessary. The 
required multiplexing rate was 1000, ie 8 x 125. The multiplexer on the AID 
board could not be used as it was not possible to connect its output to the 
window detector. 

5.6 Analogue to digital conversion 
A commercially available board from the DT2801 series was used to digitize 
the signals [6]. This board has a programmable gain amplifier and a 12 bit 
AID. The error of the 12 bit convertor at aid range is 0.02%. This is much 
smaller than the aliasing error of 0.40%. The signal varies from+5uV to 
+lmV ie a factor of 200 or a dynamic range of 46.02dB. Since the four AID 
card input ranges are fromt20mV totlOV ie a factor of 500 or 54dB, 
therefore the PGA ensures effective use of the AID converter. The dynamic 
range of AID is 72dB which therefore is ample. _._ _. 

-:'.,.: :.;_ ... : .. ":' ... ~ .. , .' - .... __ .. , .... -
The PGA which lies before tfie AlO'converter prov1de~'the third stage of 
signal amplification. The' gain of the PGA can be set to either 1, 10, 100 
or 500 through software. The value of gain chosen is determined by a window 
detector. The window detector consists of three comparators. The output of 
each comparator changes with the signal voltage and so indicates signal 
voltage range. The window detector is located in the signal conditioning 
unit. The interfacing of the window detector and multiplexer to the PC vas 
realised by employing an INTEL 8255A programmable peripheral interface device. 

6.0 Coaputer syste. 
The computer used was an IBM PC AT (I) which has a clock. rate of 6MBz, 
640MByte RAM, 20MByte hard disk and a tape streamer. It has several 
expansion slots two of which were used for AID card and VERO-BLBCTllONICS 
card. The PC communicated wi th an IBM mainframe via a RS232 port and a 
KERMIT link. 

7.0 Continuous recording 
This was realised by USing one of the direct memory access controllers 
(DMAC) of the PC to transfer the digitized data to a page in RAM. Once half 
tha t page is full another DMAC transfers the completed half page to bard 
disk while the second half is being completed. The function of PCpp (INTBL 
80286) is to supervise the data transfer. After a page is transfered, the 
first DMAC continues writing into the first half of that page and procedure 
is repeated. The number of bytu forming a page is 64Kbyte. The AID 
thoughput to the system memory using the DKAC is 6000 samplu per second. 

8.0 Transfer to baa-up tape 
Data transfer from hard disk to tape is controlled by a prograa called 
FBACK from SYSGEN, INC. The PC vas fitted with a SYSGEN SMARTIMAGB tape 
drive. A 20Hbytes cassette fitted into the tape drive can receive the full 
contents of the hard disk (transfer time about five minutes). 

9.0 Control of integrated syst .. 
To provide the timing information, tvo prorrammable interval timers (INTBL 
8254) were used as shown in figure (3). Bach timer contains three counters 
which can be programmed separately. The PC itself has a similar timer but 
it could not be utilised as it 1s dedicated to the PC. To add the timers to 
the PC a prototype board was obtained (from VERO-ELECTRONICS LTD). The 
board In~ludes address decoding circuitry and the timers were soldered on 
to it. 
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-ro:oPIOttidrec:ordiDji . 
Figure (4) shows a plot of vertical right EOG. A single CNV trial is shown 
in figure (5) and that of the averaged processed CNV is shown in figure 
(6). Figures (7) and (8) show the plots of KeG and PGR respectively. 

11.0 Conclusion 
The system works satisfactorily, is relatively cheap, and is adaptable. 

12.0 Beferenc:es 
[1] TECCB, J.J. (1982), "Contingent negative variation", chapter 36 of 

"Electroencephalography : basic principles, c:linical application and 
related filelds" eds. Niedermeyer, K. and lopes de silva, r., Urban and 
Schvartzenberg. 

[2] COOPER, R., OSSELTON, J.V. and SBAV, J.e. (1980), "ERG technology", 
Buttervorths. 

[3] VALKENBURG, H.E.V. (1984), "Analogue filter design", Bolts-saunders, 
279-298. .. . .. . 

[4] HOROVITZ, P., VINFIELD;=Ii':O:C1980Y'/ "The··ar~of;-e-lectronics", Cambridge 
Uni versi ty Press, 15l-l,56. . 

[5] BURR-BROVN (1986), "The handbook of personal computer instrumentation", 
Vatford, England. 

[6] DATA TRANSLATION (1980), "DT2801 series data translation data book", 
Massachusetts, USA. 
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Proceedings of the Physiological Society Held at Sheffield 

University (19-20 April 1991). 

PROCEEDINGS OF TilE PHYSIOLOGICAL SOCIETY 59P 

C52 

Computerised diagnosis of schizophrenia, Huntington's disease and Parkinson's disease in 
man using the contingent negative variation (C~"v) 

R. Saatchi • B.U. Jervis, E.M. Allen· • N.R. Hudson-, S. Oke" and M. Grimsley 

Division. oJ Electronic Engineering, School oJ EIT. She!fo.ld City Polytechnic. -EEG 
Department, DerriJord Hospital, Ply'llW'l.4.lh, --Departm.en.4 oJ PaychiaJ.ry, Won!ord Howe 
Hospital. Exeter 

The aim of the investigation was to discover whether Schizophrenia, Huntington's 
disease(HD), and Parkinson's disea.se(PD) could be diagnosed by analysing the C~V. 

With the local ethical committee's approval, the ~Vs of 112 subjects in the above 
named categories and their age/sex matched normal controls were obtained. The C~V 
trials were preprocessed by a procedure which carried out mean level removal. base line 
correction, ocular artefact removal and digital filtering. The 500 ms of data preceding the 
onset of the warning stimulus (SI) and imperative stimulus (S2) from ea.ch preprocessed 
C~V trial were windowed by a Kaiser Bessel window and then Fourier transformed. To 
generate the discriminatory statistical variables, statistical tests (Jervis d al. 1984) were 
applied to the first six Fourier harmonics of the C~V. These tests were designed to 
investigate the amplitude and phase spectra of the selected lengths of pre- and post 
stimulus recording. The resulting data were used in a discriminant analysis (DA) routine 
in two stages. Initially the variables of the known subjects were processed by DA. This 
resulted in the setting up of a classification rule. Then the DA was used to diagnose the 
unknown subjects on the basis of the classification rule and the statistical variables. The 
results indicate that it is possible to distinguish the patients from the matched normal 
controls accurately. 

Neural networks and clustering techniques were also applied to the CXV using the 
features obtained in the time domain. The results were in agreement with those of the 
discriminant analysis. It was also observed that with the clustering technique. it may 
be possible to presymptomatically diagnose HD. 

REFERESCE 

Je"il B.W., Allen E.M., Johnson T.E., Sicholl M.J. & Hudson S.R. (1984). IEEE Tna1UGd'- Otl B~ical 
ERgit\Mft"9. BME-Jl, No.4, 342-349. 
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Proceedings of the British Society for Clinical 

Neurophysiology held at the Royal London ~ospital 

London (18 October 1991). 

9·. An Investigation or presymptomaUc 
diagnosis or Huntlngton's disease using the 
contlngent negative varlatlon. B.W. 
Jervis, M.R. Saatchl, E. Allen, N. Hudson 
and S. Oke (Shemeld Clly Polytechnic, 
Sherneld) 

Several studies have concluded that the contingent 
negative variation (CNV) is affecled in Huntington's disease 
(HD) patients. In this investigation the CNV responses 
were analysed with the aim of presymptomatically 
diagnosing HD. A set of time cIoma.in features was obtained 
from the preprocessed. averaged CN,\-' respofUes of HD 
patients (ns l1), aDd 'at-risk' of HD paticnu (0-21) and ~ir 
agclsex matched normal control subjects. 1be features were 
used in Ward's hierarchical clustering method. 

Initially the HD patients and their normal control 
subjects were analysed. This indicated the method could 
differentiate between the CNV responses of the HD patients 
and their normal CODlrol subjects. Then the 'at-risk' of HD 
patic:n1S and lbcir normal control subjects were analysed. 
The method identified 8 'at-risk' of HD patients as having 
abnormal CNV responses. As the 'at-risk' of HD patients 
did DOL have any disorder which could have affected their 
CNV responses, except being 'at-risk' of HD, the 
cOlXlusion was that the 8 'al-risk' of HD patients had • 
higher chance of developing HD compared to the remaining 
'at-risk' of HD patients. 

t-tests \I\oICrC also carried out. Tb:y indicated the CNV 
ampliludes of the 8 'at·risk' of HD, idemified as having 
abnormal CNV responses, were significantly reduced 
compared to their normal conlrol subjects and the remaining 
'at-risk' of HD patients. 

'The effcctiveness of the m::thod oceds to be evaluated 
further but if. proved ~ffective could be useful in 
presymptomati~lly diagnosing HD in cases where the 
genetic testing method could not be used (i.e. where the 
suitable family members are DOt available). 
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The study of electrical activity of 
the brain has contributed to the 
better understanding of cerebral 

physiology and to the ability to assess 
subjects with known or suspected 
disorders of brain function.'·7 The first 
reported observation of brain 
electrical activity was made by a 
British physiologist called Caton.s He 
provided the following description 
about his finding in the British 
medical joumal: The extemal surface 
of the !brain'sl grey matter is usually 
positive in relation to the surface of 
the section through it. Feeble currents 
of varying direction pass through the 
multiplier when the electrodes are 
placed on two points on the [brainl 
external surface. or one electrode on 
the grey matter, and one on the 
surface of the skull.' 

Caton'S investigations were carried 
out on the brains of rabbits and 
monkeys. However. it was not until 
1929 that Berger9 discovered the 
electroencephalogram (EEG) in man 
by using a galvanometer connected to 
electrodes attached to the scalp. 
Technological advances in 1930s 
made it possible for the brain 
electrical activity to be amplified and 
displayed on a cathode-ray tube. The 
resulting waveforms could be 
photographed for a permanent 
record. These early amplifiers were 
usually AC coupled and often suffered 
from pick-up of external interference. 

During the 1940s pen recorders 
became available and for the first 
time electroencephalogrammers could 
have an immediate permanent record 
of the brain electrical activity. The 
developments in the recording and 
analvsis of EEGs led to the 
observation of event-related 
potentials. An event-related potential 
(ERP) is the brain electrical actIvity 
that occurs in association with the 
eliciting event. The contingent 
negative variation (CNV) is an ERP 
first reported by Walter er al. 10 The 
number of articles about the CNV 
exceeds 800. A review of them 
indicates that the CNV is a potentially 
useful measure of brain behaviour 
function. Tecce and Cattanach 11 and 
McCallum::; discuss tne nature of the 
CNV and some of its applications. The 
CNV has been found to be valuable in 
the study of ageing and dementia. the 
effects of drugs. and 
psychopathology . 

The CNV is a negative Shift in the 
EEG potential measured on the scalp 
and compared to the potential of an 
electrical reference electrode placed 
on a suitable site such as the 
earlobes. In our experiments, two 
channels of CNV recording were 
obtained by electrodes located one at 
the vertex (top of the head) and 

PC-based 
integrated system 
developed to 
diagnose specific 
brain disorders 
A PC-based instrumentation system developed primarily to 
diagnose Huntington'S disease, Parkinson's disease and 
schizophrenia by using the contingent negative variation (CNV) 
of the subject's electroencephalogram (electrical activity of the 
brain) is described_ The system is capable of controlling the 
required experiment, acquiring and processing the signals 
from eight channels, and generating the diagnosiS results. As 
the diagnosis was based on a signal (i.e. the CNV) which has an 
amplitude typically of the order of a few microvolts and is 
usually badly contaminated by various noise sources, 
considerable and accurate signal conditioning and 
preprocessing was necessary. A description of the steps 
following from the data recording to produce the diagnosis 
results is provided. 

by M. R. Saatchi and B. W. Jervis 
Sheffield City Polytechnic 

another close to the vertex. Both 
electrodes used a common reference 
obtained from a pair of connected 
electrodes on the left and right 
earlobes. A schematic CNV waveform 
is shown in Fig. 1. The CNV elicitation 

I 
I 
I 
I 
I 
I 
I 

; 
CNV 

involves the generation of a warning 
stimulus 51 (selected to be a click) to 
warn the subject of the upcoming 
imperative stimulus 52 (selected to be 
a tone). The time interval between the 
onset of 51 and 52 is called the inter-

AEP 

I I I 
I I I sub,.C! 
Sl-lSI-S2-RT- r.spons. 

Fig. 1 Schematic diagram of a CNV waveform 

COMPUTING cSt CONTROL ENGINEERING JOURNAL MARCH 1991 
75 

61 



B filtered and ified data 

·.'BM PC I-------:'~ _ ___:"----__, 
cont 

loudsp~ker 

stop tone signal 
(from push button) 

switch 

head box 

D-type . 
connectors 

CnCIOOlJP do to 

EEG mochine 

(adaptor) 1....-----_----..... 
subject 
under test 

Fig. 2 System set-up during a data recording 

stimulus interval [151) and was chosen 
to be 1 s. 

The subject under test is asked to 
stop the tone as soon as possible by 
pressing a hand-held pushbutton. The 
negative shift in tne EEG follows S 1 
and after the subject has responded it 
returns to the baseline. The time 
taken between the generation of 52 
and the subject's response is the 
reaction time (RT) and was measured. 
The spike-like waveforms immediately 
following 51 anc 52 (duration about 

• _Co • 

o· 3 s) are generated as a result of the 
onset of the stimuli (51 and 52). They 
are referred to as auditory-evoked 
potentials. 

A CNV waveform could be 
considered as consisting of three 
sections, pre 51.151 and post 52. 
Although the actual CNV lies in the 151 
section. the recording of pre 51 and 
post 52 sections is necessary in order 
to be able to carry out the required 
preprocessing procedure. A CNV 
record contained the waveforms 
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generated by 32 trials separated by a 
random interval called inter-trial 
interval (ITI) which was selected to 
vary between 1 00 ms and 500 ms. 

The CNV waveform is susceptible to 
contamination by the much larger 
background EEG and ocular artefact 
(OA) potentials. 13·1 5 The positive 
cornea and the negative retina form 
an electrical dipole so that. whenever 
this field is changed due to eye 
rotation or eye lid movement. a 
change of potential develops around 
the eye. This potential is referred to 
as electro-oculogram (EOG) and it 
spreads across the scalp to 
contaminate the EEC. The term OA is 
a collective reference to a number of 
eye-related potentials observed in the 
contaminated EEG. By recording the 
appropriately selected EOG signals 
and carrying out the necessary OA 
removal process. it is possible to 
reduce the amount of OA in the 
recorded CNV responses. 

The recording of electrocardiogram 
IECG) and pSYChogalvanic response 
(PGR) were also included. They 
enabled the monitoring of the 
subject's heart rate and the skin 
resistance. respectively. Following a 
warning stimulus. the heart may 
briefly decelerate 16 and the PGR 
amplitude of the subjects with 
depression has been found to be 
smaller compared with that of normal 
control subjects. 17 

Commercially available equipment 
was available which could record the 
signals of interest. but its cost was too 
high (about £20000). it had little 
data-processing capability and it 
could not provide many of the desired 
features indicated in the next section. 
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Therefore it was decided to design 
and construct a PC-based system 
which could control the experiment 
and accurately carry out the 
recording. storage and preprocessing 
of the data and generate the 
diagnosis results. 

Specifications 

head box 
(adaptor) 

el~ctrod~ 
switcr. 
selectors 

2S-way o-typ~ 
conn~ctor 

• • 
8 channels : 

differential 
amplifiers 

• · The system was required to carry 
out the simultaneous sampling 
of the signals from eight 

analogue channels with a sampling 
rate of 125 Hz and to generate the 
necessary stimuli required for the 
elicitation of the CNV. It had to 
measure the sLjbject's reaction time 
(Rn to the imperative stimulus (52) 
and time the random time interval 
between the successive CNV trials. 

Fig. 4 Diagram of the EEG machine input section 

The signals of interest were: the 
CNY of EEG obtained from two sites. 
the EOG from four sites. the ECG and 
the PGR. The maximum Signal voltage 
gain was 2 )( 106 • To increase the 
analogue-to-digital conversion 
accuracy. a programmable gain 
amplifier (PGA) was necessary prior to 
a 12 bit analogue-to-digital (AID) 
convertor. The gain of this PGA varied 
in accordance with the signal 
amplitudes. 

It was important not to distort the 
signals during the acquisition or 
conditioning and to ensure the 
patient's safety during the recording. 
Online paper chart recording of the 
signals was required. as it would 
enable the technician recording the 
data to mark off any important event 

(which affects the recording) on the 
chart and to continuously monitor the 
recording. The system had to be able 
to store a large amount of data. to 
process and analyse it. and then to 
provide the diagnosis results. 

Hardware 

The system consists of an IBM PC 
(AT model. having a 20 Mbyte 
hard disc and fitted with a 

Sysgen tape streamer). an Elema­
SchOnander EEG machine. an acoustic 
stimulator device. and a signal­
conditioning unit. The set-up of the 
system during a recording is shown in 
Fig. 2. The CNY and EOG signals were 
obtained from the sites shown in 
Fig. 3. The ECG and PGR were taken 
from the subject's wrist and hand. 
respective Iy. 

The Signals from the appropriate 
electrodes (for CNV and EOG 
recording. the electrodes used were 
DC silverlsilver-chloride electrodes) 
were fed via the EEG machine adapter 
(head box) into the electrode selector 
switches (which enables the setting of 
the recording montage) and the 
differential amplifiers of the EEG 
machine as shown in Fig. 4. These 
differential amplifiers had a fixed gain 
of 50. The signals to be digitised were 
then taken from the differential 
amplifiers at the output of the EEG 
machine. In this way the EEG machine 
produced the required paper chart of 
the signals as usual and the signals 
were also conditioned. digitised and 
stored by the following hardware 
units. 

Fig. 5 shows the sections of the 
hardware following the EEG machine. 

timing Circuit 

hl;I'lC:SS 
fll~ers 

r-____ ~-se-m-O-II-n~;~s~,;-n-e-1 ~ ~ ~~~~ 
~ samollng 

signals 
from E~:; 
machine 

-~-:t>. , I c"cnnel ' ! i ::::: I · ~ 
8, I --, 
--; ~ I sample end 

r.OIC unitS 
Ins:~umentetIC~ 
a~:lilflers 

c Click trigger Signal 
o Error Signal 
c ~eaction time Signal 
a Tone trigger Signal 

Fig. 5 Hardware units following the EEC machine 

Signal IBM PC 
f.'p 

Interface 

~----------------------------------------~PPl multiplexer cnannel select 

o 

PUShoutton 
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somple SignalS from 8 
channels Simultaneously 

for eocr. channel. read WOo 
adjust PGA one: dlgltlse 
ond store som::lles or. RAM 

no 

"e:::.:: re:::-: ~r"" ~ ~~ ;.~r.": ~ne 

counter ::r:: s:ore i: on RAW, 

T 

T 

I orocess, :'SOl::Y ::::: 

I 

8 

Fig. 6 Data recording software flow chart 

amplifier has a CMRR of about 

:. . 

Highpass filtering was carried out to 
minimise the DC drift. The DC drift is 
mainly due to the extracerebral 
potentials and can be several 
millivolts. IS The highpass filter time 
constant should be at least three 
times the duration of the CNVs 151 
(which was chosen to be 1 s) otherwise 
the CNV waveform would be 

1 06dB. low drift and fast settling 
time. A gain of !t2 was chosen for this 
stage. ThiS resulted in a total fixed 
voltage amplification of !t000 at the 
A '0 card. i.e. 

distorted. 18 A simple CR circuit with 

total fixed voltage gain -
50 ): 42 x 1·9067 - 4000 

sufficiently steep gain roll-off. A cut­
off frequency of 30 Hz was chosen 
which exceeded the highest frequency 
of interest and which would also 
attenuate any SO Hz mains 
interference. A fourth-order Bessel 
lowpass filter satisfied the above 
requirements.20 This lowpass filter 
design was based on the Sallen and 
Key equivalent circuit21 using 
TLO 7 4 1 CP IC units. 

The sample and hold (StH) signal 
was derived from the timing circuit. 
The sampling signal was fed to the 
StH unit of each channel. resulting in 
simultaneous sampling of the signals. 
The 5tH period was 8 ms (i.e. 
1/125 s). The LF398 S/H devices 
used are of ultra-high DC accuracy 
with fast signal acquisition time and 
low droop rate. 

An analogue multiplexer was used 
after StH so that only one 
programmable gain amplifier (PGA). 
AID convertor and window detector 
(WD) was necessary. The multiplexing 
rate was 1000 (Le. 8 x 125). 

A commercially available AID board 
from the DT2801 series (DT2805 
model)22 was used to further amplify 
and digitise the data. The board had a 
PGA and a 1 2 bit AID convertor. The 
analogue-to-digital conversion time 
was 25ps and therefore it was 
sufficiently fast for the required 
sampling rate of 125 Hz which 
corresponaed to a multiplexing time 
of 1 ms. The CNV voltage amplitude 
could be as low as -51JV and the PGR 
amplitude could vary by up to =2 mV 
which after being amplified by the 
fixed voltage gain of 4000 became 
-20mV and :8V. respectively. 

The programmable gain amplifier is 
situated prior to the A'D convertor 
and provides a variable gain. Its gain 
could be software adjusted to either 
1. 10. 100 or 500. The particular· 
gain selected was determined by 
reading the window detector (WD) 
output. The WD consisted of a series 

C - 1pF and R - 1 Mn provided a 

of comparators. The output of these 
comparators would vary in 
accordance with the input signal 
amplituaes. With this arrangement. 
after issuing the 5tH signal. a 
multiplexer channel was activated. 
the signal amplitude range was 
determined by reading the WO 
output. the PGA gain was adjusted to 
a suitable value and then the signal 
was digitised. This was repeated for 
the eight channels. Each digitisation 
produced three bytes, two bytes from 

where the factor of 1·9067 represents the AID convertor output and one 
lOs time constant. 

Following the highpass filters are 
the instrumentation amplifiers which 
convert the signals to unbalanced 
form. The instrumentation amplifiers 
used were based on the INA 11 OKP 
device from Burr-Brown. 19 This 

64 

the gain of the lowpass filter from the WD. The WD output was 
described below. stored together with the 

Lowpass filtering was necessary to corresponding digitised amplitude so 
prevent aliasing. The filter had to be that during the data processing the 
chosen such that it provided both a particular gain utilised was known and 
linear phase response in order to could be taken into account. The 
avoid phase distortion and a interfacing of the WO and multiplexer 
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to the PC was realised by a 
programmable peripheral interface 
device. PPI (type INTEL 8255A).23 

An acoustic stimuli generator was 
required for CNV elecitation. It 
produced a click by connecting a 
power amplifier (type TBA820 linked 
to a loudspeaker) to a DC voltage via 
an analogue switch (type HFE40 16b) 
for about 20 ms. Then a tone of 1 kHz 
with 5 s duration was generated by a 
sine wave generator and also 
amplified by the power amplifier. A 
pushbutton attached to the tone 
generator by a cable allowed the tone 
to be tenninated. An error signal 
which indicated whether the CNV 
response was faulty (i.e. pushbutton 
pressed before the onset of the tone) 
was obtained through a latch 
attached to the pushbutton. 

The timing circuit provided the 
necessary 5tH signal. measured the 
intertrial interval and the subject's 
reaction time. It consisted of two 
programmable interval timers (Intel 
8254) which were added to the PC. 
Each programmable interval timer 
(PJn contained three individually 
programmable counters. These 

60r 

40t ~ 

~20~ I II ~ 

C 2 

CNV 

6 
time. S 

a 

8 

counters were programmed to 
generate the necessary signals or to 
measure the required times. The PC 
contained a programmable timer. but 
this could not be used as it was 
utilised by the PC itself. 

Memory requirements 

The data recording was carried 
out at a sampling rate of 125 Hz 
and with a trial length of 1 2 s. 

The experiment was repeated 32 
times for every subject. thus recording 
32 trials. Eight channels of data were 
recorded. The PC hard disc could hold 
the data recordings from 1 7 subjects. 
For further recordings the contents of 
the hard disc were backed up on a 
magnetic tape by using a Sysgen tape 
streamer. 

Data-recording software 

Fig. 6 shows the flow chart of the 
data-recording software. The 
programs were written in Turbo­

Pascal and 80286 assembly 
language. Turbo-Pascal was used to 
enter the data related to recording. 

> 

25

f 
20 
15 

~ 10 

~ 5 
o 

~ 0 U 
\!) -5 I 
~-10 

-15 

-20 

for example. the name of the file in 
which the data was to be stored. the 
number of CNV trials and the CNV 
paradigm (the time for the onset of 
warning and imperative stimuli. and 
the duration of each trial). The 
assembly language program was 
declared as external in the Turbo­
Pascal program and was called by the 
Turbo-Pascal program. Assembly 
language was used to control the 
experiment. and to acquire and store 
the data. 

CNV preprocessing steps 

Prior to analysing the CNV 
response a certain amount of 
digital signal preprocessing had 

to be carried out. The steps followed 
were: 

(i) Mean (DC) level removal 
Even though a highpass filter with a 

cut-off frequency of 0·01 59 Hz was 
implemented for each channel and 
various precautions were taken during 
the data recording and the 
development stages to minimise any 
DC offsets (e.g. the use of output 
offsetting for the instrumentation 

, , 

4 6 
time. S 

o 

CNV 

VR 

! . 
8 10 12 

-250.!::-....I.---2=-........ -4-:--'-~-'--~--'--:'::-..I..-~ 
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fI 

Fig. 7 (al A single CNV trial prior to preprocessing; (b) A vertical right EOC plot: (el A horizontal right EOC plot: and 
(d) The single (NV trial of (al after: preprocessing 
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Fig. 8 Typical averaged preprocessed CNV waveform from: (al A normal subject; (bl A sChizoPhre~ic: (el A Huntington's 
disease subject; (d) An at risk of Huntington's disease subject; and (el A Parkinson's disease subject 

amplifiers, as described in Reference 
19, and the careful selection of the 
components), they could not be 
totally eliminated. Their effects were 
to cause a shifted baseline. It was 
desirable to have a baseline reference 
of zero so that comparison over time 
could be made and to ensure that the 
ocular artefact removal algorithm 
functioned properiy. As the CNV trial 
length was fixed this offset was 
removed by: 

1 N 
Xllr - X~ - - 2 XI for 1 ~ k ~ N (1) 

N ,_I 

66 80 

where X .. - I(rn data point. 
N - total number of samples 

per CNV trial, 
and X.r - I(rt. data point with the 

mean removed. 

(ii) Baseline correction 
A side effect of mean level removal 

for the CNV responses which had a 
marked negative shift was to cause a 
positive shift of the pre- and post­
stimulus baseline. Thus it was 
necessary to ~stablish the true 
baseline. This was achieved by 
subtracting the mean signal level 
(Ys,), calculated over that section of 
the data prior to S 1 , from the pre-

stimulus section: 

1 p, 
Ys' - - L XI for 1 ~ k ~ Pl (2) 

Pl .-1 
where Pl - the sample number 

corresponding to the 
instant of S 1 , 

X, - the ,lh data point. 

Further, to allow for any small drift 
during the acquisition of the data, the 
mean signal level Ys] was also 
calculated for that section of the data 
from a point 1 s after 52 (to avoid the 
auditory evoked potential generated 
as a result of 52) to the end of the 
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- UcUCI r~cora. rS2 was suotracteo ITOm 
this post-stimulus section: 

I " 
YS2 - 'LX, for P2<k ~ N (3) 

(N-P2-DI , • P2 • 0 

where P2 - the sample number 
corresoonding to the 
instant of 5 I . 

D - the delay after 52 (1 s. or 
1 25 sampies). 

N - the total numoer of data 
POints. 

Between these two mean values the 
oata was correc:ea by subtracting the 
appropnate fraction of the difference. 
i.e. Y'SI• between these values: 

Yc-- YS1 P 
Y'SI- ,- (k- 11,. YS1 

P2 - D - PI 

for P1 < k :s P2 - D (4) 

(iii] Digital filtering 
A finite impulse response (FIR) 

lowoass filter with passoand and 
stopoano frequencIes of 5 Hz and 
10Hz. resoectlvely. was designed. The 
cutoff freauencv of tne filter is the 
anthmetic mean of tne oandedg~s. 
i.e. 7·5 Hz. The design was based en 
the FIR filter program given by 
Rabiner and CouIO.:'- A FIR filter was 
chosen rather than an infinite impulse 
respcnse (IIR) filter oecause it does 
not distort the signal.:S : 6 Digital 
filtenng ~ .. as incor::oratec to filter out 
tne um .. anrea hign-frecuency 
componems in the EEC. The filter 
length c~osen ' .... as 29. 

(h) Oc;.:lar artefac: remo\'al [OAR) 
There exist several methoOs of OAR 

but :he :echnlque appiieo here was 
the pro::;ortional suctraction 
techniaue:: and is based on the 
assumptIon that :he measured EEC is 
a linear combination of the true 
(unconraminated) EEC and OA. and 
tnat ~he OA is a linear combinatIon of 
se!ec:ed EOCs. The formula used for 
the OAR procedure was: 

EEC. (il - EEC."r1l - (8! HL (IlHR(1l -
8~VR(j) - 8.HUi) - 8 .. HR(i)) 
for 1~ i~'N (5) 

where EEC.(i) - it" samole value of 
. correc:ed EEC 

E:C",(i) - it.., sample value of 
measured EEC 

HLU) - jt1t sample value of 
horizontal left EOC 

HR(i) - it" sample value of 
honzontal rignt EOC 

VRU) - it" sampie value of 
vertical rignt EOC 

N - number of data points 
and e - transmission coefficient. 

The values of 8 were determined by 
the correlation technique28 using a 
non-recursive algorithm. Experiments 
indicated that the non-recursive 

metnCXl ot estimation of (J was 
superior to that of the recursive 
technique as the latter may distort 
the Signal. ~7 

Waveforms description 

The plots of a single CNV trial 
(prior to preprocessing) and the 
corresponding vertical right and 

horizontal rignt electrooculograms are 
shown in Figs. 7ra). (b) and (c). The 
vertical and hOrizontal left EOC plots 
are not shown as thev were similar to 
those of :he right. The soike-like 
waveforms at times t - 2,5.4 and 9s 
in the EOC plots are due to eye 
blinKS. These ocular artefacts and the 
background EEG have contaminated 
and OCSC:Jred the Single ON trial of 
Fig. 7(a). It can be seen that :he effect 
of these artefacts is consideraoly 
reduceC in the ~reprocessed single 
ON trial of Fig. 7(d) and now the C~V 
can be seen between the two stimuli 
(i.e. 51 and 52 or time intervals 1 and 
2 s). As mentioned before. the onset 
of the stimuli S 1 and 52 generates 
auaitory-evoked potentials. These can 
be seen at time t - 1 and 2 s. 

Typical plots of preprocessed 
averagea (over eight tnals) C~V 
wavefom:s of a normal subject. a 
SChi;:opnrenlc. a Huntington's disease 
subject. an at risk of Huntlngton's 
disease subject. and a Pan<inson's 
disease subJect are Silown in Figs. 
8(a)-~ej. The averaging was necessar/ 
to reduce the effect of background 
EEG on the C~V. This reduction is 
proporticnal to the scuare ~oot of the 
numcer of OJ"- trials used.:9 

Ceneration of diagnosis 
results 

For every patient considered. 
oata were recorceO from an age 
and sex matched normal control 

suoject. ThIs was done so that 

. comparison could be made between 
the CNV waveforms of the patients 
and normal subjects. The patients and 
their matched normal control subjects 
were divided into two equal groups in 
such a way that each group contained 
roughly similar patients and normal 
control subjects from the point of view 
of numbers. age and sex. 20 features 
(attributes) were selected from the 
average of eight trials of the 
preprocessed inter-stimulus interval 
sections of the C:'\IV waveform from 
eac!'l subject. The features from the 
first group were used to dnve the 
diagnOSIs rule (these feat:Jres were 
used in training moae) and then the 
features from the second group (these 
features were used in the test mode) 
together with the clagnosis rule were 
used to test the effectiveness of the 
technique. 

Of several methocs (such as 
discriminant analYSIS. predictive 
statistical diagnoses) wnJch are being 
used by us to ootaln the aiagnosis 
results. the artificial ne'.Jral networl< 
(ANN) technique wlil be described 
here. ANN has been successfullv used 
in manv fields. suc!'! as oattern ' 
re::ognition. The reader may refer to 
Reference 30 for an inrrcauctlon to 
ANN. and for more detaiis. to the 
proceedings of the first lEE 
international conference on artificial 
neural nen'lorl<sY ANN comprises 
programmable neural units. Feature 
vectors torm the input to these units. 
The structure of the ANN used is 
shown in Fig. 9. It ccntalr.s an input. 
an outout ana hicce:1 ,a:ers. The 
methoO used to train tl"le :1etwol1< was 
based on the back-propagation 
algorithm. This is a generalisation of 
the least·mean-squares tecnnique 
which uses a gradient search method 
to minimise a cost function equal to 
the mean square error between the 
desired and actual outputs of tne 
networl<. 

r--------------------..., Fig. 9 Artificial 
neural network used 
to obtain the 
diagnosis results 
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Table 1 The diagnosis success rate 
obtained for schizophrenia by 
applying CNV to ANN 

Network- Training Test 
structure mode mode 

4,8,1 100% 92·9% 

8,8,1 100% 85·7% 

16,8, 1 100% 85·7% 

16, 16, 1 100% 85·7% 

20, 16, 1 100% 85·7% 

"Numbers under this column 
represent the number of units in 
input, hidden and output layers, 
respectively. 

The results obtained when the 
above method was used to diagnose 
schizophrenia are shown in Table 1. 
These results are based on the 
recordings from 14 schizophrenics 
and their 14 matched normal control 
subjects. It can be observed that the 
success rate in the training mode for 
all the different ANN structures was 
100%. In the test mode, however, the 
best result was obtained when the 
number of units in the input, hidden 
and output layers were 4. 8 and 1 
respectivei). The diagnosis results 
from Huntington's disease and 
Parkinson's disease are not included 
as suffiCient data were not available 
at the time of writing thiS article, 

Conclusion 

A n integrated system set up 
around a PC to diagnose 
brain-related disorders has 

been deveiooed. The system meets 
the necessary specifications and when 
compared to the commercially 
available systems was cheaper and 
superior. It is now being applied 
successfull~ to the clinical diagnosis of 
patients. 
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6. AppliCltion cf ar.ificial neur:ll ne:-... ·orks :0 the 
ice:1t:iic:ltion of schizopnre:-:ic patie:lts base~ OD the 
contingent negltive variation. B.W Je~.is. M.R 
SJ.atc:i. E. Allen. ~. Hudson md S. Oke. ~~ooi of 
Engineering Tc:c!1noiogy, Sheffie:d Cty ?oi~"teQnjc. 

T:,ere have bee:,: consis.ent reportS desc:1oing 
abnor.Ilalities suchl.S the reduc:ion in t.'te :u=piitude 
of the contingent negative variation (0lV) 
responses of schizophrenic patients and the presence 
of a. post-imperlt:..·e neg3.tive variation. Ar.iiicial 
neural networks whic!l are cornouter models dlat 
sin:ulate the fucc:ioning of th~ brain in a. verv 
sicplified manner have bee:'l used su~fullv ~ 
m3JlY pattern. reco~iti~D proble:ns. We ha"'e applied 
the:u to the Identlfic:lt1on o( schizopnrenic patients 
based on the contingent neg:1tive variation. 

The orv responses of 20 sc!lizophrenic patients 
and 20 age/sex :natc!led normal control subjec:s were 

pre:mx:esse~ md averaged (over S trials). Twe:lCY 
ttce domain features · ... ·ere se!ec:ed (rom elCh 
averaged pre;:roc=ssed crY response. r.te C>I'V 
fe:ltures of haif :he patie:lts and :heir :natc.'led 
::Or::lal controi subjec-..s were used :0 train the 
neural network. The CN responses of t.'le 
re::aining patients and their nor.nal control 
subfe~.s ..... ·ere used to 'e5: the e!fec:r.·eness of t!le 
neural :let'INork in the :est =node. 

The perforc3Jlce of the neural ne:work in 
ice:it;~ring :he ~V responses or the sc:tizophrenic 
patie:lts in the training and the test mode was 
100<:0 and 90% respeC:I\·e!y. This result indic:ltes 
that oew-a! ne:"J.'orks 3..re 1 valuable :ooi for the 
ice:ltific:ltion or schizopilre:lic patients. 
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lEE COLLOQUIUM "INTELLIGENT DECISION SUPPORT SYSTEMS AND MEDICINE" 
lEE, SAVOY PLACE, LONDON, 15 JUNE, 1992. 
The Application of Unsupervised Artifichll ~eural Networks to the 
Sub-classification of Subjects At-risk of Huntington's Disease 

B W Jervis. M R Saatchi, A Lacey, G ~1 Papadourakis. ~1 Vourkas. T Robl:!rts, 
E MAllen. N R Hudson, S Ok~ 

Sunmlan 
The Conr"ingent Negative Variation ( CNV ), which is an t!\oked respons~ in the human 
electroencephalogram ( EEG ). was measured for a numbl:!r of Humington's Disease 
patiems ( HDs ) and subjects at-risk of developing HD ( ARs ). and for ~qual numbers of 
matched normal subjects. The sampled voltage response values and the duration of the ' 
CNV were then used as input data to Kohonen and AR-r- unsupervised artitidal neural 
n~tworks to classify the subjects. The two methods gave similar rl:!sults for the HDs vs 
normals which also agreed with thl:! results of a cluster analysis. The results of attempting 
to identif" abnormal ARs showed that the AR'r- results showed partial agreement with the 
results or'the Kohonen network and cluster analysis. The application of [hes~ unsu~rvised 
neural networks to thl:! sub-typing of clinical categories appears to offer a relatively simple 
tool suitable for hard"vare implementation. 

Introduction 
It is of clinical importance to be able to identify, monitor. and pre-symptomatically 
diagnose the genetically inherited and fatal brain disease known as Huntington's Disease. 
The Shefrield/Plymouth group have succeeded in differentiating HD patients from normals 
using the Contingent Negative Variation ( CNV ) ",,.hich is an evoked response potential 
( ERP) in the electroencephalogram ( EEG ) and which is moditied by the disl:!ase .The 
CNY was recorded using purpose-designed instrumentation ( I). In the tirst method ( 2 ) 
the CNV was transformed into its Fourier harmonic components and then these were 
analysed statistically. This complicated approach was then replaced bv pattern recognition 
in the time domain which was much simpler ( 3). Volta~e samples ot' the CNV waveform 
were pre-processed and then used together with the duration of the CNV as inputs to an 
artiticial neural network, the output of which after supervis~d training classitied the subject 
as HD or normal. Attempts were then made to identity abnormal ARs ie ARs whose 
CNVs were abnormal. and who therefore might be in the earl v staues ot HD. Because 
there ,was no I~eans of knowing whose CNVs were abnormal it wa~ necessary to identify 
techOlques deSigned to form classes based upon unclassitied data. This was done using 
Ward's cluster analysis method which identitied some abnormal ARs based upon the time 
domain data ( 4). It was then of interest to establish whether similar results could be 
obtained more easily using unsupervised neural networks. It would then be possible to 
provide a software package for the detection of abnormal ARs which would be simple to 
use. or to develop a hardware version available as a black box of electronics. There were 
two competing artiticial neural networks which might be suitable for the task, namely the 
Kohonen network ( 5 ) or the ART ( Adaptive Resonance Theorv ) networks ( 6.7). Both 
possess the crucial ability to learn ( be trained) in the unsup~rv(sed mode. However they 
work differently and have different output formats. The Kohonen network responds to 
input data by producing an output map in which each input data set produces a 
characteristic pattern which depends u~n the class to which it belongs. Recognition of the 
pattern identifl~s the class. By. compan~on the ART netw~rk~ have. one output n~e 
specifically aSSIgned to each or the poSSIble patterns. Actlvauon ot a node Identltles the 
class. The Kohonen network is provided with all the data and forms the characteristic 
patterns from it. The ART networks classify the data as it becomes available. Earlier 
classes are retained in memory and new classes are identified and assigned to unused output 

B w J~rvis, ... 1 R Saalt'lIi, A Lal.'~', T Rohe-rlS are- W;I" ,"e- SI.'I/(H.I "i £II,I(;"rrrm~ IlIjimna';,," Tr4h'"""g~ ... ShrffirlJ CiJ\· 
Polylltchn;c:, 
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nodes. Both methods have been applied to the identitication of abnormal 
ARS and the results compared with those of the cluster analysis. This is the topic of this 
paper. 

CNVacquisition 
11 HD patients, 21 ARs, and their age and sex matched normal control subjects were 
enrolled for this study. The CNV was recorded from the convexity of the scalp ( vertex) 
using linked earlobes as the reference. Electro-oculograms ( EOGs ) were also recorded for 
use in the removal of contaminating ocular artifacts. The data recording system has been 
described elsewhere ( I ) as has the CNV ( I). Figures I and 2 show the individual CNV 
waveforms of a normal subject and an HD patient respectively. The HDs were numbered 
1 to 11 and their matched normals 12 to 22. The ARS were numbered 1 to 21 and their 
matched normals 12 to 22. 

CNV Pre-processing 
CNV pre-processing was necessary to reduce the effects of background EEG and ocular 
artifact contamination. This involved applying the following routin!!s to each individual 
CNV response: mean level correction, baselint! correction, digital low-pass tiltt!ring ( cut­
off 7.5 Hz ). and ocular artifact removal. The average of eight CNV trials per subject was 
then taken to reduce the effect of the background EEG. Figures 3. 4. and 5 show the pre­
processed and averaged CNV responses of a normal subject. an HD. and an AR 
respectively. The procedures are described in detail in ( I ). 

Feature extraction 
After pre-processing, features were extracted from the averaged CNV waveforms. 16 
amplitude measures were obtained from the 64 data points immediately prior to the 
imperative s~imulus ( S2). Every four consecutive voltage samples was averaged to 
produce 16 features. The seventeenth feature was the time difference between S2 and the 
point where the CNV trend returned to its original baseline. These features were the data 
used in each method. 

Kohonen method 
The a!go~ithmic version of the Kohonen self:<;>rganising map ( 5 ) given in ( 8 ) w.as used. 
The rum IS to map exemplar class patterns of tnput data on to the weights connectmg the 
inputs to th~ correspondtng region of output nodes which is associated with the particular 
class. In thiS way data belongmg to a particular class will always activate the same region 
of the output map. Thus when the network is fed unclassified data the classes become 
revealed by the patterns formed in the output map. 

The winning output node was identitied as the one associated with the smallest Euclidean 
distance between the input data and its weights. In the weight up-dating procedure all 
nodes in the neighbourhood of the winning node had their weight vectors adj usted 
incrementally to become nearer to the input data vector. The winning node was placed in 
the centre of the neighbourhood which was shrunk as the training progressed. 

Patterns of activity within the network and output patterns were more readily identitied by 
displaying the activity of each node. The activity IS the inverse of the Euclidean distance 
associated with a node. The activity values were scaled within the range 0 to 1 using the 
arctan function. Otherwise winning nodes with near zero distances would result in infinite 
activity. 

There were 17 inputs corresponding to the 17 input features. The output map contained 10 
x 10 nodes. The initial weights were random numbers between 0 and 1. and the input data 
was normalised to lie between 0 and 1. The gain term which controls the amount by which 
the weight vectors were adjusted was reduced from 0.2 during training in steps of 0.00001 
every two cycles during neighbourhood sizes of 3 or 2, and by 0.00001 every 100 cycles 
when the nei~hbourhood size was 1. The initial neighbourhood size was 3 being reduced 
by 1 every 2v.000 cycles down to O. 100.000 trainin.g ~ycJes were used. To assist the 
pattern identitication an activity threshold ~a~ set. If .thls was e~cee~ed the node was on 
and was illuminated on the screen, otherwise It was off and not Illummated. 
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With a 486 PC ( 25 MHz) having an on-board tloating point calculation una the average 
training time was approximately 30 minutes. 

ART method 
The adaptive resonance theory. or ART. neural networks. based on the models of 
Grossberg and Carpenter, are recommended for the real-time unsupervised grouping of 
patterns, as they are encountered in an arbitrary "environment". There is no separation of 
activity into traming and reco~nition phases and, while learned pattern templates are stable. 
the network retains plasticity Ie it can form a new template at any time a novel pattern 
appears. though if the input is close enough ( as detined by an adjustable number, 
vigilance) to a known group, it joins it and modifies the template. Thus vi¥ilance controls 
the partitioning of the patterns with lower vigilance forming coarser categones. At tirst, 
recognition of known patterns may require a search of several candidate templates before 
the matching one is found, but after a few repetitions of a tixed ( even a long) sequence, 
the network stabilises and known patterns are immediately classified without search. 

The speed and self-organisation of ART networks make them attractive 
as tools for the classitlcation of subjects by multivariate data. 

Each pattern of the 17 data is read into a sufficiently wide input array of "nodes" in layer 
F 1 ( figure 6 ), where it may be processed (ART 2). From F I. it activates F~ via "bottom­
up" connections, which are tnitialised with small random weights. The F~ node with 
maximum activity "wins" and all others are suppressed. In parallel implementation this 
would be done by competitive inhibition between F2 nodes. The winning signal is tiltered 
via the "top-down" weights. back to F I, where the emergin~ vector is compared with the 
input pattern. A similarity ratio exceeding vigilance is rewarded by learning and 
resonance. In learning the outstar and instar weights between the winner and Flare 
moditied to reinforce the selection of the winner and improve the match. In resonance the 
~2 winner ~tays active, with this input and represents its cluster. Thus, the outstar weights 
trom the wmner constitute the template pattern for this cluster. On the other hand, 
mismatches inhibi~ winners while the search cycle continues. If no existing cluster fits, an 
unused F2. node WIll eventually win and start a new cluster. Only the size of F2 limits the 
number of clusters that can be formed. After all the patterns have been cycled a few times. 
the clusters stabilise. 

ART 1 , 
The ART 1 network ( 6 ) accepts only patterns of binary numbers, but as it is the simplest 
ART to compute, an attempt was made to ap'ply it. ART 1 is also much better-de tined than 
later models, and the condItions for its stabilIty are rigorously proved in the literature. The 
real numbers were first convened to histogram-like patterns of bits. Thus, if 10 bits were 
used and the data scaled between 0 and I, 0.7 became 7 l' s followed by 3 O' s, and 170 
input nodes were needed for the whole pattern. The limit was 15 bits, so the resolution 
was crude. In ART I, top-down weights are binary, and the template is compared with the 
input by ANDing, then dividing the number of I's remaining by the number in the input. 
The learning is "fast" ie the top-down outstar changes in one ·step to match the ANDed 
vector, and the bottom-up instar becomes parallel to this vector. but scaled to allow sparse 
templates to win when inputs match them. 

ART 2 
In ART 2 ( 7 ), F 1 is modi tied for real number inputs, which are tirst contrast-enhanced 
and normalised by FO. Competition among Fl nodes is introduced, to enhance peaks and 
suppress low activity as noise. In the computer algorithm. this is simulated by creating 
"nodelets" within each F 1 node, which successively suppress low signals and normalise the 
remaining patterns. Two cycles are seen in each node ( tigure 7 ) and the pattern matching 
occurs at their interface. The resultin~ vector at U is compared with the outstar template at 
P, to reset F2 or refine the weights as In ART 1. 
Here, ANDing of vectors is replaced by measuring the length of a vector made by 
normalised linear combination. Learning can be slow, where a new weight is a linear 
combination of the old weight and the activity at P, or fast, as in ART 1. In all, there are 
7 parameters to adjust: learning rate. vigilance, top-down filter gain. two feedback gains 
and noise threshold in F I, and a constant used in vector comparison. Some of these have 
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stability constraints. but ART 2 is clearly more complex to lise than ART I, while having 
greater versatility. 

The algorithm tirst tested in the Sheffield group, ART 2A, was based on a simplification of 
the full ART 2 model, which was proved ( 9 ) to have equivalent dynamics to ART 2 when 
it is restricted to fast or intermediate modes of learning. ART 2A is recommended for 
real-time applications, but even slow learning in ART 2 is fast compared to most neural 
network simulations. In intermediate learning, free nodes undergo fast learning. while 
those committed to a cluster learn slowly. In ART 2A. F I and tile reset mechanism are 
much simpler ( the latter reduces to a measure of the angle between input and template ). 

Results 
The results of using the two unsupervised networks and the cluster analysis are compared 
in Tables I and 2. Table I refers to distinguishing between the known classes of HDs and 
matched normals, while Table 2 refers to the classitication of ARs and their matched 
normals. It can be seen from Table 2 that some ARs have been classed as abnormal, which 
was the desired result. Some of the ARs have been classified as abnormal by more than 
one method. This suggests that those subjects could be in the early stages of HD. 

With all the ART networks, test patterns of real numbers in clearly discernible clusters 
were successfully. and very rapidly, grouped, and noise within a variable was rejected. 
using a wide range of network parameters. However, for the noisy EEG data, tile clusters 
revealed were sensitive to the parameters. The HD data was used to 'tune' the networks, 
with the aim of minimising the number of badly c1assitied subjects. Then the AR data 
were investigated. ART I managed to classify the invented test patterns, but was 
inadequate for the EEG data. ART 2A was capable of being fairly well tuned to HD data, 
but then made little sense of AR data, contirming the view that ART 2 needs slow learning 
with noisy data. The full ART 2 model was therefore used. 

Two different ways of controlling the formation of new cate!!.ories for novel inputs have 
been tried based on the vigilance parameter. Vigilance prevents the inclusion of a 
mismatched pattern in a cluster, by withdrawing that cluster from competition, allowing 
free F2 nodes,to "win". In the absence of reset ( zero vigilance ). the size of initial 
bottom-up w~lghts ca~ b~ used to affect the stability of established clusters. As these 
appro~ch theIr upper lImIt, free ~odes are more likely to beat the poorly matched 
commItted nodes, ~h~:lUgh they WIll lose to well matcned ones. While the Cretan group 
have used a zero-vlgtlance model (ZV), in which a noise threshold and initial weights were 
":lanip,ulated,. the S.heffiel~ network was tuned mainly by varying vigilance and a continuous 
SIgmOId verSIOn of the nOIse threshold. Both models were tned for ART 2A, and results 
for He data are tabulated. 

He results show a fair correlation with those from cluster analysis, especially ART 2 with 
ZV. Of course, HC was used to tune the network, but this should not be confused with 
training of a supervised network, where the categories are tirst created with known 
exemplars taken from a population homogeneous with the test data. Thus, there are not 
enough degrees of freedom to force ART 2 to correlate inputs with arbitrary outputs. The 
AR results are more divergent, though both AR and HC controls are correctly identified by 
all ART 2 models, 100 % in ZV and with one error in the others. The AR results with ZV 
match cluster analysis quite well. 

It can be seen that there is very good agreement between the cluster analysis and Kohonen 
results. At present it is not clear whether this is because the two methods share an 
underlying principle or whether these methods are robust compared to ART 2. Certainly 
the results indicate that ART 2 is sensitive to the chosen parameters. It is also debatable 
that, because the Sheffield ART 2(b) network identified some additional abnormals as well 
as the same abnormals as the Kohonen and cluster methods. whether it is a more sensitive 
detector of abnormals or whether it is unreliable. This query may be solved by more 
analysis, otherwise it will be necessary.to wait until the abnormal ARs have had sufficient 
time to develop symptoms - and that WIll take years. 
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An interesting suggestion has been made by Burke ( 10 ) that ART 2 is formally equivalent 
to a K-means cluster analysis. and even shares characteristics with the cruder sll1gle leader 
algorithm variant. The latter is refuted by Carpenter. Grossberg and Rosen ( 9 ). 

Conclusion 
All four methods have shown promise in the pre-symptomatic detection of HD in ARs. 
Further investigation will be necessary to determine which of the unsupervised networks is 
the more reliable. It will then be worthwhile implementing it as either a software system 
and/or as hardware for clinical practice. 
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TABLE 1: RESULTS FOR HDs AND l\IATCHED NORl\1ALS 
SUBJECT CLASS BY NUMBER 

SUBJECT ART 2 ART 2 ART 2A KOHONEN CLUSTER 
NUMBER SHEFFIELD CRETE SHEFFIELD 

NORMALISED NORMALISED NORMALISED NORMALISED ANALYSIS 
.- .. --........ --

(a) (b) (a) I (b) 

HD1 3 3 3 2 3 HD C1 ; 

HD2 3 3 3 2 3 HD C1 

HD3 3 3 3 2 3 HD CI I 

I 

HD4 3 3 3 2 : 4 HD C3 
! 

HDS 3 1* 3 2 3 HD C3 I 
, 

HD6 2 2 2 2 5 HD C1 , 

HD7 2 2 1* 1* 2 HD C1 
I 
I 

HD8 1* 1* 3 2 1* HD CI I 

HD9 3 3 3 2 3 HD C3 
! 

HD10 3 3 3 2 3 HD C3 
I 

HDll 1* 2 1* 1* 1* HD C1 

N12 1 1 1 1 1 N C2 

N13 3* 1 1 2* C2 
i 

3* N 
: 

N14 1 1 1 1 
, 

1 
I 

N C2 
I 

N15 1 1 1 1 1 N C2 I 

N16 1 1 1 1 1 N C2 , 
r I N17 1 1 1 2* 1 N C2 , 

N1S 1 1 1 1 1 N CI* 

N19 1 1 1 1 1 N C2 

N20 1 1 1 1 1 N C2 

N2I 1 1 1 1 1 N C2 

N22 1 1 1 1 1 N C2 

* denotes incorrect classification 

ART PARAMETERS 

A B C D ~ e B 

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

SHEFFIELD ART2A - - - - - - - - 0 0.7 0.24 0.23 0.1 0.05 
SHEFFIELD ART2 0.7 0.7 0.7 0.7 0.2 0.2 O.S 0.8 0.95 0.97 0.24 0.24 0.5 0.03 

CRETE ART2 10 10 0.1 0.9 0 0.0727 0.235 
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TABLE 2: RESULTS FOR ARs AND l\1ATCHED NORl\1ALS 

SUBJECT CLASS BY NUMBER I 
, 

. ART 2 ART 2 KOHONEN CLUSTER 
I 

SUBJECT ! 

NUMBER SHEFFIELD CRETE ANALYSIS I 
(b) 

I 
(a) I 

, 

ARI 1 2+ 1 N Cl 
AR2 1 1 1 N C2 i 
AR3 2+ 1 1 N Cl ! 

AR4 1 2+ 2+ + C3+ 
AR5 2+ 2+ 1 + C3+ 
AR6 1 2+ 1 N C4 ! 
AR7 1 1 , 1 N C4 

I 

AR8 1 1 , 1 N C4 
AR9 1 2..- I 2+ C3..-+ ; 
ARlO 1 2+ 1 N C4 I 
ARll 1 2+ 2+ + C3+ ! 

AR12 2+ 2+ 2+ + C3+ , 
ARB 1 1 1 N C4 : 
AR14 1 1 1 N Cl 
AR15 1 2+ 1 N C2 
AR16 1 2..- 2+ ..- C4 
AR17 2+ 2+ 2+ N C4 I 

I 
AR18 2+ 2+ 1 N Cl I 

AR19 1 2+ 1 + C3+ ! 
AR20 2+ 2+ 1 + C3+ I 

AR21 1 1 1 N C2 I 
I 

N22 1 1 1 N C1 I 
N23 2+ 3+ 1 N C2 

I 
N24 1 1 1 N C2 
N25 1 1 1 N Cl 
N26 1 1 1 N C4 
N27 1 1 1 N C2 , 
N28 1 1 1 N C4 

, 
N29 1 1 1 N C4 

, 
N30 1 1 1 N C1 , 

N31 1 1 1 N Cl I 
N32 1 1 1 N C2 ! 
N33 1 1 1 N C4 
N34 1 1 1 N C1 
N35 1 1 1 N C4 
N36 1 1 1 N C4 
N37 1 1 1 N C2 
N38 1 1 1 N C2 
N39 1 1 1 N C4 
N40 1 1 1 N C2 , 
N41 1 1 1 N C4 
N42 1 1 1 N C1 

+ denotes identified as abnormal 

ART PARAMETERS 

A B C D e B 

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

1 1 0.2 0.2 0.8 0.8 0.985 SHEFFIELD ART2 1 1 0.99,°.23
1
°.20 0.03 0.03 1 

I I ' 

CRETE ART2 10 10 0.1 0.9 o I 0.0727 I 0.235 I 
.. ~.~ .-.. "'" .. _. ...... .. L-____ -..: ___ ..i...-__ ~ __ ...J_ _____ •• __ • 
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Fig. 4 The preprocessed CHV response 
in a Huntington's disease subject. 
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Abstraet 

In this study a potential known as the contingent negative variation was 

used to differentiate betveen schizophrenie, Parkinson'S disease (P~), 

Huntington's disease (RO) patients and normal control subjects. The aim 

vas to assist diagnosis and the avoidance of false-diagnosis. 20 

schizophrenic, 16 PD, 11 RD, and 43 normal eontrol subjeets vere enrolled 

for this study. The diseriminatory variables vere generated by applying 

spectral analysis to pre- and post-stimulus seetions of the CNV responses • 
. 

The patient differentiation vas achieved by using the measured variables in 

a discriminant analysis program. It vas possible to aeeurately 

differentiate betveen RD, schizophrenic, PD patients and normal control 

subjects. 
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It vas also attempted to differentiate between BD and schizophrenic 

patients, BD and PD patients, and schizophrenic and PD patients. The test 

results indicated that the method is useful in differentiating between 

these patients. 

This study had a number of limitations. It vas based on a limited number 

of individuals, and an analysis of medication effects on the test results 

and the test-retest reliability assessment could not be carried out. 

Keywords; Huntington's disease, schizophrenia, Parkinson's disease, 

contingent negative variation, patient differentiation, spectral analysis, 

EEG processing, discriminant analysis. 
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1 Introduction 

The aim of this study was to develop a computerised method of 

differentiating between schizophrenic, Parkinson's disease (PD), and 

Huntington's disease (ED) patients and normal subjects using the 

contingent negative variation (CNV) which would assist diagnosis and help 

to avoid false diagnosis. 

ED is a fatal and progressive neurodegenerative disease which places 50% 

of the off-spring of the ED patients 'at risk' (AR) of developing the 

disease (Hayden, 1981). Its symptoms usually appear in the third to fifth 

decade and include involuntary movements and intellectual deterioration 

commonly accompanied by psychiatric symptoms. The disease is inherited 

through a defective gene localised to the short arm of chromosome 4 

(Gusella et al., 1983). Studies using computed tomography (CT) and positron 

emission tomography (PET) showed neuropathological changes 1n several parts 

of the brains of ED patients. The affected areas include frontal cortex 

(Goldman-Rakic, 1987; Hayden, 1981; Adams et al., 1984), but the brunt of 

the changes (typically severe neuronal loss) are in the striatum 

(Mazziotta, 1989). The striatum is part of the basal ganglia and is 

referred to two masses of nuclei called the caudate nucleus and putamen. 

There is no single definitive test for diagnosing BD, therefore its 

diagnosis has been based on: i) A positive family history (ie. when the 

patient has an affected parent), ii) observation of choreic movements and 

psychiatric disturbances and iii) detection of relevant brain structural 

abnormalities using PET and CT scans. A genetic presymptomatic test for the 

individuals AR of ED is possible but it excludes some of the Ai patients 

because the marker used in the test does not detect the gene itself and 

therefore testing is only possible if suitable family members are 

available, so that the affected chromosome can be identified (Mirsa, et 
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al., 1988; Harper et al., 1988; Jackson, 1987). 

Schizophrenia is an illness with symptoms such as hallucinations, 

delusions and thought disorder. Several structural brain abnormalities were 

observed in schizophrenic patients (Ron and Harvey, 1990). The commonest 

were enlargement of the lateral and third ventricles and cortical atrophy' 

(Revely, 1985; Veinberger et al., 1983). There has also been evidence of a 

reduction in volume of the hippocampus in schizophrenic patients (Palkai 

and Bogerts, 1986). Some investigators showed a distinct relationship 

between the structural brain abnormalities and the symptoms in patients 

with schizophrenia. Marks and Luchins (1990) prOVided a review of some of 

those reports. The identification of patients vith schizophrenia has be~ 

based on monitoring the symptoms and observation of the structural brain 

abnormalities related to the disorder. 

Parkinson's disease (PD) was originally described by James Parkinson 

(Parkinson, 1817). PD is a progressive movement disorder which affects the 

nervous system. Its main clinical symptoms are: i) Body tremors at rest, 

the tremor mainly affects a limb or limbs but it may also be observed in 

other areas such as jaw and lips. ii) Muscle rigidity, this may cause 

stiffness and muscle discomfort. iii) Slowness of active movements. iv) 

Postural instability. A number of secondary clinical symptoms such as 

dementia and depression may also be observed in some PD patients. The 

cause of PD is unknown. The studies in progress to identify its cause 

include a search for an environmental toxin (Stern and Burtig, 1988). PD is 

characterised pathologically by: i) Degeneration of the dopaainergic 

neurons from the substantia nigra (Bennett, 1988). The substantia nigra!s 

a small nucleus considered a part of the basal ganglia. ii) The appearance 

of Levy bodi'es in the substantia nigra (Gibb, 1987). There 1s no 
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definitive laboratory test for diagnosing PD. Therefore, its diagnosis has 

been based on ~ careful study of the patient's medical history and through 

physical and neurological examination (Vernon, 1989). 

An event-related potential (ERP) is the brain electrical activity that 

occurs in association with an eliciting stimulus. The ERPs have been 

valuable in the better understanding of the brain cerebral pbysiology and 

in patients with known or suspected disorders of brain function (Chiappa, 

1990; Picton, 1988). The CNV is an ERP first reported by Va1ter et a1. 

(1964). It is a negative shift in the EEG potential measured on tbe . scalp 

and compared to the potential of the electrical reference electrode placed 

on a suitable site such as earlobe (Tecce and Cattanach, 1987; Mccallum, 

1988). The CNV elicitation involves the presentation of a warning stimulus 

S1 (such as a click) to warn the subject 0: the upcoming imperative 

stimulus S2 (such as a tone). The subject is asked to respond to tbe 

imperative stimulus (eg. by pressing a pushbutton to terminate the tone). A 

schematic drawing of a CNV waveform is shown in Figure 1. The CNV is 

considered as baving an early potential component which is maximal over the 

frontal cortex and a readiness potential component which has a more central 

distribution over the motor areas of the cortex. (Rohrbaugh, et al., 1976). 

The CNV was used in this study because: i) it is considered to be a 

measure of the brain-behaviour functions (Tecce, 1972), ii) tbere have been 

consistent reports of changes in the CNV responses of the patients witb any 

of the above disorders and iii) the dysfunction of the prefrontal cortex 

has been dir.ectly or indirectly implicated in schizophrenia, PD and BD 

(Goldman-Rakic, 1987). Furthermore, because some of tbe symptoms (such as 

intellectual deterioration) in schizophrenia, PD, and BD are common, the 

differentiation of the patients of one category from anotber category wouid 

be of interest. 
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A spectral analysis of the CNV response indicated differences between 

some harmonic frequency components of the BD patients and normal subjects 

(Jervis et al., 1984; Jervis et ale 1989a). The CNV responses of 29 

schizophrenic patients and 52 normal control subjects were analysed by 

Abraham (1989). Be found that it was possible to identify some of the 

patients. Prolonged CNV has been observed in the majority of schizophrenic 

patients (Roth, 1977). McCallum et ale (1970) observed a general reduction 

in the CNV amplitude of PD patients. This vas later confirmed by Cohen 

(1974). 

2 Experimental Procedure 

The RD, PD and schizophrenic patients were all confirmed cases and were 

selected by a neurophysiologist (EMA) and a psychiatrist (SO). A record 

(containing the names and amounts) of the medication taken by the patients 

was obtained. The normal subjects were selected by EM! and SO making sure 

that they did not have any disorder which might affect their CNV responses. 

All subjects were able to co-operate for the experiment. 

The severity of the symptoms in schizophrenic patients was measured 

using the Diagnostic and Statistical Manual of Mental Disorders (DSM III, 

1980). Nine symptoms were measured. Each schizophrenic patient vas given a 

score for each measured symptom. The scores varied between 0 (when the 

symptom was not observed) and 5 (when the symptom was severe). The sum ~f 

the scores (SOS) was obtained for each schizophrenic patient. The minimum 

value of the SOS was 8. This corresponded to a patient who vas least 

affected by the illness. The maximum value of SOS was 29. This corresponded 

to the patient most affected by schizophrenia. The mean and standard 

deviation values for the SOS were 18.35 and 6.45 respectively. 
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The severity of the disease in the BD and PO patients was assessed using 

a grading scale which varied between 1 and 5. The grades are shown in T~b~e 

1. Grade 1 included those newly diagnosed BD and PO patients for whom the 

disease had not affected their ability to lead a normal life (eg. they 

could work etc.). Grade 5 included those patients who had severe BD or PD 

and were totally dependent on others. The severity of the disease in 

patients classed as grades 2, 3 and 4 fell between grades 1 and 5, ie. 

those classed as grade 2 needed some assistance to lead a normal life, 

those classed as grade 3 could not live a normal life but they were self 

caring and those classed as grade 4 needed significant help. 

The data recording system consisted of an IBM personal computer (used to 

control the experiment, acquire, store, and process the data), an eight 

channel ERG machine (which provided a hardcopy of the data recording and 

was used to set the recording montage), a signal conditioning unit (this 

amplified and filtered the Signals), and an acoustic stimulus generator. 

The system -3dB pass-band was 0.0159Hz to 30Hz. The warning and imperative 

stimuli were a click (approximately 70dB sound pressure level (SPL» and a 

1kHz tone (approximately 90dB SPL). On hearing ~he imperative stimulus, the 

subjects pressed a handheld pushbutton to te=minate it. In order 'to 

familiarise the subjects with the experiment, 10 presentations were made, 

initially, with the subjects only listening, then the subjects participated 

in 15 practice trials. Following that, 32 CNV trials were recorded per 

subject. The CNV was recorded from the convexity of the scalp using linked 

earlobes as the reference. Four channels were allocated for electro­

oculogram (EOG) recording. The positions of the EOG electrodes are shown in 

Figure 2. The data were recorded using d.c. silver-silver chloride 

electrodes. The impedance between any electrode pair was ensured to be less 

than 5k~ during the recording. The subjects' reaction times to the 
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imperative stimulus were also recorded. The sampling rate vas 125Hz. The 

CNV trial duration was 12 seconds, corresponding to 1 second prior to the 

warning stimulus, a 1 second inter-stimulus interval and 10 seconds post­

imperative stimulus recording. The CNV trials vere separated by a random 

interval vhich varied between lOOms to 40ams. The data recording system 

automatically rejected the faulty trials (a CNV trial vas considered faulty 

if the subject did not respond correctly to the imperative stimulus). The 

CNV trials grossly contaminated by ocular artefact (O!) in the sections of 

interest were also rejected. 

3 CNV Data Preprocessing 

Preprocessing was necessary in order to reduce the effect of the 

background EEG and OA. The procedure consisted of: mean level removal, 

baseline correction, ocular artefact removal, and digital low-pass 

filtering. A description of the steps follows. 

3. 1 Mean Level Removal ( 

It was desirable to have a d.c. level reference of zero so that 

comparison over time could be made and to ensure that the ocular artefact 

removal algorithm functioned properly. As the CNV trial length vas fixed 

this offset was removed by, 

where 

and 

1 N 
Xkr • Xk - --- I Xi for 1 s k s N 

N i.1 
••• (1) 

Xk • kth sample value, 
N _ to~al number of samples per CNV vaveform, 
Xkr - k t sample value vi th the mean removed. 
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3.2 Baseline Correction 

The mean level removal caused a positive shift of the pre- and post-

stimulus baseline. To correct this, it was necessary to carry out· a 

baseline correction. This was achieved by initially subtracting the mean 

signal level (YSl)' calculated over that section of the data prior to the 

warning stimulus from the pre-warning stimulus section where, 

1 PI 
YS1 • - I Xi 

PI i-I 
••• (2) 

PI _ the sa~ple number corresponding to the instant of SI, 
Xi • the it sample value. 

The mean signal level YS2 was also calculated for the section of the 

data from a point one second after the imperative stimulus section to the 

end of the data record. YS2 was subtracted from the corresponding section 

(1e. P2+0 to N), 

1 
YS2 - --­

(N-P2-0) 
••• (3) 

where P2. the sample number corresponding to the instant of S2, 
o • the delay after S2 (1 second, or 125 samples), 
N • the total number of samples per CNV waveform. 

The section between PI and P2+D was corrected by subtracting YISI which 

was ·the appropriate fraction of the difference between YS1 and YS2 ' where, 

YS2 - YSI (k-Pl) + YSI Pl<k~P2+D 
P2 + D - PI 

k - the sample number. 
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3.3 Digital Filtering 

Digital low-pass filtering was necessary to filter out the unwanted high 

frequency components in the EEG. A finite impulse response low-pass filter 

(FIR) with the cutoff frequency of 30Hz was designed using the computer 

program given by Rabiner and Gold (1975). A FIR filter was chosen rather 

than an infinite impulse response (IIR) filter because it does not distort 

the waveforms. 

3.4 Ocular Artefact Removal (OAR) 

The technique applied was that of proportional subtraction (Jervis et 

al., 1989b). This is based on the assumption that the measured ERG is a 
linear combination of the uncontaminated EEG and the OA, and that the OA is 

a linear combination of selected Electro-oculog=ams. The formula used was, 

EEG Ci} • EEGmCi) - C91HLCi)ER(i) + 92VR(i) + 
c 93HL(i) + 9,ER(i» for 1 s i ~ N ••• (5) 

where EEGe(i) 
EEG~Ci) 
HL(l) 
BR(i) 
VR(i) 
N 

and e 

_ it~ sample value of corrected EEG, 
• it sample value of measured ERG, 
• it~ sample value of horizontal left EOG, 
_ it sample value of horizontal right EOG, 
• i th sample value of vertical right EOG, 
• number of data points, 
- transmission coefficient. 

The values of 9 were computed by a correlation technique (Jervis, et al., 

1989b) using a non-recursive algorithm. 

The preprocessed, averaged CNV waveforms of a normal subject, an ED 

patient, a schizophrenic patient, and a PD patient are shown in Figures 3a, 

3b, 3c and 3d respectively. These examples were selected at random. It 

should be noted that large variations in the waveforms are found within 

patient categories and within normal subjects, and therefore it is 
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difficult to define a typical patient waveform. 

4 Generation of the Discriminatory Variables 

The CNV trials were preprocessed as described. Two segments from each CNV 

trial were selected. These were: a 512ms segment prior to the warning 

stimulus (pre-stimulus segment) and another 512ms segment prior to the 

imperative stimulus (post-stimulus segment). Each segment corresponded to 

64 sample values. The next step was to transfo=m the data sequences into 

the frequency domain using the discrete Fourier Transform (DFT). But prior 

to this transformation, the data was windowed and then augmented with 

zeros. The windowing was necessary in order to reduce the spectral leakage. 

Spectral leakage develops because the energy in the original spectral 

components leaks to the other frequency components after truncation in the 

time domain (Stark and Tuteur, 1979). This ~an distort the frequency 

spectrum by introducing spurious peaks or can~elling out true ones. To 

reduce this effect, the segments were subjected to a Kaiser-Bessel window 

(Barris, 1978). The Kaiser-Bessel window had been identified earlier as 

suitable for this application (Jervis et al., 1989a). The trade-off 

between the side-lobes level and main-lobe width for the spectrum is 

determined by a parameter, c. Experiments indicated that c-O.7S would 

produce a satisfactory compromise. Since the DFT of digital data is also 

discrete, any signal component which occurs at a frequency between the 

harmonics will have its energy shared between these harmonics and thus 

will distort. them. In order to reduce this problem, the DFT harmonic 

separation had to be reduced by using augmenting zeros before transforming 

the data. After the zero augmentation, each segment contained 64 sample 

values and 960 zeros. Four statistical tests were applied to the first '96 

harmonic frequency components of the spectrum. These tests which are valid 
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for the sample sizes involved were designed originally to investigate 

composition of AEPs (Jervis et al., 1983). As the description of the 

is included in Jervis et ale (1983), only a very brief description of 

follows. 

4.1 Nearest and Furthest Mean Amplitude Test 

the 

tests 

them 

This test vas designed for analysing the variation of amplitudes with 

phase angles in the post-stimulus spectrum. 

4.2 Pre- and Post-Stimulus Mean Amplitude Difference Test 

The purpose of this test vas to establish vhether there vas a significant 

difference between the amplitudes of the pre- ~~d post-stimulus harmonics. 

4.3 Rayleigh Test of Circular Variance 

The Rayleigh test of circular variance (Mardia, 1972) vas applied to the 

phase angles of each post-stimulus spectrum in order to determine whether 

the phase angles vere distributed in a non-uniform manner. 

4.4 Modified Rayleigh Test of Circular Variance 

The difference between this test and the Rayleigh test of circular 

variance vas that it considered both the amplitudes and the phase angles of 

each post-stimulus spectrum. 

5 Variable Reduction 

The application of the four statistical tests to the 96 frequency 

harmonics produced 384 variables. 
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discriminatory variables and to reduce their number, a series of tests vere 

carried out by using the Statistical Analysis System (SAS) (1982) computer 

programs. The tests vere: univariate test, t-test, and stepvise 

discriminant analysis (SDA). Again, all these tests were valid for the 

sample sizes involved. 

The univariate test computed a test statistic for the null hypothesis 

that the input variables vere a random sample from the normal distribution. 

It calculated the Shapiro-Vilk statistic, V (Shapiro and Vilk, 1965). Small 

values of V led to the rejection of the null hypothesis. The t-test was 

applied to the variables not rejected by the univariate test. The test 

computed the t- statistic based on the assumption that the variances' of 

the variables from the two groups (ie. patient category and normal control, 

or patients of one category against patients of another category) are 

equal, and also computed an approximate t based on the assumption that the 

variances are unequal. The variables which shoved significant difference 

between the two groups <at 10% significance level) were selected. The 

variables selected at this stage vere then used in a SOA. The SDA vas 

carried out by the SAS procedure, Stepdisc. The Stepdisc procedure selected 

a subset of the variables in order to produce a good discrimination model 

using stepwise selection. The variables selected by the Stepdisc procedure 

are shown in Table 2. 

6 Classification Method 

The classification of the individuals vas carried out 

discriminant analysis (DA) (Morrison, 1976). The DA vas 

by us1~ 

implemented 

through the SAS procedure, Discrim. The Discrim procedure calculated the 

values which shoved the probability of belonging to one or other group. 

Initially the patients of each category were matched With their age/sex 
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matched normal control subjects and their variables were analysed by the 

D1scrim procedure. Then the patients with BD were age/sex matched (as 

closely as it vas possible for us) with schizophrenic patients and their 

CNV variables were analysed by the Discrim procedure. This was repeated for 

ED and PD patients, and PD and schizophrenic patients. In order to make 

the best use of the recorded data, it was decided to use a 1eave-one-out 

approach. In this method, the variables of all the individuals, but one, 

in a patient category and their age/sex matched normal control subjects (or 

another patient category) vere used in the Discrim procedure. The Discri. 

procedure used this data to generate a classification rule. Then this 

classification rule together with the variables of the subject not included 

in obtaining the classification rule were used by the Discri. procedure. 

This generated a probability which indicated to which category the subject 

belonged. This vas carried out for all the individuals in the categories 

considered. 

7 Results and Discussion 

It vas possible to differentiate betveen thp. RD, PD and schizophrenic 

patients and normal control subjects using the described technique (refer 

to Tables 3a-3c). It vas also found that the method can be effective in 

differentiating betveen schizophrenic, PD and ED patients (refer to Tables 

3d-3f). The fo11oving should be noted vhen conSidering the results shown in 

Tables 3a-3f. 

(l) The study vas based on a limited number of individuals, Ie. 11 BO, 

16 PD, 20 schizophrenic patients and 43 normal control subjects. Therefore 

it will be necessary to test the method on a larger number of individuals 

in order to establish whether it can be used as a routine clinical test for 
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differentiating these disorders. 

(ii) The. leave-one-out method of analysis ensured that the subjects 

included during the calibration of the discriminant analysis were excluded 

during the test phase and therefore the available data were effectively 

analysed. 

(iii) Some of the patients included in this study were on medication 

related to their disorders. Therefore it vill be necessary to carry out an 

analysis of the effects of medication on the patient identification 

results. This necessitates the recording of da!a from a larger number of 

patients and normal subjects. This could not be achieved in this study. 

(iv) It was not possible for us to closely age match the patients w~en 

attempting to differentiate between the individuals from tvo patient 

categories. A reason for this was that the usual ages of onset of 

schizophrenia, PO and BD were not the same. Thu~ most of the schizophrenic 

patients were younger than the PO and BD patien:s. 

(v) Severity of illness in the patients was discussed in section 2. Bach 

patient category included some individuals vith mild forms and some 

individuals with severe forms of their disorders. The method distinguished 

correctly all the BD patients. Vhen differentia:ing between PD patients and 

normal control subjects, one PO patient (~lassed as grade 4) vas 

mlsclasslfied. Vhen differentiating between schizophrenic patients and 

normal control subjects, one schizophrenic patient (sum of scores-B) vas 

misclassified. It was not possible to accurately differentiate between the 

mild forms and severe forms of each disease using the described technique. 

The method could also as a whole Dr in parts be applied to other ERPs and 

it might be valuable in the differentiation of other patient categories 
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(such as manic depression). 

B Conclusion 

The results obtained indicated that the -: echni que of using signal 

processing and discriminant analysis applied to the CNV waveforms is 

valuable for differentiating between schizoph::enic, Parkinson's disease 

(PO), and Huntington's disease CUD) patients ~ld normal subjects. It was 

also useful in differentiating between BD and PO patients, PO and 

schizophrenic patients, and schizophrenic and lID patients. The method was 

aimed at assisting diagnosis and the avoidanc~ of false diagnosis. The 

method might also prove applicable to other va',eforms or disorders. This 

study vas based on a limited number of patients and normal subjects and due 
. 

to various constraints the test-retest rella;llllty and the effects of 

medication on the test results were not be carried out. 
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grades 

1 

2 

3 

4 

5 

Table 1 

number of patients 

BD Patients 

2 

1 

0 

5 

3 

PD Patients 

1 

2 

1 

12 

0 
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categories discriminatory variables 

Buntington's disease B14T3 , B26T2, B71Tl 
patients vs. normal 
control subjects 

schizophrenic B3T3 , B5T3, BsaTl' B72T4 
patients vs. normal 
control subjects BSST3' BaaTl 

Parkinson's disease B6Tl' B1ST3' B26T1• B37T4 
patients vs. normal 
control subjects B63T3 , BS6Tl' B91T4 

Buntington's disease B24T2• B2ST2• B67T3' B72Tl 
patients vs. 
schizophrenics B76Tl 

Buntington's disease B20T2, B3STl' BS3T3' B93T2 
vs. Parkinson's 
disease patients 

schizophrenics B13T2, B26T2, B3aT1• B72Tl 
vs. Parkinson's 
disease patients 

Table 2 
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subjects' categories 
parameters 

Huntington's control 
disease subjects 

numbers total 11 (6 male) 11 (6 male) 
of 
subjects on drug 5 0 

mean 53.73 .50.09 

age STD 10.97 10.53 

range 39 to 77 40 to 73 

differentiation 
success rate in 100% 100% 
the test domain 

Table 3a 

subjects' categories 
parameters 

schizophreni c control 
patients subjects 

numbers total 20 (15 male) 20 (15 male) 
of 
subjects on drug 18 0 

mean 33.60 39.50 

age STD 12.22 13.66 

range 20 to 68 22 to 75 

differentiation 
success rate in 95.0% 100% 
the test domain 

Table 3b . 
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subjects' categories 
parameters 

Parkinson'S control 
disease subjects 

numbers total 16 (10 male) 16 (10 male) 
of 
subjects on drug 12 0 

mean 63.63 50.81 

age STD 9.68 11.16 

range 42 to 80 35 to 75 

differentiation 
success rate in 93.8% 87.5% 
the test domain 

Table 3c 

subjects' categories 
parameters 

Buntington's schhophren1 c: 
disease patients 

numbers total 11 (6 male) 11 (7 male) 
of 
subjects on drug 5 9 

mean 53.73 40.64 

age STD 10.93 12.34 

range 39 to 77 27 to 68 

differentiation 
success rate in 100% 90.91% 
the test domain 

Table 3d 
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subjects' categories 
parameters 

Buntington's Parkinson's 
disease disease 

numbers total 11 (6 male) 11 (6 male) 
of 
subjects on drug 5 9 

mean 53.73 60.91 

age STD 10.97 10.52 

range 39 to 77 42 to 80 

differentiation 
success rate in 90.91% 81.82% 
the test domain 

Table 3e 

subjects' categories 
parameters 

schizophrenic Parkinson's 
patients disease 

numbers total 16 (12 male) 16 (10 male) 
of 
subjects on drug 14 12 

mean 36.63% 63.63% 

age STD 11.83 9.68 

range 25 to 68 42 to 80 

differentiation 
success rate in 81.25% 93.75% 
the test domain 

Table 3£ 
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List of Tables 

Table 1 Grades indicating the severity 
of disease in the PD and ED patients. 

Table 2 The variables used to discriminate the 
subjects CBxTy represents test y applied to harmonic 
x, where Tl • nearest and furthest aean .. plltude 
test, T2 • pre- and post-stimulus mean .. plltude 
test, T3 • Rayleigh test of circular variance and 
T4 • moaified Rayleigh test of circular variance). 

Table. 3a-3f The subjects' details and 
patient differentiation success rate: 

3a Huntington's disease versus normal 
control subjects. 

3b Schizophrenic patients versus normal 
control subjects. 

3c Parkinson'S disease patients versus 
normal control subjects. 

3d Huntington's disease patients versus 
schizophrenic patients. 

3e Huntington's disease patients versus 
Parkinson'S disease patients. 

3f Schizophrenic patients versus 
Parkinson'S disease patients. 
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Lilt of Firures: 

1 A schema tie drawing of a CNV waveform. 

2 The positions of EOG eleetrodes. 

3a-3d Preproeessed averaged CNV waveform from: 

3a a DOrmal subjeet. 

3b a Huntington's disease patient. 

3e a schizophrenie patient. 

3d a Parkinson's disease patient. 
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Figure 3b The preprocessed averaged CNV response in a 
Huntingon's d~Bease patient. 
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Figure 3c The preprocessed averaged CNV response in a 
Schizophrenic patient. 
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Figure 3d. The preprocessed averaged CNV response in a 
Parkinson's disease patient. 
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