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Abstract— This paper describes the design and characterization of a novel planetary transmission that can

be used to adjust the transmission ratio according to the externally applied load. A basic modeling has

been formulated to characterize both its design and operation. A detailed 3D CAD model has been

proposed in order to investigate the operation feasibility of the proposed design solution. A proper

dynamic model has been developed within MSC ADAMS software. Simulation tests have been carried out

and results are discussed to validate the proposed design solution.
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I. INTRODUCTION

Gearboxes are used in various types of industrial

machinery to provide suitable torque while reducing

speed from a rotating power source by using gear

ratios. Gearboxes are used in many applications, such

as wind turbines, conveyors, draglines, bridges and

many other machiners. Gears also are used in

differential drives of automobiles, final drives of

tractors and heavy machineries mainly as reducer.

The efficiency of gear trains depends on many factors

such as the type and profile of teeth profile, contact

stresses, number and type of bearings. These factors

have been studied with recent approaches in [3], [10]

and [13]. Planetary gear transmissions are commonly

used in applications where a large speed reduction is

required as pointed out in [12] and [8]. Several design

solutions have been proposed in the literature, like for

example in [5], [14] and [1]. For example a cam-

based infinitely variable transmission can be used for

continuously variable transmission, which can also

achieve any transmission ratio, [5]. This mechanism

consists of two main parts, namely a cam mechanism

and a planetary gear set. Cam-based CVT

(continuously variable mechanism) can be more

complex than others, [5]. In the case of a speed

reducer, a gear box with conical gears consists of 8

conical gears. Two of them are horizontal and 6

pinions are located vertically. Each pairs of pinions

are locked together. But in this mechanism design in

order to obtain any speed ratios it is necessary to

change value of pinion or horizontal gear, [14].

Magnetic planetary gears can be also a solution for

gearboxes, when they consist of a sun gear, four

planetary gears, and a ring gear. But each gear must

have an axially permanent magnet that is sandwiched

between two yokes made of electromagnetic soft iron.

Magnetic gears have main advantage for a low

mechanical loss, but the transmission torque is

usually very low as pointed out in [11]. Planetary

gears can be designed as a continuously variable

transmission as proposed for example in [4]. This

mechanism can change the gear ratio depending on

the load through two degrees of freedom and

eventually by using a brake, [4]. Theoretical and

experimental study of pushing CVT dynamics is

presented in [1], where the work is focused to design

advanced CVT systems with improved efficiency. A

mechanism with a planetary gear set and a torque

converter is designed as a continuously variable

transmission in [2]. This mechanism has two degrees

of freedom and makes uses of an external torque to

start the movement, [2].

Open issues can be still identified in the efficiency

smoothly changing reduction ratio depending on the

external load to output shaft. This paper describes a

design of a new planetary transmission with two

degrees of freedom. The main purpose of this new

planetary transmission with two degrees of freedom

is related to the capability at adapting the operation to

variable loading conditions by preserving efficiency

and input-output load ratio. Basic principles of this

type of gear box are presented in [6] and [7] and this

paper gives further developments in the efficiency of

planetary transmission. The proposed design solution

provides a motion of output link with a speed that is

inversely proportional to shaft loading. These features

are suitable for using the proposed design in practical

applications such as differential planetary gear box in

transmissions for vehicles, metal cutting tools, wind

turbines and other transmission applications needing

smooth control of ratio reduction but adaptation to a

variable load. A proper dynamic model has been

developed within MSC ADAMS software to provide

information on the feasibility of the proposed design

solution. Simulation tests have been carried out and

results are discussed for validating the proposed

design and characterizing its operation.

II. THE IDEA FORANEWPLANETARY

TRANSMISSION

A planetary mechanism contains at least one rigid

body which rotates about its own axis and at the same
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time revolves about another axis. Points of this body

will generate epicycloids or hypocycloids trajectories.

Therefore a planetary mechanism is often called as an

epicyclic or cyclic mechanism. A planetary

mechanism can be obtained by mounting a rigid body

that is often referred to as a planet, on a crank pin.

The crank is generally called the arm or carrier, [9].

The proposed new planetary transmission can be

considered a CVT with a planetary gear set. In this

paper a new solution is considered for improving the

efficiency of planetary transmissions. This

mechanism has two mobile planetary gear sets with

an asymmetrical design. The asymmetrical design

gives special operation features. The special

operation features can be recognized in smoothly

changing reduction ratio as depending on the load of

output shaft.

Referring to Fig.1 the new planetary transmission is

conceived with two degrees of freedom with a

mechanism consisting of an input carrier H1, an

output carrier H2, central (sun) gears 1 and 4, which

are fixed on a shaft, satellites 2 and 5, central internal

gears 3 and 6 which are fixed together. Gears 2-3-6-

5-4-1 form a closed mechanical chain with a

differential operation. Carrier H1 transfers input

driving force to the closed mechanical chain and

carrier H2 transfers output resistance force. Motion

starts at fixed output carrier with one degree of

freedom. At this time satellite 5 is the output link. To

transmit motion from input carrier H1 to output

carrier H2 satellite 5 must be locked and this can be

obtained thanks also to friction at gear contacts. This

is the peculiarity of the proposed system. The input

carrier H1 moves gear 2 that pushes both gears 1 and

3 that transmit different forces to gears 6 and 4

correspondingly. Thus, gear 5 moves by different

forces coming from its contacts with gears 6 and 4,

and therefore carrier H2 moves. In addition the

mechanism will be able to work with two degrees of

freedom because of the possibility of activating a

second degree of freedom when satellite 5 will be

unlocked by overcoming frictions at gear teeth

contacts. Because of its functioning this mechanism

can be applied as gearbox of cars, metal cutting

machines and where is necessary smoothly to change

reduction ratio of transmissions. This mechanism can

start movement without using additional device,

when force can overcome friction on the satellites.

This planetary transmission can change reduction

ratio like CVT as depending on an external load of

output carrier.

Main design characteristics of the proposed design

related to two input mobile links, namly two degrees

of freedom, stepless operations, smoothly and

automatically changing reduction ratio depending on

the load at the output shaft. The operation advantages

of this mechanism are in smoothly and automatically

changing reduction ratio depending on the load of the

output link and the possibility to start movement

without using any additional device. This mechanism

can be a suitable transmission solution for any non

constant operation, since it is able to adapt its

operation to variable load.

(а) (b)

Figure 1 A kinematic scheme for a new planetary gear

box with design parameters: (a) longitudinal view; (b) 

cross-section view.

A kinematic characterization of the mechanism can

be expressed as function of parameters of external

torques on the carriers MH1, MH2 and input angular

velocity ωH1. Referring to Fig.1, the kinematic

relations among the angular velocities of the gears

with z1, z2, z3, z4, z5, z6 teeth can be expressed in the

form
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When zi are the number of teeth in the gear (i=1,..,6).

From Eqs. (1) and (2) angular velocities ω3, ω1 of

gears 3 and 1 can be obtained as
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A fairly easy numerical example can be carried out

for an application for a wind turbine, Fig.2. Assuming

from wind flow ωH1=100 rpm and MH1 = 15 Nm;

MH2 = 14 Nm, (Fig.1), the output and intermediate

angular velocities ωH2, ω1, ω3 and internal forces can

be computed with the proposed model through Eqs.

(1) to (6) by considering ω4= ω1, ω6= ω3. From Eq.

(4) angular velocity of output carrier is computed as

ωH2 = 75 rpm. From Eqs. (5) and (6) angular

velocities of gears 1 and 3 are computed as ω1=250

rpm and ω3=50 rpm, respectively.
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Figure 2 A wind turbine with a proposed planetary gear 

box: (1-blades; 2-input shaft; 3-planetary gear box 

transmission 4-output shaft; 5-generator; 6-tower).

III. AMECHANICALDESIGNAND

VIRTUALMODEL

A CAD design of a gearbox with planetary gear set

has been worked out in Solid Works software. Fig.3

shows an exploded CAD design of planetary gear

box with the following main components, referring to

Fig.1: 1-output carrier; 2-bearing; 3-output satellite;

4- spindle of output satellite; 5-bearing; 6-bearing of

internal gears; 7-gearshuft; 8-sun gear; 9-epicyclic

gears; 10-input satellite; 11-spindle of input satellite;

12-input carrier. The full mechanical design of the

mechanism with housing is shown in Fig.4.

Figure 3 A CAD exploded assembly of a new gear box 

design.

The proposed planetary transmission consists of a

mechanical planetary gear set without additional

devices such as torque converters or electronic parts.

General design characteristics have been selected for

practical applications of the transmission, like for

example, in wind turbine installations. A wind turbine

installation can be identified, for example, by

referring to a small wind turbine of 5 kW power and

with average wind speeds of 15-20 m/s, Fig.2.

All the geometrical parameters have been defined

within the CAD model in Figs.3 and 4. The design

parameters can be sized for the wind application in

Fig.2 with a maximum high D (in Fig.1b) of 180 mm

and a maximum longitudinal size L (in Fig.1a) of 110

mm. The input and output shafts have a diameters of

32 mm and 30 mm, respectively. The overall weight

is 5 kg if made of steel.

Figure 4 Mechanical design of a new planetary gear box 

in Fig.2: 1-output carrier; 2-bearing; 3-housing; 4-gear 

shaft; 5-output satellite; 6-epicyclic gears; 7-input 

satellite; 8-cover; 9-sun gear; 10-input carrier.

IV. SIMULATIONRESULTS

A dynamic simulation of the planetary gear box has

been carried out by using MSC ADAMS software.

The MSC ADAMS model of the proposed planetary

gear box is presented in Fig.5. Input values such as

angular velocity, input and output torque, stiffness,

dumping coefficients, and friction forces have been

defined accordingly as listed in Table 1. Input angular

velocity and torque have been set as a constant values

of 100 rpm and 15 Nm. Output torque is variable. All

gears are spur gears with module 1 mm. Friction

coefficient of gears has been set as equal to 0.2 by

referring to a contact of steep surfaces. Table 1

summarizes main other parameters that have been

assumed by referring to feasible values for a real case

of study considering material, penetration depth and

force exponent. All the geometrical dimensions have

been set as by referring to the models in Figs. 3 and 4.

After setting the above-mentioned parameters

significant attention has been addressed in properly

modeling all the constraints and joints in order to

achieve a reliable operation of the proposed model as

in a feasible mechanical design.

Figure 5  ADAMS model of gear box design in Fig. 3 and 

4: a) ADAMS model; b) contacts between internal gear 

and satellite; c) contacts between sun gear and satellite.
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Figure 12 Computed plot of the contact forces between 

planet gears and sun gears in Fig.5 (b).

V. CONCLUSION

A planetary gear box with two degrees of freedom

has been studied from aspects of mechanical design

and kinematic modeling. A mechanical design and

3D CAD model of a planetary gear box with two

degrees of freedom have been proposed in order to

adapt the operation to variable loading. Design of the

planetary gearbox is shown in kinematic scheme. The

formulated equations are tested by numerical

examples. A proper dynamic model and simulations

have been carried out in MSC ADAMS environment.

Simulation results show that the proposed planetary

gear box has suitably constant output values both in

terms of speed and torque. The simulation results also

show that the proposed gear box smoothly changes

the reduction ratio at constant input speed. Contact

forces between gears are small enough to use the

proposed system under the expected loading

conditions.
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