
APRT – Another Pattern Recognition Tool

ROBINSON, Ashley and BATES, Christopher <http://orcid.org/0000-0002-
1183-1809>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/14312/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ROBINSON, Ashley and BATES, Christopher (2017). APRT – Another Pattern
Recognition Tool. GSTF Journal on Computing, 5 (2).

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

APRT – Another Pattern Recognition Tool

Ashley Robinson

Department of Computing

Sheffield Hallam University, UK

Chris Bates

Department of Computing

Sheffield Hallam University, UK

c.d.bates@shu.ac.uk

Abstract— Understanding and using Design Patterns improves

software quality through better comprehension of programs

for both experienced developers and relative novices. Often

design patterns are learned through simplified “toy” programs

and exemplars that foreground the structure of the pattern. In

production code the objects and methods that comprise the

pattern can be hidden within a complex mesh of intra-code

relationships. This paper introduces APRT, an ANTLR-based

tool that recovers the structure of both static and dynamic

patterns from large codebases so that they can be studied in

context.

Keywords— object-oriented; software architecture; program

constructs; design patterns

I. INTRODUCTION

Design Patterns provide abstract, reusable object-

oriented structures that provide generic solutions to

common development problems. Most famously catalogued

in [8], patterns have proven to be so powerful that they now

cover areas as diverse as software design, HCI, data

structures, software architectures and business processes.

Even the pedagogy of Computer Science has proven to be

fertile ground for the development of patterns [4].

Design patterns are now foundational knowledge for

developers, part of the industry’s lingua franca.

Understanding them is as important as understanding

sorting or searching algorithms. Yet teaching of patterns is

targeted at having learners end in “the right place”, a place

in which they can implement a Singleton or an Abstract

Factory or use a Decorator in a classroom exercise [10].

Production code is large, complex and messy and students

benefit greatly from understanding how code structures that

are based on design patterns fit into it. This work describes

an approach to the recovery of design patterns from existing

code to produce a deterministic view of the objects and

relationships within the system.

Open source code repositories contain many millions of

lines of code and, whilst the quality of code in these

repositories varies greatly, much of it is high quality and

contains examples of best-practice programming. For

computer science educators, the extraction of patterns from

such repositories could demonstrate the use of design

patterns in context in real-world applications. This would

give concrete demonstration that such patterns are solutions

to problems commonly encountered by developers.

Inexperienced coders who have a background in abstract

problem solving through classroom exercises would be able

to see how those abstract ideas become powerful and

reusable when applied to complex problems.

APRT, Another Pattern Recognition Tool is used to

recover patterns in Java code. Patterns are discovered by

parsing source code in a low-level analysis to find possible

occurrences of patterns that are compared to pre-defined

pattern structures. By comparing in-code structures with

templates representing individual patterns, APRT is able to

reveal a range of structures and, through the addition of

further definitions, can be easily extended to work on new

patterns. Although the current implementation is Java-

specific the use of ANTLR’s parse trees with language-

independent pattern definitions means that it can be re-

targeted to work with other object-oriented languages.

Section 2 introduces design patterns and reviews other

tools that attempt pattern recovery. Section 3 examines the

parser generator ANTLR. Section 4 introduces APRT

including analysis of its performance on a number of

complex programs.

II. DESIGN PATTERNS

Software design patterns provide abstract proven and

reusable object-oriented solutions to commonly occurring

code design problems. Patterns have been shown to greatly

increase the quality of object-oriented code, [1]. The quality

improvements that arise from the use of patterns is so great

that they are now foundational material in software

engineering and computer science degree courses where

they are as important as programming and databases.

As software systems have become larger and more

complicated the difficulty of analysing and understanding

their design and architecture has also grown. In modern

environments, design patterns are fundamental abstractions

that give a clearer overview of a system without the need for

a detailed understanding of all of the source code [9].

Effective software design requires consideration of

issues that may not become visible until later in the

implementation. Using design patterns can help to prevent

such subtle issues and improves code readability for both

programmers and software architects.

A. Analysing code

The prevailing types of code analysis of are structural,

behavioural, semantic and formal composition analysis.

Structural analysis involves inspecting inter-class

relationships to identify the structural properties of classes,

regardless of their behaviour. They focus on recovering

structural patterns such as Adapter, Proxy or Decorator from

static codebases. [13] shows that such tools can extract

entities which, through reference to a database, reveal the

properties of a pattern. [13] demonstrates successful

recovery of Decorator, Factory, Observer, Template and

Singleton patterns.

Behavioural approaches adopt dynamic analysis,

machine learning and static program analysis techniques to

extract patterns. These can be combined with structural

analysis when searching for patterns that are structurally

identical. For example the State and Structure patterns are

structurally identical whilst Façade objects can be

implemented as Singletons. Because patterns can be

syntactically similar, behavioural analysis can produce large

numbers of false positives [6].

Semantic approaches use naming conventions and

annotations to get role information about classes and

methods. Using semantics allows for the recovery of

patterns such as Strategy and Bridge that have similar static

and behavioural properties. Whilst different techniques can

be used, [6] conclude that naming conventions are the most

appropriate and feasible option.

III. ANTLR

ANTLR is a parser generator that uses an LL(*) parsing

strategy. ANTLR takes as input a context-free grammar.

The grammar can be augmented with syntactic predicates

that allow for arbitrary look-ahead based on defined

grammar fragments, and semantic predicates that represent

Boolean values and allow the state and context of a

predicate to direct the parse [11].

A. Parsers

The general purpose of a parser is to break the source of

a program into elements that can be translated into a target

language. Parsers take input in the form of a sequence of

tokens and build a data structure such as an abstract syntax

tree that represents the input, retaining all of the information

from the target program.

Parsing is either bottom-up or top-down. The former is

considered to be the more powerful technique but using it

for anything but trivial cases is more complex.

a) Bottom-up parsing

A bottom-up parsing strategy starts from the leaf nodes

of a tree and works upwards towards the root node. The goal

here is to reduce the tree to the start symbol and report a

successful parse. The most commonly used technique in

bottom-up is shift-reduce parsing which allows for

incremental parse tree generation without guessing or

backtracking.

b) Top-down parsing

A top-down parser starts from the parse tree’s root node

and, following the rules of a formal grammar, works down

towards the leaf nodes. The top-down strategy

accommodates ambiguity by expanding all alternative right-

hand-sides of grammar rules.

Many computer languages were designed to be LL(1),

requiring only one token look-ahead during parsing as this

simplifies parser construction. Because of the inherent

ambiguity in languages, LL(1) parsing is often insufficiently

powerful. Techniques such as the ANSI C lexer hack,

described by [2] and which feeds data from the parser’s

symbol table back into the lexer to determine context, can

help but some ambiguities are not solved so easily.

c) LL(*) Parsing

LL(*) Parsers are a class of recursive descent parsers,

which are constructed from a set of mutually recursive

procedures where each procedure implements one of the

productions of the grammar. The LL(*) approach uses

predictive parsing, meaning that it utilizes look-ahead rather

than backtracking which allows the parser to run in linear

time [11]. The LL(*) parser is not restricted to a fixed

number of tokens of look-ahead, but can make decisions by

token recognition using deterministic finite automata.

B. Syntax Trees

Syntax Trees are a commonly used data structure in

compiler, used as an intermediate representation of the

program throughout the stages of compilation.

a) Abstract Syntax Tree

An Abstract Syntax Tree, AST, is a tree representation

of the abstract syntactic structure of a program, with each

node denoting a construct of the language. Thesy are

abstract because the tree does not represent every detail of

the language syntax, so for instance parentheses are not

present in the AST but are derivable from the tree structure.

Figure 1 gives a simple exemplar. AST are specified in

terms of Extended Backus-Naur Form, EBNF, and are

commonly used in specifications and implementations to

describe the abstract syntax trees of a language.

b) Concrete Syntax Tree

A Parse Tree is a common designation of a concrete

syntax tree, CST, which both maintains all of the

information from the input and, more concretely, reflects the

input syntax in its structure. A CST, as shown in Figure 2, is

a cluttered data structure and, therefore, is often converted

to an AST prior to the semantic analysis stage of

compilation.

C. Context-Free Grammars

A context free grammar is a formal notation for

describing languages, consisting of a finite set of grammar

rules. Production rules are a set of rewrite rules specifying

symbol substitutions to transform nonterminal symbols into

a set of either terminal or non-terminal symbols. When the

rules are applied recursively they generate a terminal

representation of the input [7]. A terminal symbol is a

standalone language construct, whilst a non-terminal

symbol denotes a syntactical phrase composed of one or

more terminal symbol and can contain other valid phrase

structures.

D. ANTLR

The language recognition process of ANTLR has two

distinct stages: Lexical Analysis and Parsing. As used in

APRT the process is conceptually similar to that of a

compiler but rather than generate executable forms, the

process is stopped once the parse tree has been built.

Lexical analysis in ANTLR involves first scanning an

input stream of characters and then grouping those

characters into words or symbols in a process called

tokenizing. These Tokens contain at least two pieces of

information, the token type and the raw value matched for

that token by the lexer.

Syntax analysis is performed by the parser. The parser

takes the token stream generated by the lexer to recognize

the sentence structure and ensures that the token stream

adheres to the rules of the grammar. ANTLR uses an LL(*)

parsing strategy that implements an LL(1) parser with

depth-first look-ahead grafted on. The parser is top-down,

recursive descent and mostly non-speculative [11].

IV. ANOTHER PATTERN RECOGNITION TOOL

APRT is written in Java, utilizing ANTLR4 to generate

parse trees from Java 8 source code. These trees are

navigated using a listener-based tree-walker that receives

event notifications based on the context of the current node.

Nodes are generated from the rules of the grammar into a

base listener that contains entry and exit rules for every

node, allowing for manipulation of the output based upon

the node’s occurrence. Context-specific subclasses of the

base listener are created to allow for code evaluation based

on the current token.

The beauty of using ANTLR to define the whole of the

language of Java and then navigating that is that the

approach allows for compile-time evaluation of dynamic

aspects of patterns, the process of which is essentially

replicated during the language recognizer which lexically

Figure 1. A concrete syntax tree

Figure 2. A concrete syntax tree

Figure 1. An abstract syntax tree

analyzes the input stream into a token stream before parsing

the token stream using the grammar as a symbol table, while

maintaining static references to the code to allow for the

structural aspects of patterns.

APRT detects patterns when there is a concrete

definition of either structural or behavioural aspects. In the

current scope of this project, language-provided patterns are

excluded as their detection can be done through keyword

analysis. Currently two patterns are considered for

detection: Singleton and Strategy. Several styles of

Singleton were found to be in common use and each of

these can be detected successfully by APRT. The examples

given here will show that structural patterns can be

extracted by navigating interclass relationships.

A. Design

The general approach of APRT is to take the source

code files in a directory and search for instances of design

patterns. The individual files are first read into an

AntlrFileStream object which behaves as a char array

buffer. The lexer then draws input symbols from the char

stream using the match() function. A CommonTokenStream

is initialized based on the results from the lexer and

tokenizes the file. A Parser subclass built from the grammar

is initialized by the token stream and a

ClassDeclarationContext is acquired from the parser. This

is a grammar-defined construct that will be used by the

ParseTreeWalker to denote the boundaries of the pattern

recognition. A ParseTreeListener subclass that extends the

base grammar ParseTreeListener is then defined. The

listener is used because all of the code can be traversed due

to the nested definitions of the language. The

ParseTreeWalker then walks then parse tree, with the

listener evaluating the classes extracted from the file with

the pattern recognition rules.

B. Detecting Creational Patterns

Creational patterns provide a way to create objects while

hiding the creation logic, rather than instantiating objects

directly. The Singleton pattern was chosen as a proof of

concept. The definition of a Singleton is that an object has

only one instance with a global point of access and can be

initialized on its first use. There are many implementations

of Singleton in Java, of which four are used here.

The intent of a Singleton is to ensure that a program

only has one instance of a class and that there is a global

point of access to it. The pattern is one of the easiest to

detect as it does not require that the tool analyse interactions

with other classes.

The ClassicSingleton has a static reference to a class of

its type, a private constructor and a static getInstance()

method that checks if the object is initialized. If not it

creates a new instance of itself, before returning a reference

to itself. This is commonly referred to as a lazy instantiation

and is the most common implementation in Java code.

DoubleCheckedLockingSingleton has a private, static,

volatile reference to an instance of its classtype, a private

constructor and a static getInstance() method that checks

whether the type has been initialized and synchronizes with

the class declaration to ensure that it doesn't exist elsewhere.

This has been the de facto standard since Java 5, after Bill

Pugh’s work on the idiom led to changes in the Java

memory model and is generally regarded as the standard

way to write Singletons in Java, [3].

EnumSingleton has an EnumDeclaration (public enum

<Classname>) with a single reference to 'INSTANCE;' This

approach is functionally equivalent to the public field

approach, except that it is more concise, provides the

serialization machinery for free, and provides an ironclad

guarantee against multiple instantiation, even in the face of

sophisticated serialization or reflection attacks [5]. This is

considered to be the most effective way to write Singletons

in Java but it has not been widely adopted due to concerns

over thread safety, concerns that are mostly unfounded as a

Java enum is usually both stateless and thread safe.

The final Singleton code that APRT can detect is a

StaticSingleton which is a static version of the ‘basic’

Singleton, which has shown to be reasonably uncommon

but is detected here for completeness.

The pattern detection logic must allow for all

implementations of a Singleton to be detected. The High

level definition for a singleton is that:

● The class declaration is of the Enum type.

● An instance is declared within the class.

● A minimum of one method is declared.

The method declaration does not have to be static in an

EnumSingleton, [5], as it is implied by the enum structure,

but it can be declared that way and both must be detected by

the tool. An alternative definition is:

● Has a private, empty constructor

● Has at least one static method declared

Figure 2. The strategy pattern

Since the detection is accounting for multiple variants of

the pattern, an alternate definition must be declared to allow

for use with older coding practices. This also allows the tool

to differentiate which version of the pattern is detected,

allowing for scope in a dynamic tool to detect the pattern

usage and recommend upgrading the pattern to the more

effective structure.

C. Detecting behaviour-driven patterns

The detection of behavioural patterns is based on the

communication between objects. The patterns are used to

define common communication patterns between objects

and provide a more extensible, loosely coupled solution that

is easily extensible. The Strategy pattern is shown as a proof

of concept to validate the design. A Strategy pattern is

defined as a family of algorithms that has various

implementations depending on its client.

The strategy pattern has three participants: a strategy

that declares an interface common to all supported methods;

a concrete strategy that implements the method using the

strategy interface; the context is then determined based on

the client, and determines which Concrete Strategy

implementation of the Algorithm will be performed.

Detection of the Strategy pattern is a more complex

proposition than the detection of Singleton because it

requires cross-class dependency checking. This is achieved

by creating an internal file list containing all of the classes

in the package, then searching a collection of parse trees for

a match on the declaration required, to determine the token

context.

public class Animal {

 private String name;

 private double speed;

 private String sound;

 public Flys flyingType;

 public String tryToFly(){

 return flyingType.fly();

 }

 public void setFlyingAbility(Flys newFlyType){
 flyingType = newFlyType;

 }

}

public interface Flys {

 String fly();
}

class ItFlys implements Flys {

 public String fly() {

 return "Flying High";
 }

}

class CantFly implements Flys {

 public String fly() {

 return "I can't fly";

 }
}

public class Bird extends Animal {

 public Bird(){

 super();

 setSound("Tweet");
 flyingType = new ItFlys();

 }

}

public class Eagle extends Bird {
 public Eagle() {

 super();

 setSound("Sqwark!");

 }

}

Table 1. Strategy Implementation

The strategy example shown in Table 1, describes an

example of the strategy pattern that was used to test APRT.

The Strategy is defined by the interface Flys, which declares

the flys function. This interface is implemented by the

Concrete strategies ItFlys and CantFly. For the purposes of

demonstration, the base class Animal has a reference to the

Strategy object. This implementation demonstrates that the

Strategy pattern can be detected in the superclass of an

object and in subclasses that define the context as in Eagle.

The process of detecting the Strategy pattern is more

complex undertaking. Since the Client has an instance of a

class defining the context at the time of object declaration,

we must infer whether this composite component is a super-

interface (a class that implements an interface). This is

performed by extracting the UNannType, that is the

unannotated type, of a FieldDeclaration from the class, then

using this value to search the resources for classes that have

a matching UNannType. When a match is found the

resource is inspected to see if it, or one of its superclasses is

a super-interface.

D. Testing APRT

Testing of APRT demonstrated successful detection of

variants of Strategy and Singleton as representatives of

wider classes of creational and behavioural patterns.

Successful detection supports the hypothesis that most

“Gang of Four” patterns can be detected by the tool through

extension of the detection method.

Testing of APRT was performed first on a small set of

simple classes that clearly demonstrated each pattern. An

example of these proofs of concept is given in Table 2.

Further testing used a set of Java implementations of design

patterns sourced from a popular design pattern tutorial set,

[12]. This set contains 740 Java source files from which 367

files were selected as suitable for parsing.

In the first test case, using simple structures, APRT

achieved 100% recognition of the variations of Singleton

and also detected 100% of instances of the Strategy Pattern,

including detection from subclass instances. This was to be

expected as the tool was built to succeed in this

environment. In the second set of tests, APRT successfully

identified 26 instances of Singleton, 12 of which being

implemented in the Enum Singleton style, as well as 23

instances of Strategy pattern. These pattern instances were

subsequently verified by inspection of the source file. In

terms of performance, evaluating 367 files took, on average,

55ms per file to run the tests for both patterns. This average

speed was consistent across all tests.

V. CONCLUSIONS

Software design patterns provide standard and well-

tested solutions to common problems. Novice programmers

who are learning object-orientation benefit from using and

understanding patterns but they are often presented as toy

examples that fail to reflect the complexities of the

relationships within production code. One way to bridge the

gap between toy code and production code is to recover the

implementation of design patterns from production code.

Another Pattern Recover Tool demonstrates a viable and

concrete way of detecting patterns. The use of Context Free

Grammars and the exploitation of compiler-style structures

to build and evaluate the semantic properties of code is a

concept that seems to have numerous useful applications in

real world projects. The recovery of patterns and other

structures would be extremely helpful in the training of both

student coders and new team members in commercial

development teams.

REFERENCES

[1] Ampatzoglou, A., Frantzeskou, G. & Stamelos, I., 2012.

A methodology to assess the impact of design patterns on

software quality. Information and Software Technology,

54(4), pp. 331-346.

[2] Atkey, R., 2012. The Semantics of Parsing with

Semantic Actions. Dubrovnik, s.n., pp. 75-84.

[3] Bacon, D. et al., n.d. The "Double-Checked Locking is

Broken" Declaration. [Online]

Available at:

www.cs.umd.edu/~pugh/java/memoryModel/DoubleChecke

dLocking.html [Accessed 13 February 2016].

[4] Bergin, J. et al, 2012. Pedagogical Patterns: Advice for

Educators. Joseph Bergin Software Tools, 2012

[5] Bloch, J., 2008. Effective Java (2nd Edition). Addison-

Wesley.

[6] Dong, J., Zhao, Y. & Sun, Y., 2009. A Matrix-Based

Approach to Recovering Design Patterns. IEEE

Transactions on Systems, Man and Cybernetics, 29(6), pp.

1271-1282.

[7] Gallier, J., 2010. Formal Languages And Automata

Models of Computation, Computability Basics of Recursive

Function Theory. Philadelphia: s.n.

[8] Gamma, E., Richard, H., Johnson, R. & Vlissedes, J.,

1994. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley.

[9] Haotain, Z. & Shu, L., 2013. Java Source Code Static

Check Eclipse Plug-in Based on Common Design Patterns.

Proceedings of Fourth World Congress on Software

Engineering, IEEE, pp. 165-170.

[10] Kolfschoten, G., et al, Cognitive learning efficiency

through the use of design patterns in teaching, Computers &

Education, Volume 54, Issue 3, April 2010, Pages 652-660.

[11] Parr, T. & Fisher, K., 2011. LL(*): The Foundation of

the ANTLR Parser Generator. ACM SIGPLAN Notices,

Association for Computing Machinery, pp. 425-436.

[12] Seppälä, I., Java Design Patterns. [Online]. Available

at: http://java-design-patterns.com/. [Accessed 14 March

2016].

[13] Vokac, M., 2006. An efficient tool for recovering

Design Patterns from C++ Code. Journal of Object

Technology, 5(1), pp. 139-157.

Files Singleton Singleton

Time (ms)

Strategy Strategy

Time (ms)

46 0 5228 0 1635

132 11 7688 9 7196

227 18 13300 22 11127

346 26 13543 23 22512

Total

Found

Total

Time

(ms)

Average

Per

Detection

Average

Per File

(ms)

Average

Per File,

Per Pass

(ms)

0 6863 0 149.195 74.5978

20 14884 744.2 112.757 56.3787

40 24427 610.675 107.607 53.8039

49 36055 735.816 104.205 52.1026

Table 2. Performance tests

