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Abstract

The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI)

and carotid atherosclerosis is of paramount importance, as these cardiovas-

cular diseases may cause medical complications and large number of death.

Ultrasound (US) is a widely used imaging modality, as it captures moving im-

ages and image features correlate well with results obtained from other imaging

methods. Furthermore, US does not use ionizing radiation and it is economi-

cal when compared to other imaging modalities. However, reading US images

takes time and the relationship between image and tissue composition is com-

plex. Therefore, the diagnostic accuracy depends on both time taken to read

the images and experience of the screening practitioner. Computer support

tools can reduce the inter-operator variability with lower subject specific ex-

pertise, when appropriate processing methods are used. In the current review,

we analysed automatic detection methods for the diagnosis of CAD, MI and

carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS).
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We found that IVUS is more often used than thoracic US for CAD. But for

MI and carotid atherosclerosis IVUS is still in the experimental stage. Further-

more, thoracic US is more often used than IVUS for computer aided diagnosis

systems.

Keywords: Computer Aided Diagnosis, Coronary Artery Disease, Myocardial

Infarction, Carotid Atherosclerosis, Thoracic Ultrasound, Intravascular

Ultrasound

1. Introduction

Cardiovascular disease has been a global public health problem for the last

35 years [1]. Public health statistics show that the number of patients, with

some form of cardiovascular disease increase steadily in countries with a low

and middle gross national income, while a number of countries with a high

gross national income have managed to diminish the incidence of cardiovascular

disease [2, 3]. On a global scale, cardiovascular disease is responsible for around

30% of human mortality as well as 10% of the disease burden [4, 5]. In 2005,

17 million out of 58 million deaths worldwide were caused by cardiovascular

disease [6, 7, 8, 9]. According to the statistics, published in 2013, the various

risk factors causing death are 40.6% due to high blood pressure, 13.7% came

from smoking, 13.2% resulted from a poorly balanced diet, 11.9% are attributed

to insufficient physical exercise and 20.6% could not be attributed [10, 11].

Another noteworthy result was the fact that 88% of all cardiovascular fatalities

had abnormal glucose levels [12, 13]. Coronary Artery Disease (CAD) is a

specific cardiovascular disease, which affects the coronary arteries of human

heart. Having CAD carries the risk that the patient may develop Myocardial

Infarction (MI) [14]. The pathology of MI is characterised by an occlusion in

a coronary artery which leads to the death of myocardium [15]. Each year in

the United Kingdom, there are more than 250,000 documented acute MIs, with

at least the same number of patients being admitted to hospital to rule out

acute MI. The diagnosis of acute MI is difficult, because of time pressure and
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complexities of medical data interpretation. Traditionally, the diagnosis is based

on a combination of clinical history, Electrocardiography (ECG) findings and

biochemical tests [16]. To prevent or at least reduce the number of MI events

it is necessary to monitor the cardiac health of a patient. Studies show that

carotid plaque is a good predictor of cardiovascular diseases [17, 18]. Thoracic

Ultrasound (US) is widely used to diagnose carotid atherosclerosis [19, 20, 21].

In recent years, computer support systems have moved on from mere plaque

detection to plaque characterization. Despite considering multiple data sources

and improved image analysis methods, the diagnosis of CAD, MI and carotid

atherosclerosis still lacks Sensitivity (Se) and Specificity (Sp).

US images can provide vital information for the diagnosis of CAD, MI and

carotid atherosclerosis. However, they are often distorted and incomplete which

makes them open to multiple interpretations [22]. Therefore, the diagnostic

relevance of a randomly selected US image falls within a wide range. For a sig-

nificant number of images the diagnostic relevance is below a threshold where

relevant features are ambiguous, and hence the practitioner has to depend on

experience to establish reasonable inference [23, 24]. A US scan is a gradual

process; hence the image interpretation is revised as soon as new information

is revealed [25]. Consequently, there are distinct hierarchical levels of interpre-

tation [26]. A reading radiologist must have expert knowledge in the language

used to describe the images as well as an excellent understanding of the rela-

tionship between pixel grey levels and the anatomical objects, to ensure that

all interpretations are uniform and are of high quality [27]. Apart from the

inherent difficulty to extract diagnostic information from US images, there is

also the problem of data overloading [28]. Progress in US imaging means to

produce more data during scanning [29, 30]. A human screener might spend a

significant amount of time to get the required information. For computer aided

diagnosis, data overloading is not a problem, as digital processing and data stor-

age will take care of this [31]. Consequently, computer support systems handle

the increasing data volumes much better than human practitioners. Hence, the

question shifts from whether there is computer support, for US based cardio-
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vascular disease diagnosis, to how reliable is the computer support. The most

advanced computer support systems incorporate machine learning and artificial

decision making algorithms [32, 33]. Potential application areas for computer

aided diagnosis systems are treatment monitoring [34], drug efficacy tests [35]

and most importantly disease detection [36].

A well-designed computer support system can reduce the cost and improve

the quality of US based diagnosis. Replacing human work with computer pro-

cessing yields these benefits. Computer support systems can be mass produced;

hence manufacturers can improve their sales and thrive in a competitive mar-

ket. Using computing technology keeps the systems flexible and it is easy to

incorporate the latest progress in the relevant fields of medicine, computing and

engineering through hardware and software upgrades. In this review, of US

based diagnosis of CAD, MI and carotid atherosclerosis, we highlight that these

diseases are linked and hence the processing techniques, used for diagnostic sup-

port, should be similar as well. We found, that the processing techniques depend

on whether thoracic US or Intravascular Ultrasound (IVUS) is used for image

acquisition. During our review, we learned that IVUS is predominantly used for

CAD diagnosis, whereas thoracic US is mainly used for MI. For the diagnosis

of carotid atherosclerosis, the invasive nature of IVUS is a problem. Therefore,

the intravascular method is still experimental, hence it is mostly used for post

mortem studies. We are surprised to find only one computer aided diagnosis

system based on IVUS. We suspect that the lack of IVUS based computer aided

diagnosis systems comes from the fact that the imaging modality is relatively

new, hence the research focuses on image analysis rather than diagnosis sup-

port. We adopt the position that there is a need for IVUS based computer aided

CAD and MI diagnosis. Creating such IVUS based diagnosis support tools is

a logical progression from focused imaging modalities. These systems are very

relevant, because they can improve the efficiency of practitioners by reducing

the amount of time spent in scanning the US images. In the long run, computer

aided diagnosis systems reduce the cost and increase the diagnostic accuracy.

The article is organized as follows. The next section provides the necessary
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background on CAD, MI and carotid atherosclerosis. Section 3 introduces the

materials and methods used to design computer support systems for US based

cardiovascular disease diagnosis. The results section lists diagnostic support

systems for CAD, MI and carotid atherosclerosis. We focus on discriminating

Artificial Intelligence (AI) based computer aided diagnosis systems from non AI

based computer support systems. Practical settings and limitations are covered

in the discussion section. Section 6 concludes the review.

2. Background

2.1. Coronary Artery Disease

Coronary arteries provide oxygen and nutrients to heart muscles. They are

composed of three basic layers: the intima, media, and adventitia which are

arranged into three concentric layers. Any disease that affects the coronary

arteries causes systemic disability and in some cases death. The major cause of

CAD is atherosclerosis, which is characterized by the deposition of cholesterol

and lipids, predominantly within the intimal wall of the artery [37]. CAD is

a progressive condition that takes several years to develop [38]. The phases

of atherosclerosis progression are fatty streak, fibrous plaque, and complicated

lesion. The initial fatty streaks are marked by lipid-filled smooth muscle cells

[37]. Later, a yellow shade appears when fatty streaks progress within the

smooth muscle cells. The subsequent fibrous plaque phase exhibits the onset of

continuous ongoing alterations in the endothelium of the arterial wall. The fatty

streak is eventually covered by collagen forming a fibrous plaque that appears

greyish or whitish [39]. These plaques can develop on one section of the artery

or in a circular manner, comprising the entire lumen. The last phase, in the

progression of the atherosclerotic lesion, is the most threatening. The continuous

growth of plaque, which causes inflammation, results in plaque instability and

rupture [39]. Later, platelets gather in large numbers, resulting in the formation

of a thrombus. The thrombus sticks to the arterial wall, causing to additional

narrowing or complete occlusion of the artery. During the early stages, a patient
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experiences little or no symptoms, but if the causes of CAD remain, the disease

progresses. Hence, treatment will start with eliminating the causes and in more

serious cases medication will be administered. Without intervention, a CAD

patient can develop ischemia (intermittent blood supply) and then infarctions

(loss of blood supply). These serious conditions can lead to Sudden Cardiac

Death (SCD) [40].

Forbes at al. found a statistically relevant correlation between plaque in the

coronary arteries and a greater long term risk of contracting CAD [41]. With

current IVUS technology it is possible to differentiate four different plague types:

necrotic core; dense calcium; fibro-fatty; and brous [42, 43]. Coronary artery

plaques with a thin fibrous cap over a large necrotic core are more prone to rup-

ture [44, 45]. In a focused review, Banach et al. analysed the efficiency of statin

therapy on fibrous plaque[46, 47]. 830 subjects participated in the reviewed

clinical studies, 737 were given statin and 93 were in the placebo control group

[48, 49, 50]. Their analysis shows that statin therapy reduces fibrous plaque, but

the necrotic core volume remains unchanged [51, 52]. Nozue et al. used virtual

histology IVUS in a clinical study about the effect of fluvastatin on coronary

plaque [53]. It is found that, apart from evaluating the plaque morphology, the

mechanical properties of the coronary arteries are also important in evaluat-

ing the CAD [54, 55]. Establishing the mechanical strain pattern of the artery

wall can help to determine whether a lesion is unstable and prone to rupture.

Changes in the coronary artery blood flow can be interpreted as signs of CAD

[56]. Therefore, features based on fluid dynamic algorithms carry diagnostically

important information which can be used in future computer aided diagnosis

systems.

Contrast angiography is the gold standard for diagnosing the extent of CAD

[57, 58]. But, its limitation is that visually analysed angiography results in

underestimating atherosclerosis in “normal” coronary artery segments [59, 60].

Govindaraju et al. reviewed the functional severity of coronary artery disease

with fluid dynamics [61]. They found that fractional flow reserve is a standard

index to identify the severity of CAD. It can be used to avoid surgical com-

6



plications by estimating pressure drop and flow reduction caused by invasive

interventions. Flow models were also used to estimate artery wall stress, which

appears to contribute significantly to CAD [62]. US is frequently used to assess

the coronary arteries. Figure 3 shows thoracic images of the human heart, which

can be used to assess the coronary arteries. Figure 4 shows IVUS images from

within a coronary artery. The three-layers of the coronary artery appear as the

bright inner layer (intima), middle echo-lucent zone (media), and outer bright

layer (adventitia) in a cross-sectional view using IVUS. Detecting these layers of

vessel provides orientation in the IVUS image. Assessing the coronary artery is

important, because CAD can progress towards more dangerous cardiovascular

diseases, such as MI. The next section explores the relationship between CAD

and MI.

2.2. Myocardial Infarction

MI manifests in a wide range of symptoms. The spectrum reaches from an

absence of symptoms over a minor event to a major event, which can result

in SCD or severe haemodynamic deterioration [63]. MI results from a progres-

sive collection of atherosclerotic plaque on the walls of coronary arteries [64].

The accumulated plaque gets ruptured initiating a clot which results in com-

plete blockage of the artery. Angiography is performed to detect narrowing or

complete blockage of the infarct-related coronary artery [65, 66]. The artery oc-

clusion decreases the blood flow to the myocardium, which damages the heart

muscle [67]. If reduced blood supply to the myocardium persists long enough,

a process called ischemic cascade is initiated [68] whereby the heart cells begin

to die, causing a condition called MI. Accordingly, the patient’s heart will be

permanently (irreversibly) damaged [69].

For many cases, CAD progression occurs in previously insignificant lesions

[70]. It is very often observed that lesions of acute MI have severe stenosis. Even

though the stenosis is severe, it is second to the superimposed thrombus. How-

ever, before the event, severe stenosis might not occur [71]. Acute MI is caused

by one of two events. The first event is a sudden rupture or ulcer in a coronary
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artery [72]. The second cause is the formation of vulnerable plaque which leads

to a thrombus blocking the coronary artery. The speed with which the catas-

trophic event unfolds leaves little or no time for counter measures. Vulnerable

plaques can be characterized by a fibrous cap with macrophage infiltration and a

large lipid pool [73]. Cardiologists examine different cross-sectional planes with

various US transducer positions to assess left ventricular wall segments. They

use the same technique to view and detect MI [74]. Figure 3b shows a thoracic

USimage of an MI affected heart. Plaque and plaque formation analysis is also

of paramount importance for diagnosing carotid atherosclerosis.

2.3. Carotid Atherosclerosis

The carotid arteries are the two large blood vessels (internal and exter-

nal carotid arteries) that supply oxygenated blood to the large, front part of

the brain [75]. Like coronary arteries, carotid arteries are also susceptible to

atherosclerosis, an inflammatory accumulation of plaques. These plaques con-

tain Lipid-Rich Necrotic Core (LRNC), which is enclosed by depleted smooth

muscle cells and a thin fibrous cap [76]. Thinning of these fibrous cap is a

distinct risk indicator for underlying or forthcoming ischemic neurological ab-

normalities [77, 78]. Emboli or thrombus may break off, due to artery wall stress,

from plaque having a thin fibrous cap and join the blood circulation towards

the brain [79]. As the vessel becomes narrower, the thrombus gets attached to

the vessel wall and cause carotid artery stenosis [80]. The formation of carotid

artery stenosis either diminishes or restricts blood flow to brain regions which

are supplied by the vessel, thereby causes Transient Ischemic Attacks (TIAs).

TIAs are warning signs, frequently followed by severe permanent (irreversible)

thromboembolic stroke [81, 82, 83]. Further extension of this condition may

lead to loss of brain function or even death.

Carotid stenosis, due to atherosclerosis, is grouped into asymptomatic [84]

and symptomatic [85]. Asymptomatic carotid stenosis denotes around 60% nar-

rowing of proximal carotid artery in the absence of earlier history of stroke or

TIA [86]. Symptomatic carotid stenosis is frequently linked with type 5 (hav-
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ing more extracellular lipids, hematoma) or 6 (having surface defect, hematoma

and thrombosis) plaques [76]. The presence of larger LRNC, in both symp-

tomatic and asymptomatic carotid stenosis a thin or ruptured fibrous cap [87].

Thus, the accurate identification or classification of symptomatic and asymp-

tomatic carotid stenosis is important for selecting appropriate treatment [88].

The ability of a particular treatment to prevent stroke, in both symptomatic and

asymptomatic patients having chronic carotid stenosis, is the topic of ongoing

research [89, 90, 91]. Figure 1a shows a US scan of the dangerous systematic

plaque. Figure 1b shows a section of the carotid artery with asymptomatic

plaque. In contrast, Figure 1c shows a US image of a normal carotid region.

The minimal invasive method of contrast enhanced Curvelet Transform (CT)

has been used to quantify carotid plaque [92]. These systems are used for carotid

plaque segmentation. US is a preliminary non-invasive imaging technique that

can be used to assess carotid artery stenosis [93]. In clinical settings, high-

resolution, B-mode US together with Doppler flow is often used for assessing

carotid arteries [94]. Furthermore, Doppler US is also used for the characteri-

zation of high risk plaques and thus help in for assessing the severity of stenosis

[95]. A main restriction of this imaging modality is that it is highly user de-

pendent. Therefore, advancements in non-invasive imaging technology, using

computer-aided methods, have enhanced the acquisition of data and signifi-

cantly improved the diagnostic accuracy. In the next section, we explore the

design of US based diagnosis systems for cardiovascular diseases.

3. Diagnosis support system design

On a conceptual level, we discuss two different design strategies for CAD, MI

and carotid atherosclerosis diagnosis support systems. The first system design

approach yields implementations, which provide just analytical support. This

support can range from simple US image enhancements to 3D reconstruction

of coronary arteries [96]. In general, these systems extract relevant information

which helps cardiologists with their diagnosis [97, 98]. Computer aided diagno-
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(a) Symptomatic plaque. (b) Asymptomatic plaque.

(c) Normal

Figure 1: Thoracic US images of carotid arteries.
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sis systems aim to provide efficient diagnosis. Hence, these systems can be used

to automate the diagnosis process, which has important benefits including but

not limited to a large cost saving potential. Therefore, computer aided diagno-

sis became the focus of major research work in medical imaging. Furthermore,

these systems are of interest in diagnostic radiology [99]. All diagnostic support

systems assist practitioners by extracting features from underlying data [100].

The underlying data comes from physiological measurements or medical images

[101]. A computer aided diagnosis system uses these features as input to de-

cision making processes. The system communicates the decision results in the

form of a diagnosis to the practitioner. Computer aided diagnosis systems with

low complexity or systems which must deal with particularly difficult data, offer

only disease or non-disease diagnosis. In contrast, more sophisticated systems,

which might be based on the combination of different imaging modalities and

physiological measurements, may have to diagnose number of classes (stages of

diseases). Regardless of the system complexity, the classification performance

determines the computer aided diagnosis quality. Hence, the classification per-

formance is used to select and compare the systems [102]. To achieve a high

classification performance, it is necessary to carry out statistical performance

tests of features during the training phase.

In the sections below, we adopt the design perspective to explain diagnostic

support systems used for CAD, MI and carotid atherosclerosis based on US

images. On the highest level of abstraction, the design is partitioned into an

online and an offline system. Such a conceptual split is very important, because

the offline system allows the designer to focus on creating, benchmarking and

selecting the most appropriate algorithm structure. In contrast, an online sys-

tem uses the selected algorithm structure to provide diagnosis support. The left

part of Figure 2 shows both algorithm structure and statistical tests carried out

in the offline system. The online system deals with unknown US images. The

offline system uses known or labelled US images as input. The input images

are subjected to pre-processing and feature extraction. In the offline system, a

range of methods are tested and only the most efficient algorithms are used in
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Offline system Online system

US Images (training & testing)

Feature extraction

and

assessment

Classification

and

assessment

No

classification

US Images

Feature extraction

Decision support

No

Decision support

Human expert

Figure 2: A block diagram depicting the highest level of abstraction for the design of a

computer support systems for CAD, MI and carotid atherosclerosis based on US images. The

diagram highlights the fact that, unlike normal support systems, computer aided diagnosis

systems provide decision support through automated classification.

the online system. Similarly, the designer tests several classification algorithms

in the offline system and the online system uses only the best decision making

method. Simple computer support systems do not have a classification step,

only computer aided diagnosis systems include such algorithms. In general,

testing more algorithms creates more competition which improves the system

performance. The feature extraction algorithms take images from thoracic US

or IVUS. These image acquisition methods are discussed below.

3.1. Ultrasound Image Acquisition

Thoracic echocardiographic technology has the advantages of portability,

mature technology and low image acquisition cost [103]. Furthermore, the car-

diovascular system assessment results, for both doppler and 2D thoracic US

imaging modalities, have been validated with other diagnostic imaging tech-

niques, such as CT [104]. Echocardiography is most commonly used to assess

the cardiac chamber and establish the extent of its functionality. Especially

for analysing the cardiac chamber functionality, the realtime nature of echocar-
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diography is beneficial, because moving images report chronological as well as

spatial information. Standardization of the methodology, used to assess cardiac

chambers, is established by collecting, creating and disseminating scientific re-

search results, which, when followed by practitioners, provide uniformity and

facilitate unambiguous communication [105].

Despite the efforts of standardisation, US imaging poses a number of chal-

lenges for image analysis and feature extraction [26]. First and foremost, the

relation between pixel intensity and tissue properties is complex, because of

the acoustic phenomena used for image acquisition. US systems send high fre-

quency sound waves (typically 1 MHz to 18 MHz) through human tissue and

record reflected, as well as scattered, signal components. The US system dis-

plays these received signals on a screen. Tissue transitions are represented by

reflections. Wave scattering results in interference pattern, known as speckle

pattern. Hence, US images are an overlay of speckle pattern and sharper re-

flection structures. In many cases, different tissues can only be distinguished

based on minute changes in the speckle pattern. These changes might even be

transient, which makes it necessary to observe a sequence of US images over a

period of time. Furthermore, US images depend on operator specific properties,

like angle and depth of the US beam [106]. In addition, the images might include

artefacts and image noise [107]. Another big problem is missing information,

such as dropouts, shadowing, scan sector limitations and restricted echo win-

dows [108]. Fast moving structures can also cause aliasing effects which result

in spatial distortion [109]. In general, the relationship between tissue formation

and image texture is better defined for medical imaging modalities that use

ionizing radiation, such as computed tomography (Hounsfield units) and X-ray

(Lambert-Beer law) [110]. It takes an experienced practitioner to overcome the

problems of US image interpretation [111]. Computer support systems must

incorporate functionality which mimics that creative process.

US image acquisition is a gradual process; therefore, an image represents a

snapshot of the information available. Figure 3a shows a typical US image of

a normal human heart while Figure 3b shows an MI affected heart. For the

13



(a) Normal (b) MI affected.

Figure 3: Thoracic US images of human hearts.

untrained eye, the features, which distinguish normal and MI images are not

clear. It requires expert training to build up the knowledge to distinguish MI

from normal. To establish such an expert knowledge is the challenge for the

design centric offline system. The online system must provide the features that

give the diagnosis in a practical setting.

3.1.1. Intravascular ultrasound imaging

The first IVUS images of normal and atherosclerotic arterial wall thickness

is published by Mallery et al in 1988 [112]. Hence, it is a relatively new medical

imaging modality. IVUS delivers precise tomographic images which enable the

reading radiographer to assess coronary arteries in vivo [113]. Clinical studies es-

tablished that IVUS is sensitive in detecting atherosclerosis and quantifying both

plaque geometry as well as structure. However, the effectiveness for providing

diagnostic support is limited due to the two-dimensional signal representation,

which is still used in most systems [114]. Analytical computer support systems

aim to improve the information presentation by making it more accessible, for

example through 3D representation.
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(a) Normal. (b) Diseased.

Figure 4: IVUS of coronary artery segments – Left Anterior Descending view.

The physical IVUS set up is established by mounting a US transducer on

the tip of a catheter. The catheter is inserted into an artery where the US

sensor captures intravascular images. These images depict the morphology of

both plaque and arterial wall [115]. IVUS can help to detect the presence and to

determine the atherosclerosis composition in angiographically normal reference

sites [116]. Computer support systems extract information bearing features

from these images. In contrast to thoracic US, IVUS is invasive [117]. The act

of inserting the US transducer can, amongst other complications, cause plaque

to come loose from the artery wall [118]. Plaque debris in the carotid artery

can cause stroke and plaque derbies in the coronary artery can cause MI.

Like thoracic US images, IVUS images are difficult to interpret. Figures

4a and 4b show typical IVUS images of normal and diseased coronary arteries,

respectively. Detecting vessel intima, adventitia and media layer provides orien-

tation in the IVUS image. However, the challenge is to detect and characterize

plaque. The first step to tackle that challenge is to employ effective feature

extraction methods.
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3.2. Feature extraction and assessment

Feature extraction is a process which determines one or multiple informa-

tion bearing properties from an US image to form a feature vector [119]. US

image interpretation requires the conversion of image textures into features.

The underlying assumption is that image textures contain diagnostically rele-

vant information [120]. The features extract as well as condense the information

and present it as a parameter value [121]. Statistical methods, such as Analysis

Of Variance (ANOVA) with p- and F -values, can be used to select and rank the

features. However, statistical tests assume that the known test data has specific

statistical properties. For example, ANOVA assumes a Gaussian distribution.

As a consequence, these statistical test methods provide just an indication of

what features should be used for classification. The final feature selection is

based on classification results. The classification performance depends, to a

large extent, on the selected features. Hence, feature extraction and selection

are crucial processes in the design of computer aided diagnosis systems. The

following list details feature extraction methods used in the reviewed computer

support systems:

• Texture features, such as the Gray-Level Co-occurrence Matrix (GLCM)

[122], are widely used for MI diagnosis. The strength of texture features

lies in extracting information which relates to the spatial entanglement

of intensity values within the Region of Interest (ROI) of an US image.

A significant weakness of texture features comes from the fact that most

texture extraction algorithms depend on both image and grey scale reso-

lution.

• Statistical features, such as Principal Component Analysis (PCA) and

Higher Order Spectra (HOS) [123] are found to be effective. The advantage

of statistical features is that they are robust in the presence of noise. That

robustness depends on the length of data that can be averaged. Being and

essentially linear methods, statistical methods fail to capture nonlinear

information contained in US images.
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• Transform domain features, such as Discrete Wavelet Transform (DWT)

[124], Stationary Wavelet Transform (SWT) [125] and CT [126]. As such,

CT generalizes wavelet transform results to represent US image structures

in terms of scale, orientation and location [127, 128]. Transform domain

features detect subtle changes in the US image. The methods perform well

in the presence of noise and low computational complexity algorithms exist

for standard feature extraction. A disadvantage of these methods is that

establishing the transform domain is insufficient, another processing step

is needed to extract a specific feature.

• Features based on configuration information, such as Local Configuration

Pattern (LCP) combines local structural [129] and microscopic [130] con-

figuration information which can be used for image classification. That

hybrid feature extraction method has potential. However, practical com-

puter support systems should use more than two feature extraction meth-

ods, to harvest the benefits and at the same time minimize the disadvan-

tages of the individual methods.

3.3. Classification

Only computer aided diagnosis systems incorporate a classification step. The

classification is established through artificial learning and decision making al-

gorithms. All, except the study by Thangavel et al. [131], reviewed computer

aided diagnosis systems used supervised learning algorithms. Unsupervised dif-

fer from supervised learning algorithms in the way the clusters are established

[132]. Unsupervised learning algorithms establish clusters in the data [133].

Unknown feature vectors are labelled as belonging to one of these clusters. Su-

pervised learning is based on classical ideas of a student and teacher relationship

[134]. In terms of machine learning, that relationship is expressed as extracting

algorithm parameter from labelled training data. Once the machine learning

algorithm is trained, it is tested with labelled data that is not used during the

training phase. The test results are expressed in terms of Accuracy (A), Se and

Sp [135].
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Only the design centric offline system incorporates an assessment step. The

most suitable classification algorithm, for the practical online system, is selected

based on the assessment results [135]. The following classification algorithms

were used in the reviewed US based CAD, MI and carotid atherosclerosis com-

puter aided diagnosis systems:

• Threshold classification is a simple algorithm which classifies based on

whether or not a feature value has crossed a specific threshold [136, 137].

The threshold value is established during the training phase.

• Unsupervised learning, such as Self Organizing Map (SOM) [138]. The

clusters are established through weight updates in a local area of the map

space.

• Classical supervised machine learning, such as Relevance Vector Machine

(RVM) [139], K-Nearest Neighbour (K-NN), Gaussian Mixture Model

(GMM), Decision Tree (DT), Naive Bayes Classifier (NBC), Probabilistic

Neural Network (PNN) [140], and Support Vector Machine (SVM) [141,

142] are used in decision support systems. For many classification tasks,

SVM outperforms other methods due to nonlinear kernel functions.

• Classification problem formulated as an optimization question and solved

with Binary Particle Swarm Optimization (BPSO) [143, 144].

• Classification problem formulated as an optimization question and solved

with Genetic Algorithm (GA) [145].

• Minimum distance classifier uses an algorithm that compares a feature

vector with two or more vectors which represent the individual signal

classes. The method is often used in image processing [146].

4. Diagnosis support system realisations

The review of computer support systems for CAD, MI and carotid atheroscle-

rosis based on US images was structured according to the design principles
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outlined in the previous section. During the review, we established whether

Internal (I) or Thoracic (T) US was used for image acquisition. Having that

information is important, because the feature extraction methods depend on

the image type. For example, a 3D coronary artery wall reconstruction feature

[96] makes sense only for IVUS. Next, we determined which classifier was used

for diagnostic support. Simple analysis systems lack automated classification,

hence these systems offer only analytical results and they depend entirely upon

human expertise to reach the diagnosis. The design of all reviewed systems

was based upon labelled US images, usually taken from patients and normal

subjects. As part of the review, we determined the number of datasets used in

each work, which helps to establish the performance results, such as A, Se and

Sp.

We present the review results in three tables. Table 1 focuses on 17 com-

puter support systems for CAD diagnosis. The table details the review results

in accordance with the assessment rubrics discussed above. The materials sec-

tion provides background on the specific features and classifiers used in the

investigated systems. Table 2 details the review results of computer based MI

diagnosis support. The table introduces the review results for 16 diagnosis sup-

port systems. The columns of this table convey the same information as Table

1. Table 3 presents the review results for 11 carotid atherosclerosis computer

support systems in a similar way. In the discussion section, we compared the

review results for the considered cardiovascular diseases.

Table 1: Summary of the review results for CAD diagnosis support systems based on Thoracic

(T) ultrasound and Internal (I) ultrasound - in most cases IVUS.

Authors US

Type

Features Classifiers No. of subjects Performance

measure

Nissen et al.

[147]

I Lumen Size and

Wall Morphology

– 51 (8 N and

43 CAD)

Descriptive

comparison

Goar et al. [148] I Artery diameter – 20 IVUS vs. an-

giography
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Mintz et al.

[149]

I Lesion calcification – 110 First order

statistics

Potkin et al.

[150]

I Stenosis diameter – 51 Description

Hermiller et al.

[151]

I Arterial narrowing – 38 Visual inspec-

tion

Alfonso et al.

[152]

I Plaque area – 27 Vessel compli-

ance

Mintz et al.

[153]

I Artery cross section – 884 Angiography vs.

IVUS compari-

son

Mintz et al.

[154]

I Plaque mass – 209 Angiography vs.

IVUS compari-

son.

Klingensmith et

al. [155]

I Image segmenta-

tion

– Three motor-

ized pullbacks

Description

Cothren et al.

[96]

I 3D reconstruction

of the coronary

artery wall

– Description

Schoenhagen et

al. [156]

I Remodelling ratio – 85 Angiography vs.

IVUS compari-

son.

Schartl et al.

[157]

I Scale value analysis – 131 Drug efficiency

statistics

Çomak et al.

[158]

T DWT; Spectro-

grams

SVM 215 (95 N,

120 CAD)

Se=94.5%,

Sp=90.0%,

five fold cross

validation

Babaoğlu et al.

[159]

T PCA SVM 480 A=76.67%
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Shalbaf et al.

[136]

T Nonrigid image reg-

istration

Threshold 14 72% to 92%

Mukhopadhyay

et al. [160]

T Epicardial and En-

docardial Border

Detection

– 44 –

Araki et al. [32] I Grayscale features SVM 15 A=94.95%

Table 2: Summary of the review results for MI diagnosis support systems.

Authors US

Type

Features Classifiers No. of sub-

jects

Performance measure

Skorton et

al. [161]

T Grey level distribution,

kurtosis, skewness

Manual clas-

sification

7 adult dogs Se=90%, Sp=70%

Kamath et

al. [162]

T Pixel intensity Statistical

classification

15 Not mentioned

Tak et al.

[163]

T Pixel intensity Statistical

classification

17 (5 N,

12 MI)

Date based MPI statistics

Mojsilovic et

al. [164]

T DWT energy Unsupervised

classification

15 A=96%

Nesković et

al. [165]

T DWT energy Distance

classifier

18 On day 2: Se=73%,

Sp=86%, A=78%; Week

1: Se=91%, Sp=86%,

A=89%; Week 3:

Se=100%, Sp=100%,

A=100%

Kotani et al.

[166]

I Lesion as well as proximal

and distal reference

– 78 Culprit plaques statistics

Ehara et al.

[167]

I Artery dimension – 178 Frequency of calcium de-

posits

Hong et al.

[168]

I Computerized planimetry – 235 Plaque rupture frequency
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Skorton et

al. [169]

T Grey level distribution,

kurtosis, skewness

RVM 173 A=84.17%

Moldovanu

et al. [170]

T Mean grey level, skewness,

kurtosis and entropy

– 12 (6 N

6 MI)

Entropy: 6.23 ± 0.52 vs.

9.95 ± 0.17

Agani et al.

[171]

T GLCM and DWT Distance

classifier

17 A=91.32%

Acharya et

al. [172]

T BPSO and GA SVM 15 A=81.46%, three fold

cross validation

Sudarshan et

al. [173]

T DWT SVM 160 (80 N,

80 MI)

A=99.5%, Se=99.75%,

Sp=99.25%, ten fold cross

validation

Sudarshan et

al. [33]

T Texton features PNN 160 (80 N,

80 MI)

A=94.37%, Se=91.25%,

Sp=97.50%

Sudarshan et

al. [174]

T CT, LCP SVM 120 (40 N,

80 MI)

A=98.99%, Se=98.48%,

Sp=100%

Sudarshan et

al. [175]

T SWT and relative wavelet

energy and entropy

SVM 160 (80 N,

80 MI)

A=96.20%, Se=97.5%,

Sp=95.0%

Table 3: Summary of the review results for carotid atherosclerosis diagnosis support systems.

Authors US

Type

Features Classifiers No. of sub-

jects

Performance measure

Tsiaparas et

al. [176]

T DWT, Discrete curvelet

transform, Finite ridgelet

transform

SVM 20 atheroma-

tous plaques

Discrete curvelet trans-

form: A=84.9%

Thangavel et

al. [131]

T SOM ADAboost Contourlet

transform

257 carotid

US images

SVM: A= 85.6%

Christodoulou

et al. [177]

T Texture, Chaos, Spec-

trum, Shape

SOM, K-NN 230 US im-

ages

SOM:A=73.1%
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Acharya et

al. [178]

T Texture SVM 99 SVM with Radial Ba-

sis Function (RBF):

A=91.7%, Se=97% and

Sp=80%.

Acharya et

al. [179]

T Texture SVM, DT,

GMM,

K-NN,

NBC, PNN,

Sugeno

Fuzzy

346 carotid

plaque ul-

trasound

image

A 89.5%.

Acharya et

al. [180]

T Texture, DWT, HOS SVM 146 carotid

bifurcation

plaques in 99

patients

A=91.7%, Se=97%,

Sp=80%

Acharya et

al. [181]

T Texture, Trace transform,

HOS, Spectrum

SVM 160 plaques A=90.66%, Se=83.33%,

Sp=95.39%

Acharya et

al. [182]

T Texture, DWT SVM, GMM,

PNN, DT,

K-NN, NBC

SVM: A=88%,

Se=90.2%, Sp=86.5%

Nair et al.

[183]

I Spectrum DT 51 post-

mortem

A=79.7% for fibrous,

A=81.2% for fibrolipidic,

A=92.8% for calci-

fied, and A=85.5% for

calcified-necrotic regions

Prati et al.

[137]

I Plaque measurements Threshold 2 carotid

arteries

post-mortem

Se=65%, Sp=95%

Irshad et al.

[184]

I Visual inspection – 5 Cases –
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5. Discussion

It is evident from this review that several computer-aided methods are de-

veloped using texture features in order to investigate the health of myocardium

[174, 33, 175] and carotid artery [180, 178, 182, 179]. Acharya et al., [180] applied

DWT, HOS and texture methods to analyse the US images of carotid artery

to characterize symptomatic and asymptomatic carotid atherosclerosis. Studies

by Sudarshan et al., used second-order spatial statistical analysis together with

wavelet, HOS, DWT [173], SWT [175], textons [33], Local Binary Pattern (LBP)

[174], and LCP [174] to extract echocardiogram image textural properties within

the myocardium. These studies have unveiled further useful details of carotid

artery and myocardium compared to the previous manual and semi-automated

techniques. Wavelet based methods (DWT [158, 164, 165, 171, 173, 176, 182],

SWT [175]) and HOS [180, 181] have shown to extract most of the informa-

tion including subtle changes, occurring in the carotid artery and myocardium

with significantly high accuracies. Furthermore, LBP and LCP methods, ap-

plied on the echocardiogram images, can identify the minute variations in the

myocardium and thereby classify them into moderately and severely infarcted

myocardium [174].

However, it is also evident from the literature survey that only few stud-

ies have used computer aided methods to support the diagnosis for CAD and

carotid atherosclerosis using IVUS. Other than Araki et al. and Nair et al.,

not much research work is reported on CAD and carotid atherosclerosis using

computer-aided analysis of IVUS images. Araki et al., [32] used grayscale fea-

tures to analyse the texture properties of IVUS images to identify the CAD risk

stratification. Nair et al., [183] performed spectral analysis of IVUS images for

real time in vivo plaque classification [183]. Although the first-order [32] and

time-frequency domain [183] texture analysis techniques achieved good results

in the identification of CAD [32] and carotid atherosclerosis [183], second-order

statistics, HOS, DWT, and other nonlinear methods can substantially improve

the performance of computer support systems based on IVUS images. These
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methods may extract additional higher-order and phase information from IVUS

image texture, compared to first-order and linear methods with better accuracy

and may even aid in identifying the severity of the conditions.

The most important aspect of expert systems, such as computer aided di-

agnosis, is to replace human labour with machine work [185]. Through mass

production, it is possible to harvest the economies of scale, which brings down

the unit price and revenue is generated via sales volume. However, there is

an inherent danger in this approach, namely the problem of monoculture. To

be specific, mass produced systems tend to be well engineered, but their num-

ber may become so large that even small probabilities for an individual safety

failure can become a major concern [186]. Safety concerns are important as-

pects for computer support in medicine [187]. As described in materials section,

the offline system is used to establish the functionality aspects of a proposed

system. The performance measures, reported in Tables 1, 2 and 3, the sys-

tem performance under well controlled conditions. However, mass production

and subsequent mass deployment demand considerations on how to ensure re-

liability and safety. These considerations are challenging, because safety is a

multifaceted concept. One of these facets is active safety [188]. For example, a

diagnosis, suggested by the computer system must be confirmed by the clinician.

Another aspect passive safety [189], which demands that safety critical system

failures must be kept at a minimum. The only way to meet the required passive

safety levels is to improve the design process. Splitting the design into online

and offline systems is one step in the right direction. However, the concept of

having an online and an offline system is not sufficient to achieve the required

passive safety levels, because the design steps, described in Section 3, are only

concerned with requirements capturing. With the offline system we find out

what system we are going to build. To design safe and reliable systems, we

need another step, namely specification refinement. In other words, we need to

find out how we build the system. The specification refinement step must be

executed as formal as possible, because logical errors in this step may impact

negatively on passive safety. Formal logic can be used to ensure that no setting
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in the user interface has an impact on the system functionality which might

compromise patient wellbeing [190, 191].

The considerations outlined above, lead to the postulation of the formal

and model driven design methodology for biomedical systems [192]. The design

steps follow the systems engineering meta model: need definition, requirements

capturing – with the offline system, implementation of the online system, deploy-

ment and decommissioning [193]. In the specification refinement phase, formal

methods, such as Communicating Sequential Processes (CSP) [194], B-method

[195] and petri nets, can be used to establish beyond reasonable doubt specific

safety and reliability aspects of the diagnosis support system [196].

5.1. Future Work

The following list introduces areas for future work:

• Deep learning concept can be used extract features and improve the deci-

sion making performance of computer aided diagnosis systems.

• The accuracy of cardiovascular disease diagnosis, based on US images,

may improve by segmenting the ROI and extracting features from these

ROIs. More work is needed to segment the ROI from IVUS and US images

without losing much information.

• Although the MI detection algorithms (DWT, HOS, Textons, LCP), pro-

posed by Sudarshan et al., achieved high accuracy, similar investigation

need to be carried out for diagnosis of CAD using IVUS [174].

• IVUS and US images are associated with high speckle noise [197, 198].

Therefore, an efficient algorithm for speckle noise reduction as a pre-

processing technique before the feature extraction may improve the per-

formance of the computer aided diagnosis.

• Using computer-aided methods, there is a possibility of exploring the de-

tection of mild stage of MI using US images; similarly, the extent of CAD

can be detected using IVUS.
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• Carotid atherosclerosis diagnosis may benefit from automating the ROI

segmentation. Such automation can help to improve the classification

accuracy of asymptomatic plaque.

We predict that the role of computer aided diagnosis will continue to expand

at an accelerating speed. Once the systems are designed, they can be mass

produced with minimum cost. Furthermore, hardware and software updates

can be used to incorporate the latest research results from relevant fields of

medicine and technology in an installed system. At the moment, we are at an

early stage of such a design revolution. By using a meta model, which structures

the design process into an online and an offline system, we have the flexibility

to explore novel research on algorithms even if the online system is already

deployed. The offline design process will look more and more like a big data

task where algorithms inspect huge data and extract useful information from

the training images. These tasks will be executed with an ever-increasing level

automation and the processing will migrate towards virtualized bulk processing

environments, such as cloud computing [199]. As a consequence, local process-

ing and decision making will be superseded by distributed processing systems

incorporating the latest information in the decision-making process.

6. Conclusion

This paper reviews computational and system design aspects of computer

support for cardiovascular disease diagnosis based on US images. Initially we

provided background information on CAD, MI and carotid atherosclerosis. The

three investigated diseases are linked. CAD usually precedes MI and carotid

atherosclerosis is a good indicator of plaque in the coronary arteries. A major

problem for the design of such systems comes from the fact that it is impossi-

ble to know a priori which algorithm structure works best for a given problem.

Therefore, the design process follows a well-defined meta model which struc-

tures the design efforts into creating an offline and an online system. The offline

system is used to research, assemble and test a wide range of algorithm struc-
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tures. Only the best algorithms are used in the online system to provide the

best possible diagnostic support for practitioners. Hence, the key concept dur-

ing the design of diagnostic support systems is competition facilitated through

quality measurements. Consequently, we reviewed several algorithms used in

the proposed diagnosis support systems and presented their performances.

During the review, we placed emphasis on discriminating between basic anal-

ysis systems and computer aided diagnosis systems. We found that, there is

many thoracic US based systems which provide diagnostic support through ar-

tificial decision making. In contrast, only one IVUS based system provided that

type of support. The rest of the reviewed IVUS based systems provided only

clinical analysis. Such analytical support is important; data analysis has pro-

gressed more towards diagnostic support. Therefore, the next logical step for

IVUS based computer support systems is to incorporate a classification step.

The resulting computer aided diagnosis systems will be more useful as they

can improve the diagnosis quality and traceability. Another important point of

this review is that IVUS is predominantly used for automated CAD diagnosis.

In contrast, thoracic US is most often used for MI diagnosis support systems.

IVUS is used for post-mortem analysis of carotid plaque and specialized carotid

artery assessment. However, that imaging methodology is considered unsuitable

for screening applications.

Acronyms

A Accuracy

AI Artificial Intelligence

ANOVA Analysis Of Variance

BPSO Binary Particle Swarm Optimization

CAD Coronary Artery Disease

CSP Communicating Sequential Processes

CT Curvelet Transform

DT Decision Tree
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DWT Discrete Wavelet Transform

ECG Electrocardiography

GA Genetic Algorithm

GLCM Gray-Level Co-occurrence Matrix

GMM Gaussian Mixture Model

HOS Higher Order Spectra

I Internal

IVUS Intravascular Ultrasound

K-NN K-Nearest Neighbour

LBP Local Binary Pattern

LCP Local Configuration Pattern

LRNC Lipid-Rich Necrotic Core

MI Myocardial Infarction

NBC Naive Bayes Classifier

PCA Principal Component Analysis

PNN Probabilistic Neural Network

RBF Radial Basis Function

ROI Region of Interest

RVM Relevance Vector Machine

SWT Stationary Wavelet Transform

SCD Sudden Cardiac Death

Se Sensitivity

SOM Self Organizing Map

Sp Specificity

SVM Support Vector Machine

T Thoracic

TIA Transient Ischemic Attack

US Ultrasound
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