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Dilatational viscosity of dilute particle-laden fluid interface at different contact angles

Sergey V. Lishchuk
Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom

We consider a solid spherical particle adsorbed at a flat interface between two immiscible fluids
and having arbitrary contact angle at the triple contact line. We derive analytically the flow field
corresponding to dilatational surface flow in the case of large ratio of dynamic shear viscosities of
two fluids. Considering a dilute assembly of such particles we calculate numerically the dependence
upon the contact angle of the effective surface dilatational viscosity particle-laden fluid interface.
The effective surface dilatational viscosity is proportional to the size and surface concentration of
particles and monotonically increases with the increase in protrusion of particles into the fluid with
larger shear viscosity.

PACS numbers: 47.15.G–, 47.55.N–, 47.55.Kf

I. INTRODUCTION

The behavior of small particles adsorbed at interfaces
between two fluids continues to be an area of great in-
terest from an academic point of view as well as for its
importance in many technological and industrial appli-
cations. The capability of the colloidal particles trapped
at fluid interfaces to stabilize emulsions has applications
in many industrial sectors, such as food processing [1],
petroleum industry [2], biomedicine [3], etc.
The rheological properties of particle-laden fluid in-

terfaces are known to be one of the key factors which
influence stability of particle-laden emulsions and foams
[1, 4, 5]. Better understanding of the rheological prop-
erties can help to enhance the stability of emulsions and
foams and facilitate their use in fabrication of advanced
materials, the examples of which are colloidosomes [6, 7],
armoured bubbles [8, 9], liquid marbles [10, 11], bijels
[12], porous solids [13]. The study of the rheology of
particle-laden fluid interfaces can provide new insight
into their structure and properties [4, 5].
Generally, particle-laden fluid interfaces are viscoelas-

tic [5]. It is possible to separate viscous and elastic contri-
butions to the surface stress by using appropriate consti-
tutive equations [14]. For isotropic interfaces the viscous
contribution is well described by a Boussinesq-Scriven
model with surface shear and dilatational viscosities as
the material properties [15, 16]. In particular, isotropic
change in the surface area results in a purely dilatational
surface flow with the surface velocity field

vs = αr (1)

where α is the dilatation rate. The corresponding rate-
of-strain tensor is isotropic,

S = αIs, (2)

where Is is the surface unit tensor. In this case the viscous
contribution to the surface stress tensor,

σv = ζsS, (3)

contains a single material parameter, dilatational viscos-
ity ζs. Note that ζs is the average, effective viscosity,

which has sense on a large length scale where we can
regard particle-laden interface as continuous.
In the case of 90-degree contact angle dilatational vis-

cosity can be calculated analytically in the limits of low
and high surface concentrations of particles. The ori-
gin of excess dissipation in particle-laden interfaces lies
in modification by the particles of the flow in the bulk
fluids that surround the interface. In case of low concen-
tration of the adsorbed particles the interaction between
particles can be neglected and the effective dilatational
viscosity is given by formula [17]

ζs = 5(η1 + η2)Rφ (for small φ), (4)

where η1 and η2 are shear viscosities of the surrounding
bulk fluids, R is the radius of the adsorbed particles, and

φ =
πR2N

A
(5)

is the surface concentration of the particles, where N is
the number of particles in surface area A. In the opposite
limit of high particle concentration the effective dilata-
tional viscosity can be derived on the base of the facts
that (i) highly concentrated particle arrays in a plane
form a hexagonal structure and (ii) the dominant contri-
bution to the viscous dissipation rate arises in the thin
gaps between neighboring particles. The result is [18]

ζs =
3
√
3π(η1 + η2)R

16(
√

φm/φ− 1)
(for large φ), (6)

where

φm =
π

2
√
3

(7)

is the maximum packing density of circles in the plane.
The results (4) and (6) can be used as a starting ap-
proximation for more complicated (and common) sys-
tems in which the interparticle interactions of different
nature cannot be neglected.
The above results were derived for the case of 90-degree

contact angle. On one hand, this allows exploiting the
symmetry of the system, making the derivation easier.
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Figure 1. The geometry of the system.

On the other hand, in the most common systems parti-
cles form arbitrary contact angles with the fluid interface
due to different nature of fluids at both sides of the in-
terface. Contact angle can be controlled, for example,
by modifying chemical composition of the particle sur-
faces [19] or fluid phase [20]. This, in turn, allows con-
trolling particle packing density [21], their detachment
energy [21, 22], and the type of particle-stabilized emul-
sions (e.g. air-in-water or water-in-air [19], oil-in-water
or water-in-oil [20]), as predicted Finkle and others [23].
Contact angle influences drag and diffusion coefficients
of the particles at fluid interfaces [24–26] as well as their
electrostatic properties [27].

This paper extends the result for the effective dilata-
tional viscosity of particle-laden fluid interfaces in the
limit of low surface concentration of particles, Eq. (4), to
arbitrary contact angles. At that, we simplify the analy-
sis by neglecting the viscosity of one of the fluids because
high ratio of dynamics shear viscosities is commonly en-
countered in practice, for example, water–air or oil–water
interfaces typically have shear viscosity contrast of two
orders of magnitude.

The paper is organized as follows. After formulating
the model (Sec. II) and writing the corresponding gen-
eral expression for the dissipation energy (Sec. III), we
proceed to derivation of the analytical expression for the
velocity field (Sec. IV). Numerical integration of the ve-
locity then provides the distribution of pressure at the
surface of the particle (Sec. V) and the effective dilata-
tional viscosity (Sec. VI), which is the main result of this
paper. The dependence of the effective dilatational vis-
cosity upon the contact angle is given by equation (66),
tabulated in Table I and illustrated graphically in Fig. 3.

II. MODEL

We consider a system of identical rigid spherical par-
ticles of radius R adsorbed at the flat interface between
two incompressible fluids. We assume the particles are
far enough from each other so that their interactions of
any nature can be neglected.
We suppose a macroscopically thin fluid interface is

located at z = 0 and separates a high viscosity fluid (z >
0) with dynamic viscosity η, and a low viscosity fluid
(z < 0) which viscosity we shall neglect. We suppose
surface tension γ to be high enough so that flow and
gravity do not distort the flat shape of the interface. We
assume that the interfacial tensions favor a contact angle
θ as shown in Fig. 1. This definition of θ agrees with
the commonly accepted one for air-water interface, but is
supplementary to commonly accepted definition for oil-
water interface. For consistency, we will use the same
definition, shown in Fig. 1, for all cases. Then the vertical
position of the particles’ centers is given by

zc = R sin θ, (8)

the protrusion of the particles into the large-viscosity
fluid is R+ zc, and the radius of the triple contact circle
is

c = R cos θ. (9)

We shall accept equation (5) as the definition of the
surface concentration of particles, although it no longer
has meaning of the fraction of the surface area taken by
particles in the cases when the contact angle is different
from 90 degrees.
In small-Reynolds-number flow the velocity v and pres-

sure p of high-viscosity fluid satisfy the Stokes equation

µ∇2
v = ∇p (10)

and the continuity equation

∇ · v = 0. (11)

We assume no-slip boundary condition at the surface of
the particle,

v = 0. (12)

Since the position of the fluid interface remains constant,
the kinematic boundary condition at the fluid interface
is

v · n = 0, (13)

where n is the unit vector normal to the interface. Since
we neglect the motion of the low-viscosity fluid, the dy-
namic boundary condition can be written in form

∂vt

∂z
= 0, (14)
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where vt is the component of the velocity tangential to
the interface.
We subject the system to the flow which in the absence

of the particles would be written in cylindrical coordi-
nates (r,φ,z) as

v(0)r = αr, v
(0)
φ = 0, v(0)z = −2αz (15)

and correspond to the dilatational surface flow given by
Eq. (1).

III. ENERGY DISSIPATION

Particle-laden fluid interface can be viewed on a macro-
scopic scale as continuous, characterized by some ef-
fective properties. Let us consider such “macroscopic”
version of the model described in the previous Section.
Then, instead of particles straddling the interface, we
will have a homogeneous fluid interface characterized, in
particular, by some effective dilatation viscosity ζs. Con-
sider a large sphere located somewhere at the interface
and having a volume V0. The additional contribution to
the energy dissipation rate which arises due to the dilata-
tional flow at the interface is [17, 18]

Ė = ζs(Tr S)
2As, (16)

where As is the area of the fluid interface contained
within volume V0. Substituting (Tr S)2 = 4α2 in accor-
dance with Eq. (2), we obtain

Ė = 4ζsα
2As. (17)

We can use equation (17) as the definition of the effective
dilatational viscosity and determine its value by calculat-
ing the contribution to the energy dissipation rate of the
particle-laden interface due to the presence of the par-
ticles. This approach was pioneered by Einstein, who
used it to determine the effective shear viscosity of di-
lute suspensions [28]. Similar approach can be used to
define effective surface shear viscosity of particle-laden
fluid interfaces [17, 29].
The expression for the rate of energy dissipation in

particle-laden flows can be cast in a form of an integral
over the surface of the particles Ap provided the integral

α ·
∫

V

[(

∂σ(1)

∂r

)

r+ σ
(1)

]

dV (18)

over the volume V occupied by fluid inside As equals
zero [30, 31]. In Eq. (18), α is the rate-of-strain tensor
corresponding to the fluid flow unperturbed by particles
(in our case it is given by Eq. (15)),

σ
(1) = −p(1)I+ η

[

∇v
(1) +

(

∇v
(1)

)T
]

(19)

is the contribution to the stress tensor due to the pres-
ence of the particles. The value of the shear viscosity η

is generally different in different fluid components. This
results in the discontinuity in the stress field at the in-
terface. Nevertheless, it is straightforward to check that
the integral (18) indeed equals zero in the case if iden-
tical particles are adsorbed at the interface between two
fluids provided there is no extra dissipation of energy at
the interface (for example, due to adsorbed surfactants).
Then the expression for the rate of energy dissipation can
be written as [17, 29]

Ė = N

∫

Ap

[

(α · r) · (σ(1) · n)− 2η(α : v(1)
n)

]

dA,

(20)
where N is the number of particles adsorbed at the in-
terface of area As.
The velocity and pressure fields can be represented

as sums of unperturbed contributions v
(0), given by

Eq. (15), and p(0), which is constant, and the pertur-
bations due to particles, denoted bu superscript (1):

v = v
(0) + v

(1), (21)

p = p(0) + p(1). (22)

If the particles are far enough from each other, the veloc-
ity and pressure fields can be determined as a solution to
Stokes equations (10) and (11) for the flow with only one
particle present, which is done in the following two sec-
tions. Then the effective dilatational viscosity is obtained
by equating expressions (17) and (20):

ζs =
φ

4πR2α2

×
∫

Ap

[

(α · r) · (σ(1) · n)− 2η(α : v(1)
n)

]

dA. (23)

IV. VELOCITY FIELD

This section presents the velocity field for the dilata-
tional flow in presence of a spherical particle adsorbed
at a fluid interface, according to the model described in
Sec. II. Without loss of generality we will assume the
radius of the particle, R, equal to one. Our derivation is
a modification of the derivation by El-Kareh and Secomb
[32] with no-slip boundary condition at the solid wall re-
placed by the free-surface boundary condition at the fluid
interface.
The velocity of an axially symmetric flow is expressed

in terms of streamfunction Ψ as [32]

v = ∇×
(

Ψ

r
eφ

)

, (24)

where cylindrical coordinate system (r, φ, z) is used. The
streamfunction Ψ can be decomposed as

Ψ = ψ0 + ψ, (25)
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according to decomposition of velocity given by Eq. (21).
The contribution which corresponds to the unperturbed
flow with velocity v

(0) is

ψ0 = −αr2z. (26)

The general approach for solving Stokes equations
in axially-symmetric systems was formulated by El-

Kareh and Secomb [32] and, in an alternative form, by
Zabarankin and co-authors [33, 34]. For the stream-
function contribution ψ, which corresponds to the dis-
turbance velocity v

(1), we shall use the general solution
in the form given by El-Kareh and Secomb [32], which
tends to zero far from the particle:

ψ =2Re

{

1

(cosh ξ − cos η)3/2

∫

∞

0

[

Piτ− 3

2

(cosh ξ)− Piτ+ 1

2

(cosh ξ)
]

×
[

A(τ) cos[(iτ − 1)η] +B(τ) cos[(iτ + 1)η] + C(τ) sin[(iτ − 1)η] +D(τ) sin[(iτ + 1)η]
]

dτ

}

. (27)

Here Pν(z) are Legendre functions of the first kind [35,
36].
In Eq. (27) the toroidal coordinate system (ξ, θ, φ) is

used, in which both the surface of the particle and the
fluid interface coincide with the coordinate surfaces [25,
27, 37, 38]. In the meridional cross-section plane (r, z)
toroidal coordinates (ξ, η) are introduced by [39, 40]

r =
c sinh ξ

cosh ξ − cos η
, z =

c sin η

cosh ξ − cos η
, (28)

where a metric parameter c is shown in Fig. 1. The az-
imuthal coordinate φ is common to both coordinate sys-
tems. The fluid interface corresponds to η = 0, and the
surface of the particle in contact with a viscous liquid
(z > 0) corresponds to a coordinate surface η = η0, where
η0 = arcsin c. We can express the vertical position of the
particle’s center in terms of η0 as zc = cos η0. Note that
the contribution (26) to the streamfunction correspond-
ing to unperturbed flow is written in toroidal coordinates
as

ψ0 = − αc3 sin η sinh2 ξ

(cosh ξ − cos η)3
. (29)

The functions A(τ), B(τ), C(τ) and D(τ), which en-
ter Eq. (27), can be determined by applying boundary
conditions (12)–(14). Similarly to Ref. [32], we can set
to zero the value of the streamfunction Ψ both at the
surface of the particle and at the fluid interface because
they form a single streamsurface in accordance with the
boundary conditions (12) and (13):

Ψ = 0 at η = 0 and η = η0. (30)

The no-slip boundary condition at the surface of the par-
ticle, Eq. (12), also yields

∂Ψ

∂η
= 0 at η = η0. (31)

A dynamic boundary condition at the fluid interface,
Eq. (14), is written in terms of Ψ as

∂2Ψ

∂η2
= 0 at η = 0. (32)

Taking into account that the base flow (29) satisfies free-
flow boundary conditions at the fluid interface, we can
re-write the above equations in terms of the disturbance
streamfunction ψ as

ψ = 0,
∂2ψ

∂η2
= 0 at η = 0, (33)

ψ = −ψ0,
∂ψ

∂η
= −∂ψ0

∂η
at η = η0. (34)

Application of the boundary conditions at the fluid
interface, Eq. (33), to Eq. (27) yields

A(τ) = 0 and B(τ) = 0. (35)

With this, the streamfunction (27) can be rewritten in
the form

ψ =
2

(cosh ξ − cos η)3/2

∫

∞

0

R(τ, ξ)k(τ, η)dτ (36)

with

R(τ, ξ) = i
[

Piτ− 3

2

(cosh ξ)− Piτ+ 1

2

(cosh ξ)
]

(37)

and

k(τ, η) = E(τ) sin η cosh(ητ) +F (τ) cos η sinh(ητ), (38)

where the functions E(τ) and F (τ) are determined by
the boundary conditions at the surface of the particle.
Using the relations

(cosh ξ − cos η)
3

2ψ
∣

∣

∣

η=η0

=

∫

∞

0

R(τ, ξ)G1(τ)dτ (39)
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and

∂

∂η

[

(cosh ξ − cos η)
3

2ψ
]

∣

∣

∣

∣

η=η0

=

∫

∞

0

R(τ, ξ)G2(τ)dτ,

(40)
where

G1(τ) = 2E(τ) sin η0 cosh(η0τ) + 2F (τ) cos η0 sinh(η0τ),
(41)

G2(τ) = 2E(τ)[cos η0 cosh(η0τ) + τ sin η0 sinh(η0τ)]

− 2F (τ)[sin η0 sinh(η0τ) − τ cos η0 cosh(η0τ)],
(42)

the boundary conditions on the surface of the particle,
Eq. (34), can be cast as

∫

∞

0

R(τ, ξ)G1(τ)dτ = − (cosh ξ − cos η)
3

2ψ0

∣

∣

∣

η=η0

(43)

and

∫

∞

0

R(τ, ξ)G2(τ)dτ = − ∂

∂η

[

(cosh ξ − cos η)
3

2ψ0

]

∣

∣

∣

∣

η=η0

.

(44)

The functions E(τ) and F (τ) are given by formulas

E(τ) =
[sin η0 sinh(η0τ) − τ cos η0 cosh(η0τ)]G1(τ) + cos η0 sinh(η0τ)G2(τ)

sinh(2η0τ)− τ sin(2η0)
(45)

and

F (τ) =
[cos η0 cosh(η0τ) + τ sin η0 sinh(η0τ)]G1(τ) − sin η0 cosh(η0τ)G2(τ)

sinh(2η0τ)− τ sin(2η0)
, (46)

where G1(τ) and G2(τ) satisfy Eqs (43) and (44). In or-
der to determine the explicit form of the functions G1(τ)
and G2(τ) we substitute Eq. (29) for ψ0 into Eqs (43)
and (44) to obtain

∫

∞

0

R(τ, ξ)G1(τ)dτ =
αc3 sinh2 ξ sin η0

(cosh ξ − cos η0)3/2
(47)

and
∫

∞

0

R(τ, ξ)G2(τ)dτ = (48)

=
αc3 sinh2 ξ cos η0

(cosh ξ − cos η0)3/2
− 3αc3

2

sinh2 ξ sin2 η0
(cosh ξ − cos η0)5/2

.

Applying operator sinh ξ(d/dξ) to both sides of Mehler-
Fock representations [41]

1

(cosh ξ − cos η0)1/2
= (49)

=
√
2

∫

∞

0

tanh(πτ)Piτ− 1

2

(cosh ξ)
cosh [(π − η0)τ ]

sinh(πτ)
dτ

and

1

(cosh ξ − cos η0)3/2
=

2
√
2

sin η0
(50)

=

∫

∞

0

τ tanh(πτ)Piτ− 1

2

(cosh ξ)
sinh [(π − η0)τ ]

sinh(πτ)
dτ

and using the identity [32]

sinh ξ
dPiτ− 1

2

(cosh ξ)

dξ
= −τ

2 + 1
4

2τ
R(τ, ξ), (51)

we obtain the relations

sinh2 ξ

(cosh ξ − cos η0)3/2
= (52)

=
√
2

∫

∞

0

(

τ2 +
1

4

)

cosh [(π − η0)τ ]

τ cosh(πτ)
R(τ, ξ)dτ

and

3 sinh2 ξ

(cosh ξ − cos η0)5/2
= (53)

=
2
√
2

sin η0

∫

∞

0

(

τ2 +
1

4

)

sinh [(π − η0)τ ]

cosh(πτ)
R(τ, ξ)dτ,

which together with Eqs (47) and (48) yield

G1(τ) =

√
2αc3

τ cosh(πτ)

(

τ2 +
1

4

)

sin η0 cosh [(π − η0)τ ]

(54)
and

G2(τ) =

√
2αc3

τ cosh(πτ)

(

τ2 +
1

4

)

(55)

× {cos η0 cosh [(π − η0)τ ]− τ sin η0 sinh [(π − η0)τ ]} .

As a result, the velocity field is given by Eq. (24), where
the streamfunction Ψ, Eq. (25), is a sum of the base flow
contribution ψ0, given by Eq. (29), and the disturbance
contribution ψ, given by the integral (36) with the inte-
grand defined by Eqs (45), (46), (54) and (55). Figure 2
depicts streamlines of this flow at different contact an-
gles.
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Figure 2. Streamlines of the velocity field at different values of the contact angle: θ = 135◦ (left) and θ = 45◦ (right).

V. PRESSURE ON PARTICLE SURFACE

The pressure distribution on the surface of a spherical
particle with no-slip boundary condition was found by

El-Kareh and Secomb [32] to satisfy the equation

1

µ

(

∂p

∂ξ

)

η=η0

= (56)

=
1

c3 sinh ξ

{

∂

∂η

[

(cosh ξ − cos η)3
∂2Ψ

∂η2

]}

η=η0

.

Substituting Eqs (25), (29) and (36) for streamfunction
Ψ, we can write

(

∂p

∂ξ

)

η=η0

=
µ

c3
1

sinh ξ

{

(cosh ξ − cos η)3/2
[

∂3f

∂η3
+ 2

∫

∞

0

R(τ, ξ)
∂3k

∂η3
dτ

]

−

− 3

2
(cosh ξ − cos η)1/2 sin η

[

∂2f

∂η2
+ 2

∫

∞

0

R(τ, ξ)
∂2k

∂η2
dτ

]}

η=η0

, (57)

where

f = (cosh ξ − cos η)3/2ψ0. (58)

The pressure distribution on the surface of the particle
can be found by integrating Eq. (57):

p(ξ) = p0 +

∫ ξ

0

(

∂p

∂ξ

)

η=η0

dξ. (59)

We shall neglect the integration constant p0 because does
not affect the calculated value of the effective dilatational
viscosity ζs. This follows from the Stokes equation (10),
which contains only gradient of pressure, and can also
be directly verified by substituting in Eq. (23) the con-
tribution −p0I to the stress tensor. We shall therefore

calculate pressure using formula

p(ξ) =

∫ ξ

0

(

∂p

∂ξ

)

η=η0

dξ. (60)

VI. DILATATIONAL VISCOSITY

In order to calculate dilatational viscosity we need to
evaluate the integral in Eq. (23). It is convenient to split
it in two parts corresponding to two terms in the inte-
grand:

∫

Ap

[

(α · r) · (σ(1) · n)− 2η(α : v(1)
n)

]

dA = I1 + I2.

(61)
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The second part, I2, can be integrated analytically:

I2 ≡
∫

Ap

[

−2η(α : v(1)
n)

]

dA = 4πηα2(R+zc)(R
2−z2c ).

(62)
The first part,

I1 ≡
∫

Ap

[

(α · r) · (σ(1) · n)
]

dA, (63)

can be represented in form

I1 = α

∫ (1+zc)R

0

{

ηρ

[

4ρ
∂vρ
∂ρ

− (z + zc)
∂vρ
∂z

− 2vρ

]

− 2η

[

ρ(z + zc)
∂vz
∂ρ

+ 2z(z − zc)
∂vz
∂z

− 2(z − zc)vz

]

+

+
[

2z(z − zc)− ρ2
]

p

}

ρ=
√

1−(z−zc)2R

dz, (64)

where the integrand is evaluated at the surface of the
particle, and can be calculated numerically using velocity
given by equations (24), (25), (29), (36), (45), (46), (54),
(55), and pressure given by equations (60), (57), (58).
The effective dilatational viscosity is then calculated by
formula

ζs =
φ

4πR2α2
(I1 + I2) . (65)

The final result can be represented in form

ζs = 5ηRφK(θ), (66)

where the dependence of ζs upon the contact angle is
described by the factor K(θ). In case of θ = 90◦ the
viscosity is described by Eq. (4) with η2 = 0, therefore
we have K(π/2) = 1 exactly. In order to obtain K(θ)
for other values of the contact angle, the numerical inte-
gration of Eq. (64) was carried out using the algorithms
implemented in GNU Scientific Library [42]. At that,
the function R(τ, ξ) was calculated using the software
described in Ref. [43] for small values of ξ, and by substi-
tuting the asymptotic expansion of the conical function
[44] in equation (51) at large values of ξ.
The numerical results for K(θ) are presented in Fig. 3

and Table I. Increasing the protrusion of particles into
the fluid with higher shear viscosity, zc, leads to increase
in the distortion of the base flow and, consequently, to
increase in viscous dissipation of energy, which is mani-
fested as a monotonic growth of the effective surface di-
latational viscosity ζs(zc).
The values zc > R, not considered here, would corre-

spond to a system in which the particles form a flat layer
without contact with fluid interface. In the limit zc → ∞
the particles will be far from the interface. The dilata-
tional viscosity of this hypothetical system can be calcu-
lated by setting equal shear viscosities of two bulk fluids,
η1 = η2, in Eq. (4), leading to the value K(zc → ∞) = 2
which is less than the maximum value in Fig. 3. Thus

the maximum dilatational viscosity corresponds to some
value of zc at which particles do not straddle the inter-
face. This can be qualitatively explained by “screening”
of the flow by the particles with large zc, leading to the
increased distortion of the velocity field in some volume
“below” the particle (an example of such distortion can
bee seen in Fig. 2, where a vortex appears at θ = 45◦,
which can be considered an axisymmetric equivalent of
Moffatt eddies [45]).
We conclude this section by summarizing the condi-

tions of applicability of the results of this paper. It fol-
lows from the assumptions of the model that in order for
the results to be valid the surface concentration of par-
ticles has to be small (φ ≪ 1), and the ratio of shear
viscosities of both fluids has to be large (η1 ≫ η2). Addi-
tionally, shear rate has to be small enough [29] to reduce
the inertial effects,

α ≪ η

ρfR2
(67)

(ρf is the fluid density), and to keep the interface flat,

α≪ γ

ηR
(68)

(γ is the surface tension). These are rather weak re-
strictions: for example, for a micron-sized particle at an
air–water interface they require the shear rate to be small
compared to ∼ 106 s−1, which is well satisfied in experi-
ments.

VII. CONCLUDING REMARKS

We have calculated the effective surface dilatational
viscosity of an interface between two immiscible fluids
having large viscosity contrast and decorated with a sys-
tem of monodisperse solid spherical particles, favoring
different contact angles at the triple contact line, in the
limit of small surface concentration of particles. The ef-
fective surface dilatational viscosity is proportional to the
size and surface concentration of the particles and mono-
tonically increases with the increase in the protrusion
of the particles into the fluid with higher shear viscos-
ity, as depicted in Fig. 3. Experimental and computer
simulation studies of dilatational rheology of particle-
laden interfaces in the dilute regime can establish the
limits of applicability of this result and, possibly, provide
new insight into the mechanisms of viscous dissipation
in such systems. The results can be used as a reference
approximation for higher-concentrated systems in which
the inter-particle interactions cannot be neglected.
The derivation was carried in assumption that the vis-

cosity of one of the fluids is small compared to another.
This is the most common case in practice, exemplified
by oil–water and water–air interfaces. The result can be
extended to the case of comparable viscosities of two flu-
ids by modifying the dynamic boundary condition (14).



8

 0

 1

 2

 3

 4

-1 -0.5  0  0.5  1

ζ c
 / 

( 
5 

η 
R

 φ
 )

zc / R
 0

 1

 2

 3

 4

 0  30  60  90  120  150  180

ζ c
 / 

( 
5 

η 
R

 φ
 )

θ, degrees

Figure 3. Dependence of the dilatational viscosity upon the vertical position of the particle’s center zc (left) and the contact
angle θ (right). Solid circle corresponds to the case of 90◦ contact angle described by Eq. (4) with η1 = η, η2 = 0.

Contact angle θ, degrees 15 30 45 60 75 90 105 120 135

Dilatational viscosity factor K(θ) 3.44 3.10 2.66 2.13 1.55 1.00 0.54 0.22 0.05

Table I. Values of the function K(θ), defined by Eq. (66), at different values of θ.

Such extension should be also applicable to the cases in
which the larger part of the particle is in contact with the
low-viscosity fluid so that the disturbance of flow in the
low-viscosity fluid is large compared to the high-viscosity
fluid, making it necessary to take into account viscous
dissipation in both fluids.
Considering the same system subjected to a different

type of flow, which corresponds to the surface shear flow,
should allow calculating the effective surface shear viscos-
ity of dilute particle-laden interfaces at arbitrary contact

angles using the similar method. The general method
to deal with complications which arise due to break of
the axial symmetry of the flow has been developed by
Zabarankin and Krokhmal [34]. We may expect that the
“screening” of the flow by particles, described in Sec-
tion VI, would not appear in the case of the bulk fluid
flow corresponding to surface shear flow, so that surface
shear viscosity would not increase as fast as dilatational
viscosity with the increase in the protrusion of particles
into the high-viscosity fluid.
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[11] E. Bormashenko, Soft Matter 8, 11018 (2012).
[12] M. E. Cates and P. S. Clegg, Soft Matter 4, 2132 (2008).
[13] B. Neirinck, J. Fransaer, O. van der Biest, and

J. Vleugels, Adv. Eng. Mater. 9, 57 (2007).
[14] T. Verwijlen, L. Imperiali, and J. Vermant, Adv. Coll.

Int. Sci. 206, 428 (2014).
[15] L. E. Scriven, Chem. Eng. Sci. 12, 98 (1960).
[16] R. Aris, Vectors, Tensors, and the Basic Equations of

Fluid Mechanics (Dover Publications, 1989).
[17] S. V. Lishchuk and I. Halliday, Phys. Rev. E 80, 016306

(2009).
[18] S. V. Lishchuk, Phys. Rev. E 90, 053005 (2014).
[19] B. P. Binks and R. Murakami, Nature Materials 5, 865

(2006).
[20] M. Destribats, S. Gineste, E. Laurichesse, H. Tanner,
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