The relationship between peak power and leg size in mountain bike cyclists

BULLAS, Alice, HELLER, Ben <http://orcid.org/0000-0003-0805-8170>, CHOPPIN, Simon <http://orcid.org/0000-0003-2111-7710> and WHEAT, Jonathan <http://orcid.org/0000-0002-1107-6452>

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/14158/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version


Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Title: THE RELATIONSHIP BETWEEN PEAK POWER AND LEG SIZE IN MOUNTAIN BIKE CYCLISTS.

Authors: Bullas A M, Heller B, Choppin C, Wheat J.

Affiliation: Centre for Sports Engineering Research, Sheffield Hallam University, Sheffield, UK

Introduction: Recent literature has suggested that complex anthropometrics, such as area and volume are better predictors of sporting performance, than traditional anthropometrics of length, breadth and girth\(^1\). The aim of this study was to determine the relationship between peak power and leg size, both girth and volume, in mountain bike cyclists.

Method: This study was an observational, cross sectional investigation of 13 recreationally competitive mountain bike cyclists (age 33 ± 6 years; stature 1.83 ± 0.10 m; body mass 80.28 ± 3.16 kg). In accordance with the International Society for the Advancement of Kinanthropometry (ISAK) five anatomical locations on each leg were manually palpated and marked. Three-dimensional (3D) images of the lower body were captured using a high precision commercially available surface imaging system, 3dMD (3dMD Inc., Atlanta, GA, USA). The 3D images were manually digitised using bespoke software developed in-house (KinAnthroScan). ISAK Girth anthropometrics; thigh girth and calf girth, and volume anthropometrics; lower leg volume and upper leg volume, for each leg were exported. To acquire peak power, participants completed four, six second all out sprints against randomly assigned loads (7.5 % BW, 9% BW, 10.5% BW, 12% BW) from a seated stationary start on an electromagnetically braked cycle ergometer (Lode Excalibur Sport with Pedal Force Measurement, Groningen, Netherlands). Each sprint was separated by 5 minutes rest (4 minute active recovery + 1 min rest). These data were collated and the relationship between leg size and peak power explored using linear regression analysis.

Results: All anthropometrics demonstrated a significant (p<0.05) and strong positive correlation (r>.50) with peak power. Volume anthropometrics demonstrated a greater contribution to the variance in peak power (R\(^2\) = 0.66, p=0.05) compared to girth anthropometrics (R\(^2\) = 0.57, p=0.11).

Conclusions: This study suggests that volume anthropometrics provide a better predictor of peak power than girth anthropometrics, in mountain bike cyclists. Future kinanthropometry studies on mountain bike cyclists should consider the use of volume anthropometrics.

References:

Keywords: 3D Body Scanning, Cycling, Kinanthropometry, Surface Imaging.