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Abstract 

The main aim of the work presented in this thesis is to develop low-cost multi-junction graded 

bandgap solar cells using electroplated semiconductors. The semiconductor materials explored 

in this research are CdSe, ZnTe, CdS, CdMnTe and CdTe thin films. These layers were 

characterised for their structural, compositional, morphological, optical, and electrical features 

using XRD, Raman spectroscopy, EDX, SEM, UV-Vis spectroscopy, PEC cell, C-V, I-V and 

UPS measurement techniques respectively. The summary of the results depict that CdSe and 

CdS semiconductors have hexagonal crystal structures and are mainly n-type in electrical 

conduction within the explored range of deposition potentials. The crystal structures of ZnTe 

thin films are hexagonal and the electroplated ZnTe thin films have both n- and p-type electrical 

conduction. In the literature, the electrical conductivity type of ZnTe thin films has been 

reported to be p-type. In this work, the developments of n-type ZnTe thin films have been 

successfully achieved for the first time by using intrinsic doping. Also, the fabrication of p-n 

homo-junction diodes from intrinsically doped electroplated ZnTe layers have been developed 

for the first time. Results from analytical techniques showed that CdTe and CdMnTe thin films 

have cubic crystal structures and can exist as n- and p-type materials. The semiconductor 

materials investigated in this work have been used for solar cells fabrication. Some of the device 

structures explored are based on p-n hetero-junction solar cells fabricated from CdS/ZnTe 

hetero-structure and combination of n-n hetero-junction plus large Schottky barrier (n-n+SB) 

solar cells fabricated from CdS/CdTe hetero-structure. The highest efficiency obtained for the p-

n junction solar cell with device structure glass/FTO/n-CdS/p-ZnTe/Au was ~5.3% while the 

highest efficiency reported in this work for n-n+SB solar cells with device structure 

glass/FTO/n-CdS/n-CdTe/Au was ~7.6%. Multi-junction graded bandgap solar cells with 

different device structures were also fabricated in this research work. The two most important 

solar cells in this category are n-n-n plus large Schottky barrier (n-n-n+SB) solar cells fabricated 

from glass/FTO/n-ZnS/n-CdS/n-CdTe/Au device structures and n-n-p solar cells fabricated from 

glass/FTO/n-CdS/n-CdTe/p-CdTe/Au device structures. The n-n-p device structure is a 

combination of one n-n hetero-junction and one n-p homo-junction interface. The experimental 

investigations carried out on the effect of thickness of p-CdTe on n-n-p device structures 

showed that thinner p-CdTe layer of ~35 nm is most appropriate to be used in the n-n-p solar 

cells device configuration. The highest efficiency obtained for the n-n-p solar cell device 

structures was ~10.9% while the highest efficiency obtained for the n-n-n+SB solar cell device 

structures was ~12.8% with an active area of ~0.031 cm
2
. 
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Chapter 1 - Introduction 

1.1 Energy and its universal importance 

According to the report by British Broadcasting Corporation (BBC) [1], universal 

demand for energy has risen relentlessly as a result of growth in population and 

industrial development. According to the report, demand for energy has been predicted 

to keep on rising by at least 50% by year 2030 as countries like India and China seek to 

sustain their rapid economic growth. The trend of increase of the listed energy sources 

with the projected future demand is shown in Figure 1.1. As shown in Figure 1.1, about 

80% of the global energy is being supplied by fossil fuels namely coal, oil and gas. 

Fossil fuels are carbon compounds formed over a long period of time from the remains 

of dead animal and plants. They have a time frame for them to be used up and are also 

non-renewable energy sources. 

In the recent decades, a great concern has been raised over the negative impact the gases 

emitted by burning of fossil fuels will have on the environment. These gases are known 

as greenhouse gases and they include carbon dioxide (CO2), sulphur dioxide (SO2) and 

methane (CH4). The accumulation of these gases in atmosphere leads to climate change 

and causes global warming. Since the energy sources from fossil fuels cannot be 

replenished after usage, there is therefore a cogent need to find an alternative energy 

sources that is renewable.  

 

Figure 1.1. Projected future demand for different energy sources. Note that  

(*Other) includes geothermal, wind, heat, solar and so on [1]. 
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1.2 Energy sources 

The sustenance of living things on the face of the Earth depends strongly on the 

availability of energy sources. These energy sources can be classified as renewable and 

non-renewable.  

1.2.1 Non-renewable energy sources  

Non-renewable energy resources cannot be replaced at the rate at which they are being 

consumed. Fossil fuels such as coal, crude oil and natural gas are the main sources of 

this non-renewable energy. When burnt, fossil fuels emit greenhouse gases causing 

environmental pollution. The perpetual use of fossil fuels at the present rate is also 

believed to contribute to global warming increase and cause severe changes in the 

climate conditions [2]. Due to the negative impact the emitted gases from fossil fuels 

are creating on the environment, it is therefore essential to look for a clean source of 

energy which is environmental friendly, hence the need for solar energy. 

1.2.2 Renewable energy sources  

Renewable energy sources are abundant in nature, clean, sustainable and 

environmentally friendly. The environmental friendliness is due to the fact that they do 

not contribute to environmental pollution that comes as a result of greenhouse gases 

emission into the atmosphere. Also, they do not contribute to global warming which has 

been a huge concern to the entire populace. Some of the alternative renewable energy 

resources are: hydropower, wind, biomass, biofuel, tidal, geothermal and solar energy. 

Among all these renewable energy resources, solar energy happens to be the best energy 

source since virtually all other renewable energy resources derive their source from 

sunlight either directly or indirectly [3]. 

1.3 Solar energy 

Solar energy is the energy emitted by the Sun and its energy is distributed as shown in 

the electromagnetic spectrum of the Sun. Solar technology can be classified as either 

active or passive based on the manners they capture and transform energy. While 

passive solar technology makes use of materials with good thermal characteristics and 

positioning of buildings in such a way that it will be warmed by the Sun; active solar 

technologies basically make use of concentrated solar power, solar thermal collectors 
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and solar photovoltaics [3]. Concentrated solar power generates energy by using lenses, 

mirrors or reflectors to concentrate sunlight from a large area onto a small area [4]. 

Once the concentrated or focused light is converted to heat, it drives a steam turbine 

connected to an electrical generator which generates electricity [5].  Solar thermal 

collector (STC) absorbs sunlight and uses it to generate heat. The thermal energy 

produced from the STC can be used for domestic hot water heating or space heating [6]. 

Solar photovoltaics (SPV) convert light energy from the Sun into electricity using thin 

layers of semiconductor materials [7]. The SPV are noiseless and produce clean energy. 

The Sun's constituents are mainly hydrogen and helium elements. The Sun's 

composition by mass is ~71.0% H and 27.1% He. Less than 2.0 % of the mass of the 

Sun belong to other various metals [8]. The Sun whose temperature at the surface is 

about 5726
o
C happens to be the main source of solar radiation [9]. The total power 

produced by the Sun is ~3.85×10
26

 W [10]; however, it is not all the energy from the 

Sun (solar radiation) that reaches the Earth’s surface. The atmosphere affects the 

amount of solar radiation received. For example, when solar radiation travels through 

the atmosphere, about 26% is scattered or reflected back to space by atmospheric 

particles and clouds, ~4% is reflected back to the space by Earth’s surface, ~19% is 

absorbed by clouds, atmospheric gases and particles while only ~51% is available at the 

Earth’s surface of all the sunlight that passes through the atmosphere annually [11]; this 

analysis is shown in Figure 1.2.  

 

Figure 1.2. Reflected and absorbed solar radiation [11]. 
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1.4 Solar spectrum 

As previously discussed, the incoming radiation from the Sun can be harnessed using a 

wide range of modern technologies such as solar photovoltaics, solar thermal, solar 

heating and so on [3]. The radiation (light and heat) given out by the Sun to the Earth is 

in form of electromagnetic waves which have different wavelengths. Radiations such as 

ultraviolet, X-rays and visible light have short wavelengths while infrared radiations 

have longer wavelengths. The solar radiation spectrum shown in Figure 1.3 comprises 

of electromagnetic radiation of various wavelengths. This spectrum can be divided into 

three main parts namely: (i) Ultraviolet region with λ <400 nm, {this region contains 

approximately 5% of the irradiance}; (ii) Visible region with wavelength ranging from 

400 nm to 700 nm, {this region contains approximately 43% of the irradiance} and (iii) 

Infrared region (λ >700 nm), {this region contains ~52% of the irradiance} [12,13]. 

Using the solar thermal and photovoltaic technologies, the spectrum from the ultraviolet 

region to the infrared end can be used for terrestrial energy applications [14]. The solar 

thermal technology is used in harnessing the solar energy found at the infrared region of 

the solar spectrum while photovoltaic (PV) technology is used to harness the solar 

energy at the UV and visible region of the solar spectrum. With the new PV technology 

model of multi-layer graded bandgap solar cell structures proposed by Dharmadasa in 

2005 [15,16], it is also possible for solar cells to harness the infrared radiation in the 

solar spectrum via impurity PV effect and impact ionisation. In this report, main 

emphasis is laid only on semiconductor materials which find useful applications in 

photovoltaic solar energy conversion. 

 

Figure 1.3. The energy spread in the solar spectrum [12,13]. 
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1.5 Air mass 

Air mass (AM) is the measure of how light travels through the Earth’s atmosphere; it 

can also be defined as the path lengths through which sunlight takes within atmosphere 

to reach the Earth’s surface. When light passes through the Earth’s atmosphere, its 

intensity will attenuate due to absorption, reflection or scattering of sunlight by air 

molecules, dust and clouds [12]. The average solar energy falling on the Earth’s surface 

is known as Air-Mass 1.5 (AM1.5) radiation; this is illustrated in Figure 1.4. AM1.5 is 

the air-mass when the Sun moves at an angle of ~48.2
o
 from the zenith [17]. This 

radiation is defined as an insolation with corresponding power of about 1000 Wm
-2

 or 

100 mWcm
-2

 [18]; this value is used by the PV industry as Standard Test Condition 

(STC) for terrestrial solar panels. The air mass 1.0 (AM1.0) is when the solar spectrum 

has travelled through the atmosphere with normal incidence above the point on the 

Earth or when the Sun is directly at its zenith above the point on the Earth. AM1.0 is 

used in the tropical regions of the Earth to characterise solar cells; the incident power 

per unit area corresponds to ~1040 Wm
-2

 [19]. The air mass zero (AM0.0) is the solar 

irradiance in space that is not affected by the atmosphere and it occurs when the Sun 

stands on the zenith; this means there is no atmospheric presence between the solar cell 

and Sun [17]. The AM0.0 is used to characterise solar cells used in space power 

applications like the ones on communication satellites [19]. The power density of 

AM0.0 light is about 1,367 Wm
-2 

 which is considered to be the solar constant [17,19].  

48.2
o

AM0.0

AM1.0

AM1.5

Atmosphere

Earth

Zenith

 

Figure 1.4. Path lengths taken by the solar spectrum through the atmosphere. 
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1.6 Photovoltaic technology 

Photovoltaic (PV) is the technology used in generating electrical power by converting 

the solar radiation that reaches the Earth’s surface into direct current (DC) using 

suitable semiconductor devices that exhibit the photovoltaic effect. It is not all 

semiconductor devices that can be used as solar cells; some may function well as good 

diodes but may not exhibit excellent PV activity when measured under illumination 

condition. Materials presently used for PV include: monocrystalline silicon, 

polycrystalline silicon, amorphous silicon, cadmium telluride and copper indium 

gallium di-selenide (CIGS) [20]. Four standard steps are involved in converting sunlight 

energy into direct current. The first two steps involve using suitable semiconductor 

materials that can absorb photons and convert the absorbed photons to electron-hole 

pairs. The other steps have to do with effective separation of the oppositely charged 

photo-generated charge carriers and collection of the photo-generated charge carriers 

via electrical contacts in an external circuit [20].  

Photons which come directly from the Sun have different energies which correspond to 

the various wavelengths of the solar spectrum. It is not all the photons which hit the 

solar cells that are absorbed; some are transmitted while others are being reflected. The 

useful photons are the absorbed ones and when these photons fall in the depletion 

region of the solar cell, they break bonds between the semiconductor atoms to create 

free charge carriers. It is the quick separation of these photo-generated charge carriers 

and transference to the external circuit which generates useful electricity. 

1.6.1 Energy of photons 

The solar radiation comprises of elementary particles called photons. A photon is the 

quantum of light (electromagnetic radiation) and is characterised by its Energy E, which 

is a function of frequency, ν. The photon energy is related to frequency by the Equation 

(1.1) [21]. 

hE            (1.1) 

E is energy in Joules (J), h is Planck’s constant (6.626 × 10
-34

 JS) and ν is frequency in 

Hz. 

The photon energy can also be expressed in terms of its wavelength λ, thus Equation 

(1.1) becomes 
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hc
E           (1.2) 

Where c is the speed of light in ms
-1

 and λ is the wavelength in m. 

When the wavelength λ is in nm and the values of c and h are substituted using 

appropriate units, then the photon energy can be obtained in electron volts (eV), which 

is mostly used in PV solar cell calculations. Under this condition, Equation (1.2) 

becomes  

)(
1240

eVE


           (1.3) 

To express the photon energy in Joules (J), the wavelength λ is expressed in m as 

illustrated in Equation (1.4). 

)(
1099.1 25

JE



           (1.4) 

1.6.2 Brief history of photovoltaic technology 

The PV effect was first discovered by Edmund Becquerel, a French scientist in 1839 

[22] when the silver chloride he placed in an acidic solution (electrolyte) generated 

electric power while being connected to platinum electrodes. In the real sense, the 

photovoltaic effect occurred at the junction formed between the platinum electrode and 

electrolyte. The first PV activity with a reasonable amount of electromotive force 

(EMF) was reported by Ohl in 1940 through an experiment he did on silicon based p-n 

junction device [23]. A major breakthrough happened in 1954 at Bell laboratory with 

the development of the first 4.5% efficiency silicon solar cell by Daryl Chapin, Calvin 

Souther Fuller and Gerald Pearson compared to the selenium cells that found it difficult 

to reach 0.5% [24,25]. Researchers at the Hoffman Electronics Corporation increased 

this efficiency to about 14% in 1960. The oil crises from 1970-1974 led to the search for 

PV solar cell technology as an alternative energy resource for terrestrial use. During this 

period, the main focus was on silicon semiconductor material; this is due to abundance 

of raw materials for silicon production in the Earth’s crust and the knowledge 

accumulated on silicon. However, the cost of production of a silicon solar panel has 

been on the high side due to various production processes involved. To therefore reduce 

the dollars/Watt ($/W) for a solar panel production and improve efficiency, researchers 
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have focused on other semiconductor compounds such as the binary compound 

semiconductors [20].  

Using the production cost, photovoltaic technologies can be grouped into three main 

generations. The first generation solar cells are the high efficiencies solar cells with high 

cost of production. Examples are silicon (Si) and gallium arsenide (GaAs)-based solar 

cells. The recent reports published by Martin Green et al. [26] showed that 

monocrystalline Si and thin film GaAs solar cells have efficiencies >25.6% and 28.8% 

respectively at the laboratory scale level. The high cost of production for this generation 

of solar cells makes their dollars/Watt to be higher than 1$/W [27]. Thin film solar cells 

such as copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) belong 

to the class of second generation solar cells. They are referred to as thin films because 

they are products of semiconductor materials of thickness of few microns.  

The second generation solar cells are low-cost and with a lower efficiency when 

compared to the first generation solar cells. The low-cost of production of these solar 

cells seem to be the major advantage since fewer materials and lesser cost of production 

processes are involved; the main disadvantage however is their lower efficiency. The 

US dollar/Watt for the second generation solar cells varies between (0.20-1.00) $/W 

[27]. The CIGS and CdTe solar cells have efficiencies >21.0% for lab scale devices. 

Presently, the First Solar Company based in US has achieved the highest efficiency in 

CdTe thin films both at lab-scale and module level [28]. Both the first and second 

generation solar cells mentioned above are inorganic materials-based solar cells. 

The third generation solar cells are also low-cost low efficiency solar cells. A very good 

example is the dye-sensitised solar cells (DSSCs). The highest efficiency reported for 

DSSCs in the solar cell efficiency tables (version 46) for lab scale devices is 11.9±0.4% 

[26]. Organic photovoltaic (OPV) solar cell is another example of third generation solar 

cells and it has the advantage of lower cost/m
2
 than inorganic thin film solar cells due to 

their lower processing temperatures and deposition [27]. The highest efficiency reported 

for organic thin film solar cells at lab scale level is 11.0±0.3% [26]. The US dollar/Watt 

for the third generation solar cells varies between (0.10-0.50) $/W [27]. 

1.6.3 Brief history of CdTe-based solar cell 

One of the most recognised absorber materials from II-VI binary compound 

semiconductors that have long been used in the fabrication of thin film solar cells is 
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cadmium telluride (CdTe). CdTe has a high optical absorption coefficients >10
4
 cm

-1 

[29] and a near-optimum bandgap of 1.44 eV [30] for simple p-n junction devices. 

Mathers and Turner in 1928 [31,32] gave the first report on the electrodeposition of 

CdTe using an aqueous and acidic solution of CdSO4, TeO2 and H2SO4 but the 

emergence of CdTe as a viable electronic material came into existence in the year 1947 

through Frerichs experimental work [33]. In the author's work, CdTe crystals were 

synthesised in a hydrogen atmosphere through the reaction of Cd and Te vapour. In 

1954 [34], Jenny and Bube carried out a research on the electrical conductivity type that 

can be obtained in CdTe and the authors came to the conclusion that p- and n-type 

electrical conduction are obtainable by extrinsically doping the CdTe with foreign 

impurities. Not long after the discovery made by Jenny and Bube [34], Kruger and de 

Nobel [35] showed that achieving n- and p-type electrical conduction is not only limited 

to extrinsic means of doping; they showed that by intrinsically varying the Cd-Te 

stoichiometry, n- and p-type electrical conduction could equally be obtained. The 

authors obtained n-type with higher Cd ratio and p-type with higher Te ratio. In 1956, 

the proposal to use CdTe as a semiconductor material for photovoltaic solar energy 

conversion was made by Loferski [36]. In 1959, the first homojunction solar cell from 

single crystal CdTe was made by Rappaport [37]; the reported conversion efficiency 

was ~2% and this was made by diffusing In into p-type CdTe crystals. Subsequent 

works after this yielded efficiency >7% [38] and 10.5% [39] for p-n single crystal CdTe 

homojunction cells. 

Shortly after this in the early 1960s, the solar cell device structures shifted from 

homojunction to heterojunction based devices. The first work relating to CdTe-based 

heterojunction solar cell was carried out by Cusano [40] and made available to the 

public domain in the year 1963. Cusano [40] achieved an efficiency of ~6% using the 

device structure n-CdTe/p-Cu2Te. This fabricated device suffered from stability with 

time due to the diffusion of Cu into the n-CdTe layer and this eventually lowered the 

cell efficiency [41,42]. The instability observed in the n-CdTe/p-Cu2Te device structure 

and lack of transparent p-type semiconductor as window layer for the n-CdTe absorber 

thin films prompted the PV researchers to explore other device configurations utilising 

p-CdTe as an absorber layer. The main task was to now find an appropriate n-type 

semiconductor as a suitable window layer to p-CdTe absorber layer. In 1964, Muller et 

al. [43] reported the fabrication of solar cell from n-CdS/p-CdTe with a conversion 

efficiency <5%. In their work, the authors evaporated n-CdS thin films on a single 
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crystal p-CdTe layer. Yamaguchi et al. [44] in the year 1977 reported the highest solar 

cell efficiency of ~11.7% from a p-CdTe single crystal and n-CdS thin film. 

The earlier research works carried out on CdTe-based solar cells mainly came from 

single crystal p-CdTe layer. The first polycrystalline CdS/CdTe heterojunction based 

solar cells were demonstrated by Adirovich et al. [45] in the year 1969 using the 

superstrate configuration while in 1972, Bonnet and Rabenhorst [46] reported the 

fabrication of CdS/CdTe heterojunction based solar cells  with a conversion efficiency 

of ~6% using the substrate configuration. The techniques used by Bonnet and 

Rabenhorst [46] in developing CdTe and CdS thin films were chemical vapour 

deposition and vacuum evaporation respectively. Since then, researchers working on 

thin film solar cells have been using these two configurations in solar cells fabrication. 

However, superstrate polycrystalline thin film CdS/CdTe heterojunction device 

structures have received a notable research and development (R&D) awareness and the 

highest solar cell efficiency among the CdTe-based solar cell configurations have been 

achieved using the superstrate configuration [28,47]. 

Different techniques have also been used by various research groups and companies to 

produce CdTe-based solar cells since inception. Among these many techniques, screen 

printing [48], closed-space sublimation [49] and electrodeposition [50] have been used 

to successively achieve solar cell efficiency of over 8%. Closed space sublimation 

(CSS) was used by the research group at Kodak to achieve ~10% efficiency for CdTe-

based solar cells. The group was able to successfully optimise the temperature used in 

CdTe deposition and the amount of Oxygen in the deposition chamber. The authors 

grew the CdTe layers in a reactor which permitted controlled oxygen contents to be 

incorporated into the deposition atmosphere during film growth [49].   

In 1984, Basol [51] reported the fabrication of electroplated n-CdS/p-CdTe 

heterojunction solar cells with an efficiency of ~9.4%. The solar cell parameters 

obtained by the author for an active cell area of 0.02 cm
2
 are: Voc = 0.73 V, Jsc = 20 

mAcm
-2

 and FF = 0.64. In the subsequent investigations carried out by Basol on CdTe-

based solar cell fabrication [52], the author was able to achieve ~10.3% and 10.6% 

efficiency for CdS/CdTe and CdS/HgCdTe-based solar cells respectively.  The energy 

band diagram for a typical n-CdS/p-CdTe is shown in Figure 1.5 
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Figure 1.5. Energy band diagram of a typical p-n junction solar cell based on n-CdS 

and p-CdTe. 

In the actualisation of these high efficiency cells, researchers have also shown that the 

device structures and processing steps are other important factors to achieve high 

efficiency solar cells [47,53,54]. The incorporation of CdCl2 treatment as part of post-

deposition processing step for CdTe-based device structures has significantly improved 

the solar cell device performance. In the year 1991, Ringel et al. [55] reported the 

influence of CdCl2 treatment on solar cell fabricated from the device structure 

glass/SnO2/CdS/CdTe/ZnTe/Ni.  The authors observed a tremendous increase from 

1.3% to 8.6% for device structures treated without and with CdCl2 respectively. The 

subsequent works carried out by Britt and Ferekides in the year 1993 in using CdCl2 

treatment on their solar cell device structures yielded an efficiency of 15.8% [56]. The 

progress in the CdS/CdTe-based solar cell was stagnated for ~8 years until Wu et al. 

[57] broke the existing record by Britt and Ferekides in 2001. An efficiency of 16.5% 

was achieved by Wu et al. [57,58] after using a high quality cadmium stannate 

(Cd2SnO4) as the new transparent conducting oxide (TCO) to replace the conventional 

fluorine-doped tin oxide (FTO) and a modified device structure for the solar cell 

fabrication. However, this increase after nearly a decade of research is marginal; and 

increased only by ~0.7% which is within the fluctuation of measurements. 

In 2002, a new model for CdTe-based solar cell fabrication was proposed by 

Dharmadasa et al. [59] as a means of further improving CdS/CdTe based solar cells. 

The present PhD research is based on this new model. This new model consists of two 

rectifying junctions connected in parallel; these are n-n heterojunction and a large 

Schottky barrier interface at the semiconductor/metal contact. The n-n heterojunction is 
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basically from n-CdS/n-CdTe interface while the Schottky barrier is formed at the n-

CdTe/metal interface. The new model originated from the comprehensive works carried 

out by the author on metal contacts to some selected semiconductors from II-VI binary 

compound family [60]. The energy band diagram of the proposed new model is 

illustrated in Figure 1.6. Using this new model, the authors were able to fabricate solar 

cell devices with an open circuit voltage (Voc) >600 mV, short-circuit current density 

(Jsc) >60 mA cm
−2

 and fill factor (FF) values of ~0.60. These parameters under 

illumination condition yielded an overall efficiency of ~18%. The result of the solar cell 

efficiency fabricated by Dharmadasa et al. [59] showed that the proposed new model 

has a great prospect over the single p-n junction model. 
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Figure 1.6. Energy band diagram of the proposed n-CdS/n-CdTe (n-n) heterojunction 

device structure with a large Schottky barrier at the metal back contact. Note that the 

defect levels responsible for Fermi-level pinning are shown as E1 to E5. 

One remarkable feature in this proposed model is the observed high Jsc value. This value 

was far greater than the reported Jsc limit [61] for a single p-n junction CdTe solar cell. 

This huge difference can however be attributed to the tandem nature of the device 

configuration used by Dharmadasa et al. [59]. Other important factors discussed by 

Dharmadasa et al. [59] in the new model are the presence of defect levels in n-CdTe 

thin films. The defect levels were earlier observed in the authors' previous works on 

metal/n-CdTe interface [60] and later applied to device fabrication. Due to the presence 

of these defects, strong Fermi level pinning can take place without depending on the 
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metal work function. The 5 defect levels experimentally identified are located in the 

band gap at E1=0.40±0.04, E2=0.65±0.02, E3=0.73±0.02, E4=0.96±0.04 and 

E5=1.18±0.02 eV below the conduction band minimum [59,60]. According to 

Dharmadasa [60], the position for Fermi level pinning depends on the material history 

and methods used in fabricating the metal contact. The material history may also have 

to do with steps taken to process the semiconductor material most especially before 

metallisation process. One of these processing steps is the chemical treatments followed 

by heating of the semiconductor material. The application of chemical treatments to the 

top surface of the CdTe layer and heat-treatment in air lead to: improvement in the 

material crystallinity, reduction of series resistance, removal of unwanted defects, 

formation of larger grains and passivation of grain boundaries [55,62,63]. 

Another processing step is the etching process which is normally carried out after 

annealing. In this process, the oxides on the top surface of the CdTe layer are removed. 

The types of etchants used can also determine where the Fermi level pinning actually 

takes place. Dharmadasa [60] explained that when the top surface of n-CdTe is treated 

with an acidic etchant, the acid attacks the Cd element preferentially thereby leaving the 

surface as Te-rich while a basic etchant attacks the Te element preferentially and leave a 

Cd-rich surface. Cd-rich CdTe surfaces are associated with defect levels at 0.96 eV and 

1.18 eV while Te-rich CdTe surfaces are associated with defect levels at 0.65 eV and 

0.73 eV below the conduction band minimum [64,65]. The experimental work carried 

out by Schulmeyer et al. [66] showed that CdTe with n-type electrical conduction is 

needed to produce high efficiency solar cell devices. With Cd-rich surface, CdTe 

becomes n-type and the Fermi level pinning can be at defect levels 0.96 eV and 1.18 

eV. With this pinning, a larger Schottky barrier height is produced at the interface and 

this increases the slope of the band diagram and creates the required high internal 

electric field across the device structure. Due to this band bending, a healthy depletion 

region is formed across the device.  

1.6.3.1 Principle of operation of substrate and superstrate device configurations 

Typical schematic diagrams of CdS/CdTe-based solar cells fabricated using superstrate 

and substrate configurations are shown in Figures 1.8 (a) and 1.8 (b) respectively. In the 

superstrate configuration, the initial deposition is always done on the glass superstrate 

which acts as a support for the deposited layers. The first deposited layer is the TCO 

and this serves as the front contact. This is followed by sequential deposition of other 
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semiconductor materials such as CdS window layer and CdTe absorber layer. The metal 

contact (such as Au) is now evaporated on the CdTe absorber layer to serve the purpose 

of a back contact; Figure 1.7 (a) illustrates CdTe-based solar cells using the superstrate 

configuration. In the substrate configuration, the deposition starts from the back contact. 

In this case, the CdTe layer is first deposited onto a conducting substrate (for example, 

Molybdenum foil) which acts as the back contact and this is successively followed by 

CdS and TCO deposition. The TCO in this case acts as the front contact; this is 

illustrated in Figure 1.7 (b). In both cases, light enters the solar cell devices via the TCO 

and CdS thin films. In the superstrate configuration, light has to pass through the glass 

before getting to the CdS/CdTe interface unlike the substrate configuration where light 

enters directly the CdS/CdTe junction without any obvious/major obstruction.  
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Figure 1.7. Solar cell configurations used for CdTe thin film solar cells, (a) superstrate 

and (b) substrate configurations. 

1.7 Present challenges in CdTe-based solar cell device structures 

The efficiency of most solar cells fabricated from heterojunction materials for example, 

when using thin layers of CdS as window materials and CdTe as absorber materials 

have been reported in numerous articles in the literatures to be adversely affected by 

pinholes formation. To therefore minimise and stop these pinholes formation, wide 

bandgap and high resistive buffer semiconductor layers have been suggested as some of 

the means for preventing pinholes formation [67]. The presence of pinholes in the thin 
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film materials leads to creation of leakage paths and short-circuiting between the back 

and front metal contacts and this adversely affect the solar cell performance. Zn-related 

compounds such as ZnO [68–71], ZnS [72] and Zn1-xSnxO [73] have been suggested by 

many researchers in the PV field as suitable buffer layers to stop the pinhole formation. 

In this present work, ZnS with larger bandgap of ~3.70 eV and a thin layer of ZnTe with 

modified bandgap of 2.60 eV have been used to serve the purpose of pinholes 

minimisation and bandgap grading.  

Some of the other present challenges involved in thin film solar cells fabrication have to 

do with improving all the solar cell parameters which are short-circuit current density 

(Jsc), open circuit voltage (Voc) and fill factor (FF). The idea of using CdCl2 for 

treatment in CdTe thin films can be dated back to 1976 [74,75] to improve device 

parameters without full understanding. Since one of the main aims of this work is to 

understand the CdCl2 treatment and further improve the device parameters, other 

chemical treatments such as GaCl3 have been introduced. The incorporation of GaCl3 

into the usual CdCl2 treatment emerged as a result of the experimental results reported 

in rayX  and ray community by Sochinskii et al. [76] in dissolving Te precipitates 

with Ga. Since the midgap defects known as killer centres in CdTe originate from Te-

richness [77], finding a possible means of reducing these defects would cause the 

efficiency of the CdTe-based solar cell device structures to improve. Therefore, since 

Ga has the potential of removing these Te precipitates, the incorporation of GaCl3 into 

the universal CdCl2 treatment has been proposed in this work to be used as means of 

surface treatment to improve the efficiency of CdTe-based solar cells. In addition to the 

chemical treatments, new device structures based on glass/FTO/n-CdS/n-CdTe/p-

CdTe/Au (n-n-p device structure) have also been proposed as a means of improving the 

solar cell device parameters by moving towards multi-layer graded bandgap devices. 

1.8 Research Aim and Objectives 

The main aim of this research work is to implement the existing CdTe-based solar cell 

structures proposed by Dharmadasa et al. [59] in 2002 using low-cost electroplating 

technique with simplified fabrication process and to develop new device architectures 

based on graded bandgap devices for CdTe-based solar cell in order to enhance the 

efficiency. The semiconductor materials used in this research for device fabrication are 

CdSe, ZnTe, ZnS, CdS, CdTe and CdMnTe. 
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Some of the works carried out in this research programme and reported in this thesis are 

based on the device architectures reported by Echendu [14] to test the reproducibility. 

The work involved the use of multi-junction graded bandgap solar cells employing 

glass/FTO/n-ZnS/n-CdS/n-CdTe/Au device structure. By optimising the thickness of the 

CdTe layer and incorporating GaCl3 into the universal CdCl2 chemical treatment, 

improvement in the efficiency of the glass/FTO/n-ZnS/n-CdS/n-CdTe/Au have been 

recorded compared to the previous work carried out by Echendu [14].  

Some of the new device structures developed are glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au 

and glass/FTO/n-CdS/n-CdTe/p-CdTe/Au. The ZnTe work reported here follows the 

comprehensive works carried out by Diso [78] and Fauzi [79] on electroplated ZnTe 

layers. In both authors work, they were able to report only the fabrication of p-ZnTe 

layers. In this present work, both n- and p-type ZnTe layers have been successfully 

fabricated using intrinsic doping and these electroplated layers have been applied to 

solar cell device making; this can be seen as an improvement over the earlier works 

reported by the duo. A detailed work on the fabricated n- and p-type ZnTe layers have 

been reported by Olusola et al. [80].  

This research work involves the use of electrodeposition technique to grow the selected 

semiconductor materials. The following procedures are to be followed to actualise the 

aim of the project: 

(i) Obtaining suitable ranges for the deposition potential from the I-V curve of the 

electrolyte by using cyclic voltammetry technique.  

(ii) The use of two electrode electrodeposition method for the growth of 

semiconductor materials.  

(iii) The growth of some selected semiconductor materials by low-cost 

electrodeposition technique. The materials electroplated in this research work are: CdSe, 

ZnTe, CdS, CdTe and CdMnTe.  

(iv)  Full material characterisation by employing a wide range of advanced analytical 

techniques available at Materials and Engineering Research Institute, Sheffield Hallam 

University. The analytical techniques used are: Photoelectrochemical {PEC} cell, UV-

Vis spectroscopy, X-ray diffraction {XRD}, Raman spectroscopy, Scanning electron 

microscopy (SEM), Atomic force microscopy {AFM}, energy-dispersive X-ray analysis 

(EDX), optical profilometry and ultra-violet photoemission spectroscopy (UPS). 
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(v) Hybrid device fabrication using the semiconductor materials listed above. The 

thin film solar cell device structures fabricated are: (a) glass/FTO/n-CdS/n-CdTe/back 

contact, (b) glass/FTO/n-ZnS/n-CdS/n-CdTe/back contact, (c) glass/FTO/n-ZnTe/n-

CdS/n-CdTe/back contact, (d) glass/FTO/n-CdS/n-CdTe/p-CdTe/back contact, (e) 

glass/FTO/n-CdS/n-CdTe/p-ZnTe/back contact and (f) glass/FTO/n-CdS/n-CdTe/p-

CdMnTe/back contact.  

(vi) Development of the solar cell device structures to achieve highest possible 

efficiency for terrestrial solar energy conversion by optimising the processing steps. 

(vii) Assessment and efficiency evaluation of the final device structures using 

current-voltage (I-V) and capacitance voltage (C-V) techniques. 

1.9 Summary 

The universal importance of energy and the need to explore an alternative energy source 

that is clean, abundant in supply and renewable have been briefly presented. Solar 

energy seems to be the best source of renewable energy for terrestrial applications since 

most of the other renewable energy resources either have a direct or indirect dependence 

on sunlight. A brief history of photovoltaic technology and CdTe thin films was also 

presented. The current challenges in CdTe thin films with the research aims and 

objectives have also been discussed in this chapter.  
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Chapter 2 - Semiconductor materials, solar cell interfaces and types of 

solar cells 

2.1 Introduction 

The emphasis of this chapter is on semiconductor materials, their properties and 

classifications based on external dopants addition and grouping using valence electrons 

as seen in the periodic table. Various interfaces which exist in solar cell devices and the 

physics behind them are also explored. A brief study of different types of solar cells 

presently fabricated at large scale level and the ones currently being researched on are 

also discussed. 

2.2 Solid materials 

Solid materials can be generally grouped into three categories namely: conductors, 

semiconductors and insulators. Energy bands also exist in these solid materials in the 

form of valence band (VB) and conduction band (CB). The VB is the allowed energy 

band that is filled with electrons while the CB is the empty energy band. In conductors 

like metals, the valence band is partially filled with electrons and they overlap with the 

conduction band [1]. This attribute makes the electron to freely move from the VB to 

the CB even at zero Kelvin and without necessarily applying excitation energy either 

from heat or light source. Conductors generally have low electrical resistivity due to the 

presence of conduction electrons which contribute to the current flow. In conductors, 

there exists very minute or no energy gap between the VB and the CB. 

The valence band of semiconductors is filled with electrons, and with thermal agitations 

even at room temperature [1,2] or excitation by light [3], some of these electrons can be 

excited to the conduction band. A small energy gap exists between the VB and CB of 

semiconductor materials. For an insulating material, there exists a wider energy gap 

between the VB and CB and this makes it difficult for electrons to be excited from the 

VB to CB at room temperature [1]. Thus insulators have very high resistance because 

most of the electrons only occupy the available states in the VB and they are not 

available for conduction. This therefore makes the VB to remain completely full and 

CB to be totally empty. 
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The classifications of these solid materials can also be made based on the materials 

resistivity and energy bandgap. The possible ranges for the resistivity and energy 

bandgap of these three solid materials are indicated in Table 2.1.  

Table 2.1. Classification of solid materials based on their electrical resistivities and 

energy bandgap. 

Solid materials 
Electrical resistivities 

(Ωcm) 

Energy bandgap 

(eV) 

Metals/semi metals ~10
-8

-10
-1

 ≤0.30 

Semiconductors ~10
-1

-10
8
 ~0.30-4.00 

Insulators ~10
8
-10

20
 ≥4.00 

2.3 Semiconductor materials  

The range of resistivities of semiconductor materials lie in-between that of conductors 

and insulators as shown in Table 2.1 and these values can be modified accordingly by 

subjecting it to some external conditions. One of these conditions is temperature; this 

can be in form of annealing temperature or measurement temperature. The resistivity of 

most semiconductor materials decreases with increase in temperature. These materials 

behave in opposite way to conductors whose resistivity increases as temperature 

increases [3]. As explained by Sharma [3], bombarding the semiconductor materials by 

a beam of light also causes a rapid decrease in its resistivity. Also, the resistivity of 

semiconductor materials can be modified by systematically introducing very small 

amount of impurities known as dopants into the semiconductor. Due to the flexible 

nature of the semiconductor materials, they find useful application in the fabrication of 

solid state electronic devices. 

2.3.1 Classification of semiconductor materials based on dopants addition 

Semiconductor materials can be grouped into two categories based on dopants addition. 

The ones made without the addition of any external dopants are called intrinsic 

semiconductor materials while the others fabricated through the use of external impurity 

atoms called dopants are called extrinsic semiconductor materials. 
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2.3.1.1 Intrinsic and extrinsic semiconductor materials 

A pure semiconductor formed without the incorporation of any external dopant 

elements known as impurities are referred to as intrinsic materials. The semiconductors 

formed by controlling the amounts of added impurity atoms are called extrinsic 

materials. This addition changes the electrical properties of the material. The type of 

external impurity atoms added will determine the electrical conductivity type and the 

charge carrier that will be dominant in the semiconductor; this can either be holes in the 

VB or electrons in the CB [1]. In addition to the above, defects are also one of the 

prevailing factors which determine the pinning position of the Fermi level in a 

semiconductor material. It should be noted that while electrons are thermally excited 

from the valence band to the conduction band to improve conductivity in intrinsic 

semiconductors, the conductivity of extrinsic semiconductors is improved with the 

dopants addition [4]. 

Taking for example silicon (Si) which is an elemental semiconductor with four valence 

electrons; when each of the Si atoms share its four outermost electrons with other four 

nearby Si atoms leading to formation of four covalent bonds, an intrinsic material is 

formed as shown in Figure 2.1 (a). There are no free electrons available for conduction 

in an intrinsic material because the atoms are tightly bonded to one another as illustrated 

in Figure 2.1 (a). For the intrinsic Si semiconductor material, the Fermi level is located 

halfway between the conduction band minimum (ECmin) and valence band maximum 

(EVmax) as shown in the energy band diagram of Figure 2.1 (b). 

  

Si

Si

Si Si

Si

Si

Si

Si

Si

EVmax 

ECmin 

EFi 

(b)

Eg 

(a)

 

Figure 2.1.Typical diagrams illustrating (a) covalent bond formation in intrinsic silicon 

crystal lattice and (b) energy band diagram of an intrinsic semiconductor material with 

emphasis on Fermi level position. 
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The conduction band represents the energy levels that are not occupied by electrons 

while the valence band is the energy levels occupied by electrons. The energy gap 

between the ECmin and EVmax is referred to as the bandgap. The bandgap signifies the 

minimum energy (in eV) that must be overcome for electrons to be thermally excited 

from the VB to the CB. The valence electrons located beneath the EVmax are represented 

by closed circle in Figure 2.2. The opened circle below the EVmax represent the 

vacancies (holes) created after electrons have been excited from the VB to the CB. The 

closed circles above the ECmin represent the excited electrons from the VB.  

If one of the valence electrons of an intrinsic semiconductor material receives adequate 

energy as shown in Figure 2.2 (a), for instance, by bombarding it with light; it can be 

released from the covalent bond and migrate inside the crystal. This loose electron can 

then add to the electrical current flow through the material when an electric field is 

applied. A continuous bombardment of the semiconductor with more light gives rise to 

excitation of more electrons from the VB to the CB. The more the free electrons 

available for conduction, the greater will be the magnitude of electrical current 

generated provided the conduction electrons and holes recombine at the external circuit 

and not within the semiconductor. If all the electrons in the valence band of an intrinsic 

material are now excited as illustrated in Figure 2.2 (b), the total number of electrons 

excited into the CB will leave an equal number of holes in the VB thereby making the 

concentration of holes in the VB (p) to be equal to the concentration of electrons (n) in 

the CB. This means  n = p = ni, where ni is the intrinsic carrier concentration [2]. 

EVmax 

ECmin 

EFi 

(a)

EVmax 

ECmin 

EFi 

(b)

 

Figure 2.2. Typical energy band diagrams of an intrinsic semiconductor material 

illustrating the excitation of (a) one electron and (b) all electrons from valence band to 

conduction band after bombardment of the atoms with light. 
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The addition of external impurity atoms to the intrinsic material is known as doping. If 

the intrinsic Si material is doped with pentavalent atoms such as antimony (Sb) as 

shown in Figure 2.3 (a), four out of the five valence electrons in the Sb atoms are 

involved in forming covalent bonds with the four neighbouring Si atoms. The remaining 

one negatively-charged electron which does not take part in covalent bond formation 

becomes free and available for conduction; this conduction electron is now donated to 

the lattice and available for electrical conduction [2]. The antimony atom is therefore 

called a donor atom due to its ability to donate a free electron for conduction. The 

introduction of donor atoms (impurities) into the Si material changes its properties to an 

extrinsic material. Therefore, this type of extrinsic material is n-type in electrical 

conduction. The Fermi level for n-type materials is positioned towards the ECmin as 

shown in Figure 2.3 (b). Other pentavalent atoms which can act as donor atoms to Si are 

nitrogen (N), phosphorus (P) and arsenic (As).  

Si

Si

Si Si

Si

Si

Si

Sb

Si

Free electron available 

for conduction

EVmax 

ECmin 

(b)

Eg 

(a)

EF 

 

Figure 2.3. Typical diagrams illustrating (a) covalent bond formation between silicon 

(Si) and antimony (Sb) atoms, and (b) energy band diagram of n-type semiconductor 

material with emphasis on Fermi level position. 

On the other hand, doping the intrinsic Si material with trivalent atoms such as gallium 

(Ga) creates a vacancy which needs to be filled up with an extra electron as illustrated in 

Figure 2.4 (a). Thus additional one electron is needed from an external atom to complete 

the covalent bond formation. This feature makes Ga and other trivalent atoms such as 

boron (B), aluminium (Al) and indium (In) to become an acceptor atom to Si. This type 

of extrinsic material is p-type in electrical conduction. The Fermi level position for p-

type material is located towards the EVmax as shown in Figure 2.4 (b).   



Chapter 2 Semiconductor materials, solar cell interfaces and types of solar cells 

28 
 

Si

Si

Si Si

Si

Si

Si

Ga

Si

hole created due to less  

electron to complete bonding

EVmax 

ECmin 

EF 

(b)

Eg 

(a)

 
Figure 2.4. Typical diagrams illustrating (a) covalent bond formation between silicon 

(Si) and gallium (Ga) atoms, and (b) energy band diagram of p-type semiconductor 

material with emphasis on Fermi level position. 

2.3.2 Classification of semiconductor materials based on elemental composition  

It is imperative to fabricate the right semiconductor materials that can be used for solar-

to-electric energy conversion. The development of these materials can be achieved by 

selecting the right elements that can be used for this purpose from the periodic table. 

Based on the elements that constitute semiconductor materials, they be can classified as 

elemental, binary, ternary and quaternary compound semiconductors. The elements used 

in the production of these semiconductor materials can be obtained from group I to 

group VII of the periodic table [5]. Elemental semiconductors are crystals formed by 

single element materials. Common examples of elemental semiconductors are obtained 

from group IV of the periodic table and these include: carbon (C), silicon (Si) and 

germanium (Ge). Binary compound semiconductors are formed from the chemical 

reactions which take place between two elements. Binary compound semiconductors 

can be further classified as II-VI and III-V depending on the group of the element in the 

periodic table. For example, the chemical reactions between one element such as Cd 

from group II and another element such as Te from group VI produce II-VI 

semiconductor known as cadmium telluride (CdTe). Likewise, the chemical reactions 

between gallium elements from group III and arsenic from group V produce III-V 

semiconductor known as gallium arsenide (GaAs). Other examples of II-VI and III-V 

binary compound semiconductors can be found in Table 2.2. The productions of ternary 

and quaternary compound semiconductors take place when three and four elements 

chemically react with one another respectively. Table 2.2 also shows some common 
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examples of these types of semiconductors. The semiconductor materials used in this 

research work belong to the II-VI and ternary compound family. 

Table 2.2. A brief summary of semiconductor groups based on elemental composition. 

Semiconductor group Common examples of semiconductors 

Elemental semiconductor from group IV C, Si, Ge 

II-VI binary compound semiconductors CdSe, CdS, CdTe, ZnTe, ZnS, ZnO, 

III-V binary compound semiconductors GaAs, GaP, GaN, InAs, InP, AlAs, AlP 

Ternary compound semiconductors CdxMn(1-x)Te, CdxHg(1-x)Te, AlxGa(1-x)As 

Quaternary compound semiconductors Cu2ZnSnSe, CuInGaSe2 (CIGS) 

2.4 Types of junctions/interfaces in solar cell devices 

In electronic devices such as solar cells, junctions are created when two or more 

semiconductor materials are brought together in such a way that there is an intimate 

contact between them. This interface is essential because it determines the electric field 

strength and how the charge carriers created within the semiconductor materials are 

effectively separated and transferred to the external circuit for current generation. The 

formation of this interface can also happen if a direct contact is made between the 

semiconductor and metal or insulator. This section will be focused on the different 

interfaces that exist in electronic devices, especially in solar cells. 

2.4.1 Homo-junction and Hetero-junction 

In forming hetero-junction device structures, two different semiconductor materials 

having different energy bandgaps are joined together. The interface formed between the 

two different materials is referred to as hetero-junction interface. A good example of 

hetero-junction interface is when a p-CdTe thin film is deposited on n-CdS layer [6,7]. 

One of the advantages of using two or more different semiconductors in the device 

structure is the absorption of different regions of the solar spectrum. In homo-junction 

device structures, two similar materials are joined together and homo-junction interface 

is formed between them. A typical example of homo-junction interface is when a p-type 

Si layer is formed on an n-type Si wafer [8]. In both cases, materials with same or 

different electrical conductivity types may be used. For instance, the hetero-junction and 

homo-junction interface may be p-n, p-i-n, p-p and n-n interface. Also, the interface at 
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the hetero-junction and homo-junction structures can also be one-sided by varying the 

doping concentration of any of the semiconductor partners forming the interface [1].  

2.4.2 p-n junction  

The theory of p-n junction form the basic foundation to understand the principle of 

operation of semiconductor devices [2]. A p-n junction device is a 2-terminal device 

formed when an n-type semiconductor comes into intimate contact with a p-type 

semiconductor. As shown in Figure 2.5 (a), diffusion of holes from the p-type material 

to the n-type material and electron diffusion from the n-type to p-type material take 

place simultaneously due to the difference in holes and electrons concentrations 

between the two semiconductors [9]. The diffusion of electrons from the n-side to the p-

side leads to creation of negatively charged ions at the p region. In a similar way, the 

diffusion of holes from p-side to n-side leads to creation of positively charged ions at 

the n-region of the semiconductor. The creations of positive and negative charge ions 

which are opposite to each other produce an electric field at the p-n interface. As these 

positive and negative ions build up on n- and p-sides respectively as illustrated in Figure 

2.5 (b), they form a barrier which prevents further diffusion of holes and electrons from 

p- and n- materials respectively.  The created barrier is what forms the p-n interface.  

Holes diffusion W
(a)

Electron diffusion

(b)

p-type n-type

 

Figure 2.5. Typical schematic diagrams illustrating (a) electrons and holes diffusion 

and (b) the formation of barrier which prevents further diffusion of holes and electrons. 

The region between the created barriers is the depletion region with width, W. 

The region between the built-up positive and negative ions is called the space-charge or 

depletion region (W) as indicated in Figure 2.5 (b). The name depletion region arises 

from the fact that the region is depleted of both electrons and holes. The electric field 
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produced within this region prevents the holes and electrons from further diffusion [9]. 

The energy band diagram of a typical p-n junction device is described in Figure 2.6. The 

depletion width (W) here represents the region where the band bending takes place. Xp 

and Xn are the distances by which the depletion region extends into p- and n-type 

semiconductors respectively. Homogeneous p-n junction will be produced if one 

material is used in fabricating the p- and n- layers while heterogeneous p-n junction will 

be produced if different semiconductor materials are used in fabricating the p- and n- 

layers.  

XnXp

W

Eg

EV

EC

EF

Front 

contact

Back 

contact

qVbi

 

Figure 2.6. Energy band diagram of a typical p-n junction device structure. Note that 

the band bending between the p- and n-semiconductor material is the depletion region, 

W=Xp+Xn. 

2.4.3 One-sided p-n junction 

One-sided p-n junction may be fabricated by heavily doping one layer and moderately 

doping the other hetero-junction or homo-junction partner. Kabra et al. [10] 

demonstrated the fabrication of one-sided rectifying n
+
p junction diode fabricated from 

n-Si and p-ZnO heterogeneous materials. Several articles in the literature have reported 

investigations relating to abrupt junctions [1,2,11,12]. Examples of hetero-junction and 

homo-junction one-sided interface are n
+
p, p

+
n, n

+
n and p

+
p. Figure 2.7 (a) illustrates 

the energy band diagram of a diode with one-sided abrupt n
+
p junction fabricated from 

n-CdS and p-ZnTe semiconductors while Figure 2.7 (b) shows the energy band diagram 

of abrupt n
+
p junction diode fabricated from n-ZnTe and p-ZnTe materials.  
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Figure 2.7. Energy band diagrams of abrupt p-n junction (a) one-sided n
+
p hetero-

junction diode fabricated from n-CdS and p-ZnTe semiconductors and (b) one-sided n
+
p 

homo-junction diode fabricated from n-ZnTe and p-ZnTe semiconductors. 

2.4.4 p-i-n interface 

p-i-n junction is produced when an insulating or intrinsic semiconductor thin film is 

inserted between a p- and n- semiconductor material. In practical situations, it is 

difficult to fabricate i-type layer; however p- and n-semiconductor materials with high 

resistivity can serve the purpose of i-layer sandwiched between the p and n 

semiconductors. The principle of operation of p-i-n interface is similar to that of p-n 

junction. Figure 2.8 shows the energy band diagram of a p-i-n device structure. The 

Fermi levels of the p- and n- layers are aligned through the i-layer to produce a strong 

and healthy electric field throughout the intrinsic material [5]. The main merit of having 

this type of structure is its ability to produce a high potential barrier )( b which 

approaches the energy bandgap of the semiconductor materials used in the p-i-n 

structure [5]. With high ϕb, the probability of obtaining a large open circuit voltage (Voc) 

is possible. Meyers [13] successfully demonstrated the fabrication of this n-i-p junction 

in solar cell fabrication by using n-CdS, i-CdTe and p-ZnTe layers. 
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Figure 2.8. Energy band diagram of p-i-n diode illustrating the possibility of obtaining 

high potential barrier height (ϕb) almost equal to the semiconductor bandgap (Eg). 

2.4.5 n-n and p-p interfaces 

The fabrication of n-n and p-p hetero-junctions fabricated from Ge/Si was reported by 

Oldham [14]. Figures 2.9 (a) and 2.9 (b) demonstrate typical energy band diagrams of 

n-n and p-p semiconductors fabricated from two different materials of same thicknesses 

respectively while Figures 2.10 (a) and 2.10 (b) illustrate typical energy band diagrams 

of n-n and p-p semiconductors fabricated from same semiconductor materials having 

equal thicknesses respectively. Two or more n-n interfaces can be combined together to 

produce multi-junction graded bandgap solar cells as discussed in Section 9.14. 
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Figure 2.9. Typical energy band diagrams of (a) n-n and (b) p-p hetero-junctions. 
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Figure 2.10. Typical energy band diagrams of (a) n-n and (b) p-p homo-junctions. 
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2.4.6 Metal-Semiconductor (MS) interface 

The MS interface is formed when a metal and a semiconductor are brought into direct 

contact with each other. One of the usefulness of the MS interface is the formation of 

electrical contacts which are used to collect the photo-generated charge carriers and 

transport them through an external circuit [5]. Two MS interfaces namely ohmic and 

rectifying contacts are needed in an electronic device most especially, in a solar cell 

depending on their design. 

2.4.6.1 Ohmic contacts formation 

Ohmic contact is a non-rectifying interface with linear current-voltage (I-V) 

characteristics behaving according to Ohms law. There are two ways of making ohmic 

contacts to the semiconductor material. The first method involves the formation of no 

potential barrier between the semiconductor and the metal while in the second method, a 

barrier formation can take place. In the first method, a metal with a lower (or higher) 

work function  m than the electron affinity  s of n-type (or p-type) semiconductor is 

being used. In this situation, there would be no formation of built-in potential barrier 

height, b  (that is, Vbi ≤ 0 V) and this would enable current to easily flow between the 

metal and the semiconductor.  

For instance, when an ohmic contact is made between a n-type semiconductor and metal 

( nsm   ) as shown in Figure 2.11, an alignment of Fermi level takes place at 

equilibrium by the transfer of electrons from the metal to n-type semiconductor [15]. 
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Figure 2.11. Energy band diagrams illustrating the ohmic contact formation between 

metal and n-type semiconductor (a) before joining the metal and semiconductor and (b) 

at equilibrium position after making contact. Note that ns  is the work function of the n-

type semiconductor while ns is the electron affinity of the n-type semiconductor. 
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Figures 2.11 (a) and 2.11(b) show the energy levels before and after making metal 

contacts to the n-type material respectively. This transfer makes the surface of the n-

semiconductor to become more n in electrical conduction [1] and this lifts up the 

electron energies of the semiconductor relative to the metal at thermal equilibrium [15]. 

If the M/S interface is forward biased, electrons flowing from the semiconductor to the 

metal do not encounter barrier. Likewise, if the M/S interface is reverse biased, a small 

barrier height of FnsCbn EE   exists for electrons flowing from the metal into the 

semiconductor. Since the created barrier is small under the reverse bias condition, 

electrons can still flow through from the metal into the semiconductor. 

The energy level before making ohmic contact for p-type material )( psm    is 

illustrated in Figure 2.12 (a). After contact making (Figure 2.12 (b)), electrons flow 

from the conduction band of the p-semiconductor into the metal so as to attain thermal 

equilibrium and this produces more holes in the semiconductor. The large densities of 

holes at the surface therefore make the semiconductor surface to be more p in electrical 

conduction. When forward biased, holes produced in the p-type semiconductor can 

easily tunnel through into the metal from the semiconductor. Since no depletion region 

is formed in the M/S interface when psm   , the movement of holes can take place 

from semiconductor to metal and vice versa. The above description is for ideal case 

when there are no surface states at the M/S interface. This ideal situation was also 

observed when making ohmic contacts on p-CdTe as described in Section 8.5.5. 
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Figure 2.12. Energy band diagrams illustrating the ohmic contact formation between 

metal and p-type semiconductor (a) before joining the metal and semiconductor and (b) 

at equilibrium position after making contact. Note that ps  is the work function of the p-

type semiconductor while ps is the electron affinity of the p-type semiconductor. 
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However in practical situations, the presence of surface states at the semiconductor can 

cause Fermi level pinning to take place thereby making Vbi >0 V and independent of the 

metal work function. When this happens, the ohmic response becomes non-linear in one 

or both bias regions. 

The second alternative method is to heavily dope the semiconductor that is directly 

adjacent to the metal [15]. In this type of situation even if a potential barrier is created 

as a result of the metal being used {for example, using a metal of higher (or lower) work 

function to the n-type (or p-type) semiconductor}, the heavy doping creates a very 

narrow depletion width. With this narrow width, tunnelling becomes the main means of 

transporting current across the Schottky barrier and this allows flow of current in both 

directions with linear response to the applied bias [16]. A practical example of this was 

also observed in the degenerate n-CdS thin film described in Chapter 7. 

2.4.6.2 Rectifying contacts formation 

The formation of rectifying contacts also known as Schottky contacts occur when a 

metal with higher work function, m  is brought into intimate contact with n-type 

semiconductor materials having a lower work function, ns . To form rectifying contacts 

on p-type semiconductor, metal with lower work function is coated on p-type 

semiconductor materials having higher work function, ps . In both cases of n- and p-

type, charge transfer takes place until there is an alignment of Fermi level at equilibrium 

[15].  

In n-type material where, nsm   ; the Fermi level of the semiconductor is higher than 

the Fermi level of the metal before evaporating the metal contact on the semiconductor 

as shown in Figure 2.13 (a). This means that the electron energy of the semiconductor is 

higher. To equalise the two Fermi levels, the electron energy of the semiconductor must 

be lowered relative to the metal [15]. To achieve this, electrons have to flow from the 

CB of the semiconductor to the metal. Figure 2.13 (b) illustrates the energy band 

diagram after the FL of both semiconductor and metal have been aligned. 
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Figure 2.13. Energy band diagrams illustrating the Schottky contact formation between 

metal and n-type semiconductor (a) before joining the metal and semiconductor and (b) 

at equilibrium position after making contact. 

The flow of electrons from the semiconductor to the metal leads to a decrease in the 

electron concentration. This decrease lowers the Fermi level and bends the edge of the 

conduction band near the interface up. The flow of electrons to the metal will induce a 

negative charge on the metal and a positive charge of ionised donors on the 

semiconductor near the interface. For this cause, the region of semiconductor near the 

metal interface where band bending takes place becomes depleted of mobile electrons. 

The presence of negative charges at the surface of the metal and positive charges at the 

semiconductor region near the metal interface create an electric field at the interface. 

The built-in potential in eV ( biqV ) which prevents further diffusion of electrons from 

conduction band of n-semiconductor to metal is given as, 

)( nsmbi qqV              (2.1) 

The potential barrier height ( bq ) which prevents electron in metal from diffusing into 

the semiconductor conduction band is 

)(   mb qq          (2.2) 

Where q is the electron affinity of the semiconductor measured from the vacuum level 

to the conduction band edge of the semiconductor.  
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The Schottky barrier formation on p-type material where psm    is shown in Figure 

2.14. The energy band diagrams before and after metal coating on the p-type 

semiconductor are summarised in Figures 2.14 (a) and 2.14 (b) respectively.  
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Figure 2.14. Energy band diagrams illustrating the Schottky contact formation between 

metal and p-type semiconductor (a) before joining the metal and semiconductor and (b) 

at equilibrium position after making contact. 

The above descriptions are applicable for Schottky diodes that are free of surface and 

interface states. Equation (2.1) is therefore valid for ideal Schottky diodes. In practical 

applications, the Schottky diodes do not obey this ideal equation due to presence of 

defects at the surface/interface. This is why potential barrier is most of the times not 

dependent on the metal work function. In the ideal case, band bending takes place when 

metal contact is made on the semiconductor but in practical applications, it is possible to 

have band bending prior to metallisation. This band bending can be explained in terms 

of surface states which may arise from formation of thin layer of oxide films or 

dangling bonds at the semiconductor surface [16]. The surface states can be donor states 

which release an electron to become positive; this donor state pins the Fermi level close 

to the conduction band. It can also be acceptor states which obtain an electron to 

become negative and pins Fermi level close to valence band. Mostly, the dangling 

bonds which arise from incomplete bonding [15] always dominate and for an n-type 

semiconductor material, the surface will attain positive charge; this makes the band to 

bend upwards near the semiconductor surface before metallisation.  

 



Chapter 2 Semiconductor materials, solar cell interfaces and types of solar cells 

39 
 

As explained by Streetman and Banerjee [15], surface states are common in compound 

semiconductors due to the presence of interfacial layer. The effect of these states are 

mostly felt when two different compound semiconductors are grown on each other. Due 

to the lattice mismatch between the two compound semiconductor materials at the 

interface, defects also known as surface states may be introduced. The introduction of 

these defects if not properly controlled may bring about a poor performance in solar cell 

efficiency since they actively determine the position at which the Fermi level pins. 

Details of these defects as described by Dharmadasa et al. [17] have been discussed in 

Section 1.6.3. Thus, the interfacial layer introduces defect states into the energy 

bandgap of semiconductor which pins the Fermi level at a particular position [15]. For 

instance, a group of interface states sited at ~0.35 eV below the conduction band 

minimum of n-CdTe will pin the FL at the surface of n-CdTe and the potential barrier 

height of the Schottky will depend on the surface states pinning effect instead of the 

metal work function.  

In this situation, the Schottky potential barrier becomes: 

ogb qEq            (2.3) 

Eg is the bandgap of the semiconductor and oq (shown in Figure 2.15) is a neutral level 

which exists between the surface Fermi level and the surface valence band energy.  
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Figure 2.15. Energy band diagram of Schottky interface with surface states. The surface 

states denoted by red lines at the M/S interface helps in pinning the FL at the M/S 

interface giving rise to a Schottky barrier. 

From Equations (2.2) and (2.3), it can be deduced that b of the M/S interface can be 

determined using the work function of the metal and interface or surface states present 

at the semiconductor bandgap [1]. In the same way, the Vbi solely depends on the 
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semiconductor properties and not on metal work function when there is presence of 

interface states. From Figure 2.15, the following equations can be deduced for n-type 

semiconductors. 

 nsbibns qqVq            (2.4) 

ogbns qEq            (2.5) 

where FsCns EEq           (2.6) 

VCg EEE            (2.7) 

Putting Equations (2.5), (2.6) and (2.7) into Equation (2.4) 

)( FsCoVCbi EEqEEqV          (2.8) 

)( oVFsbi qEEqV          (2.9) 

Equation (2.9) shows that biqV equally depends on the semiconductor properties and 

independent on metal work function. 

2.4.6.3 Current transport mechanisms in Schottky diodes 

As explained by Dharmadasa et al. [17], when a solar cell is exposed to sunlight, it is 

synonymous to forward biasing while solar cells being kept in the dark are equivalent to 

zero biasing of the diode. For this reason, the direction of electron flow under dark and 

light conditions differs and they are illustrated in Figure 2.16. In the same way, when a 

metal/semiconductor junction is reverse biased, the flow of electrons differs from when 

it is forward biased. The various current transport mechanisms that take place in metal-

semiconductor contact when forward biased under dark are highlighted below and 

described diagrammatically in Figure 2.16 (a) [11,18]. Figure 2.16 (b) also describes the 

direction of electron flow when M/S junction is forward biased under illumination. 

Brief details of some of the current transport mechanisms are discussed in Chapter 3. 

(i) Thermionic emission of electrons (majority carrier) from the semiconductor over 

 the barrier into the metal contact. 

(ii) Electron tunnelling from the semiconductor into the metal through the barrier. 

(iii) Recombination of electrons and holes within the depletion region. 
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(iv) Thermionic emission of holes (minority carrier) from the metal into the 

 semiconductor. 

Transport mechanism (i) is dominant for Schottky diodes with moderately doped 

semiconductor while transport mechanism (ii) is dominant for M/S interface with an 

heavily doped semiconductor [11]. The basic processes (i-iv) discussed above for 

current transport mechanism equally holds for metal to semiconductor current flow 

when reverse biased under dark condition. 
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Figure 2.16. (a) Basic current transport mechanisms for flow of electrons in metal-

semiconductor junction when forward biased under dark condition. (b) Direction of 

electron flow when the Schottky junction is illuminated with light. Note that this is the 

same direction in which electrons also flow when reverse biased under dark condition.  

2.4.7 Metal-insulator-semiconductor interfaces 

The potential barrier height (ϕb) obtained at p-n interface is larger than those of M/S 

interface. Therefore, the built-in potential (Vbi) and open-circuit voltage (Voc) are higher 

in p-n junction than in M/S junction. One way of increasing the ϕb to values close to the 

energy bandgap value is by incorporating a thin, insulating layer of ~10 nm at the 

semiconductor surface before depositing the metal contact [2]. Figure 2.17 (a) shows the 

formation of ϕb at the interface between metal and semiconductor. The insertion of the 

insulating layer (I-layer) between the metal contact and semiconductor give rise to 

metal-insulator-semiconductor (MIS) structure as shown in Figure 2.17 (b). The I-layer 

can be intentionally introduced by growing a very thin insulating layer. Organic 
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materials can be deposited as I-layer between the metal and semiconductor to form MIS 

structure. This was demonstrated by Mabrook et al. [19] when the authors used organic 

thin films as insulating layers to fabricate MIS organic memory devices. The I-layer can 

also be obtained by oxidising the top surface of the semiconductor layer [20]. The 

presence of the I-layer between the metal and the semiconductor eliminate interaction at 

the interface thus leading to removal of ageing effects at the back metal contact [5]. This 

phenomenon guarantees an increase in the lifetime of the solar cell structure.  Another 

advantage of the MIS structure is the extension of electric field into the semiconductor 

surface as a result of band bending increase which occurs at the MIS interface [2,5]. The 

incorporation of a thin insulating layer between the metal and semiconductor have been 

used in enhancing the illuminating characteristics of metal contacts to semiconductors 

like GaP and CdS [21]. 
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Figure 2.17. Typical energy band diagrams of n-type semiconductor illustrating (a) the 

formation of potential barrier height at metal/semiconductor (MS) interface and (b) the 

improvement of the potential barrier height as a result of insertion of an insulating layer 

(I-layer) in-between the metal and semiconductor. 

2.5 Types of solar cells 

Solar cells can be made from organic materials (for example polymer) or inorganic 

materials (for example, Si, GaAs, CdTe, CZTS). Solar cells fabricated from organic 

materials are called organic solar cells while the ones produced from inorganic materials 

are called inorganic solar cells. When both organic and inorganic materials are used in 

solar cell production, the result is a hybrid solar cell. A good example of hybrid solar 

cell is perovskite. The focus of this section will be on some solar cells that are presently 
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in use on a large scale basis and the ones that are currently being researched into for 

future industrial commercialisation. 

2.5.1 Inorganic solar cells 

Inorganic solar cells (IOSCs) are classes of PV devices which make use of inorganic 

materials to absorb photons which break bonds between atoms and create electron-hole 

pairs that are useful for electricity generation. Examples of inorganic solar cells are Si-

based solar cells, III-V based solar cells such as GaAs and chalcogenide-based solar 

cells. Chalcogenide-based solar cells are solar cells which contain a minimum of one 

group VI element. Group VI elements are called chalcogens and they are: oxygen (O), 

sulphur (S), selenium (Se) and tellurium (Te). Examples of these solar cells are copper 

indium diselenide (CIS), copper indium gallium diselenide (CIGS), copper zinc tin 

sulphide (CZTS) and cadmium telluride (CdTe). The research presented in this thesis is 

focused on inorganic solar cells primarily CdTe-based solar cells. A brief history of 

CdTe-based solar cells was given in Chapter 1.  

2.5.2 Organic solar cells 

Organic solar cell (OSC) is a group of photovoltaic device which uses organic 

molecules to absorb photons and transport charge to produce electric current using the 

photovoltaic principle. Kearns and Calvin [22] first observed the PV behaviour of 

organic compounds in the 1950s. A good example of OSC is polymer based solar cells. 

Based on types of junctions available in organic solar cells (OSCs), they can be 

categorised as single layer, bilayer, discrete heterojunction, bulk heterojunction, graded 

heterojunction and continuous junction. The simplest form of OSC is the single layer 

and they are fabricated by sandwiching a layer of organic materials in-between two 

different electrodes [23]. The metallic conductors used for the electrodes are ITO which 

serves as the anode and Al or Mg which serves as the cathode. For the bilayer OSC, two 

layers namely electron acceptor and electron donor are sandwiched between the two 

different conducting electrodes. Examples of donor and acceptor materials are poly (2-

methoxy-(5- ethylhexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) and Phenyl-C61-

butyric acid methyl ester (PCBM) respectively. The schematic diagrams showing the 

basic structure of a single layer and bilayer OSC are shown in Figures 2.18 (a) and 2.18 

(b) respectively. 
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The OSC differ from inorganic solar cell in some regards. For instance in OSC, the 

electric field is created as a result of the differences in the work function between the 

two electrodes while in inorganic solar cells for example a p-n junction solar cell, the 

electric field is created as a result of the barrier created between the diffused holes and 

electrons at the interface. The terms valence and conduction bands used in inorganic 

electronics are referred to as HOMO (highest occupied molecular orbital) and LUMO 

(lowest unoccupied molecular orbital) respectively in organic electronics [24]. The 

bandgap is the energy separation between the HOMO and LUMO energy levels. OSCs 

are cost effective when used in PV applications, their main demerits lie in low stability 

and efficiency when compared to inorganic PV cells. 
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Figure 2.18. Schematic diagrams of organic solar cell (a) single layer organic solar cell 

and (b) bilayer organic solar cell. 

2.5.3 Hybrid solar cell (Perovskite solar cell) 

A perovskite solar cell is a hybrid solar cell fabricated from organic-inorganic halide-

based material. This solar cell derives its name from the Russian mineralogist known as 

L.A. Perovski. The perovskite technology originates from the solid state dye sensitised 

solar cell (ssDSSC) [25]. Both ssDSSC and perovskite have the same device structure, 

the main difference is in the light absorber layer. In ssDSSC, the light absorber is 

photoactive mesoporous oxide with coated dye molecules (TiO2 and dye) while in 

perovskite, the light absorber layer is perovskite. With the incorporation of a new light 

absorber material in the solid state sensitised solar cell, the power conversion efficiency 

(PCE) has increased from 11.9% in ssDSSC to 22.1% in perovskite-based solar cell 

[26]. The schematic diagrams of ssDSSC and perovskite are illustrated in Figures 2.19 

(a) and 2.19 (b) respectively.  
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The perovskite solar cells are processed from solution and they have crystal structure of 

the form ABX3 where A and B are larger and smaller cations respectively [27]. The 

larger cation is an organic-based material while the smaller cations are inorganic-based 

materials such as tin (Sn) and lead (Pb). X is the anion mainly from oxygen, nitrogen, 

carbon, or halogens [25]. An example of absorber material used in perovskite is 

methylammonium lead trihalide (CH3NH3PbX3) where A is (CH3NH3), B is Pb and X is 

halogen such as Cl or Br atom. The contents of halides used determine the optical 

bandgap and this value can range between 1.50 and 2.30 eV.  

Perovskites have the advantage of very low cost of production and rapid improvements 

have been seen in the solar cell efficiency of perovskites from 2009, to date [28]; the 

world record efficiency of this solar cell as reported by researchers from KRICT/UNIST 

group in South Korea is 22.1% [26,29]. The current issue that needs to be addressed 

with the perovskite technology is the instability of the device fabricated from 

perovskites at high relative humidity. It is highly believed that once the instability issue 

is resolved, the material has the potential of being commercialised on a large scale 

production for PV application. 
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Figure 2.19. Schematic diagrams of (a) solid state dye sensitised solar cell (ssDSSC) 

and (b) perovskite-based solar cell. 

2.5.4 Multi-junction graded bandgap solar cells 

The use of multi-junction graded bandgap (MJGB) device structures for solar cell 

application is important in harvesting photons from various parts of the solar spectrum. 

Some of the experimental works reported on solar cell device structures in Chapter 9 of 
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this thesis are based on this type of device structure. These device structures are made 

up of different semiconductors having various energy bandgaps and arranged in a way 

that photons from different parts of the spectrum can be effectively absorbed to enhance 

the output short-circuit current density. The full MJGB solar cell structure was proposed 

by Dharmadasa et al. [30] in 2005 and it was experimentally tested with GaAs/AlGaAs 

using MOVPE growth technique and the obtained results showed a working model [31]. 

One of the focuses of this present research work is to develop the MJGB structures 

using low-cost electroplated semiconductors most especially from II-VI family. 

Figures 2.20 (a) and 2.20 (b) demonstrate the two possible ways of designing the MJGB 

device structures as proposed by Dharmadasa et al. [30,31] . In Figure 2.20 (a), the 

starting window layer is a wide bandgap p-type semiconductor material while in Figure 

2.20 (b), the starting window material is a wide bandgap n-type layer. In both cases, the 

last layer is a narrow bandgap layer. Starting from the front contact towards the back 

contact, both device structures show a gradual reduction in bandgap from Eg1 to Egn. 

The device structure in Figure 2.20 (a) has the advantage of a higher potential barrier 

height over the one in Figure 2.20 (b). With higher ϕb, it is possible to obtain higher Voc 

value. However, the device structure in Figure 2.20 (b) has been used in this work for 

solar cell fabrication due to the availability of electroplated materials.  
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Figure 2.20. Energy band diagrams of new designs for graded bandgap solar cells 

proposed by Dharmadasa [30] with (a) a p-type window material and (b) an n-type 

window material. Redrawn from [30,31]. 

As light moves through the device structure, absorption of photons takes place starting 

from the ultra-violet (UV) region through the visible (Vis) and then finally to the 

infrared (IR) end of the solar spectrum. MJGB solar cells are designed in such a way 

that the high energy photons (UV and Vis) are absorbed by the wide bandgap 

semiconductor deposited first on the conducting substrate. The narrow bandgap thin 
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films deposited afterwards absorb the low energy photons at the infrared end of the 

spectrum. This absorption process is essential so as to reduce thermalisation effect [32]. 

Thermalisation effects do occur when high energy photons are absorbed by low energy 

bandgap semiconductors; when this occurs, heat is produced within the device structure 

and this eventually lowers the solar cell parameters and the life span. Thermalisation 

effect in PV solar system is like an overload effect in induction motors of an electrical 

system. 

The MJGB also make use of impact ionisation and impurity PV effect to reduce R&G 

process, increase photo-generated charge carriers, separate and transport the generated 

carriers to external circuit before they recombine in the device structure [5]. 

Considering Figure 2.20 (a), when high energy photons are absorbed at the front of the 

solar cell, they break bonds between the atoms and excite electrons from the VB to the 

CB. When this happens, they create electron and hole pairs which are separated to the 

back and front contacts respectively. The quick separation is initiated by the presence of 

strong internal electric field in the solar cell structure. The strong built-in electric field is 

represented by the steep slope produced as a result of the device structure design. High 

kinetic energy (KE) is gained by the electrons accelerating towards the back contact. 

The electrons moving with high KE transfers its momentum to the atoms located at the 

rear end of the device and break the bonds between these atoms. This makes a photon 

which produce electrons with initial high KE to create two electron-hole pairs. This 

mechanism is referred to as band-to-band impact ionisation. 

As explained by Dharmadasa et al. [32], the transmission of infrared photons towards 

the rear of the solar cell take place as a result of their low photon energy. These photons 

can equally break bonds between atoms and excite electrons from CB to VB due to low 

bandgap materials towards the back. In the same vein, heat from the surroundings or 

infrared radiation can break bonds between atoms and create electron-hole pairs. 

However, most of the far infrared photons do not possess sufficient energy to directly 

promote the excited electrons to the CB but the energy is adequate to promote the 

excited electrons to one of the defect levels located below the CB. As earlier explained, 

there is presence of defects at the M/S interface and these defects can be very useful if 

well controlled. Some of these defects may be introduced during post deposition 

treatment process like etching or during growth while others may be introduced during 

growth. The ones introduced during growth are mainly native defects. 
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The holes created are quickly transported to the front ohmic contact and this does not 

therefore permit the trapped electrons at the defect levels to fall back and recombine 

with the hole. Further absorption of infrared radiation can create another electron-hole 

pair (EHP) and the newly excited electron can push the initial excited electrons at one of 

the defect levels to the CB. Aside these, the high KE electrons accelerating down the 

slope can also promote the trapped electrons in defect levels to the CB. This mechanism 

of operation is referred to as impurity PV effect. The combination of impact ionisation 

and impurity PV effect can improve the device parameters of the fabricated solar cell 

showing avalanche of electrons created during this process. 

2.6 Summary 

In this chapter, solid materials and the different categories in which they exist have been 

briefly presented. Semiconductor materials have been classified into two major groups 

based on dopants addition and elemental composition. Brief discussions have also been 

made on the various interfaces which exist in an electronic device. Some of the current 

transport mechanisms taking place in metal/semiconductor interfaces were discussed, 

and highlights of some types of solar cells were also given. Since the thesis work was 

focused on development of graded bandgap devices, the new designs were presented to 

show their advantages over two-layer solar cell device structures.  
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Chapter 3 -  Techniques for materials growth, materials and device 

characterisation 

3.1 Introduction 

The development of thin films can be achieved using physical methods such as 

sputtering, evaporation, epitaxial growth, thermal or chemical methods such as chemical 

vapour deposition (CVD), metal organic chemical vapour deposition (MOCVD), 

chemical bath deposition (CBD), electrodeposition (ED) and polymer assisted 

deposition (PAD). Before the thin film deposition, it is of utmost importance to prepare 

the substrate on which the thin films would be grown. After the thin films development, 

it is essential to study their material and electronic properties. This chapter focuses on 

electrodeposition technique as the main growth technique used in this research work 

and some of the analytical techniques used in material and device characterisation. 

3.2 Substrate selection and preparation 

The deposition technique used in this work requires the usage of conducting substrates 

to grow the thin film material. For this reason, the substrate needs to be well prepared 

before being used in the electrolytic bath. Failure to thoroughly clean the substrate may 

introduce impurities to the bath in ppm level and this may eventually affect the overall 

efficiency of the solar cell. Apart from impurity introduction into the bath, uniform 

deposition of thin film may not be obtained on the substrate. This non-uniformity is a 

problem in thin film deposition because it causes the doping concentration of the 

deposited layers to vary from one point to another on the thin film. Some of the 

properties of the conducting substrates are that it must have low resistance and be 

transparent. Due to their transparent nature, they are often referred to as transparent 

conducting oxide (TCO). The most widely used TCO are fluorine-doped tin oxide 

(FTO) and indium-doped tin oxide (ITO). ITO-coated glasses have low thermal stability 

when used as a TCO substrate [1] and they are more expensive than FTO-coated glass.  

In this work, FTO-coated glasses have been used as conducting substrates due to their 

numerous advantages over ITO. Some of the merits offered by FTO are its stability 

under atmospheric conditions and high temperature, mechanical hardness, high 

tolerance to physical abrasion and chemical inertness [2]. TCOs generally have low 
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resistivities. The resistivities of the FTO substrates are selected based on their sheet 

resistance. In this work, FTO-coated glasses with sheet resistances of 7 Ω/□ and 13 Ω/□ 

purchased from Sigma-Aldrich have been used. The substrates were cut into the desired 

dimension before cleaning. The cleaning was first done in ultrasonic medium containing 

soap solution for 15 minutes. A further rinsing action using de-ionised water was 

carried out on the glass/FTO substrates after completing the ultrasonic cleaning. The 

surfaces were finally rinsed in organic solvents (methanol and acetone), washed in de-

ionised water and dried with nitrogen gas flow before being applied as the working 

electrode in the ED set-up. 

3.3 Electrodeposition growth technique 

Electrodeposition is a non-vacuum growth technique used in depositing metallic and 

semiconducting coatings on top of an electrically conductive substrate such as metal [3].  

This growth technique offers a lot of advantages among which are: reduction of material 

waste during and after growth, providing an enabling environment to grow thin films 

with small and large areas (scalability), low-cost, ease of intrinsic and extrinsic doping, 

self-purification of electrolytic bath, bandgap tunability and manufacturability, low 

temperature growth and the ability to control the film thickness by varying the 

deposition time and potential  [4,5]. The scalability of this technique was proven by BP 

Solar when they manufactured 0.94 m
2
 solar panels with efficiency of ~10.6% [6]. 

Electrodeposition can be categorised into different groups based on the power supply 

source and the working electrode being used. With respect to the power supply source, 

electrodeposition can be potentiostatic or galvanostatic. In potentiostatic deposition, 

direct current at fixed voltage is used while in galvanostatic deposition, the power 

source is a direct current at constant current [7]. Potentiostatic electrodeposition has 

been used in this work to carry out electroplating work. Depending on which electrode 

is used as the working electrode (WE) in electroplating technique, the growth of thin 

films can be achieved using cathodic and anodic means of deposition. In cathodic 

electrodeposition, the cathode electrode serves as the working electrode while in anodic 

electrodeposition; the anode serves as the working electrode. The electrodeposition of 

thin films take place on the working electrode and for this reason, the conducting 

substrate which function as the WE must not react chemically with the electrolyte [2]. 
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As explained by Pandey [7], the cathodic deposition has gained a wide popularity in 

electrodeposition growth technique because it produces stoichiometric thin films with 

good adherence to the substrate and most of the metal ions are cations (positive ions); 

while in anodic deposition, the thin films formed have poor adhesion and stoichiometry. 

In this research work, cathodic electrodeposition has been used to carry out the growth 

of thin films. The components making up the electrodeposition system are: electrolytes, 

electrodes (anode which is a counter electrode, cathode which functions as the working 

electrode and reference electrode), power supply, electric heater with a magnetic stirrer. 

The electrodeposition system can be set-up as a two-electrode or three-electrode system. 

In this work, two-electrode system was used to carry out the electroplating of 

semiconductor thin films. The main difference between these two is that in two-

electrode set-up, two electrodes namely anode and cathode are used while in three-

electrode set-up, a third electrode known as a reference electrode is introduced. The use 

of the third reference electrode has been avoided in this research to prevent possible 

leakage of unwanted group 1A and 1B ions like Ag
+
 and K

+
 from Ag/AgCl and 

saturated calomel electrode (SCE) into the electrolytic bath most especially CdTe 

electrolyte which is used in electroplating the main solar cell absorber layer being 

studied in this work. The Ag
+
 and K

+
 are classified as p-type dopants to CdTe thin films 

and since the main research interest is focused on electroplating n-CdTe thin films as 

absorber layer, the leakage of these ions into the bath can cause compensation to take 

place thus leading to a high resistive material which can adversely affect the solar cell 

device efficiency. The deterioration in efficiency of CdTe-based solar cells after being 

contaminated with Ag
1+

 and Cu
2+

 ions have been reported by Dennison [8].   

Figure 3.1 shows the schematic diagram of the two-electrode set-up in electrodeposition 

technique. The bath contains an electrolyte comprising of metal ions (for instance, 

ZnSO4 for the deposition of Zn). The conducting surface (cathode) is usually immersed 

in an electrolyte solution containing salt of the metal ions. As illustrated in Figure 3.1, 

the cathode and anode electrodes are connected to negative and positive terminals of the 

power source respectively. When a direct current maintained at constant voltage from 

the power supply flows through the electrolyte, the anions and cations of metal salts 

move toward the anode and cathode respectively and may be coated on the electrodes 

after charge transfer reaction has taken place [7]. This type of electrodeposition is 

referred to as cathodic electrodeposition. 
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In the cathodic electrodeposition, the salts of metal ions which carry positive charges 

(cations) are attracted towards the cathode. In this process, the positive metallic ions 

will gain electrons from the cathode and will reduce to the metallic form as a solid thin 

film on the glass/FTO substrate which is used as the working electrode [9]. In the 

anodic electrodeposition, the anions are attracted towards the anode, donate one or more 

electrons to the anode and finally form a deposit in the form of a solid thin film on the 

FTO substrate attached to the anode. This process in which the anions donate electrons 

to the working anode electrode is referred to as oxidation. 

 

The electrodeposition technique works on the principle of electrolysis which was 

discovered by Michael Faraday in 1834 [10]. The two laws postulated by Faraday relate 

the mass of the electrodeposited material to the deposition current density and atomic 

weight of the material. The first law states that "the mass of a substance deposited or 

liberated at any electrode is directly proportional to the quantity of electrical charge passing 

through the electrolyte”. The second law explains that when the same amount of charge is 

passed through the electrolytes, the mass of the substances deposited or liberated is 

proportional to its respective chemical equivalent weight. The chemical equivalent 

weight is the ratio of molecular weight to the valence number of ions (electrons 

transferred per ion). 

The first law can be expressed mathematically as 

m = ZQ          (3.1) 

Where Z is a constant known as chemical equivalent weight. 

Figure 3.1. Electrodeposition set-up for a simplified 2-electrode system.  
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The chemical equivalent weight from the second law can be expressed mathematically 

as shown in Equation (3.2) 
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Combining Equations (3.1) and (3.2) together 
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where m is the mass of material in gram formed on an electrode, Q is the effective 

electric charge in Coulomb that passes through the cell, F is the Faraday's constant with 

value 96,485 Cmol
-1

, M is the molecular weight of the material in gmol
-1

, z is valence 

number of ions and n is the number of electrons transferred in the chemical reaction for 

the formation of 1 mol of substance in gcm
-3

.  

Faraday's equation can further be modified to calculate the thickness of the 

electrodeposited material as shown in Equation (3.4). 
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Where T is the thickness of the material in cm, i is the average deposition current in 

Ampere, A is the surface area of the coated material, J is current density in Acm
-2

, t is 

the deposition time in seconds and  is the density of the deposited material in gcm
-3

.  

3.4 Cyclic Voltammetry 

Before electroplating the various semiconductor materials and studying their individual 

properties, it is essential to determine the range of cathodic potential suitable for their 

deposition. The tool used for this purpose is known as cyclic voltammetry [11]. In this 

process, a range of cathodic potentials are scanned, for instance from 0 to 2,000 mV 

between the electrodes immersed inside the electrolyte, using a computerised 

potentiostat at a constant sweep rate. The currents through the electrolyte are monitored 

as the voltages between electrodes are changed. The currents corresponding to each 

scanned potential are plotted and the results give a cyclic voltammogram. Cyclic 

voltammogram can therefore be described as the current-voltage characteristics that 

describes the conduction of electrical current through the electrolyte as a function of 

applied potential [12]. The potential is usually scanned in both forward and reverse 

direction so as to determine the approximate voltage in which the deposition and 



Chapter 3 Techniques for materials growth, materials and device characterisation 

57 
 

dissolution of the electroplated layers take place. This technique has been used in this 

work to investigate suitable regions of deposition potential to electroplate thin films that 

are near stoichiometric. The power source used in this work is GillAC computerised 

potentiostat (ACM instrument) and the scanning was carried out at a sweep rate of 180 

mVmin
-1

. 

3.5 Techniques used for material characterisation 

The material properties of the semiconductors developed in this work have been studied 

using some basic analytical techniques such as photoelectrochemical (PEC) cell 

measurement for investigating the electrical conductivity type of the semiconductor 

material, optical absorption technique for studying the optical properties of the material, 

X-ray diffraction (XRD) and Raman spectroscopy for evaluating the material structural 

properties, scanning electron microscopy (SEM) technique for determining the material 

morphological properties, energy dispersive X-ray analytical (EDX) technique for 

analysing the compositional properties of the material, Ultra-violet photoelectron 

spectroscopy (UPS) for studying the position of the Fermi level in semiconductor 

materials and direct current (DC) conductivity measurement technique for resistivity 

determination. This section will be focused on the analytical techniques used in this 

research work. 

3.5.1 Photoelectrochemical cell measurement 

Photoelectrochemical (PEC) cell measurement is a quick and easy technique used in the 

determination of electrical conductivity type of semiconductors. The technique involves 

a semiconductor and electrolyte with interface creation between them. The interface 

formed between the semiconductor and electrolyte is very similar to the junction 

formation between semiconductors and metal, that is M/S interface also known as 

Schottky barrier. As explained in sub-section 2.4.6.2 of Chapter 2, both semiconductors 

and metals have different Fermi energy levels in their energy bandgap before making 

contacts with each other. In the same manner, electrolytes also have an energy level 

known as Eo REDOX while the Fermi level position (FLP) of the semiconductor remains 

EF. This EF can be EFn or EFp depending on whether the semiconductor material is n, or 

p-type respectively. 
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By immersing the semiconductor inside the electrolyte, electron transfer takes place 

between the two until equilibrium is achieved. At equilibrium, there is an alignment of 

the Fermi level of the semiconductor with the redox energy level of electrolyte 

according to Equation (3.5); this alignment do take place under dark condition as shown 

in Figure 3.2 (b) for both n- and p-type materials.  

REDOXFpFn EEorE           (3.5) 

As illustrated in Figure 3.2 (b), band bending takes place at the region of the 

semiconductor which is near the semiconductor/electrolyte (S/E) interface [13]. The 

band bending direction can either be upward or downward depending on the initial 

Fermi (E
I
F) level position of the semiconductor [14]. If the semiconductor material 

under investigation is n-type, band bends upwards. For a p-type semiconductor material, 

band bends downwards as illustrated in Figure 3.2 (b).  
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Figure 3.2. Band diagram formation between semiconductor and electrolyte (a) before 

the semiconductor makes contact with the electrolyte, (b) after the semiconductor makes 

contact with the electrolyte under dark condition and (c) after the semiconductor makes 

contact with the electrolyte under illumination condition. 

Under illumination condition, photons with energy greater than the bandgap are 

absorbed in the semiconductor region and this leads to generation of electron-hole pairs. 
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Once created, the electrons and holes no longer maintain equilibrium and this shifts the 

Fermi level towards the initial Fermi level of the semiconductor to create a new Fermi 

level under illumination denoted as  
*
EF (this can either be 

*
EFn or 

*
EFp) as shown in 

Figure 3.2 (c). When this shift occurs, there is a decrease in the band bending. The 

potential change (ΔE) expressed in Equation (3.6) [13] therefore corresponds to the 

difference in the shift of the Fermi energy level measured under dark and light 

conditions per unit charge, e.  

darklightFF EEEE
e

E 







 *1

       (3.6) 

As illustrated in Figure 3.3, the set-up for the PEC cell measurement consists of 

glass/FTO/semiconductor (of unknown conductivity type) which serves as the 

semiconducting electrode, a graphite electrode which is used as the counter electrode 

and electrolyte prepared from 0.10 M Na2S2O3 in 20 ml of de-ionised water. The two 

electrodes are immersed in the prepared electrolyte and connected to a DC voltmeter. 

The potential between the two electrodes are measured under both dark and illuminated 

conditions. The PEC signal or open circuit voltage produced by the solid/liquid junction 

is obtained by taking the difference between the potential measured under dark and 

illumination conditions. Before using the PEC cell set-up to carry out further 

measurement, it is usually first calibrated with a known semiconductor like n-CdS 

before measuring un-known semiconductors. The sign of the PEC signal helps in 

determining the electrical conduction type of the electrodeposited materials while the 

magnitude of the PEC signal is a factor of the doping concentration of the 

semiconductor material under test [15]. When the PEC signal produces zero PEC signal, 

it signifies that the material can be insulating, intrinsic or metallic. 
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Figure 3.3. Typical schematic diagram of the experimental set-up for PEC cell 

measurement. 

3.5.2 UV-Vis Spectrophotometry 

The bandgap of semiconductor materials and other optical properties such as % 

transmittance can be obtained using optical absorption technique. The basic equipment 

used in this technique is known as Ultraviolet-Visible spectrophotometer commonly 

known as UV-Vis spectrophotometer.  The UV-Vis spectrophotometer measures the 

absorption, % transmittance and reflectance in the near UV and visible region of the 

electromagnetic spectrum. The range of the wavelengths for the near UV and visible 

region are ~(200-400) nm and ~(400-700) nm respectively.  Cary 50 scan UV/Vis 

spectrophotometer has been used in this research work to carry out all the optical 

absorption measurements. 

The basic components which make up the UV-Vis spectrophotometer as illustrated in 

Figure 3.4 are: light sources (UV and Vis.), monochromator also known as wavelength 

selector, sample container, detector and signal processor with readout [16]. Light 
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sources such as deuterium and hydrogen lamps which emit radiation within the range 

(160-375) nm can be used as light source for UV radiation. For visible and near infrared 

radiation, tungsten filament or halogen lamps can be used since it can emit radiation 

within the range (350-2500) nm wavelength. The radiations emitted by these light 

sources also extend into the UV region; for this reason, they are mostly used in 

spectrophotometers. 
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Figure 3.4. A typical schematic diagram showing the basic components of a UV-Vis 

spectrophotometer. 

A monochromator consists of an entrance slit, a collimating lens, a dispersing device 

such as a prism, a focusing lens and an exit slit. The emitted light which consists of 

radiation having more than one single wavelength (that is, polychromatic radiation) 

passes through an entrance slit into a monochromator. In a spectrophotometer, a beam 

of monochromatic radiation is provided to illuminate a material and the ratio of 

intensity of incoming photons to the outgoing ones is measured. The beam is assembled 

together via a collimating lens and then strikes the reflection prism (dispersing device) 

at an angle. The prism eventually splits the beam into its wavelengths. By rotating the 

prism, the output radiation which has a specified wavelength leaves the monochromator 

through the exit slit and is directed towards the material under test. Depending on the 

thickness of solid materials under test, some of the intensity of a beam of 

monochromatic light is absorbed while others are transmitted as shown in Figure 3.5. 

The intensity of transmitted light (I) is related to the intensity of incident light (Io) by 

Equation (3.7). 

)exp()( xIxI o           (3.7) 
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Where x is the thickness of the semiconductor and it represents the distance into which 

light travels through in the semiconductor material.  is a constant and it is the 

material’s absorption coefficient; it determines the rate at which the material absorbs 

light as light passes through it. 

Io
I

Path length, x

Semiconductor

 

Figure 3.5. Typical schematic diagram illustrating the light intensity before (Io) and 

after absorption (I).  

The transmittance (T) of the material is defined by the ratio of the transmitted light 

intensity to the intensity of the incident monochromatic light as expressed in Equation 

(3.8) 

 
oI

I
T            (3.8) 

Equation (3.9) relates the absorbance (A) and transmittance with each other [17] 
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TA %log2 10  permits easy calculation of absorbance from the data of % 

transmittance. 

The transmitted light is detected by photodiode which functions as a detector in this 

case.  The detector converts monochromatic light radiation into electrical signal which 

is sent as input to the signal processor. The signal processor amplifies the signal, 

processes it and passes the processed signal to a display unit such as computer. The 

spectrophotometer measures the absorbance and other optical properties as a function of 

wavelength. By plotting the square of absorbance (A
2
) against the energy of photon (hv), 

the bandgap can be estimated by extrapolating the straight line portion of the absorption 

curve to the photon energy axis. Also, the bandgap can be obtained by plotting  2h
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versus h  and extrapolating the straight line portion of the  2h versus h

absorption curve to the photon energy axis. 

The relationship between the absorption coefficient (α) of a direct bandgap 

semiconductor material, the incident photon frequency (ν) and the optical bandgap (Eg) 

is expressed by Tauc relation in Equation (3.10) [18]. 

2
1

)( gEhkh                       (3.10)  

Where h is Planck’s constant and k is the constant of proportionality which depends on 

the refractive index of the sample. 

3.5.3 X-ray diffraction (XRD) 

X-ray diffraction (XRD) technique is a non-destructive and non-contact method used in 

identifying the crystal structures and phases present in crystalline materials. It also gives 

information on the materials crystallite sizes, atomic planes, lattice spacing, preferred 

orientation and intensity of the individual peaks obtained from the XRD measurement. 

This technique was discovered in 1912 by Max von Laue when he observed that 

crystalline materials behave as 3-dimensional diffraction gratings for X-ray wavelength 

in a similar manner to that of plane spacing in a crystal lattice [19]. As shown in Figure 

3.6, the samples to be tested are put inside the sample holder stationed between the X-

ray tube and X-ray detector. The X-ray tube generates the X-rays which are filtered to 

yield monochromatic radiation. These rays are assembled together through a collimator 

and made to pass through a slit. These slits have different dimensions based on the 

opening created in them. The slit dimension may range from (1/32 to 2) mm. The 

interaction between the monochromatic rays after passing through the slits and the 

sample is known as interference. The X-ray tube gradually moves so as to focus the rays 

on the sample under investigation and this movement leads to changes in the incident 

angles.  

The operational principle of XRD is established on the constructive interference of 

monochromatic X-rays and a crystalline sample. X-ray is an electromagnetic radiation 

having wavelength ranging between (0.1-100) Å while a crystal is a regular array of 

atoms. The wavelength range of the X-ray is similar to the distances between atoms in a 

crystal and this is why it is easy for X-rays to be diffracted by the crystal structures [20]. 

When the X-rays strike the crystal atoms, they are scattered by the electrons in the 
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atoms and this results in the production of secondary spherical waves that emanate from 

the electron. This type of scattering is known as elastic scattering and the electron which 

causes the scattering is referred to as the scatterer. 

X-ray tube

Sample 

holder

X-ra
y detector

 

Figure 3.6. Typical XRD equipment illustrating the three main sub-compartments.  

The reflection of incoming rays by electron in the atom gives rise to diffracted rays. In 

some instances, the scattered rays cancel one another (destructive interference) or 

support one another (constructive interference). The interaction between the incident X-

rays having wavelength, λ measured in Angstrom (Å) and the sample under 

investigation produces constructive interference and diffracted rays when conditions of 

interaction fulfil Braggs law stated in Equation (3.11).  

 sin2dn            (3.11) 

Where d is the inter-atomic spacing, n is a positive integer and θ is the angle between 

the incident or diffracted X-rays beam and the atomic plane.  

The Braggs law is derived from Figure 3.7. The occurrence of constructive interference 

produces a peak in intensity. The diffracted X-rays are then detected and processed by 

the X-ray detector. The detector finally converts the processed X-ray signal to a count 

rate before sending it as an input signal to a computerised device from where XRD 

spectrum (the output) is obtained. 
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Figure 3.7. Schematic of Bragg's analysis showing the production of diffracted rays as 

incident rays interact with atoms inside the solid crystals. 

The XRD patterns in this work were obtained by plotting the XRD count rate versus the 

position of angles. Information about the crystallite size of the samples being measured 

can be obtained from the data extracted from XRD instrument after measurement by 

using the Scherrer formula stated in Equation (3.12). However, the Scherrer equation 

has limitation since it cannot be used to estimate crystallite sizes more than 100 nm 

[21]. 





cos

94.0
D           (3.12) 

Where λ is the X-ray wavelength measured in Å, β is FWHM measured in radians and θ 

is the Bragg's angle measured in degree. The d-spacing permits easy identification of 

sample since each material has a distinct d-spacing value which can be compared with 

the standard d-spacing value reported in the JCPDS reference file. One other important 

parameter obtained from the XRD measurement is the full width at half maximum 

(FWHM). This parameter alongside other parameters stated in Equation (3.12) is used 

in getting the crystallite size (D) of the measured sample. The XRD spectra in this work 

were obtained using Philips PW 3710 X’pert Pro diffractometer with Cu-Kα 

monochromator of wavelength, λ=1.542 Å in the range of 2θ=(20-70)
o
. The current and 

tension of the X-ray generator were set to 40 mA and 40 kV respectively. 
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3.5.4 Raman spectroscopy technique 

The Raman spectroscopy technique is a quick and non-destructive method to analyse 

semiconductor material qualities such as homogeneity, surface conditions and 

microcrystallinity [22]. This technique can be used for quantitative and qualitative 

analysis of samples. Quantitative and qualitative analysis are carried out by measuring 

intensity and frequency of scattered radiations respectively [23]. The technique is used 

as fingerprint for quick identification of unknown materials by comparing the material 

under test with standard reference spectra.  

It is a scattering technique which is based on Raman Effect. The principle of operation 

is based on inelastic scattering of monochromatic light most especially laser beam. The 

monochromatic light acts as the incident radiation to the sample under investigation. 

When samples are illuminated with monochromatic laser light at a certain frequency, 

the molecules in the sample interact with the laser light and begin to vibrate which 

eventually leads to emission of scattered light with different frequency. The shift in the 

frequency between incident and scattered light is known as Raman shift or Raman 

Effect. This shift provides information about the rotational, vibrational, frequency levels 

and other low-frequency modes in the material. The inelastic scattering is a 

phenomenon generally used when the frequency of monochromatic incident photons 

differs in value from the frequency of scattered radiation upon interaction with the 

sample. The emitted scattered light is detected by photon detector in computerised 

Raman set-up equipment, analysed and displayed as Raman spectrum on the computer 

visual display unit. The Raman spectra reported in this thesis were obtained using a 

Renishaw Raman microscope with 514 nm argon ion laser source and a charge-coupled 

device (CCD) detector.  

3.5.5 Scanning electron microscopy technique  

Scanning electron microscopy (SEM) is an analytical technique used in studying the 

morphology of thin film materials. It is an electron microscope which scans sample 

under investigation with focused beam of electrons to produce images in a vacuum 

system using high accelerating voltage. The first microscope with high magnification 

was invented in 1937 by Manfred von Ardenne [24]. Figure 3.8 shows a typical 

schematic diagram of SEM equipment [25]. The SEM instrument consists of five basic 

components namely: electron source, column containing electromagnetic lenses via 
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which electrons travel down, sample chamber, electron detector and computer with 

visual display unit (VDU) to view the scanned images.    
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Figure 3.8. Typical schematic diagram of scanning electron microscope. Redrawn from 

[25]. 

Tungsten filament, Lanthanum hexaboride (LaB6) or Cerium hexaboride (CeB6) solid 

state crystal and field emission gun (FEG) are the three main types of electron sources 

used in SEM instrument [26]. Electrons are produced at the source (for instance, the 

electron gun shown in Figure 3.8 ) sited at the upper part of the column by thermionic 

heating at very high voltage ranging from ~5 kV to ~30 kV. The voltage range may vary 

from one instrument to the other. The produced electrons accelerate through the column 

and passes through the set of condenser lenses and apertures to generate a focused ray 

of electrons which strike the surface of sample mounted on a stage in the sample 
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chamber.  The main function of these lenses is to focus the beam of electrons as it 

travels from the electron source to the sample chamber down the column. The scan coils 

which are located above the objective lens controls the position at which the electron 

beam hits the sample and it also allows the beam to be scanned across the area of the 

sample surface in a raster way [25]. An interaction therefore takes place between the 

electrons and atoms in the sample to produce numerous signals in the form of secondary 

electrons, backscattered electrons, auger electrons and characteristic X-rays [27]. These 

signals which comprise of information about the surface topography and composition of 

the material being tested are collected by detector to produce images which can be 

viewed on a computer VDU. 

The basic signals being used for image production are the secondary electrons (SE) and 

backscattered electrons (BSE). The secondary electrons are usually low-energy 

electrons generated via ejection of electrons from the surface of sample atoms and they 

are detected by the secondary electron detector (SED) [28]. The SED can be used to 

detect the surface morphology of the sample since secondary electrons are low energy 

electrons created near the surface and not at the in-depth of the sample [25]. One 

disadvantage of the SE is that it can be affected by noise which can lower the quality of 

the SE images [28].  

On the other hand, the backscattered electrons are higher energy electrons which 

originate from a notable depth within the material (sample) and are resiliently 

backscattered by the sample atoms. The backscattered electrons are generated when 

there is an interaction between the incident beams of electron and the nucleus of an 

atom in a sample. When this interaction takes place, the primary electron may scatter in 

any direction with minimal energy loss. Some of the scattered electrons are then 

directed back out of the sample to produce back scattered electrons which are then 

detected by backscattered electron detectors (BSED). The BSE does not give valuable 

facts about the sample topography; rather, they give compositional information on 

samples with higher atomic numbers; this is because atoms having higher atomic 

numbers easily backscatter. The greater the atomic number of an atom, the higher will 

be the positive charge of the atom's nucleus and the greater the tendency for an 

interaction producing BSE to occur [28]. Three types of signals produced by the 

primary electron beam are illustrated in Figure 3.9 with respect to their depth of 

generation from within the sample. 
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Figure 3.9. Typical diagram illustrating the production of three different signals within 

the specimen volume as a result of sample-electron interaction. Note the different 

sections of the specimen volume where characteristic X-rays, secondary and 

backscattered electrons emerge from. 

Some other important factors which should be taken note of when carrying out the 

morphological measurement using SEM technique are accelerating voltage and the 

electron spot size. The accelerating voltage alongside with sample thickness determines 

the depth to which electron beam will penetrate through when it strikes the sample. The 

electron spot size coupled with the volume of interaction between the sample and 

electron beam determine the maximum resolution obtainable in SEM measurement. 

Some SEM instruments have a resolution in the range (1-20) nm [26]. 

The SEM micrographs reported in this work were obtained using the FEI Nova 

NanoSEM 200 at the Materials and Engineering Research Institute (MERI) of Sheffield 

Hallam University, Sheffield, United Kingdom. This instrument has an accelerating 

voltage of up to 30 kV and resolution of up to 1 nm. No special preparation was made 

for the samples used in the SEM analysis except that the samples were thoroughly 

washed with methanol, rinsed in de-ionised water and dried in a nitrogen gas flow 

before being transferred to the SEM vacuum system. Also, silver paint has been used to 

electrically connect the metallic sample holder and glass/FTO on which the thin film is 

deposited on. The essence of this connection is to prevent charging effects which take 

place between the sample holder and thin films grown on FTO/glass since the glass is a 

non-conductive material. Charging effects do take place on non-conductive materials 
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during scanning in a vacuum system and this may introduce error during image 

scanning. 

3.5.6 Energy Dispersive Spectroscopy (EDS)  

Energy dispersive spectroscopy (EDS) or energy dispersive X-ray analysis (EDX) is a 

technique used to analyse the composition of atoms present in a sample both 

qualitatively and quantitatively. It can be used to detect the elements present in the 

periodic table. EDS instrument can be found in most SEM equipment as a sub-part or as 

an attachment to the main SEM instrument. One of the limitations of this equipment is 

that it gives information mainly on the atomic composition and not molecular 

composition of the samples [27]. As earlier explained in SEM technique, the interaction 

of high energy electron beam with samples generate signals such as secondary electrons 

(SE), backscattered electrons (BSE), auger electrons and characteristic X-rays [27]. 

While the SEM makes use of SE and BSE, the EDX uses characteristic X-rays. 

The characteristic X-rays are produced when high energy electron beam knocks out of 

the atom an inner shell electron and the vacant site being generated as a result of 

ejection of inner shell electron is being occupied with outer shell electron; this is 

illustrated in Figure 3.10. The ejected electron becomes ionised and the atom becomes 

unstable due to the electron vacancy generation. To stabilise this atom, electron from 

outer shell has to move into the inner shell to fill the vacancy. When this transition 

happens, there is a release of excess energy which corresponds to the difference in 

energy between the two shells. The excess energy is therefore emitted as an X-ray 

photon. The emitted X-rays have wavelength which depends on the characteristics of 

atoms inside the sample, hence the name characteristics X-rays [29]. The emitted X-rays 

are named based on the shell where the first vacancy occurs and the shell where 

electrons transit from to occupy the vacancy. As shown in Figure 3.10, if the first 

vacancy takes place in the K-shell and electrons transit from L shell to fill the vacancy 

in K shell, the X-ray emitted is referred to as Kα X-ray. On the other way round, if 

electrons transit from M shell to occupy the vacancy in K shell, the emitted X-ray will 

be referred to as Kβ X-ray [28]. 
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Figure 3.10. Illustration of three atomic shells (K, L, M) with emphasis on ejection of 

electron from inner shell leading to vacancy generation and filling of the vacancy from 

an outer shell. Note that the X-ray nomenclature are named based on the shell where the 

first vacancy occurs and the shell where electrons move from to occupy the vacancy. 

Since EDX detection system is part of SEM equipment, the principle of operation is 

similar. Figure 3.11 shows the schematic diagram of an EDX instrument. For EDX, the 

detector used is made up of semiconducting silicon crystal with diffused lithium atoms, 

Si(Li) which has to be placed in line of sight of the sample since X-rays cannot be 

deflected. The distance of the detector to the sample should be as small as possible, say 

20 mm or less from the sample [29]. Both SEM and EDX use the same electron source 

but in EDX, the characteristic X-ray being emitted from the sample is fed into the X-ray 

detector. The detector is usually kept in a cryostat so as to cool it with liquid nitrogen to 

enable it attain cryogenic temperature [30]. The detector converts the X-ray signal to 

voltage signals.  The voltage signal is passed to a pulse processor which amplifies and 

measure the signal before sending it to multi-channel analyser (MCA). The MCA 

converts the amplified/measured voltage signal into a digital form suitable for display as 

a plot of histogram of intensity versus energy in keV on computer system. In this work, 

EDX detector attached to a FEI Nova NanoSEM 200 has been used to carry out the 

compositional analysis. Aztec software was used in performing the EDX analysis.  
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Figure 3.11. Experimental set-up of the EDX spectrometer. 

3.5.7 Ultra-violet photoelectron spectroscopy (UPS)  

The UPS is an analytical technique that can be used in studying the electronic band 

structure of solid materials [31]. The work function of a material, Fermi level of thin 

film semiconductor surfaces and position of valence band maximum (EVmax) can also be 

determined using this technique [32]. In this research work, UPS technique has been 

used to investigate the FLP of some of the electroplated semiconductor materials. By 

knowing the FLP of the material, the electrical conductivity type can thus be 

determined. This technique is to further complement the PEC cell measurement 

technique being used in this work to determine the electrical conductivity type. The 

UPS operation is based on the fundamental principle of photoelectric effect proposed by 

Albert Einstein in 1905. Photoelectric effect is a phenomenon which explains how 

electrons are ejected from a material surface when photons (light) shine on it. The 

ejected electrons are usually referred to as photoelectrons. When the energy of the 

incident photon (hv) is greater than the material workfunction (W), the ejected 

photoelectron will then have kinetic energy (Ek) given by Equation (3.13) [33]. 

WhEk              (3.13) 

The kinetic energy of photoelectrons produced by samples after absorbing UV photons 

can therefore be measured by UPS technique. The basic components making up a UV 

system are: UV photon source, electron detector, an ultrahigh vacuum system and a 

computer display system. An ultrahigh vacuum system (~10
-9

 Torr) is required in UPS 

experiment to prevent attenuation of emitted electrons. A helium discharge lamp with 

two energies of He-I photon at ~21.2 eV and He-II photon at ~40.4 eV can serve the 

purpose of the UV photon source. Generally, the UV radiation has energy ranging 
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between 10-45 eV [34] to excite photoelectrons in the valence band to vacuum level. 

The interactions of the UV photons are however restricted to the valence band due to 

their low energy. In UPS, when the incident photons interact with atoms in the sample, 

the atoms are ionised leading to the emission of low energy photoelectrons. This low 

energy creates a platform to study surface properties and band structure of the material. 

Hence, The UPS is a highly surface sensitive technique because the path length for the 

ejected electrons from the sample is of few angstroms. The interference between energy 

of the emitted electrons and valence electrons is however a major disadvantage in this 

technique [31].  

The UPS measurements in this work were carried out by our collaborator at the Conn 

Centre for Renewable Energy Research at University of Louisville, USA. The 

equipment used for this work was VG Scientific MultiLab 3000 ultra-high surface 

analysis system. This system was supported with differentially-pumped He cold cathode 

capillary discharge UV lamp and CLAM4 hemispherical electron energy analyser. A 

resonance line He-1 with photon energy of ~21.22 eV and base chamber pressure of 

~10
-9

 Torr was used for the samples excitation. Due to the possibility of having noise 

interference in the system at low kinetic energy, the UPS measurements were carried 

out using a negative bias voltage of 18 V to prevent any form of distortions in the 

instrument. Gold films were sputtered onto half of the samples used in this experiment 

while the other half of the sample was not sputtered with gold. This method allows the 

Fermi level of the Au and CdTe film to be aligned. The measurement of the FLP was 

done from the He-1 FL edge of the samples coated with Au. The Au sputtered area was 

connected to the sample stage using Ag paste for proper biasing and to prevent charging 

effect. 

3.5.8 Direct current (DC) conductivity measurement  

The concept of Ohms law has been used in the DC conductivity measurement to 

determine the electrical resistivity and conductivity of the semiconductor materials. To 

carry out this measurement, metals which form two ohmic contacts to the 

semiconductor have to be carefully selected. In this technique, varying DC voltages are 

applied across the two semiconductor terminals and the corresponding DC current that 

flows through the semiconductor material are measured using an ammeter. A Keithley 

2401 sourcemeter has been used in this work to carry out the DC conductivity 
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measurements. A basic schematic diagram illustrating current flow as the voltage is 

being varied is illustrated in Figure 3.12.  
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Figure 3.12. A basic schematic circuit diagram illustrating current flow in 

semiconductor as the voltage is being varied. 

When the set of measured currents and their corresponding voltages are plotted as 

shown in Figure 3.13, a linear graph which obeys Ohms law by passing through the 

origin is obtained.    

I (A)

V (V)

ΔI

ΔV

0

 

Figure 3.13. Typical I-V characteristics illustrating the linear relationship between 

direct current and voltage in accordance to Ohms law. Note that the slope gives the 

conductance of the semiconductor materials. 
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The inverse of the slope of I-V characteristics in Figure 3.13 gives the resistance, R of 

the semiconductor as shown in Equation (3.14).  
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where L, A and  are the thickness (cm), cross-sectional area (cm
2
) and resistivity 

(Ωcm) of the semiconductor material respectively. 

The material resistivity can then be obtained by re-arranging Equation (3.14) as 











L

RA
           (3.15) 

The conductivity,   of the semiconductor material measured in (Ω
.
cm)

-1
 or (S
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cm
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is 

determined by finding the inverse of   in Equation (3.15). 

3.6 Analytical techniques for device characterisation 

After materials growth and characterisation, the next stage is to use the developed 

semiconductor materials for electronic device fabrication.  Diode is the basic building 

block of any electronic device and solar cells are basically diodes when measured under 

dark condition. The basic techniques used for the diode and solar cell characterisation 

are current–voltage (I-V) and capacitance-voltage (C-V) techniques. With the 

application of external bias say from -1.0 V to +1.0 V, the current and capacitance 

signals can be measured.  This section discusses the two basic techniques used in this 

research work for device characterisation; they are: current-voltage (I-V) and 

capacitance-voltage (C-V) analytical techniques. 

3.6.1  I-V characteristics of a typical thin film solar cell 

The main characteristic of the solar cell is called the I-V curve. Figure 3.14 (a) shows 

the equivalent circuit of solar cell using a single diode model. An ideal diode is 

expected to have a zero series resistance (Rs=0) and infinite shunt resistance (Rsh→∞) 

[35]. The solar cell in Figure 3.14 is represented by diode symbol D. For these types of 

diodes with infinite Rsh, the Rsh behaves like an open circuit as shown in Figure 3.14 (b) 

and this makes virtually all the currents coming from the light source to flow mainly 
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through the diode (solar cell) instead of going through both the solar cell and shunt 

resistor. In this case, an alternative path for current flow is avoided with the presence of 

infinite Rsh. For this reason, the total current at the output will be maximum. At low Rsh 

(Figure 3.14 (a)), current is lost to the shunt which ultimately leads to reduction in open-

circuit voltage and fill factor. Low Rsh are due to defects that arise in the material during 

growth and they cause power losses [36]. The low Rsh provides alternative path for the 

current generated from photons to flow. According to Kirchhoff's law, the total 

generated current from photons divides into two, I1 and I2. I1 goes through the solar cell 

represented by diode, D while I2 goes through the shunt path.  

The series resistance on the other hand reduces the FF, although high values of Rs can 

also lead to reduction in the short-circuit current density [37,38]. Low Rsh and high Rs 

leads to a gradual reduction in FF (shape of the IV curve) which ultimately affects the 

power output of the solar cell. If Rs = 0, there would be no voltage drop before the load. 

Figure 3.14 (c) indicates an ideal diode situation where the Rsh tends towards infinity 

and Rs tends to zero.  
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Figure 3.14. Typical schematic diagram showing the equivalent circuit of a solar cell 

using a single diode model.  

It is important to measure the solar cell parameters under dark and illumination 

conditions so as to fully characterise the diode and photo-voltaic parameters. Under the 

dark condition, the diode parameters are obtained from the log-linear and linear-linear 

characteristics. The parameters obtained from Log I vs V curve are: rectification factor 

(RF), ideality factor (n), reverse saturation current (Is), potential barrier height  b ; from 

the linear-linear I-V curve, the series resistance (Rs) and shunt resistance (Rsh) are 

obtained. Under illumination condition, the electronic parameters obtained are: open 

circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), conversion 

efficiency (η), series resistance and shunt resistance. The device parameters were 

obtained using Keithley 2401 sourcemeter with an embedded DC voltage source and 

AM1.5 solar simulator. 
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3.6.1.1  I-V characteristics of solar cell under dark condition 

Under dark condition, the solar cell behaves like a diode either because of a rectifying 

Schottky junction formed between an n-type semiconducting material and a metal 

contact or because of junction formation between the n- and p-type semiconducting 

materials. The I-V characteristic of a Schottky type diode under dark condition is 

described by Equation (3.16) [35,39]. 
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Where ID is the forward current in dark, Is is the reverse saturation current derived from 

the extrapolation of the intercept of Log I at V = 0. V is the forward bias voltage, n is 

the ideality or junction quality factor, S is the surface area of the cell, A
*
 is the 

Richardson constant, q is the electronic charge (1.6x10
-19 

C), T is the room temperature 

measured in Kelvin = 300 K and k is the Boltzmann constant = 1.38x10
-23 

JK
-1

. 

b  is the barrier height at the device interface and can be deduced from Equation (3.19) 

once Is is determined from the intercept of the log-linear I-V curve. 











s

b
I

TSA

q

kT 2*

ln          (3.19) 

The Richardson constant for the semiconductor having effective mass 
*m is given by 

Equation (3.20) [40]. 

3

2*

*
4

h

qkm
A


          (3.20) 

*m is the effective mass of charge carriers and it varies from one semiconductor 

material to the other. For a p-type semiconductor, 
*m is denoted as 

*

pm ; while for an n-
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type semiconductor, 
*m is represented as 

*

em . For instance, the effective electron mass 

of CdTe, 
*

em  is 0.1mo [41], oe mm 21.0
*
 is the effective electron mass for n-CdS, 

op mm 20.0
*
 is the effective hole mass for p-ZnTe, mo = 9.1 × 10

-31
 kg is the rest mass 

of electron and h = 6.626 × 10
-30

 cm
2
kgs

-1 
is the Planck’s constant. The Richardson 

constant for free electrons in n-CdTe using oe mm 1.0
*
  has been estimated from 

Equation (3.20) to be 12.0 Acm
-2

K
-2

. 

1exp 








nkT

qV
 when voltages applied externally across the diode is greater than or equal 

to 75 mV (V ≥ 75 mV) [42]. Therefore Equation (3.17) can be reduced to  











nkT

qV
II SD exp.          (3.21) 

Taking the ln of Equation (3.21) 

nkT

qV
II SD  lnln  

nkT

qV
II SD  1010 log303.2log303.2   

V
nkT

q
II SD .

303.2
loglog 1010


        (3.22) 

Rearranging Equation (3.22) to resemble a straight line equation Y = mx +C 

SD IV
nkT

q
I 1010 log.

303.2
log 


          (3.23) 

From Equation (3.23), a plot of DI10log   against V gives a slope, m of 
nkT

q

303.2
 and 

intercept of SI10log
 
as shown in Figure 3.15. Equation (3.23) is thus very useful in 

analysing the I-V data measured under dark condition for a PV device. The ideality 

factor (n) of the diode can be calculated from the slope of the forward curve while Is is 

found from the intercept on the I10log axis. 



Chapter 3 Techniques for materials growth, materials and device characterisation 

79 
 

Bias Voltage (V)

0.1 0.3 0.4 0.5 0.6 0.7 0.8 1.00.90.2

-1.0

-3.0

-4.0

-5.0

-6.0

-7.0

-8.0

-10.0

-9.0

-2.0

L
og

 I
L

og
 I

s
Forw

ard curre
nt (I

F
)

Reverse current (IR)

Lin
e 

of
 b

es
t 

ta
ng

en
t f

or
 sl

op
e 

an
d 

I s d
et

er
m

in
at

io
n

 

Figure 3.15. Typical log-linear I-V characteristic of diode under dark condition. The 

curves representing the forward current and reverse current have been indicated. Also, 

the intercept of the line of best tangent on the Log I axis is useful to determine the 

saturation current. 

From Figure 3.15, slope = 
nkT

q

V

ILog
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From Equation (3.24) 

InkTVq 10log303.2    

nkTIVq )(ln   
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         (3.26) 

Equation (3.25) is used to calculate n when log10 (I) is plotted against V while Equation 

(3.26) is applicable in finding n value when ln (I) is plotted against V. The ideality 

factor (n) helps in determining the type of current transport that takes place over the 

potential barrier height. For example, in an ideal diode, current is transported mainly 

through thermionic emission of electrons over the potential barrier and this makes n to 

become 1.00 [40,43]. If n = 2.00, it means the current flow through Schottky junction 

takes place through recombination and generation (R&G) mechanisms within the 

device. Under this situation, the depletion region and the junction are full of R&G 

centres [35]. In real situation when working with practical electronic devices, the value 

of n can vary between 1.00 and 2.00 [44]; this implies that both thermionic emission 

with R&G process do take place in parallel. 

The rectification factor (RF) is an important diode parameter that helps in determining 

the quality of a rectifying diode. It is the ratio of forward current to reverse current at a 

specified voltage. A RF of ~10
3
 is adequate for application in some electronic devices 

such as diodes and solar cells [35]. The linear-linear I-V characteristics of diode 

illustrated in Figure 3.16 can be used to determine the Rs, Rsh, threshold voltage (VT), 

breakdown voltage (VBD). As earlier explained, an ideal diode must have zero Rs; while 

for a solar cell to be efficient, the value of the Rs must be kept to the barest minimum 

value. High value of Rs may be due to resistance contribution from the oxide layer 

formed at the interface between the metal and semiconductor [45], bulk resistance of the 

back-metal contact [44,46] and usage of a highly resistive semiconductor. The value of 

Rsh in a diode denotes the presence of current leakage paths in the diode. As shown in 
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Figure 3.16, Rs is determined by taking the slope of the I-V curve at the high end of the 

forward I-V curve while the slope taken at the high reverse end of the I-V curve gives 

the Rsh. 

The threshold voltage or the turn-on voltage is the minimum voltage required to turn on 

a diode [39] and the value varies from one semiconductor material to the other [47–49]. 

The VT must be overcome for diodes to be able to conduct in forward direction. 

Breakdown voltage occurs in the reverse bias region of the diode and it happens when a 

large reverse current flows through the diode. Under ideal situation, large currents are 

supposed to flow through the diode when forward biased because diode is a 

unidirectional device which allows currents to pass through it in only one direction. Due 

to this unique feature, currents are not allowed to flow through an ideal diode when 

reverse biased. However, since most fabricated diodes are not ideal in their electronic 

behaviour, they can permit negligible or small amount of currents called reverse 

saturation current to flow through. But when high voltage which results to high field is 

applied to the diode, a large reverse current flows through the p-n junction thereby 

causing the diodes to breakdown [39].  

ΔIsh

ΔVs

ΔIs

ΔVsh

Rsh

IR

IF

R
s

D
ar

k
 c

u
rr

en
t,

 I
 (

A
)

0

VBD

Bias voltage (V)VT

 

Figure 3.16. Determination of breakdown voltage, threshold voltage, series and shunt 

resistance from typical linear-linear I-V characteristics of a diode under dark condition.  
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3.6.1.2 I-V characteristics of solar cell under illumination condition 

It is important to be acquainted with what happens to solar cells under illumination 

condition. When a solar cell is illuminated as shown in Figure 3.17 (a), it behaves as a 

diode with current source parallel to the diode junction as illustrated in Figure 3.17 (b) 

[39]. The current generated from the solar cell after shining light on it is known as 

photo-generated currents. Under illumination condition, the equivalent circuit of an 

ideal solar cell has zero Rs and infinite Rsh. 

Isc RL

IL

ID

+

-

V

(a)

RL

ID

≡ 
hʋ 

(b)
 

Figure 3.17. (a) Ideal solar cell under illumination and (b) Equivalent circuit of ideal 

solar cell under illumination after representing the effect of photons with current source. 

The resultant current (IL) of the ideal solar cell under illumination as deduced from 

Figure 3.17 (b) is given by Equation (3.27) [39]. 

SCDL III            (3.27) 

The direction of the photo-generated current (ISC) is opposite to the direction of diode 

forward current in dark as indicated by the negative sign in Equation (3.27). 

Substituting Equation (3.17) into Equation (3.27) yields Equation (3.28). 

SCSSCDL I
nkT

qV
IIII 

















 1exp       (3.28)  

The three important parameters that determine the efficiency (ɳ) of solar cell are open-

circuit voltage (Voc), short-circuit current density (Jsc) and fill factor (FF). The Voc is the 

potential measured when current does not flow in the external circuit; that is when the 

current, IL in Equation (3.28) becomes zero. This can be obtained directly from Figure 

3.18 at IL=0 where the I-V curve intercept the X-axis.  The short-circuit current (Isc) is 

photo-generated current that flows through the cell when the voltage across the two 

electrical contacts is zero or when the two contacts are short-circuited. Isc can be 

obtained directly from Figure 3.18 at V=0 where the I-V curve intercept the Y-axis.   
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I

Isc

Im

C=Vm × Im

Vm
Voc

D=Voc × Isc

V

Dark I-V

Illuminated I-V

Slope for Rs 

estimation

Slope for Rsh 

estimation

The third parameter of a solar cell is the fill factor (FF) and it is the fraction of electrical 

power that can be extracted from the solar cell. FF also gives the squareness of the I-V 

curve of the solar cell as shown in Figure 3.18 and it is defined as the ratio of the 

maximum power output, Pmax to the product of Isc and Voc as expressed in Equation 

(3.29). 

Darea

Carea

IV

IV

IV

P
FF

scoc

mm

scoc

 max        (3.29) 

The conversion efficiency (ɳ) of the solar cell which explains the overall performance 

of the solar cell is defined as the ratio of the maximum power output (Pmax) to the total 

incident power (Pin) according to Equation (3.30) [39]. 

in

mm

in P

IV

P

P
 max          (3.30) 

The conversion efficiency in terms of Voc, Isc and FF can be obtained by combining 

Equations (3.29) and (3.30).  

Figure 3.18. A typical I-V characteristic of solar cell measured under dark and 

illuminated conditions. 
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in

scoc

P

IVFF 
          (3.31) 

where 
2100  mWcmPin  is the solar power incident on a unit area under the standard 

AM1.5 illumination condition. 

For a unit area of the solar cell, the short circuit current, Isc is replaced by the short 

circuit current density Jsc as stated in Equation (3.32). Conventionally, the unit of Jsc is 

expressed in mAcm
-2

.  

A

I
J sc

sc            (3.32) 

Thus, Equation (3.31) becomes 

in

scoc

P

JVFF 
          (3.33) 

3.6.2 Capacitance-voltage (C-V) technique 

Electronic parameters of thin film semiconductor devices such as depletion capacitance 

at zero bias (Co), the doping concentration of the acceptors (NA) and donors (ND) can be 

found using C-V technique. Other quantities which can be deduced from the initially 

obtained parameters of C-V plot are: the diffusion potential (Vbi), energy difference 

between the Fermi level (EF) and the bottom of the conduction band edge (EC) (ΔE = EC 

– EF), the energy difference between the Fermi level (EF) and the top of the valence 

band edge (EV) (ΔE = EF – EV) and the depletion width (W). The C-V measurements can 

be carried out at room temperature or temperatures either below or above it. For all the 

experimental results discussed in this thesis, CV measurements were carried out at room 

temperature and bias voltage of -1.0 to +1.0 V. CV measurements are also better carried 

out at a higher frequency (say 1 MHz) to reduce defect interference. This is because at 

low frequency, presence of defects in the material does affect the measured capacitance 

due to contribution from defects.  

Equation (3.34) [50] is applicable for a p-n junction diode where we have both the 

acceptors and donors. The doping density (N) of the n-type semiconductor and p-type 

semiconductor can be estimated from the junction capacitance shown in Equation 

(3.35). While applying Equation (3.35) to device structures fabricated from n-type 
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semiconductor, the doping density (N) becomes a donor concentration (ND-NA) while N 

also becomes acceptor concentration (NA-ND) for device structures fabricated from p-

type semiconductor [7]. 

 For a one-sided p-n junction diode, Equation 3.34 can be further modified to resemble 

Equation (3.36) and (3.37) depending on the application. For a p
+
n junction diode where 

NA ≫  ND, the doping density N becomes ND; in this case, Equation (3.34) can be 

simplified to Equation (3.36). Likewise N becomes NA if ND ≫ NA (n
+
p) as shown in 

Equation (3.37). These various applications thus allow Equation (3.34) to be modified 

accordingly. Using Equation (3.35), a graph of C
-2

 versus V is plotted to estimate the 

value of N, and the built-in potential (Vbi) can be obtained from the intersection of C
-2

  

versus V curve on bias voltage axis. A graph of C
-2

 versus V is called Mott-Schottky 

plot, which finds application in metal semiconductor (MS) devices and one-sided p-n 

junction diodes [50]. 

Under an ideal situation, a plot of C
-2

 versus V is supposed to give a linear graph as 

shown in Figure 3.19 (a). However, the presence of surface states, traps, and non-

uniformity of doping in the semiconductor material makes the Mott-Schottky plots to 

deviate from linearity as illustrated in Figure 3.19 (b) [7,51]. The Mott-Schottky plots 

presented in Chapters 4, 5, 7, 8 and 9 of this thesis deviate from linearity and these 

could be attributed to factors such as surface states and non-uniformity of doping in the 

electroplated semiconductors used in this research. The deviation from linearity thus 

implies that the theory developed for a simple depletion region is not fully applicable 

for more complex systems. 
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Figure 3.19. Mott-Schottky plots of n- and p-type semiconductors (a) for an ideal diode 

and (b) non-ideal diode due to presence of surface states and defects.  
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+
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In the above equations, VR is the reverse bias voltage, Vbi is the built-in potential, e is the 

charge on electron, C is the measured capacitance in Farad (F), εs is the permittivity of 

semiconductor and A is the area of the p-n junction diode, NA is the acceptor density (or 

the concentration of free holes at room temperature) and ND is the donor density (or the 

concentration of free electrons at room temperature). 

The effective width (W) of the depletion region of fabricated Schottky diodes or p-n 

junction diodes can be estimated from Equation (3.38). 

C

A
W or

           (3.38) 

Where r  is the relative permittivity of the material ( r is 10.2 for CdSe, 8.9 for CdS, 

8.9 for ZnS [52], 10.4 for ZnTe [53] and 11.0 for CdTe [41]), o is the permittivity of 

vacuum, A is the diode area, C is the measured capacitance at zero bias and W is the 

depletion width. For a fully depleted device, the depletion width is almost equal to 

thickness of the thin film. The depletion region forms the heart of a basic electronic 

device; this is where electric field is being created as a result of separation of positive 

and negative space charges.   

The depletion width, W can also be expressed as shown in Equation (3.39) [44].  
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Where Xp and Xn are the distances by which the depletion region extends into the p- and 

n-type semiconductors respectively.  

Equation (3.40) is applicable to n
+
p junction diodes where the doping concentration in 

the n-region is much greater than that of the p-region (ND >> NA). In n
+
p junction 

diodes, Xn << Xp; therefore the total depletion width, W ≈ Xp. In the same way, 

Equation (3.41)  can be used to determine the depletion width in a p
+
n junction diodes 

where the doping concentration in the p-region is much greater than that of the n-region 

(NA >> ND) [43]. In p
+
n junction diodes, Xp << Xn; therefore the total depletion width, 

W ≈ Xn.  

Having determined W and Xp from Equation (3.38) and (3.40) respectively, Xn can then 

be found by using Equation (3.39). For n
+
p junction diodes where the concentration of 

holes in the valence band (acceptor density) is determined from the Mott-Schottky plots, 

the donor density (ND) can then be estimated by substituting known values of Xn and Vbi 

into Equation (3.41). As earlier discussed, Equation (3.38) can be used in calculating the 

total depletion width for the p-n junction diode by using the depletion capacitance 

obtained from C-V plot. The estimated result from Equation (3.38) can only correspond 

to that obtainable from Equation (3.39) if the right Vbi value is used. The Vbi is found by 

extrapolating the Mott-Schottky curve to the bias voltage axis at C
-2

=0. [39]. The Vbi 

can therefore be accurately determined if the C
-2

 (F
-2

) axis of the Mott-Schottky plot 

starts from the origin. Alternatively, the Vbi can be theoretically determined by applying 

Eqn. (3.51). 

The effective density of states depends on temperature and the nature of semiconductor 

material and this makes the value to vary from one semiconductor material to the other. 

The concept of effective mass is useful in modelling the temperature dependence of NC; 

this allows Equations (3.42) and (3.43) to be used over a range of temperatures [39]. 

The effective density of states in the conduction band edge of semiconductor is given by 

2/3

2

*
2

2















h

kTm
N e

C


         (3.42) 

Where 
*

em is the effective electron mass of n-type semiconductor, mo = 9.1 × 10
-31

 kg is 

the rest mass of electron and h = 6.626 × 10
-30

 cm
2
kgs

-1 
is the Planck’s constant. 

The effective density of states in the valence band edge of semiconductor is given by    
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         (3.43) 

Where 
*

pm is the effective hole mass of p-type semiconductor. 

The Fermi-Dirac probability function of electrons occupying the donor state is given by 

[50] 
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exp
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        (3.44) 

Where EC is the lowest energy of the conduction band, EF is the Fermi level and g is 

called a degeneracy factor ~2.00 for donor atoms and ~4.00 for acceptor atoms [44,54].  

From Equation (3.44), 









n

N
kTEEE C

FC ln693.0     (3.45) 

Equation (3.45) is therefore a very useful relationship to determine the position of Fermi 

level in a degenerate n-type semiconductor. For non-degenerate semiconductors where 

the doping density is less than the effective density of states, the degeneracy factor, g in 

the Fermi-Dirac function is not being considered. Therefore Equation (3.44) reduces to,











n

N
kTEEE C

FC ln         (3.46) 

Equation (3.46) is an approximation of the Fermi-Dirac function and is mostly applied 

to determine the Fermi level position of a non-degenerate n-type semiconductor. It 

should be noted that DNn   if all impurity atoms are ionised. For a non-degenerate p-

type semiconductor, Equation (3.46) can be re-written as,  











p

N
kTEEE V

VF ln         (3.47) 

EF - EV is the difference in energy (ΔE) between the Fermi level and the top of the 

valence band and p is the hole concentration. 
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For a p-n junction diode, the electric field, E in the semiconductor at the interface is 

given by,  

















DA

DA

s NN

NNeW
x )0(          (3.48) 

For Schottky diodes fabricated from n-type and p-type semiconductors, the electric 

fields in the semiconductor at the M/S interface are given by Equations (3.49) and 

(3.50) respectively. Equations (3.49) and (3.50) are also applicable to p
+
n and n

+
p 

junction diodes respectively [39]. 

s

Dn NeX
x


 )0(          (3.49) 

s

Ap NeX
x


 )0(          (3.50) 

As explained by Sze and Ng [39], most of the built-in potential and depletion region are 

inside the lightly doped region of the one-sided p-n junction diode. Therefore, the 

magnitude of the built-in potential for one-sided junction diode can be estimated using 

Equation (3.51) [39,49]. 

 W
E

Vbi
2

max
          (3.51) 

3.7 Summary 

Substrates selection and preparation, and the basic electrodeposition growth technique 

used in this work have been discussed. Also, some of the analytical techniques for 

material characterisation have been briefly explained. The end result of every material 

being investigated and analysed with the characterisation techniques is to employ them 

in device fabrication. For this reason, brief explanations have been given on the two 

basic techniques used in this work for device characterisation; the two analytical 

techniques are I-V and C-V measurement techniques. 
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Chapter 4 - Growth and characterisation of CdSe thin films 

4.1 Introduction 

CdSe is a well-known II-VI semiconductor that can crystallise in either wurtzite 

(hexagonal) or the zinc blende (cubic) structure. It is a direct bandgap semiconductor 

material which is used in opto-electronic devices, light-emitting diodes (LEDs), field-

effect transistors (FETs), biosensors, biomedical imaging and solar cells fabrication [1]. 

CdSe is an n-type semiconductor with a bandgap of ~1.80 eV in the wurtzite crystal 

phase and ~1.71 eV in the zinc blende phase [2,3]. According to Böhmler et al. [3], the 

energy bandgap values are dependent on the crystal phase of the thin films. The 

deposition of CdSe thin film has been achieved using different growth methods such as 

pulsed laser deposition [4], thermal vacuum evaporation [5], chemical bath deposition 

(CBD) [4,6], spray pyrolysis [7] and electrodeposition [8–10].  

 

This chapter describes the cathodic electrodeposition of CdSe thin films on FTO-coated 

glass substrates using two-electrode system and aqueous acidic electrolyte. The material 

properties of ED-CdSe layers were studied using some of the analytical techniques 

discussed in Chapter 3. The effects of pH variation of the CdSe electrolyte on its 

optoelectronic properties have also been explored. The electronic qualities of the 

electrodeposited CdSe layers were tested using the device structure glass/FTO/n-

CdSe/metal contact and the results are reported in this thesis. Overall, the aim of this 

work is to study the material and electronic properties of CdSe thin films under different 

deposition conditions so as to know the areas where it can best be applied in terms of 

electronic device fabrication.  

4.2 Preparation of CdSe electrolytic bath 

The precursors used for the growth of CdSe thin films were 0.3M CdCl2 as Cd
2+

 source 

and 0.003M SeO2 as Se
2-

 source in 400 ml of de-ionised water. All chemicals used for 

electrodeposition were analytical reagent grade of purity 5N (99.999%) from Sigma 

Aldrich. The growth temperature and pH of the bath used for the optimisation of the 

growth voltage were approximately 80
o
C and 2.20±0.02 respectively. The pH of the 

bath was adjusted accordingly by adding ammonia or HCl solution. The 2.20±0.02 pH 



Chapter 4    Growth and characterisation of CdSe thin films 

95 
 

was the initial pH used for CdSe characterisation before optimising the pH to grow a 

nearly stoichiometric CdSe layer for electronic device application. The glass/FTO used 

in this work was TEC-15 with a sheet resistance of ~13 Ω/□ and the electroplating of 

CdSe was carried out in potentiostatic mode using a 2-electrode system set-up.  

4.3 Voltage optimisation and growth of CdSe thin films 

In this section, some analytical techniques used in determining suitable cathodic 

deposition potentials range for the growth of nearly stoichiometric CdSe layers and for 

material characterisations have been explored. To obtain a suitable deposition potential 

for the CdSe layers, other preparative parameters such as the growth temperature, pH 

and growth time (tg) were kept constant at 80
o
C, 2.20±0.02 and five minutes 

respectively. 

4.3.1 Cyclic voltammogram 

A suitable voltage range to grow nearly stoichiometric CdSe thin films was obtained 

using cyclic voltammogram. A range of cathodic potentials from 0 to 2000 mV was 

applied through the electrodes immersed in the electrolyte at a sweep rate of 3 mVsec
-1

. 

The initial pH of the solution and deposition temperature was maintained at 2.20±0.02 

and ~80
o
C respectively. Cyclic voltammograms were obtained for the electrochemical 

reactions in solutions of 0.3M CdCl2, 0.003M SeO2 and mixture of 0.3M CdCl2 + 

0.003M SeO2 each in 400 ml of de-ionised water to determine the approximate 

deposition voltages for Cd, Se and CdSe respectively. 

4.3.1.1 Cyclic voltammogram of 0.3M CdCl2 

0.3M CdCl2 was prepared using 400 ml of de-ionised water and the pH of the first 

solution was measured to be 3.79±0.02 at room temperature; this pH was adjusted to 

2.20±0.02 by the addition of HCl solution. The first voltammogram of the CdCl2 

solution as shown in Figure 4.1 was taken to help in determining the potential at which 

the Cd deposition and dissolution take place. From Figure 4.1, the first hump appears at 

a cathodic potential of ~910 mV; this shows that Cd begins to deposit at this potential. 

In the reverse direction of the curve, the transition point from the positive current 

density axis to the negative is ~1440 mV; this voltage is an indication of the potential at 

which Cd dissolution begins to dominate. In fact, at ~1440 mV, equal amounts of Cd 

deposition and dissolution take place and hence the resultant current becomes zero.  The 
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reduction of Cd
2+

 to Cd on the surface of FTO electrode takes place according to 

Equation (4.1), and the current flow is in the forward direction. However, the 

dissolution of Cd takes place according to Equation (4.2) and the current produced is in 

the opposite direction. 

CdeCd   22
         (4.1) 

Cd
 
 →  Cd

2+
 +2e

- 
         (4.2) 

 

Figure 4.1. A typical cyclic voltammogram of electrolyte containing 0.3M of CdCl2 

aqueous solution (pH = 2.20±0.02, T = 80
o
C). 

4.3.1.2 Cyclic voltammogram of 0.003M SeO2 

A cyclic voltammogram of 0.003M SeO2 of aqueous solution is shown in Figure 4.2 

and the corresponding chemical reaction is described in Equation (4.3). In the forward 

curve (Figure (a) at the inset of Figure 4.2), the first hump appears at a cathodic 

potential ~178 mV; this voltage is an indication of the potential at which Se deposition 

begins. According to Pawar et al. [11], this reduction peak is as a result of the 

irreversible reaction shown in Equation (4.4). Se dissolution begins to dominate at ~589 

mV (this is shown in Figure (b) at the inset of Figure 4.2). 

SeO2 + H2O → H2SeO3                    (4.3) 

H2SeO3 + 4H
+
 + 4e

-
 →Se + 3H2O           (4.4) 
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Figure 4.2. A typical cyclic voltammogram of electrolyte containing 0.003M of SeO2 

aqueous solution (pH = 2.20±0.02 and T = 80
o
C). 

4.3.1.3 Cyclic voltammogram of mixture of 0.3M CdCl2 + 0.003M SeO2 

Figure 4.3 shows the cyclic voltammogram measured for glass/FTO electrode in an 

aqueous solution containing a mixture of 0.3M CdCl2 and 0.003M SeO2. It is also worth 

noting that the minimum standard reduction potential for electrolysis of water molecules 

is about 1230 mV [12]. The discharging of most active H atoms at the cathode while 

CdSe is forming is an excellent built-in method to passivate defects in the CdSe layer. 

However, if H2 bubbles are formed at the cathode, it could have a detrimental effect of 

delamination of the semiconducting layer. The redox potential (E
o
) of Se and Cd are 

+0.74 and -0.40 V respectively [13]. From the redox potential values, Se shows a more 

positive redox potential than Cd; for this reason, Se is therefore expected to deposit 

before Cd. 

The forward curve illustrated at the inset of Figure 4.3 (Figure (a)) shows that Se begins 

to deposit at ~440 mV while Figure (b) at the inset of Figure 4.3 shows that Cd begins 

to deposit at ~1080 mV. The sudden rise in deposition current at 1080 mV to 1800 mV 

shows the beginning of reaction between Cd and Se to form CdSe. In this region, the 

layer formed is a mixture of CdSe and elemental Se thus giving rise to a Se-rich CdSe 
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layer. Beyond 1800 mV, a sharp rise is noticed in the deposition current. This leads to a 

gradual decrease in the amount of elemental Se because more Cd is incorporated into 

the CdSe layer. As the growth voltage further increases, the amount of elemental Se in 

the CdSe layer gradually reduces thus giving rise to stoichiometric formation of CdSe 

layer in the voltage range between 1900 to 2000 mV. Beyond 2000 mV, formation of 

Cd dendrites was observed. The Cd dendrites formation shows that at voltages ≥2000 

mV, the CdSe layer formed is a Cd-rich material.  

 

Figure 4.3. Cyclic voltammogram of electrolyte containing a mixture of 0.3 M of 

CdCl2+0.003 M of SeO2 aqueous solutions (pH =2.20±0.02 and T=80
o
C). (Insets show 

the transition voltages).  

The formation of CdSe thin film is according to the following overall reactions: 

CdCl2.H2O → Cd
2+

 + 2Cl
-
 +H2O       (4.5) 

SeO2 + H2O → H2SeO3         (4.6) 

H2SeO3 + 4H
+
 + 6e

-
 →Se

2-
 + 3H2O        (4.7) 

Reaction for the formation of CdSe on FTO substrate may be due to Equation (4.8). 

Cd
2+ 

+ Se
2-

 → CdSe         (4.8) 
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As seen from Figures 4.1 and 4.2, Cd begins to deposit at around 910 mV while Se 

begins to deposit at around 178 mV under the experimental conditions used in this 

work. The shift in the reduction potential of both Cd and Se from ~910 mV and 178 mV 

(Figures 4.1 and 4.2) to ~1080 mV and 440 mV (Figures (b) and (a) at the inset of 

Figure 4.3) respectively may be due to the chemical reaction that takes place to form 

CdSe. Comparing the potential at which both Cd and Se begin to deposit, it can be seen 

that Se deposits first before Cd as seen from the cyclic voltammogram. The theoretical 

redox potential value can be used to determine which of the elements deposit first; 

however, its shortcoming is that it cannot be used to determine the approximate 

potential at which the compound is formed. This is why cyclic voltammetry was used to 

determine which of the elements deposit first and the suitable potential range to grow 

CdSe compound.  

4.3.2 Structural characterisation 

X-ray diffraction (XRD) and Raman spectroscopy techniques were used to study the 

structural behaviour of electroplated CdSe thin films in both as-deposited and heat-

treated states.  

4.3.2.1 X-ray diffraction (XRD) studies 

Samples of CdSe layers were grown in the voltage range between 1900 mV and 2000 

mV in order to examine their structural properties and to identify material phases. This 

allows preliminary optimisation of growth voltage, Vg to produce near stoichiometric 

CdSe. Typical XRD patterns for as-deposited (AD) CdSe as a function of Vg are shown 

in Figure 4.4 (a) while Figure 4.4 (b) shows the XRD patterns of heat-treated (HT) 

CdSe in air at 350
o
C for 15 minutes. The XRD peaks show that the as-grown and 

annealed CdSe films are polycrystalline in nature having hexagonal structure with the 

preferred orientation along (002) plane. Other peaks that correspond to (103) and (112) 

planes were also observed with lower peak intensities. The XRD results show that CdSe 

layers grow best in the cathodic voltage range between 1966 and 1974 mV. A 

continuous increase in peak intensity was observed as the cathodic deposition voltage 

increases from 1960 to 1972 mV. A further increase in the voltage led to a decrease in 

the peak intensity indicating decrease in crystallinity in this Vg region. The XRD results 

also show that the highest intensity of the (002) peak occurs at a cathodic potential of 

1972 mV for both AD- and HT-CdSe samples (see Figure 4.5). Therefore, in this work, 
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Vg of 1972 mV was selected as the optimum potential for electrodeposition of CdSe 

thin films.  

  

Figure 4.4. XRD spectra of electroplated CdSe layers grown at the cathodic potentials 

ranging from 1966 mV to 1974 mV for (a) as-deposited CdSe layers, and (b) heat-

treated CdSe layers at 350
o
C for 15 minutes in air. 

Figure 4.5 shows how the intensity of the (002) peak varies with the cathodic potential 

for both AD- and HT-CdSe. This result also explains how the crystallinity of the CdSe 

layers is improved when subjected to heat treatment. The peak intensities of the HT-

CdSe are generally higher than those of the AD-CdSe. This is because, increase in 

temperature also increases the grain size of the CdSe layers thereby leading to a 

corresponding improvement in crystallinity.  
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Figure 4.5. Variation of (002) peak intensity as a function of growth voltage for AD- 

and HT-CdSe layers. 

The observed d-spacing values (Table 4.1) from XRD results are compared with the 

standard values reported in JCPDS data, reference code '01-077-2307' and both are 

found to be in good agreement. The crystallite sizes of the AD- and HT-CdSe grown at 

1972 mV for 20 minutes were determined using Scherrer's equation stated in Equation 

(3.12) of Chapter 3. The Scherrer's relation is useful in calculating the crystallite size 

(D) of a poly-crystalline thin film material by using the results obtained from XRD 

analysis [10]. The calculated crystallite sizes for AD- and HT-CdSe thin films using 

(002) peak were ~33 and 63 nm respectively. Table 4.1 shows the comparison between 

the peak intensity and FWHM of AD- and HT-CdSe layers obtained from XRD 

measurements. After annealing, the intensity increases and the FWHM values decrease 

indicating the improvement of crystallinity of the material. According to the Scherrer's 

equation, a reduction in FWHM (β) leads to an increase in the crystallite size and hence, 

a corresponding increase in grain size. Thus, the higher the crystallite sizes of a thin 

film material, the better its crystallinity. 

Table 4.1. Summary of XRD measurement results for AD- and HT-CdSe layers. 

Sample 

 

Peak Intensity 

 

2 theta  

(degrees)  

d-spacing  

(Å) 

FWHM, β 

 (degrees) 

FWHM, β 

(Rad.) 

D 

(nm) 

AD-CdSe 1626 ~26.00 ~3.44 0.260 0.0045 33.3 

HT-CdSe 2944 ~26.00 ~3.45 0.130 0.0023 63.0 
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4.3.2.2 Raman spectroscopy measurements 

An alternative technique that can be used to determine the extent to which a thin film 

material is crystallised is Raman spectroscopy. Using the Raman instrument, an 

extended spectrum for the AD- and HT-CdSe layers was collected at room temperature 

using a 50% laser power (~15 mW) and 100x objectives in the Raman microscope for 

10 seconds. Initially, a 100% laser power (~30 mW) was used in the experiment but 

after switching to white light, it was observed that a section of the sample exposed to 

the beam was already damaged. For this reason, the laser power was reduced to 50%. 

Thus, the 50% laser power was able to reduce the heating effect of the laser beam 

thereby preventing any change on the layer which could lead to loss or reduction of 

crystallinity. Curve fitting was also performed on the spectra using a combination of 

Lorentzian/Gaussain mathematical function to obtain parameters  such as peak position, 

peak intensity and peak width also known as full width at half maximum (FWHM). 

Figure 4.6 shows two visible Raman peaks for AD- and HT- CdSe layers at 200
o
C for 

10 minutes in air. These peaks are Raman longitudinal optical (LO) vibration mode at 

wave numbers 206 cm
-1

 and 414 cm
-1

 for 1LO and 2LO peaks respectively. 

 

 

Figure 4.6. Raman spectra of as-deposited and heat-treated CdSe thin films at 200
o
C for 

10 minutes in air. 
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The wave numbers obtained in this experiment are almost similar to that obtained by 

Brioude et al. [14] after using an excitation wavelength of 514.5 nm from an argon-

krypton laser power. Both AD- and HT- CdSe thin films reveal clear peaks at 1LO and 

2LO with no shift in the peak positions. Table 4.2 shows the parameters obtained after 

performing curve fitting on the spectra. The result shows that HT-CdSe layers possess a 

better crystallinity than the AD- CdSe layers due to reduced FWHM and higher peak 

intensity as observed in both 1LO and 2LO Raman peaks. 

Table 4.2. Raman parameters obtained by curve fitting of the CdSe spectra.  

Raman parameters As- deposited Heat-treated 

 1LO 2LO 1LO 2LO 

Raman peak position (cm
-1

) 206 414 206 414 

Peak intensity (arb. unit) 3002 428 3171 450 

FWHM (cm
-1

) 18.7 30.6 17.7 30.5 

 

4.3.3 Optical absorption studies 

The optical absorption measurements of the ED-CdSe layers were carried out in order to 

estimate the optical energy bandgap (Eg). Typical optical absorption graphs for 

estimation of energy bandgap of both AD- and HT-CdSe layers grown at 1972 mV are 

shown in Figure 4.7(a); the graph was obtained by plotting the square of absorbance 

(A
2
) as a function of the photon energy (hѵ). The bandgaps were estimated by 

extrapolating the straight line portion to the photon energy axis (at absorbance
2
 = 0). As 

illustrated in Figure 4.7 (a), a reduction took place in the Eg after annealing in air. The 

decrease in Eg after heat-treatment in air shows that the material crystallinity improved 

after heat-treatment [15]. The spectrum of absorption curve for HT-CdSe layer also 

exhibits a sharper absorption edge than AD-CdSe. This is an indication that the 

concentration of defects in the HT-CdSe layers have been reduced [16]. The Eg values 

were also obtained for both AD- and HT-CdSe layers deposited between 1966 mV and 

1976 mV. The obtained energy bandgap values are plotted in Figure 4.7(b) as a function 

of cathodic potentials. In general, the Eg values for AD-CdSe layers are higher than HT-

CdSe layers with respect to each growth voltage. The higher Eg values suggest the 

formation of smaller grains in AD-CdSe while the lower Eg values observed in HT-

CdSe layers signify the development of smaller grains into larger grains after annealing 

[17]. A further explanation of the transformation of smaller grains to larger ones is 
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given in section 4.3.5 of this chapter. In summary, the results shown in Figure 4.7 

denote that the energy bandgap of the annealed CdSe at a cathodic voltage of 1972 mV 

tends to be closer to the bandgap of bulk CdSe in the wurtzite crystal phase. This value 

was reported by Böhmler et al. to be ~1.80 eV [3]. 

  

Figure 4.7. (a) Typical optical absorption graphs for CdSe layers grown at -1972 mV 

and (b) Variation of the typical energy bandgaps as a function of cathodic deposition 

potentials. 

4.3.4 Photoelectrochemical (PEC) cell measurements study 

Figure 4.8 illustrates the PEC signals for both AD- and HT-CdSe layers grown at 

different growth voltages (Vg). 

 

Figure 4.8. Typical PEC signals for CdSe/electrolytic junctions as a function of growth 

voltage, indicating n-type electrical conduction. 
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The PEC signals show that both AD and HT samples of CdSe layers grown in the 

voltage range of 1966 mV to 1976 mV are n-type in electrical conduction. The results 

also show a crossing / overlapping of the PEC signals for both AD- and HT-CdSe layers 

at a cathodic potential of 1972 mV. This may be an indication of Vg for growing 

stoichiometric CdSe layers. 

4.3.5 Morphological analysis of CdSe 

Scanning electron microscopy (SEM) was used to investigate the surface morphology, 

the range of the grain sizes and the average thickness of CdSe layers grown on FTO 

substrates. SEM is a useful tool to study morphology of thin films [11]. Figure 4.9 (a) 

shows that the surface of AD-CdSe film is uniformly covered by large numbers of 

grains without pinholes. The obtained micrographs of AD-CdSe layers reveal compact 

films of regular morphology.  

  

Figure 4.9. SEM images of CdSe thin films grown on FTO substrates at Vg = -1972 mV 

and tg = 30 mins. Surface morphology of (a) AD-CdSe and (b) CdSe heat-treated at 

380
o
C for 30 minutes in air. 

Figure 4.9 (b) shows the presence of pinholes on the surface of the HT-CdSe films; 

these pinholes are due to sublimation of excess Se element in the CdSe layer that arises 

as a result of the high annealing temperature of 380
o
C for longer duration of 30 minutes. 

This pinhole formation may also provide an indication of Se precipitation during growth 

of CdSe layers. Figures 4.10 (a) and 4.10 (b) show the SEM images of AD- and HT-

CdSe grown at a shorter duration of five minutes. In Figure 4.10 (a), the grain size of 

the AD-CdSe layer ranges from 27 to 320 nm while in Figure 4.10 (b), the grain size of 

HT-CdSe layer ranges from 72 to 360 nm. The minimum and maximum grain sizes of 

HT-CdSe are greater than those of the AD-CdSe. This increase in grain size may be 

(a) 

 

(b) 
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attributed to the annealing parameters (temperature and time) used. Both images show 

that the whole surface of the substrate is more compact together with absence of 

pinholes. The SEM cross-section illustrated in Figure 4.11 gives the average film 

thickness of CdSe layer as 156 nm comparable with the theoretical value of 154 nm 

which was calculated using Faraday’s laws of electrodeposition stated by Equation (3.4) 

in Chapter 3. The thickness of SiO2 and FTO from Figure 4.11 are ~18 nm and ~196 nm 

respectively.  

  

Figure 4.10. SEM images of CdSe thin films grown on FTO substrate at Vg = -1972 

mV for tg = 5 mins. (a) Surface morphology of AD-CdSe with grain size ranging from 

27 to 320 nm and (b) Surface morphology of HT-CdSe at 250
o
C for 10 minutes in air 

with grain size ranging from 72 to 360 nm. 

 

 
 

Figure 4.11. Typical cross-section of CdSe thin films grown on FTO substrate and heat-

treated at 250
 o
C for 10 minutes in air (V

g = -1972 mV and tg = 5 mins.) (Courtesy: G.J. 

Russel microscopy center at University of Durham, UK).        

(a) 

 

(b) 
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4.3.6 Atomic force microscopy (AFM) 

Figure 4.12 shows AFM pictures of annealed CdSe deposited at cathodic potential of 

1972 mV on glass/FTO substrates. The AFM images reveal the presence of large and 

dense agglomeration of small grains with good cementing effect. The layers produce 

pinholes free material suitable for buffer, window and absorber materials in thin film 

solar cells. 

 

Figure 4.12. Typical AFM images of annealed ED-CdSe grown at -1972 mV on 

glass/FTO substrate (Courtesy: Institute of Organic Catalysis and Electrochemistry, 

Almaty, Kazakhstan). 

4.3.7 Thickness of ED-CdSe layers 

A fore knowledge of thickness of thin film materials is important before device 

fabrication. This is essential because thickness affects device performance most 

especially in thin film solar cells. CdSe can be used as an n-type buffer, window or 

absorber layer in thin film solar cells by selecting its thickness appropriately. In this 

study, different thicknesses of cadmium selenide were obtained by using deposition 

times in the range (5 – 30) minutes at a constant deposition potential of 1972 mV. The 

measured thicknesses obtained by using Microfocus Optical Thickness Profilometer 

measurement system was compared with the theoretical estimate obtained using 

Faraday's laws of electrodeposition as illustrated in Figure 4.13. Faraday’s law used in 

the theoretical thickness estimation is given by Equation (4.9) [18]. 

nF

JtM
T                         (4.9) 
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where T is the thickness of the CdSe film in cm, J is average deposition current density 

in Acm
-2

, F is Faraday’s constant (96485 C/mol), t is the deposition time in seconds, M 

is the molecular weight of CdSe (191.37 gmol
-1

), n is the number of electrons 

transferred in the reaction for the formation of 1 mole of CdSe (n = 6 as given by 

Equations (4.5), (4.6), (4.7) and (4.8) and ρ is the density of CdSe (5.82 gcm
-3

).  

Figure 4.13 shows that the thickness of AD-CdSe increases as the deposition time 

increases. The results show an approximate linear variation of thickness with deposition 

time for the experimental graph while in the theoretical curve, a non-linear response is 

observed. This non-linear behaviour may be due to variation of current density with 

deposition time during growth period. As shown in Figure 4.13, the thickness of ED-

CdSe layer grown for 15 minutes shows a value of approximately 0.80 μm (800 nm) 

when measured using the thickness profilometer while the theoretical estimate using 

Faraday's equation gave an approximate value of 0.95 μm (950 nm). The discrepancy 

between the theoretical estimate and measured value may be due to the fact that not all 

the electronic charges used in the theoretical estimate are actually involved in the 

deposition of CdSe. Part of these electronic charges flow through the electrolyte to take 

part in the electrolysis of water; hence, the observed thicknesses from experimental 

results are lower than the theoretical values [18]. One of the main advantages of CdSe is 

the growth of 2.0 µm layer in a short period of ~30 minutes. This is a very important 

factor for lowering the manufacturing cost of solar cells using CdSe, when compared to 

CdTe. 

 

Figure 4.13. Estimated experimental and theoretical values of thickness of CdSe layers 

as a function of growth period. 
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4.4 pH optimisation of CdSe thin films 

The research work reported thus far show that the pH of the electrolytic solution has a 

significant effect on the growth of thin film materials [19–21]. Athanassopoulou et al. 

[22] used a pH of 2.20 for the electrolytic bath and reported the colour of CdSe as 

glossy black after 20 minutes of deposition using cathodic electrodeposition technique. 

Shyju et al. [23] prepared CdSe thin films using chemical bath deposition (CBD) 

technique in an alkaline medium with pH ranging from 10-11 and the authors reported 

the CdSe appearance as reddish in colour. The compositional analysis carried out by 

Shyju et al. [23] on the CBD-prepared CdSe showed that the atomic % of Se is greater 

than that of Cd. Gudage et al. [24] also studied the influence of pH on microstructural 

and optical properties of electrosynthesised CdSe thin films at different pH of the bath 

ranging from 2.40 to 3.00 at the interval of 0.15±0.02 using a 3-electrode system. 

Gudage et al. [24] observed that the atomic percentage of Se is higher than Cd at pH ≥ 

2.70. All these reports by different researchers explain the tendency of obtaining 

different electronic parameters for CdSe thin films at different pH. 

In this work, CdSe thin films were electrodeposited using a 2-electrode system at 

different pH of the electrolytic bath ranging from 1.50 to 3.00±0.02. This experiment 

was carried out to investigate the pH effect on: the deposition current density, the colour 

of the CdSe layers, the magnitude of its PEC signals, the optical and compositional 

properties. This study thus helps in determining the optimum pH of the electrolytic bath 

where the photovoltaic activity of CdSe layers can be achieved for development in thin 

film solar cells. The preparative parameters for the pH optimisation of the electrolytic 

bath used for CdSe growth are: deposition time of 5 minutes, electrolytic bath 

temperature of 80
o
C and a cathodic growth voltage of 1972 mV.  

4.4.1 Effect of pH variation on deposition current density 

Preparative parameters such as stirring, growth temperature and pH of the electrolyte do 

have effect on the deposition current density (Jd). The experimental results observed 

while keeping constant the stirring, growth temperature and sample area showed that the 

lowest average deposition current density (Jd) occured at pH = 2.50. A decrease in Jd 

was observed as pH increases from 1.50 to 2.50 while an increase in Jd value was 

further observed as the pH increases from 2.50 to 3.00 thus making pH = 2.50 to have 

the least Jd value as shown in Figure 4.14. The pH where the Jd is minimal indicates 

where more resistive semiconductor materials can be grown. This low Jd suggests the 
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reason for the photovoltaic behaviour of glass/FTO/n-CdSe/Au structure under 

illumination condition as described in sub-section 4.5.2.  

 

 

Figure 4.14. The variation of deposition current density (Jd) as a function of pH. The 

growth voltage (Vg) was kept at constant value of Vg = -1972 mV. 

4.4.2 Effect of pH on the visual appearance of electrodeposited CdSe layers 

The experiments carried out to study the effect of pH on the growth of CdSe showed 

that ED-CdSe semiconductors grow within a pH window of 2.00 to 3.00. The 

experimental observations revealed that the colour changes from black to reddish by 

gradual changing of the pH from more acidic to less acidic medium. At a pH range of 

2.00 to 2.30, the colour appears black while at a pH of 2.40 to 2.50, the colour appears 

dark red. The CdSe appearance becomes reddish at a pH range of 2.60 to 3.00. The 

reddish appearance of CdSe within this pH range is an indication of deposition of more 

Se than Cd since elemental Se layer are known to be reddish in colour [20]. The 

experimental results show that uniform CdSe layers can be grown in an acidic solution 

(lower pH) when using an electrodeposition technique. The poor deposition of thin 

films observed at a pH ≥ 3.00 is likely to be an indication that a less acidic aqueous 

solution may not be ideal for electrodepositing CdSe thin films. This is unlike CdSe thin 

films grown from CBD technique using a basic solution (very high pH from 10.00 to 

11.00) as reported by Shyju et al [23]. As shown in Figure 4.15, a non-uniform 

deposition occurred at a pH of 1.50. Between 2.00 and 2.10, peelings of the layers were 

observed. Uniform deposition was observed between 2.20 and 2.70 while non-uniform 

deposition and peelings were observed at pH beyond 3.00. Thus, the suitable pH range 
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to grow a uniform non-peeling CdSe layer is 2.20 to 2.70 ± 0.02 at a growth time (tg) ≤ 

5 minutes. The deposition time can be increased to more than five minutes by adjusting 

other preparative parameters for growth such as lowering the bath temperature, reducing 

the stirring rate or the voltage of deposition.  

 

Figure 4.15. The appearance of as-deposited ED-CdSe layers grown at different pH    

(tg = 5 minutes, T = 80
o
C and Vg = -1972 mV). 

The explanation given by Athanassopoulou et al. [22] that CdSe is glossy black at pH of 

2.20 agrees with the results obtained in this work. Likewise, the investigations carried 

out by Shyju et al. [23] which showed that CdSe can be reddish in appearance was 

observed in this work between the pH of 2.60 to 3.00. The different colours exhibited 

by CdSe signify that it can serve various purposes in thin film solar cells. For instance, 

with the reddish appearance, CdSe can be used as an n-type window material in thin 

film solar cells [23], while with the dark appearance, it can find a useful application as 

an absorber layer in thin film solar cells [22,25,26].  

4.4.3 Effect of pH variation on the electrical conductivity type of ED-CdSe 

A photoelectrochemical study was carried out on ten samples of CdSe grown at 

different pH with other preparative parameters being constant to help in the 

determination of a suitable pH for the growth of stoichiometric CdSe thin films. The 

sign of the PEC signals as shown in Table 4.3 reveal that CdSe has n-type electrical 

conductivity within the explored pH range. Figure 4.16 shows only the magnitude of the 

PEC signal (the PEC signal sign is not considered in this figure) of the AD- and HT-

CdSe versus pH. The heat-treatment of the CdSe layers was carried out at 200
o
C for 10 

minutes in air. The results further show that the magnitude of the PEC signal of the AD- 

and HT-CdSe increases as the pH increases from 1.50 to 2.50. At a pH above 2.50, the 

PEC signals begin to decrease. Thus, the highest peak occurs at a pH of 2.50 where the 

CdSe layer appears as dark red. The pH with the highest peak was chosen as the suitable 

pH for growing a near stoichiometric CdSe layer. Since the magnitude of the PEC 

signal depends on the width of the depletion region formed at the CdSe/electrolyte 
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interface, it thus shows that a wider depletion region can be formed for CdSe layers 

grown at pH = 2.50. A wide depletion region indicates a strong built-in electric field 

which is required for the separation of photo-generated charge carriers which are 

created when photons fall on the depletion region [27]. The strong built-in electric field 

reduces the recombination of the charge carriers before they get to the two electrical 

contacts; these contacts can be FTO and electrolyte in the PEC system or FTO and Au 

in a solid state device, glass/FTO/n-CdSe/Au. 

Table 4.3. PEC signals with pH.  

 

PEC Signal  

(mV) 

 

pH AD-CdSe HT-CdSe 

1.50 -77 -70 

2.00 -123 -110 

2.10 -132 -120 

2.20 -151 -135 

2.30 -182 -150 

2.40 -189 -160 

.50 -212 -170 

2.60 -204 -160 

2.70 -196 -147 

3.00 -131 -110 
 

 

 

4.4.4 Effect of pH variation on the optical properties of CdSe thin films 

The optical absorption measurements of the ED-CdSe layers were carried out in order to 

estimate the optical energy bandgap. The studies revealed that the pH of the electrolytic 

solution has a significant effect on the bandgap of the CdSe thin films. The plot of 

(absorbance)
2
 versus photon energy for HT-CdSe layers at pH of 2.20 and 2.50 of the 

electrolytic bath is shown in Figure 4.17 (a) while Figure 4.17 (b) presents the optical 

absorption spectra at pH of 2.60 and 2.70. The straight line portion of the graph is 

extrapolated to the photon energy axis; the intercept on the energy axis gives the Eg 

value when (absorbance)
2
 is zero. The energy bandgaps for the HT samples were found 

to be in the range 1.74 to 2.45 eV depending on the pH of the electrolytes in the bath, 

this variation is shown in Table 4.4. Table 4.4 also gives the summary of energy 

bandgaps for pH between 1.50 and 3.00 for AD-CdSe layers. The optical absorption 

results in Table 4.4 further show that the Eg of the annealed CdSe at a pH of 2.50 tends 
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to be closer to the bandgap of stoichiometric and bulk CdSe in the wurtzite crystal phase 

[3].  

     

Figure 4.17. Optical absorption spectra for HT-CdSe samples grown at: (a) pH of 2.20 

and 2.50 and (b) pH of 2.60 and 2.70. 

Figure 4.18 represents the variation of Eg as a function of pH for samples grown within 

the pH range of 2.00 to 3.00 of the electrolytic bath for both AD- and HT-CdSe layers. 

The optical results in Table 4.4 and the appearance of the ED-CdSe (Figure 4.15) show 

that the electroplated CdSe semiconductor materials can be used as a window layer at a 

pH of 2.70 and above due to its higher energy bandgap and its transparency. Likewise, 

dark layers of CdSe can be used as an absorber layer in a solar cell application; these 

dark layers can be obtained by using lower pH region (2.20-2.50) where uniform and 

non-peeling CdSe layers were observed.  One interesting fact to note is that within this 

pH region, the energy bandgaps of both AD- and HT-CdSe layers tend to be equal; with 

energy bandgaps of HT-CdSe layers approaching the bulk value for CdSe films in the 

hexagonal crystal phase. 
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Table 4.4. Energy bandgap for AD- 

and HT-CdSe at different pH values 

ranging from 1.50 to 3.00. 

 Bandgap (eV) 

pH HT-CdSe AD-CdSe 

1.50 1.74 1.88 

2.00 1.96 2.00 

2.10 2.00 2.05 

2.20 1.80 1.90 

2.30 1.80 1.90 

2.40 1.80 1.90 

2.50 1.80 1.90 

2.60 2.10 2.10 

2.70 2.20 2.42 

3.00 2.45 2.50 
 

 

 

4.4.5 Effect of pH variation on the compositional properties CdSe thin films 

EDX technique was used to carry out the quantitative analysis of the ED-CdSe thin 

films deposited on FTO substrate to study the percentage (%) composition of the Cd 

and Se atoms present in the CdSe thin films at different pH values ranging between 2.30 

and 3.00. This technique also helps in determining the film stoichiometry. Table 4.5 

summarises the percentage composition of Cd and Se atoms present in the CdSe thin 

films at different pH values while Figure 4.19 illustrates the diagrammatic 

representation of Cd and Se atoms within the explored pH values. As seen in Figure 

4.19, the percentage of Cd and Se atoms present in the CdSe thin film changes with pH 

values. At lower pH of 2.30, average atomic % of Cd:Se for ED-CdSe was 53.6:46.4 

showing that the film is more rich in Cd than Se while at a pH of 3.00, the atomic % of 

Cd:Se for ED-CdSe was 84.2:15.8 signifying that the film is more rich in Se than Cd.  

The compositional analysis also revealed that the Cd:Se ratio was close to 1:1 at the pH 

of 2.50. This is an indication that pH of 2.50 may be suitable for growing nearly 

stoichiometric CdSe layers. The EDX analysis showed that lower pH favours deposition 

of more metallic atoms like Cd than Se. As the pH increases from 2.30 towards 3.00, 

the % of Cd atoms decrease while the % of Se atoms increase. It could therefore be seen 

that by changing the pH of the electrolytic bath, the stoichiometry and properties of 

electroplated CdSe layers can be changed. The experimental results obtained in this 
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work also agrees with the report given by Gudage et al. [24] that the atomic percentage 

of Se is higher than Cd at pH  ≥2.70. 

Table 4.5. Composition of CdSe 

thin films versus pH values. 

Bath 

pH  
Elements 

Atomic 

% 

2.30 Cd 53.6 

 Se 46.4 

2.50 Cd 49.6 

 Se 50.4 

2.70 Cd 34.8 

 Se 65.2 

3.00 Cd 15.8 

 Se 84.2 
 

 

 

4.5 Testing the electronic quality of CdSe thin films 

The electronic qualities of ED-CdSe layers were tested using current-voltage (I-V) and 

capacitance-voltage (C-V) techniques. The I-V technique was used in studying the 

ohmic behaviour of glass/FTO/n-CdSe/metal contacts while the rectifying behaviour of 

glass/FTO/n-CdSe/metal contacts was investigated using both I-V and C-V techniques.  

4.5.1 Ohmic behaviour of electrodeposited n-CdSe layers 

In order to study the ohmic behaviour of ED-CdSe layer, a metal whose work function 

is lower than the electron affinity of CdSe is needed as a metal contact for the ED-CdSe 

layers. In this study, Al with work functions of ~4.20 eV [28] has been chosen as a 

metal contact to CdSe with electron affinity of ~4.95 eV [29]. Al was evaporated on 

ED-CdSe layer of ~1.6 µm in a metal evaporator maintained at a high pressure of 10
-7

 

mbar. This high pressure was used to prevent oxidation of the Al metal contact. The 

resistances of AD- and HT-CdSe layers were estimated from the device structure 

glass/FTO/n-CdSe/Al using I-V measurement technique. The I-V curves obtained for 

AD- and HT-CdSe thin films are given in Figures 4.20 (a) and 4.20 (b) respectively. 
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The results show that both AD- and HT-CdSe layers obey Ohm’s law when Al was used 

as a back metal contact.  

  

Figure 4.20. I-V curves illustrating the ohmic behaviour of glass/FTO/n-CdSe/Al 

device structure for (a) as-deposited CdSe layer and (b) heat-treated CdSe layer at 

200
o
C, for 10 minutes in air. 

The electrical resistivity was calculated from the estimated resistances using Equation 

(3.15) stated in Chapter 3 while the electrical conductivity was estimated by finding the 

inverse function of resistivity. Table 4.6 shows the summary of measured and calculated 

electronic parameters of AD- and HT-CdSe thin films at 200
o
C for 10 minutes in air. As 

seen in Table 4.6, the AD-CdSe layer possesses very high series resistance (Rs) of ~52 

kΩ but after annealing, the Rs was reduced to ~0.55 kΩ.  

Table 4.6. Summary of ohmic parameters obtained for as-deposited and heat-treated 

CdSe layers at 200
o
C for 10 minutes in air.  

Ohmic parameters                   AD-CdSe             HT-CdSe at 200
o
C for 10 minutes in air 

Series resistance, Rs (kΩ)        52.00                                       0.55 

Resistivity, ρ (Ω.cm)               8.95 × 10
6
                                9.47 × 10

4 

Conductivity, σ (Ω.cm)
-1

         1.12 × 10
-7

                               1.06 × 10
-5

 

A very high resistivity of the order of 10
6
 Ωcm was obtained for AD-CdSe layer. The 

high series resistance exhibited by CdSe can lead to low Jsc and FF when used in solar 

cell fabrication. After heat-treatment, the resistivity of the CdSe layer reduces to the 

order of 10
4
 Ωcm. This shows that annealing can help to reduce the Rs and ultimately 
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lead to a better fill factor. The overall result thus shows that annealing helps to improve 

the electronic quality of ED-CdSe layers.    

4.5.2 Rectifying behaviour of electrodeposited n-CdSe layers 

The rectifying behaviour of CdSe thin films was studied by developing glass/FTO/n-

CdSe/Au device structure. Au was chosen for this experiment because a metal with 

work function (ϕm) higher than the electron affinity (χ) of CdSe is needed to make a 

Schottky contact on n-CdSe (ϕm of Au is 5.10 eV while the χ of CdSe is 4.95 eV). The 

rectifying contacts were made by evaporating 3 mm diameter Au contacts on n-CdSe 

layers.  

Figures 4.21 (a) and 4.21 (b) show the log-linear and linear-linear I-V characteristics of 

the Schottky diodes fabricated from n-CdSe layers. The semi-log graph was used in 

estimating the values of the rectification factor (RF), ideality factor (n), the reverse 

saturation current (Is), and the potential barrier height ( b ) while the linear-linear graphs 

are useful in estimating the series resistance (Rs) and shunt resistance (Rsh) from the 

forward and reverse current portions of the I-V curve respectively.  

Figure 4.21. Typical I-V characteristics of the n-CdSe/Au Schottky diodes (a) Log-

linear, (b) Linear-linear under dark conditions, and (c) under AM1.5 illumination 

condition at room temperature. 

Table 4.7 gives the summary of I-V parameters of the Schottky diodes under dark and 

illumination conditions. A RF of 10
2.5

 was obtained for this particular diode, however 

RF > 10
2.5

 was observed for some other measured diodes reported in one of our 

previous communications [30]. The RF helps in assessing the quality of a rectifying 

diode. A large RF of approximately 10
2 

is sufficient for a good rectifying diode [31]. 
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Table 4.7. Summary of I-V parameters of g/FTO/n-CdSe/Au measured under dark and 

illumination conditions. 

 
I-V measurement under 

dark condition 

I-V measurement under 

illumination condition 

Device Structure 

 

RF 

 

n 

 

Is 

(nA) 

ϕb 

(eV) 

Rs 

(kΩ) 

Rsh 

(MΩ) 

Vt 

(V) 

Voc 

(V) 

Jsc 

mAcm
-2

 

FF 

 

η 

(%) 

glass/FTO/n-

CdSe/Au 
10

2.5
 1.5 6.31 >0.79 24.0 4.1 0.24 0.300 0.55 0.35 0.06 

 

The ideality factor estimated using Equation (3.25) of Chapter 3 lies between 1.00 and 

2.00. The n value of 1.50 signifies that both thermionic emission and R&G process 

contribute to current transport in parallel. Details of the importance of ideality factor 

have been discussed in Chapter 3. The fabricated Schottky diodes also have a leakage 

current of 6.31 nA and barrier height >0.79 eV. The Is was estimated by finding the 

antilog of the intercept on the Log I axis of Figure 4.21 (a) while ϕb was estimated using 

Equation (3.19) of Chapter 3. The barrier height obtained for the Schottky diode is 

extremely high when compared to the expected {ϕb = ϕm – χ ≈ (5.10 – 4.95) eV = 0.15 

eV} theoretical value from Schottky theory. Therefore, the high potential barrier height 

experimentally measured seems to be due to Fermi level pinning at Au/n-CdSe 

interfaces due to defect levels. This is not surprising for practical thin films with high 

concentration of defects. Rs and Rsh of ~24 kΩ and ~4.1 MΩ were obtained from the 

linear-linear I-V characteristics in Figure 4.21 (b). The Rsh value is very large; this large 

value is a typical feature of diodes whose behaviour is close to an ideal one. However, 

due to the presence of high Rs, the fabricated diodes reported in this work deviate from 

diodes with ideal characteristics. Schottky diodes are known to have lesser forward 

voltage drop (or threshold voltage) than normal p-n junction diodes [32]; the forward 

voltage drop of Schottky diode is in the range 0.15 V to 0.45 V [33]. This low threshold 

voltage makes them to have fast switching speeds and with this feature, they can find 

useful application at the output stages of switching power supplies [34]. The estimated 

threshold voltage (Vt) in this work is ~0.24 V; this value falls in the range of reported 

values of Vt for Schottky diodes. The results of the I-V measurement under AM1.5 

illumination showed that the device structure glass/FTO/n-CdSe/Au is photo-voltaic 

active as shown in Figure 4.21 (c). The initial device parameters are Voc=0.300 V, 
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Jsc=0.55 mAcm
-2

 and FF=0.35. All these measured device parameters show that ED-

CdSe layers are device quality materials. 

4.5.3 Capacitance-voltage measurement of n-CdSe Schottky diodes 

Capacitance-voltage (C-V) measurements were carried out on glass/FTO/n-CdSe/Au 

rectifying structures. The measurements were carried out with a detection signal at 1 

MHz in order to reduce contributions from defects towards the junction capacitance. 

The C-V and Mott-Schottky plots are illustrated in Figures 4.22 (a) and 4.22 (b) 

respectively. As presented in Figure 4.22 (a), the depletion layer capacitance obtained at 

zero bias for the glass/FTO/n-CdSe/Au device structure is 6.90 nF. By incorporating the 

values of the depletion layer capacitance into Equation (3.38), the width of the depletion 

region, W was estimated to be ~41.1 nm. As earlier explained in section 3.5.2 of 

Chapter 3, Equation (3.39) can also be used in estimating the depletion width if the 

correct Vbi value is used. Using Equation (3.39), the width was calculated to be 41.0 nm. 

The two values of W obtained from Equation (3.38) and Equation (3.39) correspond to 

each other when approximated to the nearest whole number. 

  

Figure 4.22. Typical (a) Capacitance vs bias voltage and (b) C
-2

 vs V graphs of the 

device structure, glass/FTO/n-CdSe/Au. Note: The red dotted circle in Figure 4.22 (b) 

signify the non-linear portion of the Mott-Schottky plot caused by surface states. 

The Mott-Schottky plot in Figure 4.22 (b) was used in finding the doping density of the 

CdSe thin film. The slope (8.70×10
16

 F
-2

V
-1

) obtained by taking the straight line of 

linear portion of Mott-Schottky plot in Figure 4.22 (b) was substituted into Equation 

(3.35) to obtain donor density of 1.61×10
17

 cm
-3

. As explained by Bhattacharya et al. 
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[35], when the slope of the Mott-Schottky plot is positive, it indicates that the 

semiconductor is negative. This is another way of confirming the electrical conductivity 

type of deposited semiconductor materials. As seen in Figure 4.22 (b), the slope is 

positive, hence it shows that the electroplated CdSe thin film is n-type in electrical 

conduction. This result further confirms the PEC cell results given in section 4.3.4 of 

this chapter that revealed the n-type electrical conduction of ED-CdSe thin films. A 

linear graph is expected to be obtained for Mott-Schottky plots when the doping 

concentration of the material used for diode fabrication is uniform [36]. However as 

seen in Figure 4.22 (b), a section of the plot {the circled section} is not linear. The non-

linearity has been explained to be caused by presence of surface states, roughness and 

traps [35,37]. By substituting the effective electron mass of CdSe (me* = 0.13mo [38]) 

into Equation (3.42), the value of effective density of states in the conduction band 

minimum (NC) was found to be 1.17×10
18

 cm
-3

 at 300 K room temperature. The 

experimental results obtained in this work show that the doping density of the CdSe 

semiconductor is less than the effective density of states in the conduction band of the 

CdSe thin films. This property makes the Fermi energy level of the CdSe semiconductor 

to lie below the conduction band minimum thus classifying the CdSe thin films used for 

the Schottky diodes fabrication as a non-degenerate semiconductor material. Details of 

the C-V measurement results for Au/n-CdSe Schottky diodes are shown in Table 4.8.  

Table 4.8. Summary of electronic parameters obtained from glass/FTO/n-CdSe/Au 

device structures using C-V technique under dark condition.  

Co 

(nF) 

ND 

(cm
-3

) 

Built-in potential, Vbi 

(V) 

Depletion width, W 

(nm) 
EC-EF 

(eV) 

Emax 

(Vcm
-1

) 
Measured Calculated Using Co Using Vbi 

6.90 1.61×10
17

 0.240 0.241 41.1 41.0 0.05 1.17×10
5
 

As given in Table 4.8, EC - EF for the CdSe thin film shows a positive value of 0.05 eV 

and this also signifies that the Fermi level position lies just below the ECmin. Equation 

(3.46) of Chapter 3 was used to calculate the position of the Fermi level for the n-type 

CdSe layer. The electric field at the M/S interface of the Schottky diode was estimated 

to be 1.17×10
5
 Vcm

-1 
using Equation (3.49). Using Equation (3.51), the theoretical 

value of built-in potential was calculated as 0.241 V; by practical measurement using 

the Mott-Schottky plot in Figure 4.22 (b), the intercept on the voltage axis gives an 

estimate of the Vbi as 0.24 V. By approximating both theoretical and measured values to 
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2 d.p, the Vbi = 0.24 eV. This result shows that there is a correlation between the 

measured and calculated value of Vbi. The agreement between the measured and 

calculated value of Vbi is an indication that the defect level in the Schottky diode is 

minimal. From Figure 4.21 (b), the I-V measurement also shows the Vbi to be ~0.24 V. 

In terms of Vbi measurement, both I-V and C-V techniques show the same value. The 

Vbi is a function of the barrier height. It should be noted that the similarity between the 

Vbi measured from both I-V and C-V techniques does not guarantee the uniformity of 

the barrier. In most cases, the Vbi obtained in C-V is > Vbi obtained in I-V. This 

difference is due to the variation in barrier height (ϕb) obtained using these two 

techniques. In most semiconductor materials, the ϕb from C-V is always greater than the 

ϕb from I-V measurement technique [39]. The variation in barrier height is usually 

caused by sensitivity of C-V technique to the defects in the diode [17] and by 

inhomogeneities that take place at the M/S interface [40]. Examples of some of these 

inhomogeneities include: distribution of interfacial charges and lack of uniformity of the 

interfacial layer thickness [40]. Nonetheless, if the defect levels in the diode are 

reduced, the sensitivity of C-V technique to defects in the diode will also be minimised 

and this can influence the results of the measurements being carried out. Under this 

situation, it is therefore possible for the ϕb measured in C-V to be equal to or much less 

than ϕb measured in I-V. In these measurements, since the C-V measurements have been 

carried out at high frequencies, the effects of defects on measured capacitance have 

been minimised. 

4.6 Summary 

CdSe thin films have been successfully grown using electrodeposition technique with a 

2-electrode system on glass/FTO substrates. The effect of growing CdSe thin films at 

different cathodic potentials was explored and optimum Vg of 1972 mV was obtained 

from the various analytical techniques carried out on the CdSe thin films. The XRD 

results have shown that the layers are hexagonal and polycrystalline with preferential 

orientation along the (002) plane. PEC study revealed that the CdSe films have n-type 

electrical conductivity.  The results obtained from the optical absorption measurement 

showed that ED-CdSe layers have direct band gaps in the range (1.80–2.00) eV for AD 

and (1.75–1.90) eV for HT-CdSe thin films.  The effect of pH variation between 1.50 

and 3.00 of the CdSe electrolyte was also investigated on the optoelectronic properties 

of CdSe layers.  The results from PEC study revealed that the CdSe layers are still n-
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type in electrical conduction despite variation in pH; the variation in pH only influences 

the magnitude of the PEC signals and not the electrical conductivity type. Different 

colours (dark, dark-red and reddish) of the CdSe thin films were also observed under 

different pH conditions. The minimum and maximum energy bandgaps were observed 

at the lowest pH of 1.50 and highest pH of 3.00 explored in this work respectively.  

Depending on the thickness and pH of the layer, CdSe can be applied in thin film PV 

development for use as a buffer, window or absorber material. The experimental results 

showed that suitable pH range to grow a uniform non-peeling CdSe layer is 2.20 to 

2.70±0.02. Experimental results also indicated that pH of 2.50 is suitable for growing a 

near stoichiometric CdSe layers which can be used in photovoltaic devices. The 

electronic quality of the ED-CdSe layers was also tested by making ohmic and 

rectifying contacts to CdSe thin films. The results from ohmic contacts made to CdSe 

showed that the thin films obey Ohm's law both for as-deposited and heat-treated 

materials. CdSe exhibited good rectifying diodes behaviour when measured under dark 

conditions. The results from C-V analysis equally revealed the non-degenerate nature of 

the CdSe thin films. 
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Chapter 5 -  Growth and characterisation of ZnTe thin films 

5.1 Introduction 

Group II-VI compound semiconductor materials have found a wide application in a 

variety of solid-state electronic devices such as electroluminescence devices (for 

example, light emitting diodes), photosensors, thin-film transistors and solar cells. Zinc 

Telluride (ZnTe) is one of the II-VI binary compound semiconductors which find 

numerous applications in optoelectronic devices, switching devices and macro-

electronic devices such as solar panels [1–4]. It is also a direct bandgap semiconductor 

with energy bandgap of 2.20–2.26 eV [5,6]. Over the years, ZnTe semiconductors have 

found a useful application as a p-type window material in hetero-junction solar cells 

fabricated from chalcogenide semiconductors such as CdS [3], CdSe [4] and CdTe. p-

ZnTe is also a promising candidate for ZnTe/CdTe heterojunction device structures [6] 

and for development of graded bandgap solar cells. Apart from being used as a window 

material, thin film ZnTe semiconductors have also found a useful application as a back 

contact material to CdTe-based solar cells [7]. Due to the resistive nature of ZnTe thin 

films, researchers have doped ZnTe with Cu in order to achieve low resistivity electrical 

contacts thus making it more useful as a back contact to thin film solar cells [8]. 

The electrical conductivity type of ZnTe materials grown by conventional methods has 

been reported to be p-type. According to Mandel [9], n-type electrical conduction is 

difficult to achieve due to self-compensation. However, some researchers have been 

able to achieve n-type electrical conduction in ZnTe by extrinsic doping. Extrinsic 

dopants such as Al, Sn and Cl have been used to achieve n-type ZnTe [10–15]. Fischer 

et al. [10] and Chang et al. [11] have been able to prepare n-type ZnTe thin films by 

using Al as the dopant. Ogawa et al. [12] also obtained n-type ZnTe layers by doping 

with Al using triethylaluminium. DiNezza et al. [13] likewise reported the growth of n-

type ZnTe films on GaSb substrates. These authors achieved the n-type electrical 

conductivity by thermally diffusing Al into the ZnTe film. Also, the authors reported the 

fabrication of ZnTe p-n homo-junction diodes with rectifying J-V characteristics and 

photo-voltaic (PV) behaviour to further confirm the successful growth of n-type ZnTe 

film. The uses of Cl and Sn as dopants to achieve n-ZnTe have also been demonstrated 

by Tao et al. [14] and Makhny et al. [15] respectively. 
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Several techniques have been used for the deposition of ZnTe thin films. Some of these 

methods are: closed space sublimation (CSS) [16], hydrothermal [17], molecular beam 

epitaxy [11], rf-magnetron sputtering [18], metallo-organic chemical vapour deposition 

(MOCVD) [19], metallo-organic vapour phase epitaxy (MOVPE) [20], thermal 

evaporation [21] and electrodeposition [22–25]. According to Mahalingam et al. [24], 

electrodeposition (ED) technique provides a suitable method to prepare continuous and 

thin semiconductor films. This work uses electrodeposition technique with a two-

electrode set-up to develop thin films of ZnTe semiconductor.  

The aims of this work as described in this chapter are to investigate and establish 

optimum growth parameters to electrodeposit both p-type and n-type ZnTe layers for 

applications in electronic devices. To achieve this, the material and optoelectronic 

properties of ED-ZnTe layers were examined using some of the analytical techniques 

discussed in Chapter 3. The effects of thickness variation of the ED-ZnTe thin films on 

their electrical and morphological properties have also been explored. The electronic 

qualities of the electroplated ZnTe layers were tested using the device structures, 

glass/FTO/n-ZnTe/metal contact and glass/FTO/p-ZnTe/metal contact. Also, p-n homo-

junction diodes were fabricated purely from intrinsically doped electroplated ZnTe 

layers using the device structure glass/FTO/n-ZnTe/p-ZnTe/metal contact as a way of 

further confirming the authenticity of the electroplated n-type ZnTe layers. 

5.2 Preparation of ZnTe electrolytic bath 

The ZnTe thin films were deposited from electrolyte containing 0.015 M ZnSO4.7H20 

(99.999% purity) and 2 ml of dissolved TeO2 (99.995% purity) solution in 800 ml of de-

ionised water. The dissolved TeO2 solution was separately prepared by adding 30 ml of 

concentrated H2SO4 to 2 g of TeO2 powder inside a 500 ml glass beaker. The reason for 

using concentrated acid is due to the inability of TeO2 powder to dissolve completely in 

water. The solution was continuously stirred and 200 ml of de-ionised water was 

gradually added to the concentrated TeO2 solution. As the gradual addition of water 

takes place, a clear solution was observed. The prepared TeO2 solution was later 

subjected to continuous stirring and heating for ~40 minutes so as to aid complete 

dissolution of the TeO2 powder. The pH value of the deposition electrolyte was 

maintained at 3.50±0.02 by using either NH4OH or H2SO4. The growth temperature of 
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the electrolytic bath was ~80
o
C and the solution was moderately stirred using a 

magnetic stirrer.  

5.3 Voltage optimisation and growth of ZnTe thin films 

Some analytical techniques such as cyclic voltammogram which gives valuable 

information about the suitable range of deposition potentials have been discussed in this 

section alongside other techniques used for general material characterisation.  

5.3.1 Cyclic voltammogram 

Cyclic voltammetry studies were performed in an aqueous solution that contains 0.015 

M ZnSO4.7H2O and 2 ml of dissolved TeO2 solution at a pH of 3.50±0.02. A FTO 

coated glass substrate was used as the working electrode to study the mechanism of 

deposition of ZnTe thin films. A computerised GillAC potentiostat was used to carry 

out this voltammetric study at a sweep rate of 180 mVmin
-1

. In this technique, a range 

of cathodic potentials from 0 to 2000 mV was applied across the electrolyte through the 

electrodes. The potentiostat was used in monitoring the current through the electrolyte 

as the voltages between electrodes were varied   [26]. 

A typical cyclic voltammogram for FTO-coated glass substrate in the prepared 

electrolyte is shown in Figure 5.1. The forward curve illustrated at the inset of Figure 

5.1 shows that tellurium (Te) begins to deposit at ~200 mV. It has been shown that Te 

being a nobler element deposits first [24,25] according to Equation  (5.1). 

𝐻𝑇𝑒𝑂2
+ + 4𝑒− + 3𝐻+ = 𝑇𝑒 + 2𝐻2𝑂  (5.1) 

 

The redox potential (E
o
) of Te and Zn with respect to the standard hydrogen electrode 

are ~+0.593 and -0.762 V respectively [27]. Since Te shows a more positive redox 

potential than Zn, it is therefore expected to deposit first. As shown in Figure 5.1, a rise 

observed in the forward current from point P reaches its first peak at point Q, and then 

starts to reduce due to deposition of Zn at ~930 mV and initial co-deposition of ZnTe on 

the cathode according to the chemical reaction shown in Equation (5.22). 

 𝑍𝑛2+ + 𝑇𝑒 + 2𝑒− = 𝑍𝑛𝑇𝑒  (5.2) 

The rise in deposition current density after ~930 mV shows rapid discharge of Zn and 

reaction between Zn and Te to form ZnTe. At low cathodic deposition potential, a Te-

rich ZnTe layer is expected to be formed [25]. As the deposition potential increases, the 
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amount of Zn in the ZnTe layer gradually increases thus allowing a near stoichiometric 

ZnTe layer to be deposited. Thus, a voltage range between ~1350 to ~1750 mV has 

been identified to grow near stoichiometric ZnTe layers according to the experimental 

results.  

 

Figure 5.1. Cyclic voltammogram of electrolyte containing 0.015 M ZnSO4.7H2O and 2 

ml of dissolved TeO2 in 800 ml of de-ionised water (pH=3.50±0.02, T=80
o
C). Inset 

shows the transition voltage at which Te starts to deposit. 

At very high cathodic potential (≥1750 mV), more Zn is deposited on the cathode thus 

leading to a Zn-rich ZnTe layer. The Zn-richness at high cathodic potential was 

observed by the change in colour of ZnTe thin film from red brick to dark colour and 

also by the deviation of the energy bandgap of ZnTe layers grown at Vg≥1750 mV from 

the bulk value of stoichiometric ZnTe material. Also at Vg≥1750 mV, more Zn which is 

metallic is deposited and this gradually leads to a reduction in the bandgap of ZnTe 

layer. In addition, electrolysis of water is also possible at these voltages. Liberation of 

atomic hydrogen on the cathode is an advantage in defect passivation in ZnTe films but 

formation of hydrogen bubbles can be a disadvantage in causing peeling of the 

deposited layer. Therefore, application of higher voltages should be avoided in order to 

grow ZnTe films avoiding metallic Zn and formation of H2 bubbles on the cathode.    
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From the reverse cycle of the current-voltage (I-V) curve shown in Figure 5.1, the 

current flow transits from the positive to the negative at ~900 mV and peaks at point R. 

Point R indicates the dissolution of elemental Zn and removal of Zn from ZnTe layer 

formed on the cathode. The dissolution of Te from the surface of the cathode occurs at 

the broad peak point S. It has thus been shown that voltammogram is helpful in 

determining the approximate deposition potential range to grow ZnTe thin films. It is 

therefore essential to carry out cyclic voltammetry study to determine the approximate 

deposition potential range to grow ZnTe thin films before optimising the deposition 

voltage required to grow a near stoichiometric material.   

5.3.2 Structural Analysis 

Two techniques namely X-ray diffraction and Raman spectroscopy were used in 

investigating the structural properties of electroplated ZnTe layers. 

5.3.2.1 X-ray diffraction studies 

The structural properties of ED-ZnTe layers were studied at different growth potential 

using XRD analytical technique. Samples of ZnTe layers were electrodeposited on 

glass/FTO substrates at different cathodic potential ranging from 1350 to 1750 mV; this 

was done in order to determine their crystal structure and phases and to identify the 

optimum growth potential to achieve highest crystalline and stoichiometric ZnTe layers. 

Figures 5.2 (a) and 5.2 (b) show the XRD spectra obtained for as-deposited (AD) and 

heat-treated (HT) ZnTe layers respectively. The heat-treatment of the layers was carried 

out at 300
o
C for 10 minutes in air. The XRD spectra revealed the formation of 

polycrystalline ZnTe thin films and the crystal structure was observed to be hexagonal. 

For the samples grown between deposition potential (Vg) of 1500–1700 mV, the crystal 

plane of preferred orientation was found to be along (002) hexagonal plane for the most 

prominent peak; this peak was observed at different position of angle 2θ as illustrated in 

Table 5.1. Apart from the most prominent peak which occurred along the (002) plane, 

other peaks with lower intensities were also observed for both AD- and HT-ZnTe 

layers. For the AD-ZnTe layers, the peaks occurred along (100), (102), (110) and (112) 

planes; while for the HT-ZnTe layers, the peaks were observed at (100), (102) and (112) 

planes.  
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Figure  5.2. XRD spectra of: (a) as-deposited and (b) heat-treated (at 300
o
C for 10 

minutes in air) ZnTe layers grown at different cathodic potentials. 

In order to identify the crystal structures of the electroplated thin films, the observed d-

spacing values of the most prominent peak of ED-ZnTe thin films grown at different 

cathodic potentials from 1500–1700 mV were compared with the reported values in 

JCPDS Reference data as illustrated in Table 5.1. Table 5.1 shows that the observed 

data from the results of the XRD peak analysis correlates with the reported values from 

JCPDS with reference code: 00-019-1482 for ZnTe with hexagonal crystal phase. As 

observed from these experimental results, the position of angle 2θ for the preferred 

orientation varies from one cathodic potential to the other. Figure 5.3 (a) shows the 

variation of the preferred orientation peak position versus the cathodic potential. As 

shown in Figure 5.3 (a), the position of angle 2θ increases from 1500 mV to 1600 mV; 

beyond this voltage, a decrease was observed in the position. The shift in the position at 

which the preferred orientation occurs may be as a result of variation in the grain sizes 

of the thin film material.  
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Table 5.1. XRD analysis of as-deposited and heat-treated ZnTe layers grown at 

different cathodic potentials. Note that the analysis illustrates the contrast between the 

experimentally observed parameters and reported JCPDS reference code values for the 

peak along the preferred plane of orientation. 

Sample 
Vg 

(mV) 

2θ (deg.) 
Lattice Spacing 

D (Å) 

Plane of 

Orientation 

(hkl) 

Chemical 

Formular/Phase 
Observed Reference Observed Reference 

A
s-

d
ep

o
si

te
d

 Z
n
T

e 

th
in

 f
il

m
s 

1500 24.79 25.06 3.59 3.55 002 ZnTe (Hex) 

1550 24.92 25.06 3.57 3.55 002 ZnTe (Hex) 

1600 24.96 25.06 3.57 3.55 002 ZnTe (Hex) 

1650 24.87 25.06 3.58 3.55 002 ZnTe (Hex) 

1700 24.70 25.06 3.61 3.55 002 ZnTe (Hex) 

H
ea

t-
tr

ea
te

d
  

Z
n
T

e 
th

in
 f

il
m

s 

1500 24.93 25.06 3.57 3.55 002 ZnTe (Hex) 

1550 25.01 25.06 3.56 3.55 002 ZnTe (Hex) 

1600 25.06 25.06 3.55 3.55 002 ZnTe (Hex) 

1650 24.88 25.06 3.58 3.55 002 ZnTe (Hex) 

1700 24.75 25.06 3.60 3.55 002 ZnTe (Hex) 

 

  

Figure 5.3. Variation of (a) preferred orientation position along (002) plane versus 

cathodic potential and (b) XRD peak intensity of (002) ZnTe versus cathodic potential 

for AD- and HT-ZnTe layers. 

 

As explained in section 5.3.5, cathodic potential at which the material is grown has 

effect on the surface morphology of the thin films and size of its grains. At Vg=1600 

mV, the position of the preferred orientation along (002) plane for the HT-ZnTe layer 

coincide with the reported standard values as indicated in Table 5.1. A trend similar to 

Figure 5.3 (a) was also observed in Figure 5.3 (b) when the XRD peak intensity of (002) 
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ZnTe was plotted as a function of cathodic potential. Figure 5.3 (b) shows that the 

highest peak intensity for the (002) preferred orientation occurred at a cathodic potential 

of 1600 mV. At this Vg, an increase in peak intensity was observed after annealing in air 

as also shown in Figure 5.2 (a) and 5.2 (b). This indicates that annealing helps in 

improving the crystallinity of as-deposited layers. The high peak intensity reveals the 

crystalline and stoichiometric nature of the material. This result shows that 

stoichiometric layer of ZnTe thin films can be grown at the cathodic growth potential of 

1600 mV.  

To further identify and compare all the peaks for AD- and HT-ZnTe layers grown at a 

Vg of 1600 mV, the two spectra were plotted on the same scale for easy comparison; 

this is shown in Figure 5.4. The presence of low peak intensity along the (002) plane 

and the broad peak along (110) plane for AD-ZnTe layer grown at 1600 mV make the 

material to be less crystalline. It was observed that after annealing the thin film material 

in air, the material crystallinity was improved as a result of increase in peak intensity 

along the (002) plane and removal of the broad peak along (110) plane. The summary of 

XRD data for the ZnTe thin films grown at Vg=1600 mV is shown in Table 5.2. The 

crystallite size (D) obtained from the full width at half maximum (FWHM, β) was 

estimated using the Scherrer’s formula in Equation  (3.12) of Chapter 3. 

 

Figure  5.4. XRD spectra of AD- and HT-ZnTe layers grown at optimum cathodic 

potential of 1600 mV. 
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Table 5.2. Summary of XRD data for AD- and HT-ZnTe layers grown at optimum 

voltage of 1600 mV. 

Sample Angle  

(2θ)  

(Deg.) 

Peak 

Intensity 

(%) 

d-

Spacing 

(Å) 

FWHM  

 

(Deg.) 

Crystallite 

size, D 

(nm) 

Plane of 

orientation  

(h k l) 

Hex-Reference 

Code 

Matching 

AD-ZnTe 

at 1600 

mV 

23.85 35.5 3.73 0.369 23.0 (100) 00-019-1482 

24.96 289.7 3.57 0.260 32.8 (002) 00-019-1482 

35.79 13.7 2.56 0.370 23.6 (102) 00-019-1482 

42.82 38.9 2.11 0.660 13.5 (110) 01-080-0009 

49.02 17.6 1.86 0.990   9.2 (200) 01-080-0009 

HT-ZnTe 

at 1600 

mV 

24.09 51.9 3.69 0.350 24.3 (100) 01-080-0009 

25.06 483.7 3.55 0.227 34.5 (002) 00-019-1482 

36.05 

49.45 

16.2 

19.6 

2.49 

1.84 

0.390 

0.779 

22.4 

11.7 

(102) 

(112) 

01-080-0009 

00-019-1482 

5.3.2.2 Raman spectroscopy 

The structural quality of thin film materials can also be determined using a non-

destructive Raman scattering technique. The laser power and wavelength used are 15 

mW and 514 nm respectively. The laser power was reduced from 100% (30 mW) to 

50% (15 mW) to avoid damage to the surface of the layer exposed to the beam. A 100x 

objective lens was used in the Raman microscope. The Raman instrument was 

calibrated by using the 520 cm
-1

 Raman shift of the reference silicon wafer. The Raman 

spectra of ZnTe thin films can exist in both longitudinal and transverse optical modes. 

According to Irwin et al. [28], the first-order Raman spectrum consists of two peaks 

namely longitudinal optical (LO) mode and transverse optical (TO) mode. The higher 

frequency is described as the LO mode while the lower frequency is the degenerate TO 

mode. Figure 5.5 shows a typical Raman spectra of AD- and HT-ZnTe thin films grown 

at a cathodic potential of 1600 mV for 30 minutes. The observed peaks in both LO and 

TO modes are higher in HT-ZnTe layers than AD-ZnTe layers. 

The 1TO Raman peak for ZnTe was observed at 165 cm
-1

 and the 1LO phonon mode 

was observed at 197 cm
-1

. The second order LO (2LO) phonon mode was also observed 

for both AD- and HT- ZnTe layers with less peak intensity at the phonon frequency of 

397 cm
-1

. The 1LO and 2LO peaks of ZnTe nanorods reported by Zhang et al. [29] 

occurred at 205 cm
-1

 and 410 cm
-1

. When compared with the experimental results 
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reported by Zhang et al., a small redshift was observed in the 1LO peak and 2LO peaks 

from 205 cm
-1

 to 197 cm
-1 

and 410 cm
-1

 to 397 cm
-1

 respectively. This shift can be due 

to reasons such as different thickness of the thin film used for the experimental purpose, 

composition of Zn to Te in the ZnTe layer [30,31], defects and stresses in ZnTe thin 

films. Two other peaks at ~120 cm
-1

 and ~142 cm
-1

 were also observed below the 1TO 

Raman phonon peak. These peaks arise as a result of elemental Te or presence of Te-

rich phases in the material [29]. Raman peaks at low frequency of 121.5 cm
-1

 and 141.2 

cm
-1

 have also been reported in other II-VI binary compounds containing Te such as 

CdTe [32]. Precipitates of elemental Te is a common feature during growth of Te 

containing semiconductors; this is well documented by the research based on CdTe thin 

films [32,33]. 

 

Figure  5.5. Typical Raman spectra for AD- and HT-ZnTe layers grown at 1600 mV for 

30 minutes. The spectra shows both transverse optical (TO) and longitudinal optical 

(LO) phonon modes. 

5.3.3 Optical absorption studies 

The optical absorption measurements were carried out at room temperature in order to 

obtain the energy bandgap (Eg) of the ED-ZnTe thin films. The measurements were 

carried out on ZnTe layers grown between 1350–1750 mV in the wavelength range 
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350–800 nm. Figures 5.6 (a) and 5.6 (b) show the optical absorption graphs that are 

used in estimating the energy bandgaps of both AD- and HT-ZnTe layers. The bandgap 

estimation was done by extrapolating the curve tangent line to the photon energy axis 

when A
2
=0. Figure 5.7 illustrates how the estimated energy bandgaps from optical 

absorption measurements vary with the cathodic potential for both AD- and HT-ZnTe 

layers. The AD-ZnTe layers have energy bandgaps in the range (1.70–2.60) eV while 

the energy bandgaps of HT-ZnTe layers range from (1.90–2.60) eV. At 1600 mV, the 

Eg of both AD- and HT-ZnTe layers is ~2.20 eV; this value happens to fall in the 

vicinity of the bandgap of bulk value of stoichiometric ZnTe layers. This signifies that 

the cathodic potential of 1600 mV can be used in growing near stoichiometric ZnTe 

layers. The high intensity of XRD peaks, formation of large grains (from SEM and 

AFM measurements) and accurate bandgap of 2.20 eV (from optical absorption 

measurements) for materials grown at 1600 mV show strong evidence for growing near 

stoichiometric and more crystalline ZnTe layers at this voltage. 

  

Figure  5.6. Optical absorption graphs for ZnTe layers grown between 1350–1750 mV, 

(a) AD-ZnTe layers and (b) HT-ZnTe layers.  
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Figure  5.7. Variation of the energy bandgaps of ZnTe layers as a function of cathodic 

deposition potential, for both AD- and HT-ZnTe layers.  

5.3.4 Photoelectrochemical cell measurements 

PEC cell measurements were carried out so as to determine the electrical conductivity 

type of the ED-ZnTe layers. Figure 5.8 shows the results of the PEC signals observed 

for AD- and HT-ZnTe layers. The results of the PEC signals observed for AD- and HT-

ZnTe layers deposited between 1350 and 1800 mV show both p- and n-type electrical 

conduction. p-type electrical conduction was observed between deposition potential 

(Vg) of 1350–1600 mV while at Vg≥1620 mV, negative PEC signals were obtained thus 

indicating n-type ZnTe layers. The p-type ZnTe was achieved at low potential due to 

Te-richness in the ZnTe layers. The n-type electrical conductivity was achieved at 

higher cathodic potential due to Zn-richness. Fauzi et al. [25] reported only p-type ZnTe 

even at higher cathodic potentials. This can be due to presence of higher concentrations 

of Te in the electrolyte. The authors attributed this to the likely domination of native 

defects related to Te-richness in ZnTe material thus making it to be p-type under all 

growth conditions. Mandel [9] and John et al. [8] attributed the difficulty in achieving 

n-type ZnTe thin films to self-compensation in the material. However, in this work, n-

ZnTe layers have been successfully electrodeposited at higher cathodic potentials thus 

eliminating the possibility of native defect domination and self-compensation in ZnTe 

layers. The possibility of growing n-ZnTe could also arise as a result of fine control of 

Te by using dissolved TeO2 solution in the ZnTe electrolytic bath. The n- and p- type 
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ZnTe layers were further tested by fabricating a p-n homo-junction device structure with 

rectifying ability as explained in section 5.5.2. 

 

Figure  5.8. Typical PEC signals as a function of deposition potential for AD- and HT-

ZnTe layers, showing n- and p-type electrical conduction. Te-richness at voltages less 

than 1620 mV shows p-type electrical conduction while Zn-richness at voltages greater 

than 1620 mV shows n-type electrical conduction. 

5.3.5 Morphological Analysis 

Two techniques namely scanning electron microscopy and atomic force microscopy as 

discussed in this section were used to investigate the morphological properties of 

electroplated ZnTe layers.   

5.3.5.1 Scanning electron microscopy 

Scanning electron microscopy (SEM) technique was used to study the surface 

morphology of heat-treated ZnTe thin films grown at the stoichiometric potential of 

1600 mV and voltages on both sides of this potential. The three SEM images illustrated 

in Figures 5.9 (a-c) with magnification of 120,000 are for heat-treated ZnTe layers 

grown for 30 minutes at three different cathodic potentials namely 1550, 1600 and 1650 

mV respectively. The heat-treatment was done in air at 300
o
C for 10 minutes. The SEM 

images in Figures 5.9 (a-c) show that the films are uniformly covered with grains of 

varying sizes. Large grains or agglomerations observed are collection of small 

crystallites. In Figure 5.9 (a), the grain size of the HT-ZnTe layer ranges from ~91–309 
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nm while in Figure 5.9 (b), the grain size ranges from ~127–509 nm. In Figure 5.9 (c), 

the grain size ranges from ~73–291 nm. The largest grain size was observed in the ZnTe 

layer grown at 1600 mV (Figure 5.9 (b)). This result also confirms the XRD results 

where Vg of 1600 mV show the highest peak intensity in both as-deposited and heat-

treated layers.  

   

Figure  5.9. SEM images of HT-ZnTe thin films grown on FTO substrates deposited at a 

pH of 3.50±0.02, growth time (tg)=30 minutes. (a) For Vg=1550 mV, (b) Vg=1600 mV 

and (c) Vg=1650 mV. 

5.3.5.2 Atomic force microscopy 

Atomic force microscopy (AFM) technique was performed using Nanoscope IIIa 

multimode atomic force microscope. The measurements were carried out to study the 

surface morphology, growth pattern and to also measure the grain sizes and surface 

roughness of ED-ZnTe layers. The AFM images showing the surface morphology of 

AD- and HT-ZnTe layers deposited at 1600 mV for 30 minutes on glass/FTO substrates 

are shown in Figure 5.10 (a) and 5.10 (b) respectively. The measured grain sizes for 

AD- and HT-ZnTe layers lie in-between ~(46–323) and ~(139-520) nm respectively. 

These results do agree with the ones obtained from SEM images of HT-ZnTe layers 

deposited at 1600 mV. As seen from the AFM results, a reduction was seen in the 

surface roughness of ZnTe layers after annealing. The average surface roughness 

measured for AD-ZnTe layer is ~45 nm; after annealing, the surface roughness reduced 

to ~35 nm. The 3D–AFM images of AD- and HT- ZnTe layers are shown in Figure 5.10 

(c) and 5.10 (d) respectively. The 3D–AFM images reveal the growth pattern; both 

figures show that the ZnTe layers have a columnar growth with varying sizes. 

According to Fauzi et al. [25], the varying sizes of the columnar shaped thin film 

(a) (b) (c) 
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material leaves unwanted gaps in-between the columnar materials. These undesirable 

gaps cause shorting of devices thus leading to a poor performance when used in solar 

cells fabrication. 

         

 

Figure  5.10. AFM images of ZnTe layers grown at 1600 mV for 30 minutes (a,c) AD-

ZnTe layers and (b,d) HT-ZnTe layers at 300
o
C for 10 minutes in air. 

5.3.6 Compositional study of electroplated ZnTe layers 

The percentage of Zn and Te atoms present in the as-deposited ZnTe thin films were 

determined using EDX technique. Five samples grown at different cathodic potentials in 

the range 1500-1700 mV at 50 mV intervals were used for the analysis. Figure 5.11 (a) 

and 5.11 (b) show the EDX spectra of AD-ZnTe layers grown at 1500 and 1700 mV 

respectively; while Figure 5.12 summarises how the atomic percentage of Zn and Te 
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elements present in the ZnTe thin film changes with deposition potential. As illustrated 

in Figure 5.11 (a), the atomic percentage of Zn:Te at Vg=1500 mV was 38.1:61.9 

showing that the AD-ZnTe layer is more rich in Te than in Zn. In Figure 5.11 (b), the 

composition of Zn:Te atoms at Vg=1700 mV was found to be 68.6:31.4 illustrating that 

the ZnTe thin film is more rich in Zn than in Te. The results obtained from the EDX 

analysis further confirmed our earlier statement in section 5.3.4 that p-type ZnTe was 

achieved at low cathodic potential due to Te-richness while the n-type electrical 

conductivity was achieved at higher cathodic potential due to Zn-richness. 

 

 

 

Figure  5.11. EDX spectra of AD-ZnTe layers on FTO substrates grown for 30 minutes 

at (a) Vg=1500 mV and (b) Vg=1700 mV.   

 

(a) 

(b) 
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Figure  5.12. Graphical representation of percentage compositions of Zn and Te atoms 

in AD-ZnTe thin films at different deposition cathodic potential. Note the richness of Te 

at low cathodic voltages and richness of Zn at high cathodic voltages. 

 

The PEC results (Figure 5.8) of ZnTe layers grown below ~1620 mV show that p-type 

materials are grown due to Te-richness. Similarly from Figure 5.8, n-type ZnTe layers 

are grown at voltages above ~1620 mV due to Zn-richness. The EDX result explains 

the possibility of growing Zn-rich ZnTe thin films at higher cathodic potentials and Te-

rich ZnTe thin films at lower cathodic potentials thus confirming the likelihood of 

having n- and p-type ZnTe layers at higher and lower cathodic potentials respectively. 

Figure 5.12 shows that as the growth voltage changes, the ratio of Zn:Te atoms in the 

ED-ZnTe layers likewise varies. As the growth voltage increases from 1500-1700 mV, 

the % of Te atoms decrease while the % of Zn atoms increase. This result shows that by 

changing the deposition potential, the stoichiometry and the material properties (such as 

electrical, morphological, structural and optical) do change. These very results can be 

used in explaining the probable reason while a reduction was observed in the bandgap 

of ZnTe layers (Figure 5.6) grown at higher cathodic potentials. At higher cathodic 

growth voltage, more Zn is electrodeposited than Te thus leading to a gradual reduction 

in the bandgap of ZnTe layers due to the metallic nature of Zn.  

5.4 Thickness measurement of ZnTe layers  

The experimental thicknesses of AD-ZnTe layers were obtained by using Microfocus 

Optical Thickness Profilometer measurement system while the theoretical thicknesses 
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were estimated using Faraday's law of electrolysis. Thickness (T) of the layer in cm is 

given by Equation (5.3). 

nF

JtM
T            (5.3) 

where M is the molecular weight of ZnTe thin film (193.01 gmol
-1

), t is the growth time 

in seconds, J is the average current density observed during deposition in Acm
-2

, F is 

Faraday’s constant (96485 Cmol
-1

), ρ is the density of ZnTe (6.34 gcm
-3

) and n is the 

total number of electrons required in the deposition of 1 mole of ZnTe (n=6 as given by 

Equations (5.1) and (5.2)). 

The samples used for this measurement were grown at 1600 mV for different duration 

(0.5–4.0 hours). This experiment was carried out in a ZnTe electrolyte containing 

excess Te. The composition of the ZnTe bath contains 0.015 M ZnSO4.7H2O and 10 ml 

of dissolved TeO2 in 800 ml  of de-ionised water. The experimentally measured values 

and theoretically estimated values are shown in Figure 5.13. As expected, the thickness 

of AD-ZnTe layers increase with increase in deposition time. As illustrated in Figure 

5.13, an approximate linear variation of thickness with growth time was observed in 

both theoretical and experimental curves. The theoretically estimated thickness is 

generally higher than the experimentally measured thickness because not all the 

electronic charges used in the theoretical estimation are actually utilised in the 

deposition of ZnTe thin films. Some of these charges flow through the electrolyte and 

are used for electrolysis of water thus making the experimentally measured thicknesses 

to be less than the theoretically estimated values.  

 

Figure  5.13. Experimental and theoretical estimation of thickness of as-deposited ZnTe 

layers as a function of deposition time. 
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5.4.1 Effect of thickness on electrical properties of ZnTe layers  

The electrical properties of ZnTe layers grown at 1600 mV was studied at different 

thicknesses using techniques such as PEC cell measurement, I-V and C-V. 

5.4.1.1 Thickness effect on PEC signals 

PEC cell measurements were carried out so as to determine the effect of thickness 

variation on the magnitude of PEC cell signals of AD- and HT-ZnTe layers grown at 

1600 mV. It should be recalled that at this Vg, a positive PEC signal was obtained as 

earlier explained in section 5.3.4.  Table 5.3 shows the PEC signals obtained for AD- 

and HT-ZnTe layers at different growth durations ranging from 0.50 to 4.00 hours while 

Figure 5.14 is the diagrammatic illustration of PEC signals given in Table 5.3. As seen 

in Figure 5.14, the highest and lowest PEC signals were observed at the growth time of 

2.00 and 4.00 hours respectively. For the HT-ZnTe layers, a progressive increase was 

observed from 0.50 to 2.00 hours. Beyond 2.00 hours of thin films deposition, a drastic 

reduction took place in the magnitude of the PEC signals. 

Table 5.3. PEC signals of AD- 

and HT-ZnTe at different growth 

duration ranging from 0.50 to 4.00 

hours. 

 
PEC Signals 

(mV) 

Growth 

Time 

(hours) 

AD-

ZnTe 

HT-

ZnTe 

0.50 +68 +64 

1.00 +62 +66 

1.50 +61 +70 

2.00 +79 +85 

3.00 +42 +30 

4.00 +33 +09 
 

 

5.4.1.2 Thickness effect on mobility and Fermi level position  

I-V and C-V techniques were both used to investigate how thickness variation affects 

the resistivity, acceptor density, mobility and position of Fermi level in p-ZnTe layers. 
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Figure  5.14. Typical PEC signals as a function 

of deposition time for AD- and HT-ZnTe layers 

grown at a cathodic potential of 1600 mV.  
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The device structures glass/FTO/p-ZnTe/Au were fabricated to investigate the material 

resistivity using I-V technique while C-V technique was used to investigate the acceptor 

density and Fermi level position of glass/FTO/p-ZnTe/Al device structures. 

Approximately same thicknesses of ZnTe layers were used for both I-V and C-V 

experiments. Table 5.4 gives the summary of results obtained from I-V and C-V 

measurement analyses. It was noticed that as the thickness of the ZnTe layer increases, 

the depletion width (W) increases while the acceptor density (NA) decreases. The highest 

conductivity and mobility occurred at growth time of 2.00 hours. It was also observed 

that as the material thickness increases, the Fermi level position moves away from the 

valence band maximum towards the mid-gap position. These experimental results show 

that the thickness of the semiconductor material influences the Fermi level position of 

electroplated ZnTe layers. 

Table 5.4. Effect of thickness of ZnTe layers on electrical parameters obtained from I-V 

and C-V techniques. 

 Time  

(hours) 

Thickness  

(nm) 

Co 

(pF) 

W  

(nm) 

NA 

(cm
-3

) 

σ 

(Ωcm)
-1

 

µ = σ/eN  

(cm
2
V

-1
s

-1
) 

EF-Ev  

(eV) 

0.5 223.4 2060 140 1.56 ×10
18

 2.22×10
-5

 0.0001 0.01 

1.0 403.2 1090 265 1.21×10
17

 3.05×10
-5

 0.0016 0.08 

1.5 701.4 608 476 5.66×10
16

 4.96×10
-5

 0.0055 0.10 

2.0 908.7 591 490 5.16×10
15

 6.08×10
-5

 0.0736 0.16 

3.0 1544.8 346 836 1.92×10
15

 1.40×10
-5

 0.0456 0.18 

4.0 2082.5 179 1620 1.47×10
15

 9.76×10
-6

 0.0415 0.19 

 

The experimental results summarised in Table 5.4 explain the possibility of having both 

degenerate and non-degenerate p-type ZnTe semiconductors. For a p-type 

semiconductor to be termed degenerate, one or both of the following conditions must be 

met; the first condition is that the acceptor density (NA) must be greater than the 

effective density of states in the valence band edge (NV) while the second condition is 

that (EF-EV) is ≪ kT [34]. By substituting mp* = 0.20mo which is the effective hole mass 

of ZnTe into Equation 3.43 of Chapter 3, the effective density of states in the valence 

band edge of ZnTe thin film was calculated to be 2.24×10
18

 cm
-3

. As revealed in Table 

5.4, the ZnTe layer grown for 30 minutes duration belong to the degenerate p-type 

semiconductor since (EF-EV) is ≪ kT while the ZnTe layers deposited within the range 
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1.00 to 4.00 hours belong to the non- degenerate p-type semiconductor since NA is < 

NV and (EF-EV) is ≫ kT. 

5.4.2 Effect of thickness on morphological properties of ZnTe layers 

SEM technique was used to study how variation in growth duration affects the 

morphology of ED-ZnTe layers. Figures 5.15 (a-g) show the obtained micrographs of 

ED-ZnTe layers deposited within the explored growth duration. The SEM images 

revealed that the grain size increases as the deposition time increases. These results 

agree with the experimental results reported by Shaaban et al. that the crystallites size of 

ZnTe thin films increase with the thickness of thin film [35]. 

The summary of range of grain sizes obtained for ED-ZnTe layers deposited between 

the growth times of 0.25 to 4.00 hours is given in Table 5.5. The value of theoretical 

thicknesses obtained from Faraday’s equation is also shown in Table 5.5 for easy 

comparison. As seen from Table 5.5, the smallest grain size is denoted as G.Sminimum 

while the largest grain size is depicted as G.Smaximum. The average grain size (G.Saverage) 

was obtained by finding the mean of G.Sminimum and G.Smaximum. The smallest range of 

grain sizes (21.6-101.5) nm occurred at deposition time of 15 minutes while the largest 

range of grain sizes (725.5-3091.5) nm was obtained at growth time of 4.00 hours. The 

graphical relationship between the measured average grain sizes (G.Saverage) and growth 

time is described in Figure 5.15 (h). Figure 5.15 (h) also includes the plot of theoretical 

thickness obtained from Faraday’s equation for easy comparison. A good correlation 

exists between Figure 5.15 (h) and Figure 5.13.  
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Figure  5.15. (a-g) Typical SEM micrographs of ED-ZnTe layers grown within duration 

of 0.25 to 4.00 hours and (h) Thickness of ED-ZnTe layers measured from SEM 

technique and theoretically estimated from Faraday’s equation. 

 

(a) tg = 15 mins (b) tg= 30 mins 

(c) tg= 1 hour 

 

(d) tg= 1.5 hours 

 

(e) tg= 2 hours 

 

(f) tg= 3 hours 

(g) tg= 4 hours 
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Table 5.5. Summary of thickness results obtained from SEM technique and Faraday’s 

law of electroplating. 

Time 

(hours) 

G.Sminimum 

(nm) 

G.Smaximum 

(nm) 

G.Saverage 

(nm) 

Theoretical thickness 

(nm) 

0.25 21.6 101.5 61.6 100.8 

0.50 63.2 326.1 194.7 223.4 

1.00 166.4 555.7 361.1 403.2 

1.50 226.3 901.8 564.1 701.4 

2.00 386.0 1367.7 876.9 908.7 

3.00 452.6 2196.3 1324.5 1544.8 

4.00 725.5 3091.5 1908.5 2082.5 

5.4.3 Effect of thickness on optical absorption 

The optical absorption spectra of AD- and HT-ZnTe layers for selected growth duration 

are illustrated in Figure 5.16. The results of optical absorption measurements carried out 

at different growth time are presented in Table 5.6. The optical results showed that by 

increasing the thickness of the ZnTe layers grown in a Te-rich ZnTe electrolyte, the 

bandgap of the ZnTe layer can be modified. It was observed that the energy bandgaps of 

the thin films decrease with increase in growth time and film thickness. Researchers 

working on thin films have also described and explained how variation in thickness of 

thin films affects the energy bandgap of semiconductor materials [36,37].  

  

Figure  5.16. Optical absorption spectra showing the effect of thickness variation on 

energy bandgap of (a) As-deposited ZnTe layers and (b) Heat-treated ZnTe layers. 
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Table 5.6. Energy bandgaps for AD- and HT-ZnTe layers at different growth duration. 

 Growth time (hours) 0.25 0.50 1.00 1.50 2.00 3.00 

Bandgap (eV) 

± 0.02 

AD-ZnTe 2.60 2.20 1.68 1.55 1.30 0.55 

HT-ZnTe 2.35 2.10 1.65 1.55 1.20 0.55 

 

As shown in Figure 5.17, the visual appearance of ZnTe layers differ from each other 

due to the variation in growth duration. Figure 5.17 (a) and 5.17 (b) show the visual 

appearance of ZnTe layers grown for 0.50 and 2.00 hours respectively. The energy 

bandgap of as-deposited Te-rich p-ZnTe (ZnTe:Te) layer grown for 0.50 hours as stated 

in Table 5.6 falls in the range of bandgap for bulk ZnTe thin films while the energy 

bandgap of as-deposited Te-rich p-ZnTe (ZnTe:Te) layer grown for 2 hours is ~1.30 eV; 

this value deviates from the bandgap of stoichiometric ZnTe which is reported to be in 

the range (2.10–2.26) eV [25]. In Figure 5.17 (b), the Te-rich ZnTe layer appears very 

dark in appearance thus making it to be highly light absorbing. Te being a semi-metal 

has a very low bandgap of 0.37 eV [38] and since the ZnTe layers were grown in a Te-

rich ZnTe electrolyte for longer duration, more Te easily comes to the surface of the 

ZnTe layer due to the redox potential of Te atom. This phenomena causes a reduction in 

the bandgap from ~2.20 to ~1.30 eV providing a suitable method for bandgap grading. 

The optical absorption curves in Figure 5.16 thus show that the bandgap of ZnTe is 

tunable by controlling the deposition time, the amount of Te in the ZnTe electrolyte or 

simply by changing the deposition voltage. It must be noted that the deposition time 

also determines how much Te and Zn is deposited on the cathode.  

 

 

  

Figure  5.17. Visual appearance of electroplated ZnTe layers grown at same cathodic 

potential of 1600 mV for different duration of (a) 30 minutes and (b) 2 hours. 

(a) (b) 
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5.5 Testing the electronic quality of ZnTe thin films 

The I-V and C-V techniques were both used in investigating the electronic qualities of 

ED-ZnTe layers. The ohmic behaviour of n- and p- ZnTe layers were studied using the 

device structures glass/FTO/n-ZnTe/Al and glass/FTO/p-ZnTe/Au contacts 

respectively. Homo-junction diodes were also fabricated from the n- and p-ZnTe layers 

using glass/FTO/p-ZnTe/n-ZnTe/Al and glass/FTO/n-ZnTe/p-ZnTe/Au device 

structures. The initial results obtained from glass/FTO/p-ZnTe/n-ZnTe/Al device 

structures did not yield satisfactory results in terms of rectifying behaviour while homo-

junction diodes fabricated from glass/FTO/n-ZnTe/p-ZnTe/Au device structures 

produced good rectifying property. The electronic properties of glass/FTO/n-ZnTe/p-

ZnTe/Au device structures were further assessed using I-V and C-V analytical 

techniques. 

5.5.1 DC conductivity measurements of ED-ZnTe layers 

The DC conductivity measurements were carried out on ZnTe layers grown in the p- 

and n- regions at Vg of ~1600 and 1650 mV respectively. For the purpose of this study, 

the ohmic contacts to p- and n-ZnTe layers were achieved by using Au and Al metal 

contacts respectively. Au and Al contact areas of 0.0314 cm
2
 and ~100 nm thicknesses 

were evaporated on electroplated p- and n-ZnTe layers of ~1000 nm in a metal 

evaporator maintained at a high pressure of 10
-6

 mbar. Using I-V measurement 

technique, the resistances of p- and n-ZnTe layers were obtained from the device 

structures glass/FTO/p-ZnTe/Au and glass/FTO/n-ZnTe/Al respectively. The electrical 

resistivity    was calculated from the estimated resistances using 
L

RA  with the 

known values of contact area (A) and the layer thickness of (L).  

Table 5.7 shows the summary of electrical properties of p- and n-ZnTe thin films heat-

treated at 300
o
C for 10 minutes in air. As revealed in Table 5.7, the magnitude of the 

resistivity of p-ZnTe layers is higher than those of n-ZnTe layers. Researchers have 

shown that for two n- and p-type semiconductors with the same concentration, p-types 

have a higher resistivity than n-types semiconductor [39]. The majority carriers in n-

type semiconductors are the electrons while holes are the majority carriers in p-type 

semiconductors. Since electrons are known to have higher mobility than holes, it thus 

shows that electrons must possess lesser resistance to the flow of mobile charge carriers 

than holes thereby making the n-type ZnTe to have lower resistivity than p-type ZnTe. 
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Likewise, mobility of charge carriers is a function of the resistivity of semiconductor 

material; the more resistive a semiconductor material is, the less mobile will be its 

charge carriers. The measured resistivities in this work fall in the range of values 

reported by Ishizaki et al. [40], Farooq et al. [41], Ghandhi et al. [42] and John et al. [8]. 

Rectifying diodes fabricated from high resistive semiconductors such as binary 

compound semiconductors (for example, CdTe, ZnTe) and Ternary compound 

semiconductors (for example, CdZnTe, CdMnTe) have found useful applications as X- 

ray and γ- ray detectors [43–46]. 

Table 5.7. Summary of electrical properties obtained for p- and n-ZnTe layers 

electroplated and heat-treated at 300
o
C for 10 minutes in air (contact area = 0.031 cm

-2
).  

Electrical parameter                    p-ZnTe                                  n-ZnTe 

Resistance, R (Ω)                         166.7                                      47.5 

Resistivity, ρ (Ω.cm)                5.18 × 10
4
                              1.48 × 10

4 

Conductivity, σ (Ω.cm)
-1

          1.93 × 10
-5

                             6.77 × 10
-5

 

 

5.5.2 Development of p-n homo-junction diodes from electroplated ZnTe thin films 

To further test the electronic device quality of electrodeposited n- and p-ZnTe layers, a 

simple p-n junction diode was fabricated using the device structure glass/FTO/n-

ZnTe/p-ZnTe/Au. The fabricated device structure was analysed using I-V technique. An 

n-ZnTe of ~290 nm was grown at 1650 mV and annealed at 300
o
C for 10 minutes in air. 

A p-ZnTe layer of ~1.00 µm was electroplated on annealed n-ZnTe layer at a cathodic 

potential of 1600 mV. The structure glass/FTO/n-ZnTe/p-ZnTe was then annealed again 

at 300
o
C for 10 minutes in air. Gold (Au) metal contacts of ~100 nm thickness and 2 

mm diameter (0.031 cm
-2

) were evaporated on p-ZnTe to form ohmic contacts on p-

ZnTe. Figure 5.18 (a) and 5.18 (b) show typical linear-linear and log-linear I-V graphs 

under dark condition for the fabricated p-n junction diodes. The reverse curve of I-V in 

Figure 5.18 (a) was used in determining the shunt resistance (Rsh) while the series 

resistance (Rs) was determined using the high forward bias region of the I-V curves. 

The calculated Rs and Rsh from the forward and reverse curves of Figure 5.18 (a) are 13 

kΩ and 1.7 MΩ respectively. Other electronic parameters such as rectification factor 

(RF), ideality factor (n), reverse saturation current (Is) and potential barrier height (ɸb) 

were determined from the log-linear I-V curve shown in Figure 5.18 (b).  Under the 
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deposition parameters used in this initial work, the fabricated homo-junction p-n diodes 

showed RF of ~10
2.0

, n value of 2.58, Is of ~10.0 nA, ɸb>0.77 eV and threshold voltage 

(Vt) of ~0.25 V.  

The measured parameters of the p-n homo-junction diodes showed the non-ideal nature 

of the fabricated diodes, however the result still showed that n- and p- type ZnTe layers 

have been successfully electroplated due to the rectifying nature exhibited by the diode 

as shown in Figure 5.18 (a). For a diode which behaves in a nearly ideal way, the 

current transport takes place via the emission of electrons from one side to the other 

through the top of the potential barrier at the interface [47]. The high ideality factor 

obtained in this work showed that there are defects in the material. The value of ideality 

factor is equal to unity for an ideal diode but deviates from 1.00 due to presence of 

recombination current [47]. As explained by Sze and Ng [39], the presence of 

recombination and generation (R&G) centres at the depletion region and interface can 

also make the ideality factor to increase to 2.00. Presence of high series resistance, 

tunnelling through the device and presence of R&G centres in the depletion area of the 

device structures are other possible reasons for ideality factor to exceed 2.00. 

   

Figure  5.18. I-V characteristics of ZnTe p-n homo-junction diodes under dark condition 

(a) Linear-linear, (b) Log-linear and (c) I-V characteristics of glass/FTO/n-ZnTe/p-

ZnTe/Au under AM1.5 illumination condition at room temperature. 

The results of the I-V measurement under AM1.5 illumination showed that the device 

structure glass/FTO/n-ZnTe/p-ZnTe/Au is photo-voltaic active as described in Figure 

5.18 (c). The initial device parameters are Voc=0.260 V, Jsc=0.53 mAcm
-2

 and FF=0.34. 

These measurements were simply carried out to test the electronic properties of the p-n 
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interface, but not to develop as a solar cell. Both initial I-V measurements under dark 

and illuminated conditions show that the p-n interfaces have right electronic properties.  

5.5.3 Capacitance-voltage measurements of p-n homo-junction diodes 

C-V measurements were carried out on glass/FTO/n-ZnTe/p-ZnTe/Au rectifying p-n 

homo-junction diodes. The C-V and Mott-Schottky plots are illustrated in Figure 5.19 

(a) and 5.19 (b) respectively. As illustrated in Figure 5.19 (a), the depletion layer 

capacitance obtained at zero bias for the p-n homo-junction diodes is 2.43 nF. By 

inserting the values of the depletion layer capacitance into Equation (3.38) of Chapter 3, 

the width of the depletion region, W was estimated to be ~119 nm. The slope of Mott-

Schottky plots in Figure 5.19 (b) was used in finding the doping density of the p-n 

homo-junction diodes by substituting the obtained slope values (1.60×10
17

 F
-2

V
-1

) into 

Equation (3.35) earlier given in Chapter 3. A doping density of 8.58×10
16

 cm
-3

 was 

obtained; this value signifies that the level of doping in the p-n homo-junction diode 

device structure is moderate. Using Equation (3.50) presented in Chapter 3, the electric 

field at the p-n junction of the diode was estimated to be 1.77×10
5
 Vcm

-1
. The 

theoretical value of Vbi was calculated as 1.06 V by using Equation (3.51). The Vbi as 

indicated in Figure 5.19 (b) is ~1.06 V, this value corresponds with the theoretical value 

of Vbi obtained from Equation (3.51).  

  

Figure  5.19. Typical (a) Capacitance vs bias voltage and (b) C
-2

 vs V graphs of the 

rectifying p-n homo-junction diodes with device structure, glass/FTO/n-ZnTe/p-

ZnTe/Au.  
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5.6 Summary 

The growth of ZnTe thin films was successfully achieved by electrodeposition 

technique using two-electrode system. The electroplated ZnTe layers are polycrystalline 

with hexagonal crystal structures and preferred orientation along the (002) plane. The 

electrical conductivity types show both n- and p-type and electroplating provides a 

convenient intrinsic doping simply by changing the composition. As seen from the 

results of EDX analysis, variation in the atomic composition of Zn:Te was observed in 

the electroplated ZnTe layers as the growth voltage changes. As the cathodic growth 

voltage increases, the percentage of Zn atoms in the ZnTe layers increase while the 

percentage of Te atoms in the ZnTe layer decrease as observed in this work. These 

variations in the atomic composition thus tend to change the material stoichiometry and 

hence the electrical conductivity type of the layers. The bandgap of ZnTe layers range 

from (1.90–2.60) eV after annealing in air, but the near stoichiometric material grown at 

1600 mV produce 2.20 eV bandgap identical to that of bulk ZnTe. The effect of varying 

the thickness of deposited p-ZnTe thin films was also investigated on the optoelectronic 

properties of ZnTe layers. Experimental investigations revealed that ZnTe thin films 

grown for ~2.00 hours have the largest PEC signals and highest mobility. It was 

observed that the grain sizes of the thin films increase with thickness, with the largest 

range of grains obtained at the highest thickness and lowest range of grains obtained at 

the minimum thickness. Tuneable bandgaps were also obtained for ZnTe layers grown 

in a Te-rich ZnTe electrolyte by varying the thin film thickness. The electronic qualities 

of the ED-ZnTe layers were also tested by making ohmic contacts to n- and p-ZnTe thin 

films of approximately same thickness. The results from DC conductivity measurements 

showed that p-ZnTe layers have higher resistivity than n-ZnTe layers and both materials 

show semi-insulating semiconductor properties. The fabrication of p-n homo-junction 

diodes, the basic building block of electronic devices, was carried out to further 

investigate the electronic device quality of the electrodeposited ZnTe layers. Initial 

results obtained from I-V measurements of the device structure glass/FTO/n-ZnTe/p-

ZnTe/Au under both dark and illuminated conditions also confirmed the rectifying 

ability of the n-ZnTe/p-ZnTe interface. The C-V results demonstrate moderate level of 

doping for the p-n homo-junction diodes. 
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Chapter 6 - Growth and characterisation of CdS thin films 

6.1 Introduction 

Cadmium sulphide (CdS) is a member of group II-VI binary compound semiconductors 

which has found wide applications in the world of electronic devices. It is a direct 

bandgap semiconductor having energy of 2.42 eV for single crystalline material at room 

temperature [1,2]. It is n-type in electrical conduction and is widely used in the 

fabrication of electronic devices due to its unique optoelectronic features. Some of the 

applicable areas where CdS semiconductors have found optimum usefulness are: gas 

sensors [3–5], thin film field effect transistors [6], photoresistors [7], photosensors [8–

10], light emitting diodes [11,12], Schottky diodes [13] and solar cells [14–16].  CdS 

thin films have been found to be a suitable window material to some low-bandgap 

absorber semiconductor layers. Typical examples of semiconductors using CdS as 

hetero-junction partner for solar cell applications are CdS/CIS [17], CdS/CIGS [18], 

CdS/Cu2S [19] and CdS/CdTe [20–22]. In this work, CdS has been used as an hetero-

partner to CdTe thin films to develop glass/FTO/n-CdS/n-CdTe/Au solar cell device 

structures. 

Numerous deposition techniques have been used to-date for the deposition of CdS thin 

films. Some of these techniques include: chemical bath deposition (CBD) [23], spray 

pyrolysis [24], vacuum deposition [25], close spaced sublimation (CSS) [26], screen 

printing [3], sputtering [27], metal-organic chemical vapour deposition (MOCVD) [28] 

and electrodeposition [29–31].  Polycrystalline CdS thin films with good quality can be 

obtained using the aforementioned growth techniques. However, the initial cost of 

setting up instrument for techiques like CSS and MOCVD is very high. In growth 

technique like CBD, generation of large toxic waste containing Cd is a great 

disadvantage and disposing these wastes often introduce additional expenses into the 

overall production cost. In a production line, it is therefore advantageous to use a 

continuous deposition process like electrodeposition to develop CdS and its other solar 

cell hetero-partner. This will ensure a reduction in the production cost. In this research, 

the growth of CdS thin films was achieved using electrodeposition technique with a 

two-electrode set up. The main aim of this work is to establish the right cathodic 
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deposition potential for growing CdS thin films for applications in optoelectronic 

devices most especially solar cells. 

6.2 Preparation of CdS electrolytic bath 

Two chemicals namely CdCl2.xH2O (99.999% purity) and (NH4)2S2O3 (98% purity) 

were used in preparing the electrolyte for the electrodeposition of CdS thin films. The 

two chemicals were purchased from Sigma Aldrich, United Kingdom. The precursors 

CdCl2.xH2O serve as the cation source while (NH4)2S2O3 serve as the anion source. The 

electrolytic bath contains 0.3 M CdCl2.xH2O and 0.03 M (NH4)2S2O3 in 400 ml of de-

ionised water. After mixing the two chemicals together, the initial pH was measured to 

be 1.44±0.02. The pH of the bath was adjusted to 2.50±0.02 using diluted NH4OH and 

HCl. The solution was allowed to stir continuously for ~6 hours to ensure full 

dissolution of the chemicals in the de-ionised water. The electroplating of CdS thin 

films were carried out at ~80
o
C using a heater with an embedded magnetic unit which 

controls the magnetric stirrer during deposition.  

6.3 Voltage optimisation and growth of CdS thin films 

This section discusses some analytical techniques used for estimating the range of 

cathodic potentials that would be suitable for the growth of nearly stoichiometric CdS 

layers and for material characterisation. 

6.3.1 Cyclic voltammogram 

The suitable voltage range to grow nearly stoichiometric CdS thin films was obtained 

using a cyclic voltammogram. A range of cathodic potentials from 0 to 1600 mV was  

applied through the electrodes inside the electrolyte at a sweep rate of 180 mVmin
-1

. 

The pH of the solution and deposition temperature were maintained at 2.50±0.02 and 

~80
o
C respectively. The I-V curve of the electrolyte containing aqueous solutions of 0.3 

M CdCl2 and 0.03 M (NH4)2S2O3 in both forward and reverse directions is shown in 

Figure 6.1. The two main atoms making up the CdS thin films are cadmium (Cd) and 

sulphur (S) from CdCl2 and (NH4)2S2O3 precursors respectively. Out of these two 

atoms, sulphur has the tendency to deposit first before cadmium because S has a more 

positive redox potential  oE  than Cd. The 
oE of sulphur and cadmium with respect to 

the standard hydrogen electrode (SHE) are +0.449 and -0.403 V respectively [32].  
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Figure 6.1. Cyclic voltammogram of electrolyte containing 0.30 M CdCl2 and 0.03 M 

(NH4)2S2O3 in 400 ml of de-ionised water (pH = 2.50±0.02, T = 80
o
C). Inset shows the 

transition voltage at which sulphur starts to deposit. 

The diagram shown at the inset of Figure 6.1 illustrates the potential at which S begins 

to deposit while the point labelled A in Figure 6.1 descibes the potential at which Cd 

deposition starts to take place. The deposition of S starts to take place at ~85 mV while 

that of Cd begins at ~550 mV. This result further illustrates the initial explanation given 

about S depositing first before Cd due to its 
oE value.  

A steady rise was observed in the forward current from point A to point B as the 

cathodic voltage increases from ~550 to 1118 mV. This steady increase shows that more 

S and Cd are being deposited to form a mixture of sulphur and CdS thin films. The 

slight reduction observed at point B before the sudden rise again is due to the deposition 

of elemental Cd and co-deposition of CdS on the working electrode. The rise in 

deposition current density after ~1118 mV shows rapid discharge of Cd and reaction 

between Cd and S to form CdS. The point C indicated on the reverse cycle of the I-V 

curve shows that the transition point of current flow from the positive to the negative 

takes place at ~1138 mV. Point C indicates the dissolution of elemental Cd and removal 

of Cd from CdS layer deposited on the cathode. At this point, the deposition current 

density is zero because the dissolution rate of materials is equal to its deposition rate. 

The dissolution of S from the surface of the working electrode occurs at the broad peak 
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labelled D. At low cathodic growth potential (≤1118 mV), a S-rich CdS layer is 

expected to be formed. As the deposition potential increases, the amount of Cd in the 

CdS layers gradually increases thus allowing near stoichiometric CdS layers to be 

deposited. Thus, a voltage range (~1150 mV to 1250 mV) labelled Q in Figure 6.1 has 

been identified as being suitable to grow near stoichiometric CdS layers according to 

this experimental result. The overall chemical reaction for the deposition of CdS thin 

films on the cathode is stated in Equation (6.1) [30]. 




2

3

2

32

2 2 SOCdSeOSCd        (6.1) 

6.3.2 Visual appearance 

The visual appearance of 11 samples of electroplated CdS layers grown between 

cathodic voltages of 1150 to 1250 mV is shown in Figure 6.2. As earlier discussed, the 

range of voltages used in this work was determined from the result of the I-V curve of 

the glass/FTO inside the CdS electrolyte. All the CdS layers shown in Figure 6.2 were 

deposited at a temperature of ~80
o
C for 30 minutes duration and the pH of the bath was 

maintained at 2.50±0.02 at the start of deposition.  

 
 

Figure 6.2. Typical images showing the visual appearance of as-deposited CdS 

thin films grown at different cathodic potentials. 

As observed from Figure 6.2, all the ED-CdS layers exhibited uniform yellowish colour 

in appearance. Visual appearance is one way in which qualitative information can be 

obtained about electroplated semiconductors as previously explained in Chapter 4 when 
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the colour of CdSe layers changes with pH. None of the CdS layers appear dark in 

colour despite the variation in deposition potential. As reported by Diso et al. [33], CdS 

layers deposited at higher cathodic potential (for example, at 1500 mV) appears dark in 

colour due to Cd-richness. Attempts made to grow at very high cathodic potential of 

1500 mV in this work resulted in formation of Cd dendrytes on the top surface of the 

CdS thin films as a result of high deposition current density. However, as illustrated in 

Figure 6.2 (b), the CdS layers grown at this Vg did not become dark as suggested by 

Diso et al. [33]. This may be due to a lot of factors such as the concentration of Cd salts 

in the bath and the pH of the electrolyte. The colour of CdS samples grown at low 

cathodic potential of 900 mV differ from the rest of the samples explored between 1150 

to 1250 mV. The colour appears light yellowish; this is due to deposition of more 

sulphur at this low cathodic potential [34]. As earlier discussed, sulphur has the 

tendency to deposit easily and faster than Cd because its redox potential is more 

positive than that of Cd. The energy bandgap obtained for as-deposited CdS layers 

grown at 900 mV is ~2.28 eV. This value is lower than the Eg of bulk CdS and is closer 

to the Eg of CdO which has been reported to be in the range 2.20 to 2.30 eV [5,35] . 

CdO thin films have also been classified as a potential window layer as a result of their 

Eg value [36]. 

6.3.3 X-ray diffraction 

The XRD spectra of as-deposited CdS layers grown between cathodic potentials of 

1170 to 1230 mV is illustrated in Figure  6.3 (a). This voltage range was studied so as to 

determine the optimum deposition potential to grow nearly stoichiometric CdS layers. 

The CdS layers used in this investigation were grown for ~30 minutes. As shown in 

Figure 6.3 (a), two main peaks were observed at the position 2θ=25.05
o
 and 26.66

o
 

along the (100) and (002) planes respectively. The presence of these peaks makes the 

as-deposited (AD) CdS layers to be polycrystalline. The crystal structures of the AD-

CdS layers were found to be hexagonal by comparing the observed XRD measured data 

with the reported data from JCPDS file with reference codes 01-080-0006 and 01-077-

2306. Hexagonal crystal phase has been reported to be the stable phase for CdS thin 

films [37]. Several reports in the literature also show that the cubic phase of CdS thin 

films convert to hexagonal after annealing [30,38,39]. 
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Figure 6.3. (a) XRD spectra of as-deposited CdS layers grown at the cathodic potentials 

ranging from 1170 mV to 1230 mV, and (b) the (100)H and (002)H peak intensity 

versus cathodic potentials ranging from 1170 mV to 1230 mV for as-deposited CdS 

layers. 

The peak at 2θ in the range (26.60-26.69)
o
 represents the preferred orientation peak 

since it has the highest intensity. However, this peak coincides with the underlying FTO 

peak at 2θ= 26.65
o
. For this reason, the most intense diffraction peak along (002) plane 

was not used for the CdS analysis and crystallites size estimation. The second peak 

observed from the XRD spectra of AD-CdS thin films at 2θ=25.05
o
 along (100) plane 

was utilised to calculate the crystallite sizes and to determine the optimum potential to 

electrodeposit nearly stoichiometric CdS thin films. Figure 6.3 (b) shows the plot of 

peak intensity versus cathodic potentials for diffraction peaks along (002) and (100) 

plane.  

The results presented in Figure 6.3 (b) indicate a similar trend in the peak intensities for 

both planes as the cathodic potential is increased from 1170 mV to 1230 mV. However, 

the intensities of peaks along (002) plane are generally higher than those of (100) plane. 

As observed from Figure 6.3 (b), the peak intensity gradually increases from 1170 mV 

to 1200 mV along both (002) and (100) planes. As the cathodic deposition potential 

increases beyond 1200 mV to 1230 mV, a drop was observed in the peak intensity. It is 

however interesting to see that despite the overlapping which occurs between CdS peak 

along (002) plane and underlying FTO peak at 2θ= 26.65
o
, both planes show similar 

trends at cathodic deposition potentials between 1170 to 1230 mV. 
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Figure 6.4 (a) shows the XRD spectra obtained for CdS thin films annealed at 400
o
C for 

20 minutes in air. This post deposition heat-treatment is essential to improve the 

structural and other material properties of CdS thin films so as to make it a suitable 

semiconductor material for electronic device fabrication [31]. After annealing, another 

CdS peak with hexagonal crystal structure corresponding to (101) crystal plane was 

observed at 2θ in the range (28.06-28.33
o
). The emergence of this peak within the 

explored deposition potentials after annealing is an indication of improvement in the 

CdS crystallinity. A reflection of the peak along (101) plane with lower intensity was 

also observed between 1170 and 1180 mV for AD-CdS layers shown in Figure 6.3 (a).  

  

Figure 6.4. (a) XRD spectra of heat-treated CdS layers grown at the cathodic potentials 

ranging from 1170 mV to 1230 mV and (b) the (100)H peak intensity versus cathodic 

potentials ranging from 1170 mV to 1230 mV for both as-deposited and heat-treated 

CdS layers. 

Overall, four peaks with hexagonal crystal structures were observed for heat-treated 

(HT) CdS layers along (100), (002), (101) and (110) planes. The peaks along (100), 

(002) and (101) planes are common to all HT-CdS layers grown between 1170 and 

1230 mV while the peak at (110) plane was only observed for HT-CdS layers grown 

within the region of 1170-1200 mV.  To further show the improvement in crystallinity 

after heat-treatment in air, the peak intensity along (100) planes of AD- and HT-CdS 

layers are plotted on the same scale as a function of cathodic potentials for easy 

comparison; this is illustrated in Figure 6.4 (b). Both AD- and HT-CdS plots follow the 

same trend with the highest peak intensity observed at 1200 mV in both cases. This 

investigation therefore shows that cathodic potential of 1200 mV can be used to 

electroplate near stoichiometric and highest crystalline CdS thin films for further 
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material characterisation and device fabrication. This growth voltage was used to 

deposit CdS thin films of ~150 nm as hetero-partner to CdTe layers for solar cells 

device fabrication as discussed in Chapter 9.  

For further analysis of peaks for AD- and HT-CdS layers deposited at 1200 mV, both 

AD- and HT-CdS spectra with FTO baseline spectrum were drawn on the same scale 

for straightforward comparison and quick identification of peaks; this is illustrated in 

Figure 6.5. It could be seen from Figure 6.5 that the CdS peak along (100) plane has 

increased in intensity after heat-treatment in air. A critical observation shows that the 

peak along (101) plane was not present in AD-CdS layers grown at Vg=1200 mV; after 

heat-treatment in air, the (101) peak appeared at 2θ=28.33
o
 with peak intensity slightly 

higher than the peak along (100) plane. Despite the slightly higher peak intensity 

observed at 2θ=28.33
o
, the peak along (101) plane could not be used as a yardstick for 

comparing the intensity of peaks observed in AD- and HT-CdS layers due to its absence 

in most of the as-deposited CdS layers.  

 

Figure 6.5. Comparative study of XRD peaks of AD- and HT-CdS spectra grown at 

optimum cathodic potential of 1200 mV. 

Another peak along (110) plane absent in AD-CdS layers also emerged in HT-CdS 

layers after annealing in air. It could therefore be inferred that improvement in peak 

intensity along (100) plane, emergence of two peaks along (101) and (110) planes all 

contribute to improvement in the CdS material crystallinity after heat-treatment in air. 

These results demonstrate the importance of annealing of CdS layers for optoelectronic 
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device application. Table 6.1 gives the summary of extracted data from XRD 

measurements and estimated crystallite sizes using Scherrer's equation stated in 

Equation (3.12) of Chapter 3. The extracted data matches the JCPDS file with reference 

code 01-080-0006 and 01-077-2306 as stated in Table 6.1. 

Table 6.1. Summary of XRD analysis of CdS thin films deposited at cathodic potential 

of 1200 mV for as-deposited and heat-treated CdS layers at 400
o
C for 20 minutes in air.  

Sample 

Angle 

(2θ) 

(degrees) 

Peak 

Intensity 

(arb. unit) 

d-

spacing 

(Å) 

FWHM 

 

(degrees) 

Crystallite 

size, D  

(nm) 

Orientation 

plane 

(hkl) 

Hex-ref code 

matching 

 

AD-

CdS 

25.05 48 3.55 0.422 20.2 (100) 01-080-0006 

26.66 223 3.34 0.195 43.8 (002) 01-080-0006 

HT-

CdS 

25.02 58 3.56 0.390 21.8 (100) 01-080-0006 

26.66 231 3.34 0.162 52.7 (002) 01-080-0006 

28.33 59 3.15 0.325 26.4 (101) 01-080-0006 

43.77 42 2.07 0.317 28.2 (110) 01-077-2306 

The crystallite sizes of CdS layers summarised in Table 6.1 range from 20.2 to 28.2 nm. 

The crystallite sizes with values 43.8 nm and 52.7 nm are not applicable to the ED-CdS 

layers due to FTO overlap. 

6.3.4 Raman spectroscopy measurements 

Typical Raman spectra for AD- and HT-CdS layers are shown in Figure 6.6. In both 

spectra, the highest Raman intensities were observed at the first longitudinal optical 

phonons (1LO) vibration mode. In the AD-CdS layers, three Raman peaks 

corresponding to the transverse optical (TO), 1LO and second longitudinal optical 

(2LO) phonon modes were observed at 231.7 cm
-1

, 304.1 cm
-1

 and 606.9 cm
-1

 

respectively. The most intense peak was observed at 1LO while the Raman peaks 

observed at TO and 2LO phonon modes were found to be broad with low intensity. 

After heat-treatment in air, the peak at TO mode disappears while the intensity of the 

1LO peak drastically increases as compared to the 1LO peak of the AD-CdS layers. In a 

similar manner, an improvement was also seen in the 2LO phonon peak. Litran et al. 

[40] explained that the increase in peak intensity after annealing can arise as a result of 

fusing together of the crystallite particles during annealing process.   
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Figure 6.6. Raman spectra of as-deposited and heat-treated CdS thin films at 400
o
C for 

20 minutes in air.  

The 1LO and 2LO phonon peaks of the heat-treated CdS layers were seen at 299.0 cm
-1

 

and 600.2 cm
-1

 respectively. An increase in the peak intensity of 1LO and 2LO phonon 

peaks of heat-treated CdS layers is an indication of improvement in the material 

crystallinity. The Raman shift position of the 1LO and 2LO phonon peaks for bulk CdS 

material occurred at 305 cm
-1

 and 610 cm
-1

 respectively [40]. As noticed in this work, 

red shift was observed in the 1LO and 2LO phonon peaks of AD-CdS and HT-CdS 

when compared with the bulk value of CdS crystal. This red shift change in the phonon 

peak position can be due to factors such as tensile stress in the CdS semiconductor 

[31,41], lattice strain which arises as a result of extrinsic defects and internal 

dislocations in the material [42].  

6.3.5 Optical absorption study 

Optical absorption measurements were carried out using UV-Vis spectrophotometer so 

as to determine the energy bandgap of the AD- and HT-CdS semiconductor materials 

within the explored cathodic deposition potentials. Figures 6.7 (a to d) show the optical 

absorption spectra for AD- and HT-CdS layers for some selected voltages. The energy 

bandgaps were determined by extrapolating the line of best tangent of the absorption 

curve to the photon energy axis at A
2
=0.  
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Figure 6.7. Optical absorption spectra for AD- and HT-CdS layers at cathodic 

potentials of (a) 1150 mV, (b) 1200 mV, (c) 1250 mV and (d) 1500 mV. 

 

In Figure 6.7 (a), the Eg of AD-CdS grown at Vg=1150 mV is ~2.48 eV; after annealing 

in air, the Eg decreased to 2.40 eV. In Figures 6.7 (b) and 6.7 (c), the energy bandgaps 

of  AD-CdS samples grown at 1200 and 1250 mV decrease from 2.50 to 2.42 eV after 

annealing in air. For CdS layers grown at 1500 mV (Figure 6.7 (d)), the Eg decreased 

from 2.44 to 2.38 eV after heat-treatment in air. Overall, the Eg of AD-CdS layers are 

higher in value than the Eg of HT-CdS layers as observed in Figure 6.7 (a) to 6.7 (d). 

The larger bandgap of AD-CdS layers can be explained in terms of their smaller or nano 

particles. One of the properties of semiconductor nanoparticles is that they have 

quantum confinement effects in their opto-electronic properties and due to their 

quantum confinement nature, they have a large bandgap [43]. Nanoparticles are 

therefore known to possess larger bandgaps [43,44] with large surface to volume ratio 

[45]. Semiconductor materials with large surface to volume ratio have been reported to 

have reduced crystallite sizes [46]. However, quantum effects are observed only for 
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crystallites smaller than ~10 nm. Another reason for higher bandgap is that the 

substrates on which the thin layers are grown may not be 100% covered by the 

deposited films. The presence of gaps between crystallites allows passage of all 

wavelengths, producing larger Eg values. 

 

In the 16.5% efficiency reported by Wu in 2004 [44], the author explained that the CdS 

used as hetero-partner to CdTe thin films have a nanostructure instead of the usual poly-

crystalline nature. The nanostructure CdS films reported by Wu have a higher optical 

bandgap ranging between 2.50 to 3.10 eV. The author explained that as the CdS 

bandgap increases as a result of incorporation of more oxygen content, the grain size 

equally decreases. Wu's experimental work thus shows that the higher the energy 

bandgap of a semiconductor material, the smaller would be its particle size.  

Generally, semiconductor materials grown with low temperature technique like 

electroplating do have smaller crystallites and the tendency for these as-deposited layers 

to have larger bandgap than heat-treated ones are usually very high. After heat-

treatment, the material crystallinity improves with the particle or grain size becoming 

bigger and obviously, the surface to volume ratio decreases [45]. Chaure et al. [13] also 

reported a decrease in the bandgap of chemical bath deposited CdS thin films after 

annealing in air. The authors' reported 2.42 eV for AD-CdS layers and 2.25 eV for 

annealed CdS layers. Chaure et al. [13] explained the difference in bandgap between 

AD-CdS and HT-CdS in terms of smaller particles present in as-grown materials 

coalescing or fusing together into bigger grains after annealing. It should however be 

noted that due to the flexible nature of semiconductor materials, their optical and 

electrical behaviour can differ from one another. The detailed energy bandgaps 

estimated from the absorption spectra of CdS layers grown at cathodic potentials 

ranging from 1150 to 1250 mV are described in Table 6.2. The energy bandgaps 

obtained for CdS layers grown at 900 mV and 1500 mV are also included in Table 6.2. 

As seen in Table 6.2, the bandgaps of HT-CdS layers are generally lower than the AD-

CdS layers.  

Table 6.2 also shows that as the growth voltage increases from 900 mV to 1250 mV for 

AD-CdS layers, the energy bandgap increases from 2.28 eV to 2.50 eV. At higher 

cathodic potential of 1500 mV, the bandgap decreases in both AD- and HT-CdS layers. 

As explained by researchers in the PV field, this decrease can be caused by 

incorporation of more elemental Cd at higher deposition potentials [30,31]. Since Cd is 
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a metallic element, growing at higher cathodic potential of 1500 mV favours the 

deposition of more Cd and this tends to lower the Eg value of ED-CdS layers. The 

results in Table 6.2 show that after heat-treatment, the bandgap of CdS layers grown 

between 1180 and 1250 mV shifted to 2.42 eV which is equal to the energy bandgap of 

bulk CdS thin films. The optical results further explain that the cathodic potentials 

ranging between 1180 and 1250 mV are suitable for electroplating near stoichiometric 

CdS layers. This is a good trend since larger window of cathodic potentials favour the 

CdS deposition. Energy bandgaps ≤2.40 eV obtained after annealing the CdS samples 

grown at Vg ≤1170 mV is due to the presence of elemental sulphur and CdS in the 

material. The presence of elemental sulphur in CdS thin films mostly occurs at lower 

cathodic potential; this has been reported to increase photo-absorption and reduce 

optical transmittance thereby leading to a decrease in the energy bandgap [47]. Figure 

6.8 shows the diagrammatical representation of energy bandgaps versus cathodic 

potentials for AD-and HT-CdS layers grown between 1150 and 1250 mV.  

Table 6.2. Energy bandgaps of AD- 

and HT-CdS layers at different 

cathodic potentials ranging between 

1150 and 1250 mV. 

Growth 

potential  

(mV) 

Energy bandgap 

(Eg) ± 0.01 (eV) 

 

AD_CdS HT_CdS 

900 2.28 2.23 

1150 2.48 2.40 

1160 2.48 2.40 

1170 2.48 2.40 

1180 2.50 2.42 

1190 2.50 2.42 

1200 2.50 2.42 

1210 2.50 2.42 

1220 2.50 2.42 

1230 2.50 2.42 

1240 2.50 2.42 

1250 2.50 2.42 

1500 2.44 2.38 
 

 

 

 

The step rise in the energy bandgaps between the cathodic potential of 1170 and 1180 

mV is therefore an indication of the reduction of elemental sulphur in the CdS thin 
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films. The formation of stoichiometric CdS layers with an optimum Eg of 2.42 eV was 

observed at Vg between 1180 and 1250 mV after heat-treatment in air.  

6.3.6 Photo-electrochemical (PEC) cell measurements study 

The electrical conductivity type of ED-CdS layers grown within the range 1150-1250 

mV were determined using PEC cell measurement technique. The electroplated CdS 

layers were divided into two; one part was left in the as-deposited state while the other 

part was annealed ordinarily in air at 400
o
C for 20 minutes. The PEC signals of AD-

CdS and HT-CdS layers as a function of cathodic deposition potentials are plotted on 

the same graph as shown in Figure 6.9 for easy comparison. Both AD-CdS and HT-CdS 

layers show n-type in electrical conduction. In terms of magnitude, the highest PEC 

signal was observed at cathodic potential of 1200 mV for both AD- and HT-CdS layers. 

CdS is a well-known n-type II-VI binary compound semiconductor and researchers 

have attributed the n-type electrical conductivity of un-doped CdS layers to the presence 

of intrinsic defects namely S vacancies and Cd interstitials in the crystal lattice structure 

of the CdS thin films [2,48].  

 

Figure 6.9. Typical PEC signals of as-deposited and heat-treated CdS thin films grown 

at cathodic potential range of 1150 to 1250 mV. The heat treatment of CdS thin films 

were carried out at 400
o
C for 20 minutes duration in atmospheric condition. 

6.3.7 Morphological study 

The SEM images of as-deposited and heat-treated CdS layers grown for 30 minutes at a 

cathodic deposition potential of 1200 mV are shown in Figures 6.10 (a) and 6.10 (b) 

respectively. Both images reveal a fairly uniform coverage of the FTO substrates with 
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CdS grains. As estimated from the SEM image of AD-CdS layer illustrated in Figure 

6.10 (a), the grain size ranges from ~60 to 326 nm. After annealing the CdS layers at 

400
o
C for 20 minutes in air, a slight increase was observed in the grain sizes of the 

annealed CdS layer shown in Figure 6.10 (b). The grain size of the CdS thin film after 

annealing ranges from ~68 to 369 nm.  

  

Figure 6.10. SEM images of CdS thin films for (a) as-deposited and (b) heat-treated in 

air at 400
o
C, 20 minutes.  

6.4 Summary 

CdS thin films were successfully electroplated on glass/FTO substrates. The effect of 

growing CdS thin films at different cathodic potentials ranging from 1150 to 1250 mV 

was explored and optimum Vg of 1200 mV was obtained from the various analytical 

techniques carried out on the CdS thin films. The visual appearance of CdS thin films 

electroplated between 1150 and 1250 mV growth voltage is very similar. The XRD 

results revealed that the layers are hexagonal and polycrystalline with preferential 

orientation along the (100) plane. PEC study revealed that the films have n-type 

electrical conductivity. The magnitude of PEC signals obtained for CdS thin films 

annealed at 400
o
C for 20 minutes in air were found to be generally higher than those of 

the AD-CdS thin films. The results obtained from the optical absorption measurements 

of annealed CdS thin films showed that a large window of cathodic potentials ranging 

between 1180 and 1250 mV favours the deposition of nearly stoichiometric CdS layers 

with an energy bandgap of 2.42 eV. The SEM images of AD- and HT-CdS layers 

revealed that the FTO substrates are covered with CdS grains of varying sizes. 

(a) (b) 
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Chapter 7 -  Development of n-CdS/p-ZnTe heterostructures 

7.1 Introduction 

CdS and ZnTe thin films are II-VI binary compound semiconductors with wide bandgap 

of 2.42 and 2.26 eV respectively. CdS and ZnTe semiconductors are known and widely 

accepted to be n- and p-type in electrical conduction respectively. Researchers who 

reported p-type CdS thin films achieved this by extrinsic doping [1,2]. Likewise, the 

electrical conductivity of ZnTe layers has been generally accepted to be p-type. The 

problem of obtaining ZnTe layers with n-type electrical conduction without the help of 

external dopants like Al have been mainly attributed to native defects in the ZnTe 

materials [3] and self-compensation [4,5]. During this PhD research work at Sheffield 

Hallam University, the hurdle of achieving n-ZnTe thin films have been successfully 

overcome via intrinsic doping and this has been reported in the literature [6].    

The combination of CdS and ZnTe to form hetero-structures have found useful 

applications in electroluminescence devices like light emitting diodes [7,8]. Aven and 

Cook [9] have also been able to obtain diodes of good electronic qualities from the 

CdS/ZnTe hetero-junction (HJ). The pattern in which CdS thin films grow on ZnTe 

layers have also been studied [10]. Several works have been done on the CdS/ZnTe HJ 

but only very few have investigated the CdS/ZnTe HJ for photovoltaic applications. The 

research work carried out by Pfisterer and Shock was the first work that reported 

ZnTe/CdS HJ as a viable material for solar cells fabrication [11]. However since then, 

not much work have been done on the suitability of ZnTe thin films to be used as an 

absorber material or hetero-junction partner to CdS for solar cells device fabrication. 

One possible reason could be due to the large bandgap of ZnTe layers which make it un-

suitable as an absorber material.  

As previously explained in section 5.4.3 of Chapter 5, the bandgap of electrodeposited 

ZnTe layers can be graded by incorporating excess Te in the layer. Ota et al. [8] 

observed that diodes (measured under dark condition) fabricated from CdS/Te-rich 

ZnTe single crystals exhibited good rectifying diode qualities. The observations made 

by Ota et al. [8] necessitated the reasons why the first set of diodes used for fabrication 

of one-sided rectifying p-n hetero-junction diodes were grown with a p-type Te-rich 

ZnTe as hetero-partner to CdS. The ZnTe layers were grown in an acidic bath 
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containing 0.015 M ZnSO4.7H20 and 10 ml of dissolved TeO2 in an aqueous medium. 

When the Te-rich ZnTe was used as HJ partner to CdS and employed in device 

fabrication, good diodes were obtained. However, under illumination, the diodes 

showed very poor PV activity. For this reason, the concentration of Zn in the bath was 

increased to 0.045 M while still keeping the Te concentration fixed. This is in line with 

the experimental report given by Major et al. [12] that better solar cell devices are 

obtained with the Zn-rich buffer layers.  

This chapter describes the material properties of n-CdS/p-ZnTe hetero-structure, the 

effects of usual CdCl2 treatment on ZnTe mono-structure (glass/FTO/ZnTe) and devices 

fabricated from n-CdS/p-ZnTe hetero-structure (glass/FTO/CdS/ZnTe/Au). The 

applications of n-CdS/p-ZnTe hetero-structure to electronic devices such as one-sided 

rectifying n
+
p junction diodes and solar cells have also been explored. 

7.2 Characterisation of n-CdS/p-ZnTe hetero-structures 

The material properties of n-CdS/p-ZnTe device architectures were studied in terms of 

their structures, morphologies and compositions using XRD, SEM and EDX techniques 

respectively. Te-rich ZnTe layers and Zn-rich ZnTe layers grown at cathodic potential 

of 1600 mV were used as hetero-partners to n-CdS to investigate the material properties 

of the n-CdS/p-ZnTe hetero-structures. In this report, the Te-rich ZnTe refers to ZnTe 

layers grown from electrolytic bath containing 0.015 M ZnSO4.7H20 and 10 ml of 

dissolved TeO2 in an aqueous medium. The Zn-rich ZnTe refers to ZnTe layers grown 

from electrolytic bath containing 0.045 M ZnSO4.7H20 and 10 ml of dissolved TeO2 in 

an aqueous medium. The ZnTe layers used in this study are p-type in electrical 

conduction. 

7.2.1 Structural characterisation of n-CdS/p-ZnTe hetero-structure 

Figure  7.1 shows the XRD patterns of heat-treated glass/FTO/n-CdS/p-ZnTe hetero-

structures in both Te-rich and Zn-rich ZnTe electrolytic bath. The annealing was carried 

out in air at a temperature of 400
o
C for 10 minutes. The diffraction patterns reveal 

polycrystalline thin films with both CdS and ZnTe peaks. Both CdS and ZnTe films 

have hexagonal crystal structures. The preferred orientation of CdS thin films was found 

to be along (101) plane for both spectra illustrated in Figure  7.1. The preferred 

orientation of ZnTe thin films in Te-rich and Zn-rich electrolytes were found to be along 
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(002) and (100) planes respectively. Other ZnTe peaks can be identified as (110), (103) 

and (200) planes with hexagonal crystal structures for both Te-rich and Zn-rich ZnTe 

layers. For the Te-rich ZnTe thin films, several Te peaks arise as a result of low 

concentration of Zn ions or excess Te in the ZnTe bath. These Te peaks are hexagonal 

in structure and correspond to (100), (101), (102) and (110) planes. In the Zn-rich ZnTe 

diffractogram, a peak appeared at 2θ = 39.43
o
 with a d-spacing of 2.28 Å. This 

experimentally observed d-spacing value nearly corresponds to the reported d-spacing 

value of elemental Zn which is 2.29 Å. The reported value was confirmed by JCPDS 

reference code 00-001-1244 for elemental Zn. By critically comparing the Te-rich and 

Zn-rich X-ray spectra together, it was observed that the elemental Zn also tends to 

emerge in the Te-rich ZnTe but the effect was not as obvious as seen in Zn-rich ZnTe 

bath.  

 

Figure 7.1. XRD patterns for glass/FTO/n-CdS/p-ZnTe structures with emphasis on 

ZnTe layers grown in Te-rich and Zn-rich ZnTe electrolytic bath. 

The presence of a single peak corresponding to elemental Zn does not necessarily mean 

that the deposited layer is an n-type material. This peak can emerge when ZnTe layers 

are grown inside a Zn-rich ZnTe electrolytic bath at the p-region side close to inversion 
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point for longer duration. It may also arise when grown in the n-region for longer 

duration. As illustrated in Figure  7.1, the XRD spectra showed that the Zn-rich ZnTe 

diffractogram is a nearly stoichiometric spectrum with minimal number of Te peak. The 

only Te peak occurred along (100) plane with very low intensity. Figure  7.1 also shows 

that the XRD peak intensity of Zn-rich ZnTe spectrum is higher than the Te-rich ZnTe 

spectrum along the preferred plane of orientation; this shows that the Zn-rich ZnTe thin 

film has a higher crystallinity than the Te-rich ZnTe spectrum.  

7.2.2 Morphological characterisation of n-CdS/p-ZnTe hetero-structure 

Figure  7.2 shows the surface morphology of annealed glass/FTO/n-CdS/p-ZnTe layers. 

The heat-treatment was done at 400
o
C for 10 minutes in air. Figure  7.2 (a) and 7.2 (b) 

represent the micrographs obtained for ZnTe layers grown from Te-rich and Zn-rich 

ZnTe electrolytes. It was observed that the grains of the CdS/ZnTe hetero-structure 

obtained from Zn-rich ZnTe electrolyte are larger and more compact than grains from 

Te-rich ZnTe electrolyte. 

  

Figure 7.2. SEM micrographs of glass/FTO/n-CdS/p-ZnTe hetero-structures for (a) 

ZnTe layers grown in Te-rich ZnTe electrolyte and (b) ZnTe layers grown in Zn-rich 

ZnTe electrolyte. 

7.2.3 Compositional characterisation of n-CdS/p-ZnTe hetero-structure 

The atomic composition of annealed glass/FTO/n-CdS/p-ZnTe layers is depicted in 

Figure  7.3.  Figure  7.3 (a) and 7.3 (b) represent the EDX spectra obtained for ZnTe 

layers grown from Te-rich and Zn-rich ZnTe electrolyte respectively. It was noticed that 

(a) 

 

(b) 

 

2 µm 

 

2 µm 
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the percentage atomic composition of Te (45.8%) is higher than Zn (27.5%) as 

illustrated in Figure  7.3 (a). From Figure  7.3 (b), it was seen that the percentage atomic 

composition of Zn (45.3%) is higher than Te (27.4%). A summary of the % atomic 

composition of Zn and Te from Te-rich and Zn-rich electrolyte is presented in 

Table  7.1. This result shows that the concentration of precursors containing the cations 

and anions is one of the factors which determine how much Zn and Te is deposited. The 

ratio of % composition of Cd to S in Te-rich and Zn-rich electrolyte is 26.4:0.3 and 

26.3:1.0 respectively.  

 

 

Figure 7.3. EDX spectra showing the percentage of atoms present in the glass/FTO/n-

CdS/p-ZnTe hetero-structures for (a) ZnTe layers grown in Te-rich ZnTe electrolyte and 

(b) ZnTe layers grown in Zn-rich ZnTe electrolyte. 

(a) 

(b) 
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Table 7.1. Comparison of the % atomic composition of Zn and Te from Te-rich and Zn-

rich electrolyte. 

ZnTe layer Zn% Te% 

(a) From Te-rich electrolyte 27.5 45.8 

(b) From Zn-rich electrolyte 45.3 27.4 

 

This experimental investigation clearly shows that the percentage composition of atoms 

present in a given semiconductor material is not only influenced by growth voltage as 

discussed in section 5.3.6, Chapter 5, but can also vary based on the concentration of 

ions in the electrolytic bath as seen in  Figure  7.3 (a) and 7.3 (b). By varying the 

precursor molarity; the structural, morphological and compositional properties of the 

material likewise changes. This work agrees with the experimental investigations 

carried out by Ishizaki et al. [13] and Gromboni et al. [14]. Ishizaki et al. [13] performed 

an experiment by varying the Zn concentration from 5 mM to 50 mM while keeping the 

molarity of Te constant at 0.16 mM. The authors observed that a change in the 

concentration of Zn in the ZnTe electrolytic solution affects the electrical and optical 

properties of the ZnTe thin films [13]. As explained by the same authors in another 

communication, there is a likelihood for the amount of Zn in the deposited ZnTe thin 

films to increase as the Zn concentration in the ZnTe electrolyte increases  [15]. The 

experimental work reported by Gromboni et al. [14] further demonstrated how photo-

current increases with the Zn contents in ZnTe thin films. From the investigation 

reported by Gromboni et al. [14], it is therefore possible for ZnTe thin films produced 

from Zn-rich ZnTe electrolyte to possess better photo-activity than the ones produced 

from Te-rich ZnTe electrolyte. The structural properties of CdS/ZnTe hetero-structures 

discussed in section  7.2.1 of this chapter further attests to this since better crystallinity 

was obtained in ZnTe thin films (prepared from Zn-rich ZnTe electrolyte) grown on 

CdS substrate. 

7.3 Effects of CdCl2 surface treatment on ZnTe mono-layers  

One of the major objectives of growing ZnTe semiconductor materials is to investigate 

its suitability as a window and absorber material. Various researches have been 

conducted on the usage of ZnTe as a p-type window layer to other binary and ternary 

compound semiconductors [16,17]. However, not much work has been done on its 
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suitability as an absorber material say to CdS [11]. This is because its bulk bandgap 

enables it to be more useful as window layers rather than as absorber layers [18]. 

However, the energy bandgap of ZnTe layers can be engineered to make it suitable as 

an absorber layer. The electroplating technique used in this work is one of the available 

techniques which allow the bandgap of a semiconductor material to be easily tuned. The 

bandgap tuning can be achieved by controlling parameters such as the time of growth, 

the pH of the electrolyte [19], temperature of  the electrolytic bath, stirring rate, the 

concentration of salts used in the electrolytes and growth voltage. In this work, the 

energy bandgap of ZnTe layers have been successfully tuned as explained in section 

5.4.3 of Chapter 5. There are several reports in the literature which support the growth 

of ZnTe layers in a Te-rich medium [7,8,13].  

Due to the proposed usage of ZnTe as an absorber layer to CdS window material, it is 

therefore essential just like in CdTe to study the effect of surface treatment using 

chemicals containing Cl [20,21] on the structural and electrical properties of 

glass/FTO/p-ZnTe before applying the chemical treatments in the hetero-structure. For 

this reason, ZnTe layer of ~1200 nm was electroplated and used in this experiment. This 

section discusses XRD and PEC cell measurement techniques to examine what happens 

to the structural and electrical properties of ZnTe thin films when the top surface of the 

layer is treated with chemicals containing Cl before annealing in air. 

7.3.1 Effect of CdCl2 treatment on structural properties of p-ZnTe as hetero-

partner to n-CdS 

The first set of Cl treatments used for the ZnTe absorber layers was done using ZnCl2 

aqueous solution. Unfortunately, this treatment did not work out well because of the in-

ability of the ZnCl2 solution on the ZnTe surface to dry up with time. Instead of the 

ZnCl2 solution on top of the ZnTe layer to dry up, it was producing more of oily 

substance on the surface of the ZnTe thin films; the cause of this reaction is however 

not known as at the time this research was carried out. For this reason, the experiment 

was discontinued and another Cl source which is CdCl2 was made use of. The 

application of CdCl2 treatment on top of the ZnTe absorber layers proved successful as 

the solution dries up quickly without forming oily substance on top of the material. 

Also, the ZnTe absorber layer survived heat-treatment after annealing with CdCl2 

treatment in air.   
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Figure  7.4 (a) shows the XRD spectra of as-deposited (AD), heat-treated (HT) and 

cadmium chloride (CC) treated ZnTe layers. The heat-treatment was carried out at 

400
o
C for 10 minutes in air. The result shows that the preferred orientation occurs along 

the (100) plane for the ZnTe layers; other ZnTe peaks observed are summarised in 

Table  7.2. The XRD spectra shows that by applying CdCl2 treatment to the ZnTe layer, 

no additional phase was introduced into the ZnTe thin films as a result of this treatment. 

All the peaks observed in the AD-ZnTe layers were equally observed in the HT- and 

CC-treated layers. This shows the possibility of applying the usual CdCl2 treatment to 

ZnTe layer without changing the material structure or introducing additional/ 

unwanted/detrimental phase to the semiconductor material. This result contradicts the 

reports given by Mohanty et al. [22] that ZnTe converts to CdTe and ZnO after treating 

the top surface of ZnTe thin film of ~140 nm with CdCl2 treatment. The results and 

explanations given by Mohanty et al. cannot therefore be generalised. The reason for 

ZnTe reducing to CdTe and ZnO after CdCl2 treatment may be due to several factors 

such as concentration of CdCl2 solution used for surface treatment, growth conditions, 

heat-treatment temperature with duration and thickness of the ZnTe layers being used 

for their experimental investigations [22]. Even though the XRD peaks described in 

Figure  7.4 show that the ZnTe phase still remains after CdCl2 treatment, there is the 

possibility of having elemental Cd which was not detected by the XRD probably due to 

the presence of elemental Cd in minute form. The effect of using CdCl2 treatment on 

solar cell structures with ZnTe as an absorber layer to CdS is discussed in section  7.4.2. 

  

Figure 7.4. (a) XRD spectra of as-deposited ZnTe layer, heat-treated and CdCl2 treated 

ZnTe layers at 400
o
C, 10 minutes in air. (b) (100) peak intensity of AD, HT and CC-

ZnTe layers. 
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Table 7.2. Summary of XRD data for as-deposited ZnTe layer, heat-treated and CdCl2 

heat-treated ZnTe layers at 400
o
C, 10 minutes in air. 

Sample 

ID 

  

Angle  

 

(2θ)
o
  

d-

Spacing 

(Å) 

Crystal 

Structure 

Chemical 

Formular 

Plane of 

orientation  

(h k l) 

Reference  

Code 

Matching 

JZ 88A  24.45 3.64 Hexagonal ZnTe (100) 01-080-0009 

 40.35 2.24 Hexagonal Te  (110) 00-001-0727 

 42.83 

47.78 

2.11 

1.90 

Hexagonal 

Hexagonal 

ZnTe 

ZnTe  

(110) 

(200) 

01-080-0009 

01-080-0009 

JZ 88B 24.39 3.65 Hexagonal ZnTe  (100) 01-080-0009 

 40.53 2.22 Hexagonal Te  (110) 00-001-0727 

 47.98 1.89 Hexagonal ZnTe  (200) 01-080-0009 

JZ 88C 24.14 3.69 Hexagonal ZnTe  (100) 01-080-0009 

 40.32 2.23 Hexagonal Te  (110) 00-001-0727 

 47.57 1.91 Hexagonal ZnTe  (200) 01-080-0009 

As shown in Figure  7.4 (b), there was a further improvement in the crystallinity of CC-

ZnTe layers after annealing as a result of increase in the peak intensity. For the p-type 

ZnTe layers of ~1.2 µm, a peak was also observed whose d-spacing value matches that 

of elemental Te. This peak occurred at 40.35
o
, 40.53

o
 and 40.32

o
 for AD-, HT-, and CC-

ZnTe layers respectively. As shown in Table  7.2, this peak has hexagonal crystal 

structure and occurred along (110) plane. The d-spacing values range from 2.22-2.24 for 

AD-, HT-, and CC-ZnTe layers and it closely matches with that of elemental Te with 

reference code 00-001-0727. The XRD results elucidate the possibility of having p-

ZnTe thin films due to the presence of elemental Te. It is worthwhile to know that the 

inclusion of extra 0.030 M to the initial 0.015 M concentration of Zn precursor did not 

eliminate the presence of elemental Te peak when the ZnTe layer is grown in the p-

region.   

7.3.2 Effect of CdCl2 treatment on PEC cell measurements of p-ZnTe as hetero- 

partner to CdS 

PEC cell measurements were equally done for p-type ZnTe layers of ~1200 nm. The 

result shows that the material remains p-type after CdCl2 treatment. As illustrated in 

Figure  7.5, an increase was observed in the PEC signal of as-deposited p-ZnTe layers 

after heating without and with CdCl2 treatment in air. This experimental results show 

that there is no type conversion after treating p-ZnTe layers with CdCl2; hence the 

material tends to be more stable even after CdCl2 treatment. 
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Figure 7.5. Effect of CdCl2 treatment on the electrical conductivity type of p-ZnTe 

layers.  

7.4 Application of n-CdS/p-ZnTe heterostructures 

This section is focused on the application of ZnTe thin films as absorber materials to 

CdS. The two main application areas explored are: (i) fabrication of one-sided rectifying 

n
+
p junction diodes from n-CdS and p-ZnTe thin films all from II-VI binary compound 

semiconductors and (ii) solar cells fabrication. 

7.4.1 One-sided p-n junction diodes fabricated from n-CdS/p-ZnTe  

The p-ZnTe used in the fabrication of the initial one-sided n-p junction (n-CdS/p-ZnTe) 

device structure was grown from 0.015 M of Zn precursor and 10 ml of TeO2. As 

previously discussed, the ZnTe electroplated from this electrolyte is referred to as Te-

rich ZnTe.  

7.4.1.1  I-V characteristics of n-CdS/p-ZnTe hetero-junction diodes under dark 

condition. 

I-V measurements provide a valuable way to test the electronic quality of a 

semiconductor material. These measurements were carried out using the device 

structure glass/FTO/n-CdS/p-ZnTe/Au. Since the device structure under consideration 

has a junction between the n- and p- region, it is therefore of utmost necessity to form 

ohmic contacts to the window layer which is n-CdS and p-ZnTe which is the absorber 
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layer. The electron affinity of n-CdS layer has been reported to be 4.80 eV [23] while 

the work function of FTO is 4.40 eV [24]. The underlying FTO subtrate to n-CdS 

already creates an ohmic contact to n-CdS since the work function of FTO metal contact 

is lower than the electron affinity of n-CdS. With regards to the p-ZnTe, its electron 

affinity has been reported to be 3.53 eV [25] while the work function of Au metal 

contact is 5.25 eV [23]. Therefore, to create an ohmic contact to p-ZnTe, a metal such as 

Au with higher workfunction is needed. Figure  7.6 (a) shows the log-linear I-V 

characteristics of glass/FTO/n-CdS/p-ZnTe/Au device structure. From Figure  7.6 (a), 

the RF, Is, bo  and n values were determined. The RF obtained at a bias voltage of ~1.0 

V is 10
2.7

. Is of 2.82 µA was obtained from the intercept of the Log I axis. By inserting 

the value of Is into Equation 3.19, Chapter 3, bo >0.64 eV was estimated. n value of 

2.89 was obtained by substituting the slope of Log-linear I-V in Figure  7.6 (a) into 

Equation 3.25, Chapter 3. A series resistance (Rs) of ~35.0 Ω and shunt resistance (Rsh) 

of  ~30.0 kΩ  were obtained from the linear-linear I-V characteristics shown in 

Figure  7.6 (b). When the Te-rich ZnTe was used as hetero-partner to n-CdS thin films 

and employed in device fabrication, good rectifying diodes with low Rs values were 

obtained under dark condition. However, under illumination (Figure  7.6 (c)), the diodes 

showed very poor PV activity with parameters Voc = 0.058 mV, Jsc = 0.56 mAcm
-2

 and 

FF=0.31.  

   

Figure 7.6. I-V characteristics of glass/FTO/n-CdS/p-ZnTe/Au diode under dark 

condition (a) Log-linear, (b) Linear-linear and (c) I-V characteristics of glass/FTO/n-

ZnTe/p-ZnTe/Au under AM 1.5 illumination condition at room temperature. 
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The I-V results show that the fabricated diodes possess good RF of ~10
2.7

 to make them 

suitable for application as electronic devices. Is is an important diode electronic 

parameter which distinguish one diode from the other and it is a small current which 

flows as a result of the minority carriers in the reverse direction when bias voltage is 

zero. The magnitude of the reverse saturation current varies from one semiconductor 

diode to the other and it is a determinant of the quality of a rectifying diode [26]. For 

instance, Is for a Si diode varies between ~10
-10

 and ~10
-12

 A and ~10
-4

 A for Ge diode. 

For the p-n homo-junction diodes fabricated from glass/FTO/n-ZnTe/p-ZnTe/Au device 

structure by Olusola et al.[6], the Is value was given to be in the order of 10
-9

A. For the 

p-n hetero-junction diodes fabricated in this work from n-CdS/p-ZnTe, Is is of the order 

of 10
-6

 A. For a diode to possess good electronic quality, the level of recombination of 

holes and electrons at the interface and within the bulk of the device (material) must be 

reduced. To achieve this, Is which is a measure of the recombination in a device must be 

kept to a minimum value.  

As explained by Rao et al. [27], the increase in Is may arise as a result of defects in the 

crystal lattice which act as recombination centres that reduce the lifetime of charge 

carriers. The high Is obtained in this work may therefore arise as a result of these defects 

which act as trapping centres. The large n value of 2.89 shows the presence of 

interfacial impurities and high concentration of recombination and generation (R&G) 

centres in the depletion region [28,29]. Since the obtained n value is >2.00, it thus 

shows that tunnelling is an important current transport mechanism in the device 

structure [30]. 

7.4.1.2 Discussion of results from C-V measurements for CdS thin films 

In order to carry out C-V measurements, rectifying contacts were made by evaporating 

2 mm diameter Au contacts on n-CdS layers. The C-V and Mott-Schottky plots of 

glass/FTO/n-CdS/Au device structure are shown in Figure 7.7 (a) and 7.7 (b) 

respectively. As shown in Figure 7.7 (a), the depletion layer capacitance obtained at 

zero bias for the glass/FTO/n-CdS/Au device structure is 5.583 nF. By incorporating the 

values of the depletion layer capacitance into Equation 3.38 of Chapter 3, the width of 

the depletion region, W was estimated to be ~44.3 nm.  
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Figure 7.7. Typical (a) Capacitance vs bias voltage and (b) C
-2

 vs V graphs of the 

device structure, glass/FTO/n-CdS/Au. 

Using the slope (1.79×10
14

 F
-2

V
-1

) obtained from Mott-Schottky plots in Figure 7.7 (b), 

the donor density of the CdS thin film was estimated to be 9.00×10
19

 cm
-3

. By taking 

the effective electron mass of CdS to be me* = 0.21mo and substituting into Equation 

3.42 of Chapter 3, the value of effective density of states in the conduction band 

minimum (NC) was calculated to be 2.41×10
18

 cm
-3

. The experimental results obtained 

in this work show that the doping density of the CdS semiconductor is greater than the 

effective density of states in the conduction band of the CdS thin films. This property 

makes the Fermi energy level to lie within the conduction band thus making the CdS 

thin films used in this work to become degenerate n-type semiconductor. The details of 

the C-V measurement results for Au/n-CdS Schottky diodes are shown in Table 7.3. 

Table 7.3. The summary of electronic parameters obtained from n-CdS and p-ZnTe 

layers using C-V technique. 
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Electronic parameters from CV CdS thin films ZnTe thin films 

Measured C at zero bias (F) 5.583 × 10
-9

 2.620 × 10
-10

 

W (nm) 44.3 1100.0 

E (Vcm
-1

) 8.10 × 10
7
 6.81 × 10

4
 

NA (cm
-3

) ------ 3.55 × 10
15

 

ND  (cm
-3

) 9.00 × 10
19

 ------ 

NV  (cm
-3

) ------ 2.24 × 10
18

 

NC  (cm
-3

) 2.41 × 10
18

 ------ 

EF – EV (eV) ------ 0.17 

EC – EF (eV) -0.07 ------ 
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As explained by Neamen  [31], for a semiconductor to be degenerate, the concentration 

of electrons (for n-type materials) or hole density (for p-type materials) should be higher 

than the effective density of states in the conduction band (for n-type materials) and 

valence band (for p-type materials). This unique property thus makes the Fermi level to 

be above the conduction band minimum (for n-type) or below the valence band 

maximum (for p-type). Also in a degenerate semiconductor, EC – EF is ≪ kT; that is, the 

Fermi level is less than kT below EC.  

To determine the Fermi level position in a degenerate semiconductor, it is important to 

put into consideration the degeneracy or spin factor of the degenerate semiconductor. 

The electron spin rotation in CdS quantum dots (QDs) was studied by Masumoto et al. 

and the spin factor of the electrons was found to be ~1.965±0.006 [32]. The spin factor 

also called degeneracy factor has been generally reported as 2.00 for donor atoms [31]. 

Approximating the g-factor obtained for CdS QDs by Masumoto et al. [32] to the 

nearest one decimal place, the value also tends to be equal to 2.0. Therefore in this 

work, g-factor of ~2.0 was used to determine the Fermi level position in the CdS 

degenerate semiconductor. 

As seen in Table 7.3, the Fermi level position (EC – EF) shows a negative value for the 

CdS thin films. This negative value indicates that the Fermi level position lies within the 

conduction band thus making EF to be above the conduction band minimum. Equation 

(3.45) of Chapter 3 was used to determine the position of the Fermi level for the 

degenerate n-type CdS layers. The graphical representation of the Fermi level position 

of CdS shown in Figure  7.8 further illustrates that EC – EF lies within the conduction 

band.     

 

Figure 7.8. Graphical representation of the Fermi level positioning for 

glass/FTO/CdS/Au device structure.  
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Thus, the fabricated CdS thin films used in this current investigation fall in the family of 

the degenerate semiconductors and this explains the possible reason for heavy doping of 

CdS thin films as given in Table 7.3. The high doping of the CdS thin films was caused 

by the large concentration of donor atoms in the material. This large electron 

concentration arises from the fact that below EF, the energy states are always occupied 

with electrons while above EF, the energy states are mostly vacant. Therefore, since EF 

is above the EC minimum (ECmin) in the n-CdS semiconductor, the energy states below 

EF are mainly occupied with donor electrons; this property makes it to behave in a 

similar manner to metals. Thus, it is expected that in degenerate semiconductors, the 

electric field at the metal/semiconductor (M/S) interface should be higher. As stated in 

Table 7.3, the electric field in the CdS at the M/S junction is higher than that of ZnTe; 

this is because of the huge concentration of mobile electrons in the CdS conduction 

band. Using Equations (3.49) and (3.50) of Chapter 3, the electric field for CdS and 

ZnTe semiconductor materials were calculated to be 8.10×10
7
 and 6.81×10

4
 Vcm

-1
 

respectively.  

The width of the depletion region is equally a function of the depletion capacitance and 

doping concentration in the semiconductor. The higher the depletion capacitance, the 

greater will be the doping density in a semiconductor and the smaller will be the 

depletion width [31]. Table 7.3 shows that the CdS thin films have a large depletion 

capacitance of 5.583 nF  at zero bias, higher ND of 9.00×10
19

 cm
-3

 and a small depletion 

width  of 44.3 nm. This is unlike ZnTe semiconductor with moderate doping (3.55×10
15

 

cm
-3

), lesser Co of 262 pF and higher W (1100 nm).  

Since the CdS layers grown in this work have a smaller W, there is a very high tendency 

for electron tunnelling through the barrier to increase in the glass/FTO/n-CdS/Au M/S 

structure. Figure  7.9 (a) and 7.9 (b) show the interface where the Au metal is in direct 

contact with the heavily doped n-CdS layers. In this situation, tunnelling may likely 

become the prevailing means for current transportation. Figure  7.9 (a) illustrates the 

degenerate situation where EC – EF is ≪ kT while Figure  7.9 (b) illustrates the 

degenerate situation where EC – EF is ≪ 0 (that is negative). Figure  7.9 (b) is the most 

applicable band diagram for the degenerate n-CdS semiconductor fabricated in this 

work.   
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Figure 7.9. Band diagram for metal/semiconductor interface with a degenerate 

semiconductor (a) EC-EF is ≪ kT, (b) EC-EF is ≪ 0. 

7.4.1.3 Discussion of results from C-V Measurements for ZnTe thin films 

In order to perform C-V measurements, rectifying contacts were made by evaporating 2 

mm diameter Al contacts on p-ZnTe layers. Figure 7.10 (a) and 7.10 (b) show the 

capacitance-voltage and Mott-Schottky plots of glass/FTO/p-ZnTe/Al device structure 

respectively. For the glass/FTO/p-ZnTe/Al device structure, the depletion capacitance 

(Co) as measured from the C-V plot in Figure 7.10 (a) is 262 pF. By inserting the values 

of the depletion layer capacitance into Equation 3.38 of Chapter 3, the width of the 

depletion region, W was calculated to be ~1.10 µm. 

  

Figure 7.10. Typical (a) Capacitance vs bias voltage and (b) C
-2

 vs V graphs of the 

device structure, glass/FTO/p-ZnTe/Al.  

A slope of 3.88×10
18

 F
-2

V
-1

 was obtained from the Mott-Schottky plots shown in Figure 
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3.55×10
15 

cm
-3

. Using mp* = 0.20mo as the effective hole mass of ZnTe and substituting 

it into Equation 3.43 of Chapter 3, the effective density of states in the valence band 

edge of ZnTe thin films was calculated to be 2.24×10
18

 cm
-3

. The results obtained from 

this work signify that the concentration of holes in the ZnTe semiconductor is less than 

the effective density of states in the valence band edge of the ZnTe thin films. Thus the 

fabricated ZnTe layers used in these experiments belong to the non-degenerate p-type 

semiconductor with moderate doping and the position of the Fermi level lies above the 

valence band maximum. As also shown in Table 7.3, EF - EV for the ZnTe thin film 

shows a positive value which is an indication that the Fermi level position lies above the 

valence band maximum. Equation 3.47 presented in Chapter 3 was applied to determine 

the position of the Fermi level for the p-type ZnTe layers. 

Since the ZnTe semiconductors used in this work have a moderately doped density of 

3.55×10
15

 cm
-3

, low Co of 262 pF and large depletion width of 1100 nm, the possibility 

of hole tunnelling from the semiconductor into the metal will decrease in the 

glass/FTO/p-ZnTe/Al M/S structure. Other current transportation mechanisms such as 

emission of holes from the ZnTe semiconductor into the metal or recombination in the 

space-charge region may likely dominate. Figure  7.11 shows the energy band diagram 

of the Schottky barrier formed on moderately doped ZnTe layers.  

W
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ɸb 
qVbi

EC

 

Figure 7.11. Band diagram for Al/p-ZnTe Schottky diodes formed in glass/FTO/p-

ZnTe/Al. Note that EF - EV ≫ kT.  

Comparing Figure 7.9 (b) and Figure  7.11 with each other, it is clear that the doping 

density affects the depletion width of the junction. Heavily doped material like n-CdS 

illustrated in Figure  7.9 (b) has a narrow depletion width compared to that of moderately 

doped p-ZnTe layers shown in Figure  7.11. This in turn also affects the effective built-

in potential barrier height as illustrated in both figures.  
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7.4.1.4 Discussion of results from C-V measurements for CdS/ZnTe hetero-

junction 

The C-V and Mott-Schottky plots of glass/FTO/n-CdS/p-ZnTe/Au HJ device structure 

with 3 mm diameter active areas are shown in Figure 7.12 (a) and 7.12 (b) respectively. 

The depletion capacitance obtained at zero bias for the glass/FTO/n-CdS/p-ZnTe/Au 

device structure is 1.26 nF as illustrated in Figure 7.12 (a). 

   

Figure 7.12. Typical (a) Capacitance vs bias voltage and (b) C
-2

 vs V graphs of the 

device structure, glass/FTO/n-CdS/p-ZnTe/Au. 

By substituting the value of the depletion layer capacitance into Equation (3.38) given 

in Chapter 3, the width of the depletion region, W was calculated to be 519 nm. As 

earlier discussed in section 3.6.2 of Chapter 3, the total depletion width for the one-

sided p-n junction diodes can likewise be determined using Equation (3.39) presented in 

Chapter 3 if the right Vbi value is used. The Vbi obtained from the Mott-Schottky plot in 

Figure 7.12 (b) is ~0.55 V; this value nearly corresponds with the theoretical value of 

~0.58 V estimated from Equation (3.51) of Chapter 3. Also, Equation (3.40) given in 

Chapter 3 was used to find the distance by which the depletion region extends into the 

p-type semiconductor (that is Xp), while Xn was determined by substituting the known 

value of Xp into Equation (3.39) (that is, Xn=W-Xp). 

The acceptor density of the glass/FTO/n-CdS/p-ZnTe/Au HJ device structure was 

estimated to be 2.47×10
15

 cm
-3

 by using the slope (1.09×10
18

 F
-2

V
-1

) obtained from 

Mott-Schottky plot in Figure 7.12 (b). The donor density was estimated to be 3.75 × 

10
18

 cm
-3

 by substituting known values of Vbi and Xn into Equation (3.41) of Chapter 3. 

The experimental results observed in this work show that the p-ZnTe has a moderate 
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doping while the n-CdS is heavily doped. Since the ND≫NA, it thus shows that the 

fabricated hetero-junction is a one-sided n
+
p junction diode. The results obtained in the 

n
+
p HJ device structure are in good agreement with what was earlier obtained in the 

glass/FTO/p-ZnTe/Al and glass/FTO/n-CdS/Au device structures. Due to the high 

doping concentration in the n-region, the depletion width (Xn=13.0 nm) becomes very 

small, almost negligible. This is unlike the p-region which is moderately-doped; the 

moderate-doping in the p-region thus enhances an increase in the depletion width 

(Xp=506.0 nm). The fabricated diodes are therefore one-sided n
+
p junction diodes since 

ND >> NA and Xn≪Xp.  

The summary of electronic parameters of the fabricated n
+
p junction diodes obtained by 

C-V measurement at room temperature is shown in Table 7.4. 

Table 7.4. Summary of electronic parameters obtained from glass/FTO/n-CdS/p-

ZnTe/Au HJ device structures using C-V technique. 

NA 

(cm
-3

) 

Vbi 

(V) 

ND 

(cm
-3

) 

EF-EV 

(eV) 

EC-EF 

(eV) 

Xn 

(nm) 

Xp 

(nm) 

W = Xn+Xp 

(nm) 

E 

(Vcm
-1

) 

2.47 × 10
15

 0.55 3.75 × 10
18

 0.18 -0.01 13.0 506.0 519.0 2.22 × 10
4
 

 

The Fermi level positions of the donor atoms and acceptor atoms were determined using 

Equations (3.45) and (3.47) respectively. The result of the Fermi level position for 

donor atoms show that the CdS semiconductor in the hetero-structure is degenerate 

since EC-EF is negative. For the ZnTe semiconductor, the Fermi level position for 

acceptor atoms is positive and this indicates that the EF is situated above the EVmax. The 

knowledge of the Fermi level position is important in drawing the energy band diagram 

of the device structure; this has been further explained in sub-section 7.4.1.5. For the 

abrupt n
+
p junction diodes fabricated from the glass/FTO/n-CdS/p-ZnTe/Au HJ device 

structure, the electric field at the junction was estimated to be 2.22 × 10
4
 Vcm

-1 
using 

Equation (3.48) of Chapter 3. The electric field obtained for the n
+
p HJ diode in this 

work is similar to that reported by Kabra et al. [33] for rectifying p-n junction diodes 

fabricated from p-ZnO/n-Si hetero-structure. 



Chapter 7    Development of n-CdS/p-ZnTe heterostructures 

196 
 

7.4.1.5 Proposed space charge density and energy band-diagram for CdS/ZnTe 

hetero-junction devices 

By combining the n
+
-CdS and p-ZnTe into a single device structure, a one-sided 

CdS/ZnTe n
+
p junction was fabricated since ND >> NA. The knowledge of the electronic 

parameters in Table  7.4 have been used to propose the space charge density and energy 

band diagram of the n
+
p hetero-junction device structure. Figure  7.13 (a) shows the 

probable space-charge density of n
+
p junction that can be obtained after putting the two 

semiconductor materials together to form a device structure.  
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Figure 7.13. (a) Proposed space charge density of one-sided CdS/ZnTe n
+
p junction. (b) 

Proposed energy band diagram of n
+
p hetero-junction device structure. Eg1 is the CdS 

bandgap, Eg2 is the ZnTe bandgap used in this work, W = Xn + Xp, a+Xn = total thickness 

of CdS layer = ~45 nm, Xp+b = total thickness of ZnTe layer = ~1200 nm, c = EC-EF, d 

= EF -EV. Note that the above bandgap diagram is not drawn to scale. 

Figure  7.13 (a) thus shows that the whole space charge layer stretches into the low-

doped region of the junction. This is so because the depletion width is an inverse 

function of the doping concentration. From Figure  7.13 (a), depletion width, W= Xp + Xn 

where Xp and Xn are the distances by which the depletion region extends into the p- and 

n-type semiconductor respectively. Since ND >> NA, then Xn << Xp; thus, the total 

depletion width, W ≈ Xp. The proposed energy band diagram for the n
+
p hetero-junction 

device structure is shown in Figure  7.13 (b). 

7.4.2 The n-CdS/p-ZnTe hetero-junction as a PV solar cell 

The p-ZnTe layers used in the fabrication of solar cells with device structure 

glass/FTO/n-CdS/p-ZnTe/Au were grown from 0.045 M of Zn precursor and 10 ml of 
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TeO2. As previously explained, the ZnTe electroplated from this electrolyte is referred 

to as Zn-rich ZnTe. Due to the poor solar cell activities produced from p-ZnTe grown 

from Te-rich ZnTe electrolyte, the concentration of Zn in the bath was increased to 

0.045 M while still keeping the Te concentration fixed. 

7.4.2.1 Analysis of electronic parameters obtained from n-CdS/p-ZnTe device 

structures using I-V and C-V techniques 

The measurement of solar cells under dark and illumination conditions is important so 

as to obtain electronic parameters which can be used to describe the cell behaviour. The 

CdS/ZnTe device structures discussed in this section were treated with and without 

CdCl2 before making Au contacts on them. Six cells were measured from each set of 

device structures and their solar cell parameters obtained from I-V under AM1.5 

illumination and corresponding doping density obtained from C-V measurements under 

dark condition at room temperature are summarised in Table  7.5 and Table  7.6. 

Table  7.5 and Table  7.6 give the summary of results obtained for device structures 

without and with CdCl2 treatment prior to annealing and metallisation respectively. For 

the purpose of critical analysis and comparison, the best cell in each set was selected for 

further discussion. In Table  7.5, sample P105B_14 was selected while from Table  7.6, 

sample P105C_46 was chosen; both are plotted on same graph for comparison purpose. 

The I-V curves of the best cells are shown in Figure  7.14. Figure  7.14 (a) illustrates the 

log-linear I-V characteristics while Figure  7.14 (b) shows the linear-linear I-V 

characteristics. Electronic parameters such as RF, n, Is and b were obtained from 

Figure  7.14 (a). The Rs and Rsh were obtained from Figure  7.14 (b). 

Table 7.5. Summary of device parameters obtained for CdS/ZnTe device structures 

annealed without any chemical treatment at 400
o
C for 10 minutes in air prior to metal 

contact formation. 

Sample ID Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF  

(%) 

η  

(%) 

NA-ND  

(cm
-3

) 

P105B_35 350 2.83 0.26 0.26 1.25×10
16

 

P105B_33 400 4.10 0.25 0.41 1.47×10
16

 

P105B_25 400 4.77 0.27 0.52 1.50×10
16

 

P105B_16 450 6.45 0.32 0.93 1.56×10
16

 

P105B_13 450 7.40 0.30 0.99 2.36×10
16

 

P105B_14 450 7.26 0.31 1.01 2.48×10
16
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Table 7.6. Summary of device parameters obtained for CdS/ZnTe device structures 

annealed with CdCl2 treatment at 400
o
C for 10 minutes in air prior to metal contact 

formation.  

Sample ID 
Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

(%) 

η  

(%) 

NA-ND 

(cm
-3

) 

P105C_24 380 24.0 0.36 3.28 2.22×10
17

 

P105C_37 440 17.6 0.43 3.33 1.12×10
17

 

P105C_16 400 23.1 0.45 4.16 1.02×10
17

 

P105C_13 400 25.0 0.45 4.50 6.02×10
16

 

P105C_03 520 20.5 0.48 5.12 5.74×10
16

 

P105C_46 480 24.0 0.46 5.30 5.58×10
16

 

 

    

Figure 7.14. I-V characteristics of n-CdS/p-ZnTe device structures under dark condition 

(a) Log-linear I-V and (b) Linear-linear I-V. Note that P105B_14 and P105C_46 

represent the n-CdS/p-ZnTe device structures treated without and with CdCl2 

respectively. 

Table  7.7 gives the summary of I-V parameters measured under dark and light 

conditions. As shown in Table  7.7, the quality of rectifying diode also known as RF is 

better in sample P105C_46 than sample P105B_14. One of the main challenges 

encountered in the p-n junction diodes fabricated from n-CdS/p-ZnTe is the high Rs 

values in both heat-treated (HT) and CdCl2 (CC) - treated samples. After CC-treatment, 

the Rs reduced from 40 kΩ to ~6.6 kΩ under dark condition. It should be noted that in 

order to produce solar cells with better performance, the Rs should be as low as possible 

and Rsh should be as high as possible (for an ideal solar cells, the Rs = 0 and Rsh → ∞). 
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Generally, Rs is caused by the bulk resistance of the semiconductor material, the 

resistance of the electrical contacts and the interconnections. The main impact of the 

large Rs is to reduce the Voc, FF and the gradient of the log-linear curve at the high 

forward-bias region, hence, increasing the n value and reducing the cell efficiency [34]. 

However, if the Rs is extremely large as seen in sample P105B_14 under dark, it can 

significantly reduce the Jsc. 

Table 7.7. Summary of device parameters of best cells obtained from n-CdS/p-ZnTe 

device structures treated without and with CdCl2 under dark and illumination 

conditions. 

Treatment 

Condition 

Dark I-V Parameters 
Light I-V 

Parameters 

Sample 

ID 

RF 

 

n 

 

Is 

(nA) 
b  

(eV) 

Rs 

(kΩ) 

Rsh 

(MΩ) 

Vt 

(V) 

η 

(%) 

Rs 

(Ω) 

Rsh 

(Ω) 

HT-

treated 
P105B_14 10

1.0
 3.13 56.20 >0.72 40.0 0.16 0.20 1.01 1592 4053 

CC-

treated 
P105C_46 10

2.2
 2.36 0.10 >0.89 ~6.6 3.70 0.70 5.30 255 4246 

 

The experimental work carried out by Rohatgi et al. [35]  revealed that annealed 

CdZnTe thin films with highest Rs showed lower Te contents compared to the (Cd+Zn) 

contents. The presence of high Rs under dark conditions as seen in the fabricated diodes 

in this work can therefore be attributed to the presence of excess concentration of Zn 

elements present in the electrolyte. Nonetheless, it is good to have a reasonable 

concentration of Zn source in the bath so as to achieve a good PV effect under 

illumination. To overcome this limitation, researchers have used external dopants like 

Cu [36] and Na [37] to reduce the resistivity of ZnTe thin films so as to achieve better 

solar cell devices. Though in this study, external dopants have not been used. This could 

therefore be the reason why high Rs values were observed in the fabricated diodes 

despite its PV activity. For the initial p-ZnTe layers grown from Te-rich ZnTe 

electrolyte and used as hetero-partner to n-CdS thin films, good diodes with low Rs were 

obtained but the PV activity under illumination was very poor. Therefore, to produce 

solar cell devices with good PV effect using ZnTe as an absorber material or as a back 

contact to CdTe absorber material, it is proper to use higher concentration of Zn 

(~0.045M of Zn precursor) as compared to the 0.015M and incorporate external dopants 

like Cu to reduce its Rs.  
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The value of Rsh obtained in diodes fabricated from CC-treated layer is ~23 times larger 

than the Rsh values obtained in the diodes fabricated from heat-treated device structures 

only. Low values of Rsh observed in sample P105B_14 signify existence of leakage 

paths for the photo-generated charge carriers; this means that the amount of current flow 

through the external circuit reduces and this eventually leads to a reduction in the cell 

performance [38]. When a diode is having low Rsh, instead of the photo-generated 

current to pass through external circuit to produce useful electricity, it leaks away within 

the device structure. This leakage thereby gives rise to the diode leakage current which 

is also referred to as the reverse saturation current. For this reason, diodes with low Rsh 

tend to have very high leakage current since the low Rsh provides an alternative path for 

the generated current to flow. As shown in Table  7.7, sample P105B_14 with low Rsh of 

0.16 MΩ has a high Is of  56.2 nA while sample P105C_46 with high Rsh of 3.70 MΩ 

has a low Is of 0.1 nA. This result shows that CdCl2 treatment plays a major role in 

reducing the leakage path for the photo-generated charge carriers.  

Another useful parameter which is also of electronic importance is the b . The b  

depends on Is and it determines the threshold voltage (Vt) of the diode when measured 

under dark or the open circuit voltage (Voc) when measured under AM1.5 illumination. 

As seen in Table  7.7, a massive improvement was observed in Vt of the p-n junction 

diodes from 0.20 V to 0.70 V after CdCl2 treatment. Under illumination condition, the 

Voc slightly increased from 0.450 V to 0.480 V after CdCl2 treatment. This improvement 

in Vt and Voc after CdCl2 treatment is due to the reduced Is and higher b  obtained in 

sample P105C_46 as compared to sample P105B_14. Researchers have shown that 

increase in Is can lead to decrease in the Voc [39,40]. The breakdown voltage (Vbd) is 

equally important when dealing with electronic devices.  As seen in Figure  7.14 (b), the 

Vbd of the p-n junction diode was improved after CdCl2 treatment. The p-n device 

structure treated without CdCl2 treatment breaks down easily when the reverse voltage 

slightly exceeds 0.5 V. Due to this breakdown, large reverse saturation current of ~56.2 

nA flows through the device while in the case of diodes fabricated from CdCl2 treated 

device structure, no obvious breakdown occurs even at higher reverse voltage of 1.0 V. 

Due to the non-breaking nature of this diode, tiny currents of ~0.1 nA flow through the 

diode when reverse biased.  The negligible reverse currents which flow through the 

diode P105C_46 make it suitable for application in electronic devices. The value of 

ideality factor (n) for an ideal diode which can produce excellent solar to electric 

conversion efficiency should be equal to unity. However in practice, this is not always 
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obtainable due to the native defects in the semiconductor materials. The n values 

obtained in both devices are high and this indicates the presence of defects, interfacial 

charges, recombination and generation centres in the fabricated device structures [41].  

Figure  7.15 shows the I-V characteristics under illumination obtained for n-CdS/p-ZnTe 

solar cells. The summary of the obtained I-V parameters under illumination condition 

for the two solar cells discussed in this section are highlighted in Table  7.5 and 

Table  7.6. The highlighted parameters in Table  7.5 and Table  7.6 represent solar cells 

fabricated from n-CdS/p-ZnTe device structures treated without and with CdCl2 

solution respectively. The drastic reduction of Rs under illumination condition (that is, 

from 40 kΩ under dark to ~1.6 kΩ under illumination for sample P105B_14 and from 

6.6 kΩ under dark to ~255 Ω under illumination for sample P105C_46) shows that the 

materials exhibit photo-conductivity and devices show improved photo-voltaic activity.  

 

Figure 7.15. I-V characteristics of device parameters obtained for n-CdS/p-ZnTe device 

structures treated without and with CdCl2 under AM 1.5 illumination condition. Note 

that P105B_14 and P105C_46 represent the n-CdS/p-ZnTe device structures treated 

without and with CdCl2 respectively. 

Overall, all the parameters of CdS/ZnTe device structures treated with CdCl2 before 

annealing in air improved when compared to the ones annealed without any chemical 

treatment. This is seen in the summarised results of Table  7.7. The final solar cell 

efficiency obtained for devices labelled P105B_14 and P105C_46 are ~1.01% and 

5.30% respectively. One possible reason for the high efficiency observed in CC-treated 
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ZnTe layer may be the removal of some defects at the back contact area as a result of 

CdCl2 treatment. At the same time, the diffusion of Cl from the CdCl2 treatment to the 

ZnTe layer could help in grain growth and grain boundary passivation [42]; this is very 

similar to what happens in CdTe films. 

7.4.2.2 C-V analysis of best cells selected from n-CdS/p-ZnTe device structures 

treated without and with CdCl2 treatment 

The C-V and Mott-Schottky plots of ordinary heat-treated glass/FTO/n-CdS/p-ZnTe/Au 

HJ device structure with 2 mm diameter active areas are shown in Figure  7.16 (a) and 

7.16 (b) respectively while the C-V and Mott-Schottky plots of CC-treated glass/FTO/n-

CdS/p-ZnTe/Au solar cells are represented in Figure  7.16 (c) and 7.16 (d) respectively. 

  

  

Figure 7.16. Typical C-V characteristics of heat-treated glass/FTO/n-CdS/p-ZnTe/Au 

device structure (a) capacitance vs bias voltage, (b) C
-2

 vs V graphs and typical C-V 

characteristics of CdCl2-treated glass/FTO/n-CdS/p-ZnTe/Au device structure (c) 

capacitance vs bias voltage, (d) C
-2

 vs V graphs. 
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As shown in Figure  7.16 (a) and 7.16 (c), the observed depletion capacitances at zero 

bias (Co) for the HT and CC-treated samples are ~704 pF and ~530 pF respectively. The 

depletion width of the samples were calculated using Equation (3.38) and the results are 

given in Table  7.8. It can be seen that the depletion width of the HT sample has 

increased from 411 nm to 546 nm after CC-treatment. The wider depletion width of the 

CC-treated sample shows that stronger built-in electric field is available in the depletion 

region of the device to separate the photo-generated charge carriers. Equation (3.50) 

was used in estimating the value of electric field at the interface of the p-n junction 

device.  The results as given in Table  7.8 show that CC-treated samples have higher 

electric field at the p-n junction than HT samples.  

Table 7.8. Summary of C-V results obtained for HT- and CC-treated glass/FTO/n-

CdS/p-ZnTe/Au solar cell device structures. 

Treatment 

Condition 

Dark C-V Parameters 

Sample ID 
Co 

(pF) 

W 

(nm) 

NA-ND 

(cm
-3

) 

EF-EV 

(eV) 

Emax 

(Vcm
-1

) 

HT-treated P105B_14 704 411 2.48 × 10
16

 ~0.12 1.77×10
5
 

CC-treated P105C_46 530 546 5.58 × 10
16

 ~0.10 5.29×10
5
 

Figure  7.16 (b) and 7.16 (d) show the Mott-Schottky plots of the HT- and CC-treated 

glass/FTO/n-CdS/p-ZnTe/Au solar cells. The non-linear shape of the Mott-Schottky 

plots indicate that the doping levels are non-uniformly distributed in the n-CdS/p-ZnTe 

layers [43]. Also the non-linearity of the Mott-Schottky plots represents the presence of 

trap levels in the forbidden band of ZnTe layers [44]. The doping concentration (NA-ND) 

for holes calculated from Figure  7.16 (b) and 7.16 (d) are 2.48×10
16

 and 5.58×10
16

 cm
-3

 

for HT and CC-treated samples respectively. The Fermi level positions (EF-EV) stated in 

Table  7.8 shows that the CC-treated sample is closer to the Evmax than the HT-sample. 

This closeness enhances an increase in the barrier height as seen in Table  7.7. The graph 

of efficiency obtained from solar cells fabricated from CC-treated glass/FTO/n-CdS/p-

ZnTe device structures versus the doping density of holes in the p-n hetero-structure is 

shown in Figure  7.17. The result in Figure  7.17 shows that efficiency increases as the 

doping density decreases. 
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Figure 7.17. Efficiency versus doping density for n-CdS/p-ZnTe solar cell devices 

fabricated from CC-treated glass/FTO/n-CdS/p-ZnTe device structures. 

Comparative study of p-n junction diodes fabricated from Te-rich ZnTe and Zn-rich 

ZnTe electrolyte indicate that the electric fields at the p-n interface of diodes fabricated 

from Zn-rich ZnTe electrolyte are generally higher than those of Te-rich ZnTe 

electrolyte. The presence of stronger electric field obtained at the interface of p-n 

junction diode from Zn-rich ZnTe electrolyte may therefore be one of the reasons why 

the fabricated solar cells from Zn-rich ZnTe electrolyte are better than the Te-rich ZnTe 

electrolyte. Also, diodes fabricated from Zn-rich ZnTe bath has lower capacitance than 

the ones made from Te-rich ZnTe bath as observed from this work. This result agrees 

with the experimental investigations reported by Naby et al. [41] that capacitance 

decreases with increase in Zn concentration. 
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7.5 Summary 

The results presented in this chapter showed that due to the bandgap modification of 

ZnTe thin films, it can be employed as an absorber layer to n-CdS thin films. ZnTe 

layers grown from Zn-rich ZnTe electrolyte possess better crystallinity and material 

quality than the ones grown from Te-rich ZnTe electrolyte. Both categories of ZnTe 

layers were grown on n-CdS thin films to make electronic devices. The effect of treating 

the top surface of ZnTe monolayer with CdCl2 solution was investigated before 

applying it to CdS/ZnTe-based device structures. The results from structural analysis 

revealed that the CdCl2 treatment does not add additional phase to the ZnTe thin films 

or convert the film to another compound. p-n junction diodes were made using n-CdS 

and p-ZnTe grown from Te-rich and Zn-rich electrolyte. The C-V results of diodes 

fabricated using p-ZnTe grown from a Te-rich ZnTe electrolyte confirmed the 

successful fabrication of one-sided rectifying p-n junction diodes. A comparative study 

of fabricated diodes and solar cells showed that ZnTe absorber layers electroplated from 

Zn-rich ZnTe electrolyte is a better hetero-partner to CdS thin films than ZnTe absorber 

layers electroplated from Te-rich ZnTe electrolyte. Future work should focus on 

developing multi-junction graded bandgap solar cells incorporating ZnTe and CdS thin 

films into the structure. 
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Chapter 8 - Electrodeposition and characterisation of CdTe thin films 

8.1 Introduction 

This chapter describes the cathodic electrodeposition of CdTe thin films on FTO-coated 

glass substrates using two-electrode system and aqueous acidic electrolyte. The material 

properties of electrodeposited (ED) CdTe layers were studied using some of the 

analytical techniques discussed in Chapter 3. The effects of annealing temperatures on 

electrical properties of n- and p-CdTe thin films have been explored. The influence of 

different chemical treatments on the material and electronic properties of CdTe thin 

films have also been investigated. The pH variation of chemical solutions used for CdTe 

surface treatments have also been studied with respect to device fabrication. The Fermi 

level position of as-deposited and CdCl2 treated CdTe thin films have also been studied.  

8.2 Electrolyte preparation for CdTe thin films deposition  

Before taking the cyclic voltammogram of electrolyte used in electroplating CdTe thin 

films, 1 M CdSO4 (99% purity) was first electro-purified. The 1 M CdSO4 was 

dissolved in a plastic beaker containing 800 ml of de-ionised water. The beaker was put 

inside an external glass beaker of 2000 ml for heating purpose. Before adding the 

dissolved TeO2 solution, the 1 M CdSO4 was electro-purified at cathodic potential of 

~900 mV for ~80 hours so as to bring the impurity in the electrolyte to a minimal level. 

After performing the electro-purification, 5 ml of dissolved TeO2 was added to the 

electro-purified bath; the electrolyte was allowed to stir continuously for ~12 hours 

before the commencement of CdTe thin films deposition. The procedures followed to 

dissolve TeO2 powder have been explained in section 5.2 of Chapter 5. The pH value of 

the prepared electrolyte was maintained at 2.00±0.02 by using either NH4OH or H2SO4. 

Acidic pH was used in this research work due to the instability of Te at pH >7.0, this 

alkaline pH leads to very poor adhesion of CdTe on the TCO substrate [1]. The growth 

temperature of the electrolytic bath was ~85
o
C and the solution was moderately stirred 

using a magnetic stirrer.   

In this research work, the concentration of CdSO4 is always kept higher than the Te 

concentration; this is in accordance with the explanation given by Panicker et al. [2] that 

to deposit approximately equal amounts of Te and Cd, it is essential to prepare the 
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electrolyte using high concentration of Cd precursor which is a less noble element and 

low concentration of Te which happens to be a more noble element. The CdSO4 and 

TeO2 used as precursors for the CdTe electroplating work were purchased from Sigma 

Aldrich. The glass/FTO substrates used for this purpose was TEC 7 with a sheet 

resistance of 7 Ω/square. Before electrodeposition, the glass/FTO substrates were cut 

into small pieces with dimensions of 2×4 cm
2
 and washed for ~15 minutes in an 

ultrasonic bath containing soap solution. The substrates were later washed using acetone 

and methanol solution to remove any form of grease and other surface contaminants. 

Finally, the substrates were rinsed with de-ionised water before being applied in the ED 

set-up. 

8.3 Voltage optimisation and growth of CdTe thin films  

This section discusses some of the techniques used in characterising CdTe thin films so 

as to select optimum voltage for growing nearly stoichiometric CdTe thin films. To 

achieve this, other preparative parameters such as the growth temperature, pH and 

growth time (tg) were kept constant at 85
o
C, 2.00±0.02 and one hour respectively. 

8.3.1 Cyclic voltammetry 

Cyclic voltammogram gives the details of how electric current flows in the electrolyte 

when the potentials between electrodes are varied. Cyclic voltammetry studies were 

carried out in an aqueous solution that contains 1 M CdSO4 and 5 ml of dissolved TeO2 

solution at a pH of 2.00±0.02. A FTO coated glass substrate was used as the working 

electrode to study the mechanism of deposition of CdTe thin films. A computerised 

GillAC potentiostat was used to carry out this voltammetric study at a sweep rate of 180 

mVmin
-1

. In this technique, a range of cathodic potentials from 0 to 2000 mV was 

applied across the electrolyte through the electrodes. The potentiostat was used in 

monitoring the current through the electrolyte as the voltages between electrodes are 

varied [3]. A typical cyclic voltammogram for FTO-coated glass substrate in the 

prepared electrolyte is shown in Figure  8.1. The forward curve at the inset of Figure  8.1 

shows that Tellurium (Te) begins to deposit at ~145 mV. The redox potential (E
o
) of Te 

and Cd are ~+593 and -403 mV respectively with respect to standard hydrogen 

electrode [4]. Te is expected to deposit first before Cd because it has a more positive 

redox potential than Cd. Also, Te deposits first being a nobler element [24,25] 

according to Equation (8.1). 
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HTeO2
+
 + 4e

-
 + 3H

+
  =   Te + 2H2O       (8.1) 

 

Figure 8.1. A typical cyclic voltammogram of electrolyte containing 1 M CdSO4 and 5 

ml of dissolved TeO2 aqueous solution (pH = 2.00±0.02, T=85
o
C). 

The part labelled point B in Figure  8.1 indicates the voltage (~910 mV) at which Cd 

deposition starts to take place. The electrochemical reaction of Cd deposition is given 

by: 

Cd
2+

+ 2e
-
→ Cd          (8.2) 

Beyond point B, an increase in current density was observed as the cathodic voltage 

increases. The rise in deposition current density after ~910 mV shows rapid discharge of 

Cd and reaction between Cd and Te to form CdTe. This rise indicates the initial co-

deposition of CdTe on the working electrode (cathode) according to the chemical 

reaction in Equation (8.3)   

Cd
2+

 + Te + 2e
-
  =   CdTe        (8.3) 

At low cathodic deposition voltage, a CdTe layer rich in Te is expected to be formed 

[25]. The amount of elemental Cd in the CdTe layer gradually increases as the 

deposition voltage increases; this allows a near stoichiometric CdTe layer to be formed. 

The part labelled region C shows the suitable voltage range for growing CdTe thin 

films. This voltage ranges between ~1350 to ~1500 mV and it has been identified as 

being suitable for growing CdTe layers according to this experimental result. By 
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combining Equations (8.1) and (8.2) together, the total chemical reaction required for 

the reduction of CdTe thin films on the cathode can be obtained as shown in Equation 

(8.4). 

HTeO2
+

 + Cd
2+

 + 3H
+ 

+ 6e
-
 → CdTe + 2H2O       (8.4) 

From the reverse cycle of the I-V curve shown in Figure  8.1, the current flow transits 

from the positive to the negative at ~1365 mV. This voltage represents the potential at 

which the current produced due to material deposition is equal to current produced due 

to dissolution of material. As the current flow transits further in the negative reverse 

direction before reaching point E, removal of any elemental Cd and Cd from CdTe layer 

formed on the cathode takes place. The dissolution of Te from the surface of the cathode 

occurs at the broad peak point E which is ~431 mV. The essence of the reverse cycle is 

that below the transition point, the layer formed is Te-rich. The cyclic voltammetry is 

useful to find approximate voltage range to deposit CdTe layers after which the voltage 

range is optimised to find a suitable potential to grow nearly stoichiometric CdTe thin 

films. 

8.3.2 Structural analysis using XRD technique 

The structural properties of as-deposited (AD) and CdCl2 (CC) treated CdTe layers were 

studied using X-ray diffraction technique. The CdTe layers were electroplated on 

glass/FTO substrates at different cathodic potentials from (1350-1440) mV; this task 

was carried out in order to obtain the optimum deposition voltage to grow nearly 

stoichiometric CdTe thin films. The XRD also helps in the identification of the crystal 

structure. The XRD spectra obtained for AD-CdTe layers are shown in Figure  8.2 (a) 

while Figure  8.2 (b) represents the graph of intensity of (111) peak for AD-CdTe layers 

as a function of cathodic potentials ranging between 1350 and 1440 mV. For the CC-

treated CdTe layers, the XRD spectra are shown in Figure  8.3 (a) while Figure  8.3 (b) 

signifies the plot of (111) peak intensity as a function of cathodic potentials ranging 

between 1370 and 1420 mV for AD-CdTe layers, CdTe layers heat-treated (HT) 

ordinarily in air and  CdTe layers treated with CdCl2 (CC) solution before annealing in 

air. The heat-treatment was carried out in air at 400
o
C for 10 minutes. For the CC-CdTe 

layers, the top surface of the CdTe layers were first treated with CdCl2 solution, allowed 

to dry and then annealed. 
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Figure 8.2. (a) The XRD spectra of as-deposited CdTe layers grown at cathodic 

deposition potentials ranging from 1370 to 1420 mV and (b) A plot of (111) peak 

intensity of as-deposited CdTe layers versus cathodic potentials ranging between 1350 

and 1440 mV. 

  

Figure 8.3. (a) The XRD spectra of CdCl2 heat-treated CdTe layers grown at cathodic 

deposition potentials ranging from 1370 to 1420 mV and (b) A plot of (111) peak 

intensity of AD-, HT- and CC-CdTe layers versus cathodic potentials ranging between 

1370 and 1420 mV. 

The XRD spectra of AD- and CC- CdTe layers illustrated in Figure  8.2 (a) and 

Figure  8.3 (a) respectively showed that the CdTe thin films are polycrystalline and in all 

cases, the preferred orientation was found to be along the (111) plane. Aside the CdTe 

peak which showed the highest crystallinity along the (111) plane, other peaks of Cubic 
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CdTe were also found along the (220) and (311) planes at the peak positions 2θ=39.43
o
 

and 46.55
o
 respectively. These peaks have a much lower intensity when compared to the 

preferred orientation peaks. When the observed data from XRD measurements were 

compared with the JCPDS reference code: 00-015-0770 for CdTe, it was found out that 

the crystal structures were cubic. Figure  8.2 (a) and Figure  8.3 (a) show that the CdTe 

thin films grown at a cathodic potential of 1400 mV have the highest crystallinity peak 

for both AD- and CC-CdTe layers. For both AD- and CC-CdTe, the peak position for 

the preferred plane of orientation varied between (23.61-24.15)
o
.  

Figure  8.3 (b) illustrates the graph of intensity of (111) peak for AD-, HT and CC-CdTe 

layers as a function of cathodic deposition potentials ranging between 1370 and 1420 

mV. As seen in Figure  8.3 (b), all the (111) peak intensities increased after CdCl2 

treatment for the CdTe layers grown between (1370-1420) mV when compared with 

AD-CdTe layers. This illustrates that CdCl2 treatment assists in increasing the material 

crystallinity thus leading to improvement in the material stoichiometry. A gradual 

increase was observed in the peak intensity from 1370 to 1400 mV. Beyond 1400 mV, 

the (111) peak intensity starts to reduce. This experimental result shows that a cathodic 

potential (Vg) of 1400 mV may be ideal for growing nearly stoichiometric CdTe layers. 

The spectrum of (111) peaks for HT-CdTe layers shown in Figure  8.3 (b) deviates from 

the trend followed by AD- and CC-CdTe layers. The crystallite sizes for the CdTe 

samples were calculated for both AD- and CC-CdTe layers at different cathodic 

potentials using Scherrer's equation given in Equation (3.12) of Chapter 3; the details 

are shown in Table  8.1. The calculated crystallite sizes is a function of the full width at 

half maximum (FWHM) extracted from XRD measurement.  

Table 8.1. Crystallite sizes estimation based on (111) peak of AD- and CC-CdTe at 

different cathodic deposition potentials. 

 
Extracted XRD parameters for AD-CdTe 

along  (111) plane 

Extracted XRD parameters for CC-CdTe 

along  (111) plane 

Growth 

Voltage (mV) 

Peak Position 

(
o
) 

FWHM 

(
o
) 

Crystallite Size 

(nm) 

Peak Position 

(
o
) 

FWHM 

(
o
) 

Crystallite Size 

(nm) 

1350 24.15 0.779 10.9 23.94 0.325 26.2 

1360 23.87 0.519 16.3 23.84 0.292 29.1 

1370 23.61 0.389 21.8 23.85 0.260 32.7 

1380 23.82 0.324 26.1 23.92 0.195 43.6 

1390 23.68 0.259 32.7 23.89 0.162 52.3 

1400 23.88 0.259 32.7 23.89 0.162 52.3 

1410 23.77 0.454 18.7 23.85 0.162 52.3 

1420 23.96 0.520 16.3 23.92 0.162 52.3 
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Figure 8.4 shows the estimated crystallite sizes as a function of cathodic potentials. For 

the AD-CdTe, the crystallite sizes increase as the Vg increases from 1350 to 1390 mV. 

The same crystallite values were obtained for CdTe layers grown at 1390 and 1400 mV. 

Beyond this voltage, the size of the crystallites starts to decrease. For the CC-CdTe 

layers, the crystallite sizes also increase from 1350-1390 mV. The values obtained for 

the crystallites at 1390 mV and above remain the same. The saturation point reached 

here is an indication of the limitation of Scherrer's equation. This equation can only be 

used for poly-crystalline layers with certain size. As reported by Monshi et al. [7], 

Scherrer's equation mainly predicts the thickness of the crystallites if crystals are <100 

nm. The grain sizes can best be estimated by techniques such as SEM and AFM.  

 

Figure 8.4. Estimated crystallite sizes of AD- and CC-CdTe thin films as a function of 

cathodic potential. 

8.3.3 Optical Absorption 

Using the UV-Vis spectrophotometer, the optical absorption measurements of 

electroplated CdTe layers were successfully carried out using the wavelength in the 

range 560-1000 nm. As illustrated in Figure 8.5, the energy bandgap was determined by 

extrapolating the tangent of the absorption curve to the photon energy axis. The optical 

absorption curves of AD- and CC-CdTe layers deposited at various cathodic voltages 

from 1350-1420 mV are shown in Figure 8.5 (a) and 8.5 (b) respectively. The bandgap 

of the as-deposited CdTe layers are in the range 1.25-1.55 eV while those of the CC-

treated CdTe layers are in the range 1.10-1.54 eV. As seen in Figure 8.5 (a), lesser Eg 

values were observed at lower cathodic potentials. The reduction in bandgap as the 

deposition potential decreases is due to the deposition of semi-metallic Te with a 
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bandgap of ~0.37 eV [8]. It was observed that some of the CdTe thin films grown at 

lower Vg also exhibit Te peaks as seen from the XRD spectra in Figure  8.3 (a). 

  

Figure 8.5. Optical absorption graphs of CdTe layers grown between 1350–1420 mV 

for (a) As-deposited CdTe layers and (b) CdTe layers heat-treated with CdCl2 at 400
o
C 

for 10 minutes in air.  

Figure 8.6 shows the trend at which the energy bandgaps of AD-CdTe and cadmium 

chloride heat-treated CdTe layers vary with the cathodic deposition potentials. For most 

of the CdTe thin films except the ones grown at 1360 mV, a reduction was observed in 

the energy bandgap after cadmium chloride treatment. The reduction in the bandgap 

after annealing was explained by Chaure et al. [9] with respect to the small grains 

present in AD-materials coalescing together to form larger grains after heat-treatment. 

Likewise, the reduction in the bandgap could also arise as a result of changes in the 

atomic composition of the electrodeposited semiconductor materials.  

 

Figure 8.6. Variation of the energy bandgaps of CdTe layers as a function of cathodic 

deposition potentials for both AD- and CC-CdTe layers.  
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8.3.4 Photoelectrochemical (PEC) cell measurement 

The electrical conductivity type of the CdTe thin films were tested using PEC cell 

measurements technique. These measurements could not be carried out with the 

conventional Hall Effect measurement due to the underlying FTO conducting substrate 

[10]. The experimental set-up to carry out this measurement had earlier been explained 

in section 3.5.1 of Chapter 3. The types of electrical conduction obtained in the CdTe 

layers are mainly determined by the polarity of the PEC signal. Figure 8.7 shows the 

PEC signals as a function of cathodic potentials for AD-, HT- and CC-CdTe layers. 

After annealing without and with CdCl2 treatment, the PEC signals of n-type CdTe 

layers beyond 1370 mV reduce and tend towards p-region. As seen in Figure 8.7, the 

CdTe layers deposited at growth voltages (Vg) <1370 mV show p-type electrical 

conduction while the CdTe layers grown at Vg >1370 mV are n-type. Panicker et al. [2] 

explained that deposition at lower cathodic potential favours Te-deposition and produce 

Te-rich CdTe while deposition at higher cathodic potential gives rise to Cd-rich CdTe 

layers.  Therefore, to obtain n-CdTe layers, a more negative deposition potential is 

required. As reported by Takahashi et al. [11], more Te is deposited when the deposition 

potential is more positive (that is, low cathodic potential) while more Cd is deposited 

when the deposition potential is more negative (that is, higher cathodic potential). 

The ability of p-CdTe to convert totally or move towards n-CdTe and n-CdTe to move 

towards or convert totally to p-CdTe is as a result of complexities in this semiconductor 

material. The conversion of p-CdTe to n-CdTe may be as a result of Te vacancy (Cd-

richness). The Te vacancy may arise when the CdTe layers are deposited very close to 

Vi point in the p-region with very low level of Te in the bath. Annealing these type of 

layers with CdCl2 treatment can easily convert the p-CdTe to n-CdTe due to re-

distribution of defects which take place during annealing [12]. Researchers have given 

many reasons for the type conversion of n-CdTe to p-CdTe. One of these reasons may 

be as a result of Cd vacancy [13–15]. In most cases, Cd vacancies are generated due to 

evaporation of Cd during heat-treatment. Since Cd has higher vapour pressure than Te, 

it sublimes first thereby leaving a Te-rich CdTe layer [16]. Aside Cd vacancy, Basol et 

al. [15] also showed other possibilities of n-CdTe converting to p-type. Some of the 

explanations given by Basol et al. [15] are: (i) activation of residual p-type dopants in 

the CdTe thin films (ii) diffusion of p-type dopants from the conducting substrate and 

annealing environment into the CdTe thin films and (iii) acceptors diffusing into the 

CdTe thin films from grain boundaries. 
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Figure 8.7. Typical variation of PEC signals with cathodic potentials for as-deposited, 

heat-treated and CdCl2 treated CdTe layers grown from sulphate precursors. 

CdMnTe, a ternary compound semiconductor was also investigated. One of the main 

reasons of exploring CdMnTe in this work is due to the fact that the energy bandgaps 

are tuneable and wider bandgaps than CdTe thin films can be obtained [17]. With the 

wide bandgap, it can serve the purpose of a back contact layer to CdTe thin films for 

barrier height enhancement. p-type CdMnTe layers can also be used as a p-type window 

material in graded bandgap solar cells. The effect of alloying CdTe with Mn on 

electrical conduction type is illustrated in Figure 8.8. After annealing ordinarily in air 

without CdCl2 treatment, the PEC signals of all CdMnTe layers in the n-region beyond 

1370 mV convert to p-type. However, since AD- and HT-materials do not have the 

required crystallinity for inclusion in thin film solar cells, it is therefore proper to treat 

the surface of the CdMnTe semiconductor materials with CdCl2 before annealing so as 

to achieve a more crystalline material. The PEC cell results of the CC-treated CdMnTe 

layers show that the CdMnTe thin films grown at the Cd-rich region (for example, 1450 

mV and above) still remain n-type immediately after CdCl2 treatment while the PEC 

signals of CdMnTe layers grown very close to the inversion voltage of ~1370 mV all 

convert to p-type CdMnTe. This result agrees with the reports in the literature that 

CdMnTe layers can have both n- and p-type electrical conduction [18,19]. Based on this 

experimental investigation; to get p-type CdMnTe, it is proper to anneal ordinarily in air 
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without any chemical treatments or to grow near the inversion voltage and anneal in the 

presence of CdCl2 atmosphere.  

 

Figure 8.8. Typical variation of PEC signals with cathodic potentials for as-deposited, 

heat-treated and CdCl2 treated CdMnTe layers. 

8.3.5 Thickness Measurement 

The thicknesses of CdTe layers grown at different durations were estimated 

theoretically using Faraday's law of electrolysis,  

FnA

ItM
T


           ( 8.5) 

where M is the molar mass of CdTe thin films (240.01 gmol
-1

), t is the growth time in 

seconds, I is the average current observed during deposition in Ampere, A is the area of 

the electroplated layers in cm
-2

, F is Faraday's constant (96485 Cmol
-1

), ρ is the density 

of CdTe (5.85 gcm
-3

) and n is the total number of electrons required in the deposition of 

1 mol of CdTe (n = 6 as given by Equations (8.1), (8.2) and (8.4)). 

Figure 8.9 shows how the thickness of CdTe layers grown at a Vg of 1400 mV varies 

with deposition time. The thickness of ED-CdTe layers increases with deposition time 

as seen in Figure 8.9. The theoretical estimate of the thickness does not show a perfect 

linear response due to the variation of deposition current density with growth time. As 

shown in Figure 8.9, the thickness obtained at ~4 hours of deposition time is ~1.55 μm. 
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The thickness of the CdTe thin films can be increased beyond 2 µm simply by 

increasing the deposition time.  

 

Figure 8.9. Typical theoretical thicknesses of CdTe thin films at different growth 

duration ranging from (0.5-5.0) hours.  

8.4 Effect of annealing temperatures on electronic properties of n- and p-CdTe 

layers 

The knowledge of electronic parameters of semiconductor materials such as the 

material's resistivity, conductivity, doping density and mobility are very important to 

help in developing electronic devices of high grade. The effects of different annealing 

temperatures on these electronic parameters have been investigated during this research 

work. The temperatures used range from (350-450)
o
C while the annealing time was 

fixed for 10 minutes in air. The electrical parameters discussed in this section were 

obtained for p- and n-type CdTe thin films grown at different cathodic potentials of 

1350 mV and 1400 mV respectively. To obtain good ohmic characteristics, the back 

metal contacts were carefully selected to form ohmic behaviour to the CdTe layer. Since 

the substrate used in this work is glass/FTO, the FTO already formed an ohmic 

behaviour with the CdTe because it is a conducting oxide with work function (4.40 eV) 

[20] higher than the CdTe electron affinity (~4.28 eV) [21].  Au and In metal contacts 

were used in making ohmic contacts to p- and n-CdTe respectively. The work function 

of Au and In metals have been reported to be ~5.25 eV [22] and ~4.09 eV respectively.    
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In carrying out the DC conductivity measurements, circular ohmic contacts of ~0.031 

cm
2
 active area were made by coating the p- and n- CdTe layer with Au and In metals 

respectively. The circular contacts of ~0.031 cm
2
 active area were obtained from a 

metallic mask having up to 50 circular dots of 2 mm diameter. I-V characteristics of the 

glass/FTO/CdTe/ohmic contact structures were carried out by applying a bias voltage 

from -1.0 to +1.0 V. The I-V results (not shown here for brevity) show a very good 

linear response that passes through the origin. This signifies nearly ideal ohmic 

characteristics. The resistances of the metal-coated layers were estimated from the 

Ohm's law relationship. For each experimental set, the average resistances were 

determined from the measured cells. Equation (3.15) given in Chapter 3 was used in 

calculating the electrical resistivity while the conductivity was estimated from the 

inverse of resistivity values. 

8.4.1 Resistivity measurements of p- and n-CdTe thin films 

The resistivity values of p- and n-CdTe layers were estimated from the I-V 

characteristics of the linear resistors fabricated from glass/FTO/p-CdTe/Au and 

glass/FTO/n-CdTe/In device structures respectively. The doping densities on the other 

hand were obtained from the C-V characteristics of the fabricated Schottky diodes 

(glass/FTO/p-CdTe/Al for p-CdTe and glass/FTO/n-CdTe/Au for n-CdTe). The values 

of resistivities of p-CdTe and n-CdTe thin films obtained at different annealing 

temperatures are given in Table  8.2. The values for AD-CdTe are given as the heat 

temperature of 0
o
C. As seen from Table  8.2, the as-deposited p-CdTe layers have the 

highest resistivity when compared to the HT- and CC-CdTe layers. A little decrease was 

observed in the resistivity of HT-CdTe layers annealed at 350 and 380
o
C for 10 minutes 

in air. With this high resistivity, the AD p-CdTe layers and p-CdTe thin films heat-

treated ordinarily in air at temperatures below 380
o
C may not be suitable for direct 

application in thin film solar cells fabrication [16]. The high resistivity makes the p-

CdTe layer to be semi-insulating. The semi-insulating property makes it suitable for use 

in applications such as X- ray and gamma ray detectors [23]. 

From Figure 8.10 (a), when compared to the initial annealing temperature of 350
o
C; 

drastic reduction was observed in the resistivity of HT p-CdTe layers from annealing 

temperature of (400-450)
o
C. This temperature range is therefore a suitable range for 

annealing CdTe-based device structures when used in solar cells fabrication and for 

achieving more crystalline CdTe layers. As revealed in Figure 8.10 (a), the effect of 
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CdCl2 treatment on the p-CdTe layers are clearly obvious. There was a tremendous 

reduction in the CdTe resistivity of CC p-CdTe when compared to HT p-CdTe layers 

even at lower annealing temperatures. This result clearly demonstrates one of the 

advantages of CdCl2 treatment when used in device fabrication. The reduction in CdTe 

series resistance was also one of the advantages highlighted by Rohatgi et al. [24] when 

CdTe layers are treated with CdCl2 solution. Figure 8.10 (a) and 8.10 (b) show the plots 

of resistivity of p-CdTe and n-CdTe thin films versus annealing temperatures 

respectively. 

Table 8.2. Room temperature (RT) resistance and resistivity values of heat-treated and 

CdCl2-treated p- and n-CdTe layers at different annealing temperatures of (350-450) 
o
C.  

 RT resistance and resistivity values after heat treatment at different temperatures 

CdTe Layers Temp., (
o
C) 0 350 380 400 420 450 

 

HT 

p-CdTe 

R, (Ω) 2750 2585 2491 179 133 85 

ρ,(Ω.cm) 8.64 × 10
5
 8.12 × 10

5
 7.83 × 10

5
 5.62 × 10

4
 4.19 × 10

4
 2.67 × 10

4
 

        

CC 

p-CdTe 

R, (Ω) 2750 1260 700 53 33 28 

ρ,(Ω.cm) 8.64 × 10
5
 3.96 × 10

5
 2.20 × 10

5
 1.65 × 10

4
 1.05 × 10

4
 8.71 × 10

3
 

 

 

HT 

n-CdTe 

R, (Ω) 67.0 38.4 36.9 26.4 33.1 103.0 

ρ,(Ω.cm) 2.11 × 10
4
 1.21 × 10

4
 1.16 × 10

4
 8.29 × 10

3
 1.04 × 10

4
 3.24 × 10

4
 

        

CC 

n-CdTe 

R, (Ω) 67.0 35.9 33.5 24.3 29.9 97.3 

ρ,(Ω.cm) 2.11 × 10
4
 1.13 × 10

4
 1.05 × 10

4
 7.65 × 10

3
 9.41 × 10

3
 3.06 × 10

4
 

 

One other interesting thing to observe in this result is that when the annealing 

temperature is ≥400
o
C, there is a very close match between the resistivity of HT and 

CC p-CdTe layers. However, in all cases, the CdCl2 treated p-CdTe layers showed the 

least resistivity. In both heat treatment conditions (HT and CC), the least resistivity for 

p-CdTe was obtained at annealing temperature of 450
o
C. At 420 and 450

o
C, the 

resistivity of CC-CdTe layers decreases by ~two orders of magnitude while for HT-

CdTe layers, the resistivity reduced by ~one order of magnitude with respect to as-

grown layers. In a similar experiment carried out by Ochoa-Landı´n et al. [25], the 

authors observed a very high resistivity in the order of 10
8
 Ωcm for their as-grown CdTe 

layers and a decreased resistivity of 8.1×10
4
 Ωcm after annealing p-CdTe layers with 

CdCl2 treatment at 400
o
C. The resistivities of n-CdTe illustrated in Figure 8.10 (b) still 
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indicate that the CC-CdTe layers have reduced resistivities when compared to HT-CdTe 

layers. However, it could be seen that the resistivity values within the explored 

temperature range are very close to each other. By comparing the resistivities of as-

deposited p-CdTe with n-CdTe in Table  8.2, it was observed that the resistivity value of 

p-CdTe was ~41 times greater than that of n-CdTe.  

  

Figure 8.10. Typical resistivity of HT- and CC-treated CdTe thin films at different 

annealing temperatures of (350-450)
o
C, CdTe thickness ~1000 nm for (a) p-CdTe thin 

films and (b) n-CdTe thin films. 

8.4.2 Estimation of mobility values for p- and n-CdTe thin films 

The mobility of charge carriers in p- (µp) and n-type (µn) semiconductors can be derived 

using Equations (8.6) and (8.7) respectively. 

𝝈𝒏 = 𝒏𝒒𝝁𝒏  ( 8.6) 

 

𝝈𝒑 = 𝒑𝒒𝝁𝒑  ( 8.7) 

 

The two variables from Equations (8.6) and (8.7) required to estimate the mobility 

values are conductivity and doping density.  The conductivity and doping density values 

were obtained from I-V and C-V measurement techniques respectively. n is the doping 

density of n-type semiconductor while p is the doping density of p-type semiconductor. 

The mobilities of n- and p- semiconductors are represented as 𝜇𝑛 𝑎𝑛𝑑 𝜇𝑝 respectively. 

The constant q is the electronic charge. 
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Combining the electrical conductivity values measured from DC conductivity 

measurements and doping concentrations measured from C-V measurements, the value 

of mobilities were estimated for both n- and p-type CdTe layers. Results are 

summarised in Table  8.3. 

Table 8.3. Mobility estimation of CdCl2-treated n- and p-CdTe layers at different 

annealing temperatures of (350-450)
o
C. The mobility values were obtained from I-V 

and C-V measurements. 

 
 

CdCl2-treated n-CdTe 

 

CdCl2-treated p-CdTe 

Temperature 

(
o
C) 

σn 

(Ω.cm)
-1

 

ND-NA 

(cm
-3

) 

µn 

(cm
2
V

-1
s

-1
) 

σp 

(Ω.cm)
-1

 

NA-ND 

(cm
-3

) 

µp 

(cm
2
V

-1
s

-1
) 

0 4.75 × 10
-5

 1.22 × 10
16

 0.024 1.16 × 10
-6

 4.69 × 10
15

 0.002 

350 8.88 × 10
-5

 1.57 × 10
15

 0.353 2.53 × 10
-6

 3.06 × 10
14

 0.052 

380 9.51× 10
-5

 1.18 × 10
15

 0.504 4.55 × 10
-6

 1.81 × 10
14

 0.157 

400 1.31 × 10
-4

 2.73 × 10
13

 29.936 6.06 × 10
-5

 3.00 × 10
13

 12.630 

420 1.06 × 10
-4

 9.64 × 10
13

 6.887 9.55 × 10
-5

 1.75 × 10
13

 34.114 

450 3.27 × 10
-5

 1.34 × 10
16

 0.015 1.15 × 10
-4

 1.71 × 10
13

 97.835 

 

Figure 8.11 illustrates the variation of mobility of n- and p-CdTe thin films at different 

annealing temperatures of (350-450)
o
C. Up to the annealing temperature of 400

o
C 

(Figure 8.11), n-CdTe shows higher mobility than p-CdTe. The higher mobility values 

observed in n-CdTe may be due to their lower resistivities. The more resistive a 

semiconductor material is, the less will be the speed at which the charge carrier moves. 

For this cause, the drift velocities of electrons are always higher than that of holes. The 

higher mobility values observed in n-CdTe may also be explained in terms of the 

effective mass of the charge carriers since the effective mass in hole is heavier than that 

of electrons in CdTe [26]. As explained by Sze and Ng, mobility increases with 

decrease in effective mass and increase in temperature. The increased temperature and 

minimal value of effective mass impact high thermal velocity to the charge carriers and 

this makes them to be less deflected by Coulomb scattering [27]. 
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Figure 8.11.  Mobility of n- and p-CdTe thin films at different annealing temperatures 

in the range (350-450)
o
C. 

A diminishing trend was however observed in the mobility of n-CdTe as the annealing 

temperature goes beyond 400
o
C while for p-CdTe, mobility increases as the annealing 

temperature increases up to 450
o
C as illustrated in Figure 8.11. Due to this discrepancy, 

the n-CdTe cannot be compared with p-CdTe beyond 400
o
C. The decrease in the 

mobility of n-CdTe at higher annealing temperatures may be due to material 

sublimation since the CdTe layer used for this experiment is ~1.0 µm. Also, the vapour 

pressure of Cd and Te element can also be a contributing factor to the sublimation of n-

CdTe layer. It should be recalled that n-type CdTe thin films are Cd-rich while p-type 

CdTe layers are Te-rich [10]. By considering the vapour pressure of the constituents 

which make up the CdTe thin films, the vapour pressure of Cd is higher than that of Te 

in the CdTe composition [28]. Due to this, there is the possibility of Cd in the n-CdTe 

which is Cd-rich to easily sublime during heat-treatment; this is because semiconductor 

materials with higher vapour pressure evaporates faster when compared with ones of 

lesser vapour pressure [16,28]. The loss of Cd from the CdTe thin films introduces Cd-

vacancies and Te richness related defects into the thin films and this makes the layer to 

deviate from stoichiometry [28]. These experimental investigations revealed that the 

electronic behaviour of CdTe thin films is influenced by their electrical conductivity 

type. The result presented in Figure 8.11 further demonstrates that annealing 

temperatures of 400
o
C and 450

o
C may be ideal for heat-treating n-CdTe and p-CdTe 

thin films respectively.  
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It should be noted that the above mobility values are for electrical conduction normal to 

the FTO surface   . Conventional Hall Effect measurements estimate the mobility 

parallel to FTO surface  // and these two mobility values can be very different due to 

scattering from grain boundaries. The hole mobilities of CdTe layers reported by 

Miyake et al. [29] from Hall Effect are much smaller than the values estimated in this 

work.  

8.5 Effect of chemical treatments on CdTe thin films 

The possibility of Te precipitation in CdTe thin films exist due to easy electrodeposition 

of Te. The Te precipitation is usually detrimental to optoelectronic device performance 

[30,31]. It is therefore of paramount interest to eliminate these Te precipitates. One 

possible way of doing this is by applying chemical treatments to the top surface of the 

CdTe thin films [32]. This section discusses what happens to the material and opto-

electronic properties of CdTe thin films after the application of chemical treatments to 

the CdTe top surface. The chemical treatments used in this section are CdCl2 and 

mixture of GaCl3+CdCl2 solutions. The reason for the incorporation of GaCl3 into 

CdCl2 solution for surface treatment is due to the ability of Ga to remove Te precipitates 

[33]. Te precipitates contribute to the recombination and generation of photo-generated 

charge carriers in the CdTe-based device structures. The experimental work reported by 

Sochinskii et al. [34] showed that the dissolution of Te precipitates in CdTe single 

crystals can be achieved by annealing the crystals in Ga melt. Since the midgap defects 

known as killer centres in CdTe thin films originate from Te-richness [35], finding a 

possible means of reducing these defects to the barest minimum would cause the 

efficiency of the CdTe-based solar cell device structures to further improve.  

The application of CdCl2 as chemical treatment to the top surface of CdTe thin films 

before annealing have been known to offer numerous advantages such as: improvement 

in the material crystallinity, formation of larger grains and passivation of grain 

boundaries, lattice mismatch reduction between the CdS and CdTe hetero-partner, 

improvement of the alloying between CdS/CdTe interface, reduction of series resistance 

and removal of some unwanted sources of defects such as Te precipitates [24,36–38]. 

Therefore, since Ga which is a shallow donor in the Cd sites of CdTe thin films [33] has 

the potential of removing these Te precipitates and doping the material n-type; the 

incorporation of GaCl3 into the universal CdCl2 treatment has therefore been explored 
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in this work to be used as means of surface treatment to improve the efficiency of CdTe-

based solar cells. This idea comes from the knowledge exhibited by researchers working 

on 𝑋 − and 𝛾 − ray detector systems. It is expected that the complementary efforts of 

the three ions namely Ga
3+

, Cd
2+ 

and Cl
-
 in the GaCl3+CdCl2 solution would be more 

effective to combat Te precipitates and improve material quality.  

8.5.1 Effect of chemical treatments on CdTe structural properties 

To investigate the effect of chemical treatments on structural properties of CdTe thin 

films, X-ray diffraction (XRD) and Raman analytical techniques were used.  

8.5.1.1  X-ray diffraction study 

The XRD spectra of CdTe thin films grown for ~1.00 hour on glass/FTO substrates are 

shown in Figure 8.12. This study was carried out on as-deposited CdTe (AD-CdTe), 

CdTe annealed without any chemical treatments (HT-CdTe), CdTe treated with CdCl2 

solution only before annealing (CC-CdTe) and CdTe treated with mixture of 

GaCl3+CdCl2 solution before annealing (GC+CC-CdTe). The heat-treatment was 

carried out at 400
o
C for duration of 10 minutes in air. The HT-CdTe serves as the 

baseline to identify the significant effects of chemically treating the top surface of the 

CdTe layers before annealing. As seen in Figure 8.12, the three CdTe spectra exhibit the 

prominent CdTe peak at 2θ within the range 23.75
o
 to 24.05

o
 along the (111) plane. The 

XRD peak along the (111) plane can therefore be referred to as the peak with most 

preferred orientation due to its highest intensity along this plane.  

The XRD spectra shown in Figure 8.12 did not indicate the presence of any elemental 

hexagonal Te/Cd peaks or monoclinic CdxTeOy peaks; however, the presence of 

hexagonal CdTe peak was observed in AD- and HT-CdTe layers. As explained by 

Dharmadasa [12], Te-related XRD peaks (such as E(Te) and CdxTeOy) may be caused 

by Te precipitation which occurs as a result of local crystallisation. However, the 

presence of these excess Te may not be revealed by XRD if the excess Te is equally 

distributed in the CdTe thin film in amorphous phase [12]. Since elemental Te has 

hexagonal crystal phase and is mostly prominent in AD- and HT-CdTe thin films as 

seen in Raman spectra illustrated in Figure  8.14, the formation of hexagonal CdTe as 

observed in XRD spectra of AD- and HT-CdTe thin films (Figure 8.12) may likely be 

attributed to reaction between excess E(Te) and excess E(Cd) thereby producing 

hexagonal CdTe.  
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Figure 8.12. Typical XRD spectra of as-deposited CdTe thin films, CdTe thin films 

annealed without any chemical treatments and CdTe thin films chemically treated in the 

presence of CdCl2 solution only and mixture of GaCl3+CdCl2 solution. 

As illustrated in Figure 8.12, the XRD spectra of AD-CdTe and HT-CdTe thin films 

show the presence of both cubic and hexagonal crystal phase. The presence of mixed 

phases in CdTe may not be helpful when used in solar cells device fabrication. These 

mixed phases (cubic/hexagonal) depend on the substrate condition such as growth 

temperature, stirring rate and pH of the electrolyte. In a thin film layer where there are 

multi-phases, the material crystallinity suffers. This probably explains one of the 

reasons why as-deposited CdTe and annealed CdTe in the absence of appropriate 

chemical treatments show very poor performance in terms of device efficiency [16]. 

After heat-treatment using chemicals like CdCl2, the unstable hexagonal phase 

disappears thereby leaving behind the only stable cubic phase(s). As seen from Figure 

8.12, the CdCl2 and mixture of GaCl3+CdCl2 treatments used in this work removed the 

low intensity peak corresponding to the unstable wurtzite phase.  

 

Figure 8.12 also shows the presence of other two cubic peaks with low intensities along 

(220) and (311) planes. As illustrated in Figure 8.12, CdTe thin films treated with a 

mixture of GaCl3 and CdCl2 have the highest peak intensity along (111) plane when 

compared to the other three XRD spectra. A plot of the (111), (220) and (311) peak 
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intensities versus the sample treatment conditions is shown in Figure 8.13 to further 

demonstrate the significant contributions made by Ga addition into CdCl2 solution. The 

high (111) peak intensity in GC+CC-CdTe is an indication of improved and higher 

crystallinity as compared to CC-CdTe and HT-CdTe thin films. It is a well-established 

fact in the literature that post deposition treatments using CdCl2 solution improves the 

crystallinity of CdTe layers [10,39]. This present investigation shows that the 

crystallinity of CdTe thin films can further be enhanced via a mixture of GaCl3+CdCl2 

treatment solution. 

 

Figure 8.13. Variation of three main peaks intensities versus different post growth 

conditions for CdTe thin films. 

A sudden orientation change in CdTe thin films has recently been identified [10]. When 

heat-treated at 385±5
o
C, the grain boundaries melt and the randomisation of grains take 

place. At this point, intensity of (111) plane collapses and (220) and (311) peak 

intensities increase. However, further increase in temperature with CdCl2 again increase 

(111) peak intensity; this trend has clearly been achieved in CC-CdTe samples. It is 

really interesting to observe further increase in (111) peaks for GC+CC-CdTe. This 

shows that CdTe layers improve much better in the presence of GaCl3 and CdCl2. 

Therefore, the device performance should improve with Ga addition. In this particular 

experiment, it is also possible that the grain boundary melting has not occurred due to 
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the narrow temperature difference between 385±5 and 400
o
C. However, increase in 

(111) peak intensity is a good sign of material improvement. 

The positions of angle 2θ and observed d-spacing values of the four CdTe spectra 

closely match the reported values in the JCPDS reference file stated in Table  8.4. Other 

parameters extracted from XRD measurements such as the FWHM, plane of orientation 

and CdTe phase are also included in Table  8.4. The crystallite sizes for each CdTe 

treatment conditions were estimated using Scherrer’s equation given in Chapter 3. As 

summarised in Table  8.4, the smallest crystallites were seen in AD-CdTe thin films 

while the chemically treated CdTe thin films have the largest crystallites.   

Table 8.4. Summary of XRD analyses of AD-, HT-, CC- and GC+CC-CdTe thin films 

along the various orientation planes.  

Sample 

Angle 

(2θ) 

(Deg.) 

Counts 

 

(a.u.) 

d-

spacing 

(Å) 

FWHM 

 

(Degrees) 

Crystallite 

Size, D 

(nm) 

Plane 

 

(hkl) 

Formula/ 

Phase 

 

 

Ref Code 

Matching 

 

AD-CdTe 

24.04 305 3.70 0.292 29.1 (111) CdTe/Cubic 01-075-2086 

39.50 42 2.27 0.779 11.3 (220) CdTe/Cubic 01-075-2086 

42.89 59 2.11 0.779 11.5 (103) CdTe/Hex 00-019-0193 

46.58 41 1.95 0.779 11.6 (311) CdTe/Cubic 00-015-0770 

HT-CdTe 

23.75 259 3.74 0.227 37.3 (111) CdTe/Cubic 00-015-0770 

39.30 46 2.29 0.520 17.0 (220) CdTe/Cubic 00-015-0770 

42.76 65 2.11 0.779 11.5 (103) CdTe/Hex 00-019-0193 

46.50 43 1.95 0.390 23.2 (311) CdTe/Cubic 00-015-0770 

CC-CdTe 

23.89 539 3.73 0.162 52.3 (111) CdTe/Cubic 00-015-0770 

39.48 57 2.28 0.260 17.0 (220) CdTe/Cubic 00-015-0770 

46.66 45 1.95 0.520 17.4 (311) CdTe/Cubic 00-015-0770 

GC+CC-

CdTe 

24.05 562 3.70 0.162 52.3 (111) CdTe/Cubic 01-075-2086 

39.57 70 2.28 0.520 17.0 (220) CdTe/Cubic 01-075-2086 

46.72 57 1.94 0.390 23.2 (311) CdTe/Cubic 01-075-2086 

8.5.1.2 Raman spectroscopy study 

Apart from using XRD to identify given semiconductor phases, Raman spectroscopy is 

another quick technique that can equally be used to determine structural properties and 

identify phases present in a material. A Renishaw Raman microscope with 514 nm 

argon ion laser source was used in this work to obtain Raman spectra for CdTe thin 

films under different heat-treatment conditions. Extended spectrum for the CdTe thin 

films were collected at room temperature using a 100% laser power (~30 mW) and 50X 
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objective in the Raman microscope for 60 seconds. Overall, five Raman peaks which 

can be grouped into three different categories are identified in Figure  8.14.  

 

Figure 8.14.  Raman spectra obtained for AD-, HT-, CC- and GC+CC-CdTe layers. 

Note the reduction of elemental Te peak at 121 cm
-1 

and enhancement of 1LO CdTe 

peak at 162 cm
-1

 after CdCl2 and mixture of GaCl3+CdCl2 surface treatments.  

The first category consists of two peaks occurring at 121 cm
-1

 and 271 cm
-1

 and they 

arise as a result of vibrations from elemental Te, {E(Te)}. The second category 

comprises of two phonon modes at 162 cm
-1

 and 328 cm
-1

 and they correspond to 

vibrations from CdTe thin films; these two Raman peaks are called the first order 

longitudinal optics (1LO) and second order longitudinal optics (2LO). These two 

different categories show the existence of two individual separate phases belonging to 

E(Te) and CdTe. The third category is a combined peak due to overlap of E(Te) and 

TO(CdTe).  As illustrated in Figure  8.14, the first peak was obtained at wave numbers 

121 cm
-1

. This peak which corresponds to E(Te) is most prominent in the CdTe samples 

annealed ordinarily with no chemical treatments. The AD-CdTe also shows this E(Te) 

peak but with a reduced intensity. By looking at these two spectra, annealing in air with 

no adequate chemical treatments led to the crystallisation of this elemental Te at Raman 

position 121 cm
-1

. It could also be observed that the elemental Te peak corresponding to 

121 cm
-1

 has almost disappeared when chemically treated with CdCl2 and mixture of 

GaCl3+CdCl2 aqueous solutions.  

0

3000

6000

9000

12000

15000

18000

50 150 250 350

It
n
te

n
si

ty
 (

ar
b
. 

u
n
it

) 

Raman Shift (cm-1) 

AD-CdTe 

141 

TO(CdTe)+E(Te) 

121 

E(Te) 

162 

1LO(CdTe) 
GC+CC 

-CdTe 

CC-CdTe 

HT-CdTe 

328 

2LO(CdTe) 

271 

E(Te) 



Chapter 8   Electrodeposition and characterisation of CdTe thin films 

232 
 

Another peak corresponding to E(Te) also arise at Raman shift 271 cm
-1

 in both AD- 

and HT-CdTe layers. Even though this peak has a very small intensity and not very 

obvious, its presence shows the un-suitability of these two types of materials for device 

fabrication because of the defects being introduced by Te precipitates [35]. This peak is 

however not seen in the CC- and GC+CC- treated CdTe films. Instead, another phonon 

mode of low peak intensity that corresponds to second longitudinal optics of CdTe 

appeared at wave numbers 328 cm
-1

. The emergence of the 2LO CdTe phonon mode 

shows one of the improvements brought by CC- and GC+CC chemical treatments. Also, 

the Raman peak intensities of the 1LO(CdTe) improved via the CdCl2 and GaCl3+CdCl2 

treatment. The intensity of Raman peak at 141 cm
-1

 which corresponds to both E(Te) + 

TO(CdTe) is also more pronounced in AD- and HT- CdTe thin films. After applying 

CC- and GC+CC chemical treatments, the peak intensity of this mixed phase reduced 

drastically. This is another possible way through which the chemical treatments used in 

this experimental work minimise likely defects that can arise from Te precipitates. 

8.5.2 Effect of chemical treatments on CdTe optical properties 

The effect of different treatment conditions was also studied on the optical properties of 

CdTe thin films. For the optical study, the graph of absorbance square versus the photon 

energy is shown in Figure  8.15 while the diagram in the inset of Figure  8.15 shows the 

bar chart representation of how the bandgap changes with un-treated and treated CdTe 

thin films. Figure  8.15 shows the optical absorption curves for as-grown CdTe thin 

films, CdTe films annealed in air without and with different chemical treatments.  It can 

be seen that heat treatment affects the energy bandgap of the material. As reported by 

Dharmadasa et al. [10], energy bandgap is useful to design and develop PV devices to 

harvest photons effectively and achieve better performance. 
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Figure 8.15. Optical absorption analysis of as-deposited CdTe (AD-CdTe) thin films, 

heat-treated CdTe (HT-CdTe) thin films, CdTe layers annealed in the presence of CdCl2 

(CC-CdTe) solution only and in the presence of mixture of GaCl3 and CdCl2 (GC+CC-

CdTe)  solution. 

Researchers have reported the energy bandgap of CdTe thin films to be in the range 

1.44-1.50 eV [40,41]. This range of values has also been obtained in this experimental 

work. The estimated energy bandgap of the as-deposited CdTe material was ~1.50 eV 

and this value decreases to ~1.48 eV after annealing ordinarily in air with no chemical 

treatments. Annealing in the presence of CdCl2 (CC) and mixture of GaCl3+CdCl2 

(GC+CC) further reduces the bandgap to 1.46 and 1.44 eV respectively. As stated by 

Redwan et al. [39], the reduction in energy bandgap after annealing with or without 

CdCl2 treatment is an indication of improvement of crystallinity in the thin film. Thus, 

the energy bandgap reduction observed in this work after annealing CdTe thin films 

with and without chemical treatments reveal that the crystallinity of the materials was 

enhanced after heat-treatment in air. The energy bandgap obtained in this work for 

CdTe layers annealed with a mixture of GaCl3+CdCl2 corresponds to the bandgap of 

bulk CdTe layers. By visually observing the spectra in Figure  8.15, the optical 

absorption spectrum labelled GC+CC is the most absorbing spectrum and it has sharper 

absorption edges than the AD, HT and CC-CdTe thin films.  
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To further determine which of the CdTe post deposition treatment conditions give the 

highest absorption edge, the slope of each of the spectrum in Figure  8.15 was 

determined. The result obtained from the absorption edge slope was plotted as a 

function of the four different post deposition treatment conditions and the results are 

shown in Figure  8.16. In Figure  8.16, the plot of energy bandgap versus post deposition 

treatments was shown on the same graph with absorption edge slope for comparison 

purpose and to deduce the relationship between absorption edge and energy bandgap 

(Eg). The result in Figure  8.16 shows that GC+CC- treated CdTe thin films with the 

least Eg has the highest absorption edge slope while AD-CdTe thin films with the 

highest Eg has the least absorption edge slope. As seen from Figure  8.16, the 

relationship between Eg and absorption edge slope is therefore an inverse type. As 

explained by Han et al. [42], semiconductor materials with sharper absorption edge will 

have lesser impurity energy levels and defects in the thin film. The explanation given by 

Han et al. [42] demonstrates the possibility of GC+CC-treated CdTe layers to have 

lesser defects. 

 

Figure 8.16. Typical diagram illustrating the relationship between absorption edge 

slope and energy bandgap for AD-, HT-, CC- and GC+CC-CdTe thin films.  

Another advantage of having a sharp absorption edge is that it allows more photons to 

be absorbed even when the CdTe thickness is of few microns [43]. This optical result 

therefore shows the possibility of having better solar cell efficiency if mixtures of GaCl3 

and CdCl2 solutions are used in treating solar cell device structures. The larger 

bandgaps recorded in AD-CdTe thin films could arise as a result of quantum effects 
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caused by presence of crystallites less than 10 nm in the material [44,45] while the 

small slope of absorption edge can be due to presence of large defects in the as-

deposited materials thus making them unsuitable for solar cells fabrication in its present 

form [42]. Any gaps between grains also allow passage of all photons producing a 

larger bandgap value for AD-CdTe. 

8.5.3 Effect on morphological properties 

Apart from changing the structural and optical properties of the CdTe thin film 

materials, chemical solutions when applied to the CdTe top surface also cause a 

tremendous change in the morphological properties as observed in this work. SEM 

technique was used in studying how the material morphology changes with different 

chemical treatments. The CdTe SEM micrographs obtained for AD-CdTe, HT-CdTe, 

CC-CdTe and GC+CC-CdTe layers are shown in Figure  8.17 (a), 8.17 (b), 8.17 (c) and 

8.17 (d) respectively. An increase in the grain sizes was observed after applying the 

different chemical treatments. The diverse effects of CdCl2 treatment on grain sizes of 

CdTe thin films have been well researched and reported in the literature [36,46]. Small 

crystallites as seen in AD-CdTe (Figure  8.17 (a)) coalesce together to form larger 

crystals after applying CdCl2 treatment (Figure  8.17 (c)); this shows that Cl when 

present in the material acts as fluxing agent and contributes to the process of grain 

growth [12].  

The development of smaller grains into larger ones reduces the total number of grain 

boundaries and decreases the surface to volume ratio. Grain boundaries when present in 

large quantities within the material lead to scattering of charge carriers and these 

facilitate the R&G process within the bulk of the material [47]. The presence of R&G in 

the material leads to poor device performance. Apart from causing an improvement in 

the grain size, CdCl2 treatment followed by annealing in an atmosphere that contains 

oxygen also helps in passivating the grain boundaries [47]. As reported by Dharmadasa 

[12], the presence of Cd in the CdCl2 also converts excess Te into CdTe thereby 

improving the stoichiometry of the layers.  
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Figure 8.17. SEM micrographs of (a) AD-CdTe layers, (b) HT-CdTe layers, (c) CC-

CdTe layers and (d) GC+CC-CdTe layers. 

As seen in Figure  8.17 (d), the inclusion of GaCl3 in the CdCl2 chemical treatment 

further enhances the grain growth as compared to CdCl2 treated layers only. Under these 

circumstances, three atoms namely Cd, Cl and Ga are involved. Therefore, apart from 

the useful contributions made by Cd and Cl to improve the material, Ga also has the 

ability to remove Te precipitates when used in CdTe or binary compound 

semiconductor materials containing Te atoms [34]. This therefore suggests the cause for 

having larger grains in the mixture of GaCl3+CdCl2 treated CdTe layers. It seems that 

wetting property or fluxing nature increase by adding Ga into this post treatment and 

annealing process. These experimental results further illustrate the possibility of having 

solar cell devices with improved efficiency when treated with GaCl3+CdCl2. The effect 

of this treatment is elaborated more in Chapter 9. 

(a) (b) 

 

(c) (d) 

2 µm 2 µm 

 

2 µm 
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8.5.4  Effect on compositional properties 

The atomic compositions of the chemically treated CdTe thin films were determined 

quantitatively using energy-dispersive X-ray analysis (EDX) technique. Figure  8.18 (a 

to d) show the EDX spectra obtained for the un-treated and chemically-treated CdTe 

layers while Table  8.5 shows the % atomic composition of elements present, and the 

corresponding conductivity type as observed from PEC cell measurements.  

  

  

Figure 8.18. The EDX spectra of (a) As-deposited CdTe thin films, CdTe thin films 

annealed (b) without any chemical treatments, (c) with CdCl2 and (d) with mixture of 

GaCl3+CdCl2. 

The initial electrical conductivity type for the as-grown CdTe layer used in this 

investigation was found to be n-type using PEC cell measurement technique. After 

annealing ordinarily in air, the PEC signal converts to p-type but remains n-type for the 

chemically treated CdTe layers. Depending on the addition of external dopants and 

material atomic composition, CdTe as a semiconductor material can have p-, i- or n- 

electrical conductivity type [48–52].  The first p- and n- electrical conduction type for 

CdTe was achieved via the incorporation of external impurities by Jenny et al. [48]. The 

(a) (b) 

 

(c) (d) 
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experimental work carried out by Kruger et al. [49] showed that n- and p- type CdTe 

thin films can be achieved by changing the Cd/Te stoichiometry. Cd-rich CdTe layers 

give n-type while Te-rich CdTe layers produce p-type material. 

Table 8.5. Comparison of the % atomic composition of Cd and Te in the un-treated and 

chemically-treated CdTe layers with their measured PEC cell signals. 

 % Atomic Composition Electrical Conductivity type 

(from PEC cell measurements) Sample Condition Cd Te 

AD-CdTe 50.2 49.8 n 

HT-CdTe 48.5 51.5 p 

CC-CdTe 51.3 48.7 n 

GC+CC-CdTe 52.2 47.8 n 

From Table  8.5, the % atomic composition of Cd in as-deposited and chemically treated 

CdTe layers are higher than the % atomic composition of Te while for CdTe layers 

annealed ordinarily in air, the % of Te atom is higher than that of Cd. When this result 

is compared with the corresponding PEC cell measurements in Table  8.5, it was also 

observed that the CdTe layers with higher % of Cd atoms than Te are n-type in 

electrical conduction while CdTe layer with higher % of Te atom than Cd is p-type in 

electrical conduction. This experimental result is therefore in good agreement with the 

work published by Kruger et al. [49] that Cd- rich and Te- rich CdTe layers yield n- and 

p-type electrical conductivity respectively. The effect of Te precipitation removal can be 

seen in further reduction of % composition of Te atoms when mixture of GaCl3+CdCl2 

solution was used as surface treatment for CdTe thin films. The GaCl3+CdCl2-treated 

CdTe layers show the highest % of Cd atoms as revealed in Table  8.5. 

Other experiments were also carried out which demonstrate how Ga addition reduces 

the Te contents in the CdTe layer and bring the material into stoichiometry. A typical 

example of this is shown in Table  8.6. In this second scenerio, the initial starting 

material is Te-rich. It was noticed that after CdCl2 and mixture of GaCl3+CdCl2 

treatment, the % composition of Cd atoms increase while that of Te reduces. As seen in 

Table 8.6, Ga addition reduces the Te contents in the CdTe layer and bring the material 

into stoichiometry. In both cases, either the initial starting material is Cd-rich or Te-rich, 

the common trend is that after GaCl3+CdCl2 treatment, the atomic % of Te reduces. 

These experimental investigations further illusrate how Ga addition reduces Te 
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precipitates in the CdTe material. A typical EDX spectrum illustrating how mixture of 

GaCl3+CdCl2 bring the CdTe material close to stochiometry is shown in Figure  8.19. 

Table 8.6. % atomic composition of Cd 

and Te in the un-treated and chemically-

treated CdTe layers. 

 
% Atomic 

Composition 

Sample Condition Cd Te 

AD-CdTe 43.9 56.1 

CC-CdTe 49.3 50.7 

GC+CC-CdTe 50.0 50.0 

 

Figure 8.19. The EDX spectra of CdTe 

thin films treated with mixture of 

GaCl3+CdCl2 solution. 

8.5.5 Effect on electrical properties 

The experimental investigations carried out by Khallaf et al. [53] on undoped and Ga-

doped CdS thin films showed that the resistivity of undoped-CdS thin films is higher 

than those of CdS layers doped with Ga. Their work showed that incorporation of Ga 

into the CdS bath is an effective way of lowering the thin film resistivity. In this work, 

CdTe bath was not doped with Ga; rather, Ga salt was applied in conjunction with 

CdCl2 as chemicals to treat the surface of the CdTe thin films. This section describes the 

effect of different chemical treatments on the electrical properties of p-CdTe thin films 

with emphasis on GaCl3 inclusion in CdCl2. Both ohmic and Schottky behaviours were 

studied using glass/FTO/p-CdTe/Au and glass/FTO/p-CdTe/Al respectively. The 

resistivity values were estimated from the I-V characteristics of glass/FTO/p-CdTe/Au 

device structures while the doping densities were obtained from the C-V characteristics 

of Schottky diodes fabricated from glass/FTO/p-CdTe/Al.  

Typical Mott-Schottky plots of AD-CdTe and GC+CC-treated CdTe layers used in 

estimating the doping density values are shown in Figure  8.20 (a) and 8.20 (b) 

respectively. 
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Figure 8.20. Typical Mott-Schottky plots of glass/FTO/p-CdTe/Al for (a) AD-CdTe 

and (b) GC+CC-treated CdTe thin films. 

Figure  8.21 shows typical I-V characteristics for glass/FTO/p-CdTe/Au layers of ~1.5 

µm thickness subjected to different surface treatments before Au metallisation. I-V 

curves show that the fabricated device structures exhibited a very good ohmic behaviour 

and these illustrate the high quality of the thin films. The formation of good ohmic 

contacts depict that there are little or no surface states at the interface which may affect 

the ohmic characteristics [54].  

 

Figure 8.21. I-V characteristics of glass/FTO/p-CdTe/Au structures fabricated with 

different surface treatments on CdTe layer. 

As seen in Figure  8.21, it was observed that the ohmic behaviours of the electroplated 

CdTe layers differ with varying chemical treatments. The resistance of the fabricated 
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resistors improved with surface chemical treatments. The minimum resistance value 

was observed in the CdTe layers treated with GC+CC while AD-CdTe layers possess 

the maximum resistance. The inclusion of GC into the usual CC treatment has been able 

to bring about improvement in the material by causing an increase in the material 

conductivity and reduction in the resistivity as seen in Table  8.7. The chemically-treated 

CdTe layers also show lower doping density of the order of 10
13

 cm
-3

 when compared to 

as-grown and ordinarily heat-treated CdTe layers with carrier concentrations of order 

10
15

 cm
-3

. The results obtained in this work are in line with the experimental results 

reported by Chu et al. [55]  that CdCl2 treatment lowers the carrier concentration of 

CdTe thin films. Therefore, for a high speed electronic device, the electrical 

conductivity should be large, charge carriers should have high mobility and optimised 

by an appropriate doping. 

The results from I-V and C-V measurements were then used in calculating the mobility 

of the charge carriers as summarised in Table  8.7. 

Table 8.7. Mobility estimation of p-CdTe thin films of ~1.5 µm thickness from I-V and 

C-V measurement techniques. 

 I-V Measurement Results C-V Measurement Results 

Calculated 

Mobility 

Results from I-

V/C-V 

 

Sample 

Condition 

R 

(Ω) 

ρ × 10
3
 

(Ωcm) 

σ × 10
-4

 

(Ωcm)
-1

 

Slope 

(F
-2

V
-1

) 

NA 

(cm
-3

) 

µ 

(cm
2
V

-1
s

-1
) 

 

AD 68.1 17.83 0.56 1.65 × 10
18

 7.89 × 10
15

 0.04  

HT 22.1 5.78 1.73 2.13 × 10
18

 6.09 × 10
15

 0.18  

CC 17.1 4.48 2.23 4.74 × 10
20

 2.74 × 10
13

 50.95  

CC + GC 13.1 3.43 2.92 4.84 × 10
20

 2.69 × 10
13

 67.74  

 

The mobility values have been calculated indirectly using the conductivity and doping 

density values obtained from I-V and C-V measurements respectively. This type of 

mobility is known as mobility perpendicular    because it is the electron mobility in 

perpendicular direction to the surface of the conducting substrate. The direct method of 

mobility estimation using the conventional Hall Effect method could not be used in this 

work due to the underlying conducting substrate on which the CdTe layer is 
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electroplated [9]. This type of mobility is known as mobility parallel  //  because it is 

the mobility of electrons in parallel direction to the surface of the conducting substrate. 

As a result of the columnar growth and high crystallinity exhibited by these CdTe layers 

when electroplated [10,56], it is expected that their charge carriers should have the 

highest mobility within the device architecture and reduced recombination thereby 

leading to better solar cell performances. Due to very high crystallinity observed in rod-

shaped semiconductor materials, the photo-generated charge carriers that flows in the 

direction perpendicular to the FTO substrate do not encounter grain boundary scattering 

[10]. The values of electron mobility measured in the parallel direction to the FTO 

surface  //  are always lower than the ones measured normal to the FTO surface   . 

This is because when the charge carriers are moving parallel to the FTO substrate, they 

encounter large number of scattering from grain boundaries which inhibits their rate of 

flow. These scatterings, when present in large numbers slow down the rate of movement 

of the charge carriers.  

The SEM images illustrated in Figure  8.17 showed that the as-deposited CdTe layers 

have the highest number of grain boundaries due to their smaller grains. On the other 

hand, the GC+CC CdTe which shows the highest mobility have the largest grains and 

least grain boundaries. Because of the very few grain boundaries present in GC+CC 

CdTe layers, there is less scattering of mobile charge carriers and reduced 

recombination of electrons and holes in the material. Apart from scattering of mobile 

charge carriers via the grain boundaries, other scattering sources for the charge carriers 

are scattering due to: ionised and neutral impurities, collisions between electrons and 

holes or between electron and electrons, lattice vibration and native defects [27]. The 

type of devices fabricated using the GC+CC surface treatments are therefore expected 

to show better solar cell device performances; the details of the devices fabricated from 

GC+CC surface treatments are discussed in Chapter 9.  

8.6 Effect of pH variation of GaCl3+CdCl2 solution for device application 

This section discusses the pH variation of GaCl3+CdCl2 solution and its effects on 

optoelectronic properties of CdTe thin films. The two pH values explored in this section 

are 2.40 and 0.60±0.02. 
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8.6.1 Effect on PEC cell measurements 

The PEC signals observed for p- and n-CdTe layers as a function of AD-CdTe layer and 

CdTe layers treated with GaCl3+CdCl2 solution at different pH values (2.40 and 

0.60±0.02) are shown in Figure  8.22. The AD-CdTe is used as the baseline for this 

experiment. For the p-CdTe layers, the PEC signal progressively increases as the pH of 

the solution decreases while for n-CdTe, the PEC signal decreases in magnitude thus 

tending towards p-material at a pH of 2.40. A decrease in the pH to 0.60 leads to further 

increase in the PEC signals as illustrated in Figure  8.22.  

 

Figure 8.22. pH variation of GaCl3+CdCl2 solution and its effect on PEC signals.  

8.6.2 Effect on morphological properties 

In this experimental investigation, it was found out that pH of the chemical solutions 

used in treating the CdTe layers also influences the material morphology. Figure  8.23 

(a) and Figure  8.23 (b) show the SEM images of CdTe thin films treated with 

GaCl3+CdCl2 solution at pH of 2.40 and 0.60±0.02 respectively. The annealing was 

carried out at temperature of 450
o
C for 10 minutes in air.  Both images show large 

grains; however, the largest grains were observed in the CdTe thin films chemically 

treated with solutions of pH 0.60 (Figure  8.23 (b)). A detailed experimental result on 

how pH influences the solar cell device performance is further discussed in Chapter 9. 
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Figure 8.23. SEM images of CdTe layers treated with a mixture of GaCl3+CdCl2 

solution at different pH values of (a) 2.40±0.02 and (b) 0.60±0.02. 

8.7 Determination of Fermi level positions of electroplated AD- and CC-CdTe as 

observed from UPS measurement. 

The PEC cell measurement is an indirect method of obtaining the approximate Fermi 

level position of the semiconductor materials. The PEC cell measurement is basically 

used to determine the type of electrical conduction of a semiconductor by considering 

sign of the PEC signal. The magnitude of the PEC signal gives a rough idea of where 

the Fermi level is positioned. Once the Fermi level position (FLP) is known, the doping 

concentration can then be determined. The limitation of PEC cell measurement is that it 

cannot be used to determine the exact position where the Fermi level lies. It only gives 

an approximate position for the Fermi level (EF) based on the magnitude. The limitation 

in PEC cell measurement is however overcome by carrying out UPS measurement. 

With UPS measurement, the exact position of EF can be determined. The UPS 

experiment was carried out on CdTe layers with an approximate thickness of ~1.5 µm 

and with the material structure glass/FTO/ED-CdTe. The CC-CdTe layer used for the 

UPS experiment was annealed at 400
o
C for 15 minutes in air. The UPS measurements 

for AD- and CC-CdTe are summarised in Table  8.8. The high KE for the Au Fermi 

level cut-off represents the EF while the high KE for the CdTe Fermi level cut-off 

represents the top of the valence band egde (EVmax). Due to the non-uniformity of CdTe 

layers, the EVmax measurements were obtained at various points and the average value 

taken as given in Table  8.8. The non-uniformity may happen as a result of lack of 

uniformity in the thickness of FTO substrate, thickness variation due to post growth 

(a) (b) 

1 µm 

 

1 µm 
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treatment and differences in the deposition potential along the surface of the FTO 

substrate as a result of voltage drop. 

Table 8.8. Fermi level positions of electroplated AD- and CC-CdTe as observed from 

UPS measurement. 

Sample  

Status 

 

Gold Fermi level 

cut-off (EF)  

(eV) 

CdTe Fermi level 

cut-off (EVmax)  

(eV) 

EF-EV 

 

(eV) 

EC-EF 

 

(eV) 

Type 

 

 

Indicated 

as 

 

AD-

CdTe 

25.60 24.18 24.34 1.42 1.26 0.02 0.18 
n J1 

  1.34 0.10 

CC-

CdTe 

25.60 25.31 25.37 0.29 0.23 1.15 1.21 
p J2 

  0.26 1.18 

The difference between the EVmax and EF (EF-EV) as shown in Table  8.8 gives the 

position of Fermi level of the semiconductor material. A bandgap of 1.44 eV was used 

for the CdTe thin films so as to find the difference between the EF and ECmin (EC-EF). As 

summarised in Table  8.8, the Fermi level of AD-CdTe was found to be at 0.10 eV 

below the conduction band minimum. This FLP shows that the AD-CdTe layer is n-

type. For the CdCl2 treated CdTe layers, the FLP was found to be at 0.26 eV above the 

valence band maximum. Since the EF lies below the intrinsic Fermi level and above the 

EVmax, it shows that the CdCl2-treated CdTe layer has converted to p-type after annealing 

with CdCl2. The pictorial representation of the conversion from n to p-type is illustrated 

in Figure  8.24.  

J1

J2

Ev = 0.00 eV

Ec = 1.44 eV

Fi = 0.72 eV

 

Figure 8.24. Pictorial representation of Fermi-level positions for as-deposited (J1) and 

CdCl2-treated (J2) CdTe layers as observed from UPS measurements. (These 

measurements were carried out at Conn Centre for Renewable Energy Research at 

University of Louisville, USA). 

The conversion from n- to p- type and vice versa have been well reported in the 

literature [15,57,58]. This conversion from n- to p- type does not happen always. It 

should be noted that there are many other parameters that can influence the changes in 
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the electrical conductivity type of CdTe from n to p and vice versa. Some of the factors 

are the concentration of Te and Cd ions in the electrolytic bath, the deposition potential 

used, pH of the electrolyte, different annealing conditions as used in this work, post 

deposition treatments such as the chemical treatment used in treating the top surface of 

the CdTe layer and the type of etchants used while processing the material for device 

fabrication. The previous work on PEC cell measurements discussed in section  8.3.4 

describe the possibility of n-CdTe to move towards p-CdTe after annealing in the 

presence of CdCl2; in this way, there is no total type conversion from n-type CdTe to p-

type CdTe. For these particular CdTe layers used for the UPS experiment, the PEC cell 

measurements show negative signal for AD-CdTe layers and positive signal for CC-

CdTe layers. The UPS results therefore show a good agreement with the PEC cell 

results for both AD- and CC-CdTe layers. 

The knowledge of the FLP obtained from UPS measurement makes it easier to 

determine the electron and hole concentrations in the n- and p-type materials 

respectively. The electron and hole concentrations were determined from Equations 

(8.8) and (8.9) respectively. The estimated values are presented in Table  8.9. As 

reported by various researchers in the literature, doping density between ~10
14

 and 

~10
15

 cm
-3

 have been obtained for CdS/CdTe solar cells device structures with 

efficiency greater than 10% [10,12,59,60]. As given in Table  8.9, annealing with CdCl2 

treatment brings the doping density to 2.75×10
14

 cm
-3

; this value falls within the range 

of doping densities reported in the literature for CdTe-based solar cells >10%.  








 


kT

EE
Nn FC

c

)(
exp         ( 8.8)








 


kT

EE
Np VF

V

)(
exp         ( 8.9)

  

Where n is the electron concentration in cm
-3

, p is the hole concentration in cm
-3

, NC 

(~7.9×10
17

 cm
-3

) is the effective density of states in the conduction band edge, NV 

(~6.3×10
18

 cm
-3

) is the effective density of states in the valence band edge, k (1.38 × 10
-

23
 m

2
kgs

-2
K

-1
) is the Boltzmann constant, T is the room temperature measured in Kelvin. 

The CdTe effective electron mass (me
*
) used for the estimation of NC is me

*
 =~0.1mo 

while the CdTe effective hole mass (mp
*
) used for the estimation of NV is mp

*
 =~0.4mo 

[26]. 
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Table 8.9. Electron and hole concentrations in CdTe layers calculated using the Fermi 

level positions obtained from UPS studies. 

Sample 

Status 

Electrical 

Conductivity 

Type 

EC-EF 

(eV) 

NC 

(cm
-3

) 

EF-EV 

(eV) 

NV 

(cm
-3

) 

Doping 

Density 

(cm
-3

) 

AD-CdTe 

(J1) 
n-type 0.10 ~7.9×10

17
 - - 1.66 × 10

16
 

CC-CdTe 

(J2) 
p-type - - 0.26 ~6.3×10

18
 2.75 × 10

14
 

8.8 Summary 

The electrodeposition of CdTe thin films have been successfully achieved using a two-

electrode set-up in an aqueous solution that contains 1.0 M CdSO4 and ~5 ml of 

dissolved TeO2 solution. The electroplated CdTe thin films have cubic crystal structures 

and are polycrystalline in nature. According to the analysis performed using the XRD 

technique, CdTe thin films with the highest crystallinity was electroplated at a cathodic 

potential of 1400 mV. The crystallites sizes of as-deposited CdTe layers between 

cathodic potentials of 1350 and 1420 mV range between (10.9-32.7) nm. After CdCl2 

treatment, the crystallite sizes increased and fall in the range (26.2-52.3) nm within the 

explored potential range. PEC cell results show that both n- and p-type CdTe thin films 

can be obtained intrinsically using electroplating technique by varying the cathodic 

deposition potential. The initial results showed that at growth voltages less than 1370 

mV, p-type CdTe thin films are obtained while at growth voltages greater than 1370 

mV, n-type CdTe thin films are achieved. The n-type CdTe layers tend to move towards 

p-CdTe after CdCl2 treatment based on the initial PEC cell results. The compositional 

analysis using EDX technique revealed that Cd-rich CdTe thin films are n-type while 

Te-rich CdTe thin films are p-type. The effect of annealing temperature on the 

electronic properties of n- and p-CdTe thin films was also investigated. The results 

showed that n-CdTe thin films of approximately same thickness with p-CdTe thin films 

have lesser electrical resistivity when compared with p-CdTe layers. The high resistivity 

of as-deposited CdTe layers and CdTe layers annealed ordinarily in air without any 

prior chemical treatments drastically reduced after treating with CdCl2 solutions. The 

results obtained from the plot of mobility versus annealing temperatures suggest that 
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400
o
C and 450

o
C are appropriate for heat-treating electroplated n-CdTe and p-CdTe 

layers respectively.  

The influence of different chemical treatments namely CdCl2 and mixture of 

GaCl3+CdCl2 was also explored on the optoelectronic properties of CdTe thin films. 

The XRD results revealed that CdTe layers annealed in the presence of GaCl3+CdCl2 

have improved crystallinity based on enhancements of the (111), (220) and (311) peaks 

intensities when compared to un-treated CdTe layers and CdCl2-treated CdTe layers. 

The optical absorption results showed that CdTe layers treated with mixture of 

GaCl3+CdCl2 have the highest absorption edge and the energy bandgap of 1.44 eV, 

which is the bandgap for bulk CdTe. The largest grains were also seen in the CdTe 

layers treated with mixture of GaCl3+CdCl2 when compared to others. The 

compositional analysis also explained how the incorporation of GaCl3 into the usual 

CdCl2 treatment can bring Te-rich CdTe layers close to stoichiometry. CdTe layers 

treated with mixture of GaCl3+CdCl2 have the lowest electrical resistivity and highest 

mobility as observed from the I-V and C-V measurements. The effect of varying the pH 

of GaCl3+CdCl2 solution for surface treatment of CdTe layers was also studied. The 

overall results showed that CdTe layers treated with GaCl3+CdCl2 solution at pH of 

0.60±0.02 demonstrate the best performance with respect to the analytical techniques 

used for the investigation. The results from UPS measurements revealed that CdCl2 

treatment changes the doping concentration which in turn influences the Fermi level 

position of the CdTe thin films. 
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Chapter 9 -  Development of CdTe-based solar cells 

9.1 Introduction 

This chapter describes the fabrication of solar cells using different chemicals for surface 

treatments of the developed solar cell device structures. Studies were also carried out on 

solar cell device structures based on CdTe thin films that are treated with the mixture of 

GaCl3 and saturated CdCl2 at three different pH values. The three pHs explored are 

~2.40±0.02, ~1.20±0.02 and ~0.60±0.02.  Also, different solar cell device architectures 

have been carried out and their results are presented in this chapter.  The knowledge of 

properties exhibited by the semiconductor materials discussed in the earlier chapters 

(Chapters 4-8) have been utilised in this chapter for solar cells fabrication. The 

fabricated solar cells are classified as two-layer and three-layer hetero-junction cells. 

The basic configuration of the two-layer hetero-junction solar cells discussed in this 

chapter is glass/FTO/n-CdS/n-CdTe/Au. The three-layer hetero-junction cells are 

referred to as multi-junction graded bandgap solar cells; most of the solar cell devices 

explored in this research and discussed in this chapter are from this category. They are: 

glass/FTO/n-CdS/n-CdTe/p-CdTe/Au, glass/FTO/n-CdS/n-CdTe/p-CdMnTe/Au, 

glass/FTO/n-CdS/n-CdTe/p-ZnTe/Au, glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au and 

glass/FTO/n-ZnS/n-CdS/n-CdTe /Au. 

9.2 Basic device processing steps 

After developing the device structures, they were processed before making metal 

contacts on them. The fundamental device processing procedures used in this work are 

chemical treatments of the top surface of the CdTe absorber layers, post-deposition heat 

treatment and application of chemical etchants. The basic chemical used for treating the 

surface of the CdTe-based device is CdCl2 saturated solution. This treatment has been in 

use since 1976 [1] and numerous reports in the literature show that CdCl2 treatment 

drastically improves solar to electrical energy conversion efficiency [2–4] . However in 

the present research work, modifications of the surface treatments have been carried out 

by incorporating GaCl3 into the universal CdCl2 chemical treatment. This has been 

discussed in details in the preceding chapter. Also, post-deposition heat treatment which 

is an important processing step was carried out for the CdTe-based solar cell device 
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structures at annealing temperatures ranging from 400-450
o
C within the duration of 10-

20 minutes in air.  

The chemical etchants used are acidic etchants and alkaline etchants. Etching is usually 

carried out to remove any form of surface impurities on the layer; by so doing, a cleaner 

surface with reduced defects is being ensured. Surface contaminations such as oxides 

formed on the CdTe top surface during heat-treatment in air can also be removed during 

etching process [5]. These two etchants can help in modifying the CdTe surface 

stoichiometry before back metal contact evaporation. For instance, acidic etchants 

attack Cd preferentially and leave the CdTe thin films with a Te-rich surface while the 

alkaline etchants attack Te preferentially and leave a Cd-rich surface [6]. The acidic 

etchant was prepared by dissolving 1 g of potassium di-chromate (K2Cr2O7) in 20 ml of 

de-ionised water; this was followed by the addition of 1 ml of concentrated H2SO4 acid 

into the prepared solution. The alkaline etchant was prepared by dissolving 0.5 g of 

NaOH and 0.5 g of Na2S2O3 in 50 ml of de-ionised water. The alkaline etchant solution 

was heated up to a temperature of ~60
o
C before being used. The device structures were 

dipped inside the acidic etchant solution for ~5 seconds after which they were removed 

and rinsed in de-ionised water before being transferred to the alkaline solution for 

etching.  The alkaline etchant duration was ~120 seconds.  

After performing the alkaline etching, the device structures were rinsed again in de-

ionised water, dried with nitrogen gas before being transferred to the vacuum coating 

system for back contact metallisation. It is essential to quickly transfer the etched layers 

into the vacuum coating system to prevent the surface from oxidising. Oxidation of the 

top surface can be at times useful since it creates an insulating (I) layer between the 

metal and semiconductor [7]. If the created I layer is very thin, it can act as a de-coupler 

between the metal and semiconductor and this tends to increase the band bending at the 

interface [8] as explained in Chapter two. However, if the created insulating layer is 

very thick, it introduces additional series resistance to the solar cell device structures, 

decreases the short-circuit current density and causes a deterioration of the solar cell 

conversion efficiency [9]. The final stage of the solar cell device fabrication before 

device assessment is the deposition of Au back contact. Au metal contacts have been 

mostly used in this work as back contact to CdTe-based solar cells. The metal coatings 

were done using Edwards Auto 306 vacuum metalliser at a chamber pressure of 10
-7

 

mbar. The diameter and thickness of the Au contacts are 2 mm and ~100 nm 

respectively.  
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9.3  Motivation behind GaCl3 incorporation 

One of the main reasons of incorporating GaCl3 treatment in this work is due to the 

ability of Ga to remove Te precipitates as reported by Sochinskii et al. [10] and 

Fernandez [11]. The experimental work carried out by Sochinskii et al. [10] 

demonstrated the possibility of removing Te precipitates in CdTe single crystals after 

annealing in Ga melt and Cd vapour media. In the work reported by Sochinskii et al. 

[10], as-grown p-CdTe wafers were annealed within the temperature range (500-600)
o
C 

in Ga melt and Cd vapour for two different time durations. At a short annealing period 

of 2 hours, the authors observed that small Te precipitates disappeared leaving the larger 

ones behind. By further increasing the annealing time to 22 hours, the authors noticed a 

total disappearance of Te precipitates in the p-CdTe wafers volume. Thus, their work 

showed that treating a Te-rich CdTe layer in Ga melt or Cd vapour coupled with 

annealing time helps in the removal of Te precipitates. Te precipitates have been 

reported by researchers to be detrimental to optoelectronic devices [12,13]. The results 

from their works prompted the use of precursor containing Ga atoms to be applied as 

chemicals for surface treatment of CdTe-based device structures in this work. 

9.4 Preparation of GaCl3 and CdCl2 solutions for surface treatment before 

annealing 

The initial GaCl3 aqueous solution was prepared by using gallium (III) sulphate as Ga 

precursor and concentrated hydrochloric acid (HCl) acid as Cl precursor. 0.18 M of 

Ga2(SO4)3 was prepared by adding ~1.06 g of Ga2(SO4)3 into 35 ml of de-ionised water 

to produce an aqueous solution. The initial pH of the Ga2(SO4)3 solution was measured 

to be ~1.28±0.02 at room temperature. 2.5 ml of concentrated HCl acid was later added 

to the prepared Ga2(SO4)3 solution to initiate a reaction leading to gallium chloride 

(GaCl3). Ga has the unique feature of reacting slowly with HCl acid to produce gallium 

chloride required for this treatment  [14]. The new pH of the solution was measured to 

be ~0.60±0.02 at room temperature after the HCl addition.  

Saturated CdCl2 aqueous solution was prepared by adding 0.15 M of CdCl2 to 35 ml of 

de-ionised water. The GaCl3 and CdCl2 mixture were put together in 100 ml beaker and 

it was continuously stirred to obtain homogeneity before being used as surface 

treatment to CdTe thin films. Drops of the mixed solution were then applied to the top 

surface of the device structure with the aid of laboratory pipette and the solution was 
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uniformly spread on the CdTe thin film surface.  The device structure was allowed to 

dry in air before annealing inside a temperature controlled furnace. The initial device 

structures were subjected to different annealing conditions. For the purpose of 

discussion in this work, treatment with GaCl3 solution only is denoted as GC, treatment 

with CdCl2 solution only is denoted as CC while treatment with mixture of GaCl3 and 

CdCl2 solution is denoted as GC+CC. 

9.5 What happens when the top surface of CdTe layers are treated with Ga 

As explained by Basol [15], the likely intrinsic defects in CdTe thin films are cadmium 

interstitials (Cdi), cadmium vacancies (VCd), tellurium interstitials (Tei) and tellurium 

vacancies (VTe). Tellurium vacancies and cadmium interstitials act as donors while 

cadmium vacancies and tellurium interstitials act as acceptors. These donors and 

acceptors are all intrinsic in nature because they come mainly from the atoms that make 

up the semiconductor and not from external chemical elements introduced during 

growth, surface treatment or etching. Chu et al. [16] explained that triethylgallium 

(TEGa) can be used as an extrinsic dopant to change the electrical conductivity type of 

p-CdTe to n-type. The authors affirmed that one of the factors which determine the 

CdTe resistivity is the incorporation of Ga into Cd sites when TEGa is introduced as an 

extrinsic dopant into the MOCVD reaction chamber containing a mixture of 

dimethylcadmium and di-isopropyltellurium for CdTe formation. The explanation given 

by these authors showed the possibility of Ga occupying Cd sites. Similarly, Fernández 

[11]  reiterated the possibility of Ga atoms to diffuse from Ga melt into the CdTe wafer 

during annealing of the wafers in Ga melt. Fernández [11] explained that when Ga 

diffuses into the CdTe wafer, the donor concentration is increased as a result of Ga 

atoms residing in Cd sites. Either Ga is used as a dopant or for treatment purpose to 

remove Te precipitates, Chu et al. [16] and Fernandez [11] both explained the 

possibility of Ga atoms being in Cd sites. 

If the n-CdTe top surface is chemically treated with solutions containing trivalent atoms 

such as gallium (Ga), it is therefore possible for Ga being a trivalent atom to displace 

Cd in CdTe to form GaCdTe. Two out of the three valence electrons in the Ga atoms are 

involved in forming covalent bonds with the six valence electrons of the neighbouring 

Te atoms. The remaining one negatively-charged electron which does not take part in 

bond formation becomes free and available for conduction; this conduction electron is 
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now donated to the crystal lattice in the conduction band. The Ga atom is therefore 

called a donor atom when it displaces Cd in its site due to its ability to give out a free 

electron for conduction. Figure  9.1 (a) shows the covalent bond formation that takes 

place between one Cd and Te valence atom while Figure  9.1 (b) illustrates the likely 

bond formation between the Ga and Te atoms after GaCl3 surface treatment. 

Cd Gacd

Te Te

Free e- for 

conduction

(a) (b)

 

Figure 9.1. Covalent bond formation between (a) Cd and Te atoms and (b) Ga 

occupying Cd sites and bonding with Te as a result of surface treatment. 

9.6 Fabrication of glass/FTO/n-CdS/n-CdTe/ device structures 

The electroplated n-CdS layers used in this work were grown on glass/FTO substrates at 

a cathodic potential of 1200 mV with an approximate thickness of 150 nm. The CdS 

layers were annealed at 400
o
C for 20 minutes in air. The CdS layers were first allowed 

to cool down after annealing before carrying out CdTe deposition. The CdTe layers 

were grown in the n-region at a cathodic potential of 1400 mV. Growing CdTe thin 

films at this cathodic potential ensures the deposition of n-type CdTe layers at most 

times provided the Te level in the bath is kept low. Most of the CdTe layers grown for 

device making and reported in this work were grown for ~3.0 to 5.5 hours with 

thickness ranging between ~1.2-2.0 µm. The thin film semiconductors obtained after 

depositing CdTe layers on CdS layers now become n-n heterojunction with the structure 

glass/FTO/n-CdS/n-CdTe. A schematic diagram of glass/FTO/CdS/CdTe/Au is 

illustrated in Figure  9.2 (a) while Figure  9.2 (b) and 9.2 (c) show the pictorial view of 

the fabricated glass/FTO/CdS/CdTe before and after gold (Au) coatings respectively. 

Since annealing/annealing with chemical treatment is one of the basic processing steps 

required to obtain high efficiency solar cells [2,17], some of the device structures 

reported in this work were heat-treated without and with chemical treatments so as to 

observe the respective changes brought about by the introduction of chemicals used in 



Chapter 9     Development of CdTe-based solar cells 

259 
 

surface treatments. The device structures annealed ordinarily without chemical 

treatments were used as a reference sample to the chemically-treated ones. After 

annealing, the CdTe layers were allowed to cool down before rinsing the top surface 

with de-ionised water; this was done to remove the presence of any residues that might 

be left after chemical treatments. The rinsed surfaces are later dried with nitrogen gas 

before etching and metallisation.   

FTO

glass

CdS

CdTe

Au
+

-

 

 

 

 

 

Figure 9.2. (a) Typical schematic diagram of glass/FTO/CdS/CdTe/Au, (b) 

glass/FTO/CdS/CdTe device structures fabricated before Au coating and (c) Solar cells 

fabricated from glass/FTO/CdS/CdTe/Au device structures. 

9.7 Assessment of glass/FTO/n-CdS/n-CdTe/Au solar cells 

The fabricated solar cells with the structure glass/FTO/n-CdS/n-CdTe/Au were 

characterised using I-V technique. Keithley 2401 with embedded power supply and 

solar simulators were used to assess the I-V characteristics of the developed solar cells 

under dark and illumination conditions. Table  9.1 shows the summary of I-V parameters 

obtained under AM1.5 illumination. The thicknesses of CdS and CdTe thin films used 

in this experiment were ~150 nm and 1500 nm respectively. The annealing temperature 

and time for samples in Table  9.1 were 450
o
C and 10 minutes in air. These initial solar 

cells were fabricated under three different conditions. Solar cells labelled CP-19B were 

annealed ordinarily in air; CP-19C was annealed with CdCl2 treatment only while CP-

19G was annealed with GaCl3 treatment only. The efficiencies obtained from this initial 

work are generally very poor; however, it could be seen that each of the treatment used 

played a key role in improving some of the solar cell parameters. For instance, it was 

observed that solar cells made from device structures treated with GaCl3 only had the 

FTO 

CdS 

CdTe 

CdTe 

CdS 

FTO 

Au 

(a) (b) (c) 
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highest FF while the highest Jsc was observed in the device structures treated with CdCl2 

only. Overall, the lowest efficiency was observed in the solar cells fabricated from 

samples that were not subjected to any chemical treatments before annealing. The 

highest cell efficiency for each of the three different conditions are boldened and 

highlighted as shown in Table  9.1 and their J-V curves are illustrated in Figure  9.3. 

The series resistance and shunt resistance of the best cells represented in Figure 9.3 

were also measured under AM1.5 illumination conditions. The HT-device structure was 

found to have the highest Rs. After GaCl3 treatment, a reduction was observed in the Rs 

from 3185 Ω to 1911 Ω. The application of CdCl2 reduces the Rs value from 3185 Ω to 

732 Ω. The reduction of Rs value after CdCl2 treatment as seen in this work agrees with 

the explanation given by Rohatgi et al. [18] that CdCl2 treatment causes a reduction in 

Rs. The presence of low Rs in CC-device structure is one of the contributing factors 

which led to its Jsc improvement as compared to HT- and GC-device structures. The 

highest Rsh value was observed in GC-device structure; this value is more than four 

times and twelve times higher than the Rsh values observed in HT- and CC-device 

structures respectively.  It is a well-known fact that low Rsh and high Rs values cause a 

significant reduction in FF. Therefore, the improvement in FF of CC-device structure as 

compared to the HT-device structure can be explained in terms of its lower Rs value 

while the better FF observed in GC-device structure with respect to other treatments can 

be attributed mainly to increased Rsh value. The results from this initial work led to the 

decision made in using a mixture of GaCl3 and CdCl2 solution for surface treatment in 

the subsequent experimental investigations carried out in this research programme. 

Based on the initial work, it is expected that the mixture of GaCl3 and CdCl2 solution 

would enhance all solar cell parameters. 
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Table 9.1. Solar cell parameters obtained from CdTe layers treated with different 

conditions. Note that the highlighted and boldened sample ID signifies cells with 

highest efficiency for each of the three different conditions. 

Samples Measured values per unit cell Average measured values 

Sample 

status 
Sample ID 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

 (%) 

Annealed 

ordinarily in 

air (HT) 

CP19-B_33 330 3.8 0.22 0.28 

350 3.7 0.22 0.29 CP19-B_32 420 3.4 0.20 0.29 

CP19-B_23 300 4.0 0.24 0.29 

Annealed 

with CdCl2 

in air (CC) 

CP19-C_13 270 9.8 0.27 0.71 

273 12.9 0.27 0.95 CP19-C_23 250 11.3 0.27 0.76 

CP19-C_43 300 17.5 0.27 1.42 

Annealed 

with GaCl3 

in air (GC) 

CP19-G_12 290 2.9 0.36 0.30 

293 3.0 0.36 0.30 CP19-G_22 290 3.0 0.36 0.31 

CP19-G_33 300 3.1 0.35 0.33 

 

  

 

Figure 9.3. Typical J-V curves obtained for best solar cells fabricated from samples 

annealed (a) ordinarily in air, (b) with CdCl2 treatment only and (c) with GaCl3 

treatment only. 
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9.8 Investigating the effect of GaCl3 inclusion into the usual CdCl2 treatment on 

glass/FTO/n-CdS/n-CdTe/Au device structures 

The annealing temperature of 450
o
C was discontinued for the n-n heterojunction device 

structure due to the reduced Voc observed in the initial work. The experimental 

investigations carried out by Abdul [19] showed that 450
o
C may not be suitable for 

device processing. The author's work showed that chemically treated device structures 

processed at high annealing temperature of 450
o
C showed a huge reduction in Voc and 

FF when compared to device structures processed at annealing temperature of 400
o
C. 

The Jsc values obtained at 400
o
C and 450

o
C by the author for the different chemical 

treatments showed that the results are comparable with one another [19]. Table  9.2 

shows the summary of I-V parameters obtained under AM1.5 illumination for 

CdS/CdTe device structures annealed under different chemical treatment conditions. 

The thicknesses of CdS and CdTe thin films used in this experiment were ~150 nm and 

2.0 µm respectively. The chemical treatments employed here are: CdCl2 only, mixture 

of GaCl3+CdCl2+CdF2 and mixture of GaCl3+CdCl2. Samples treated with CdCl2 are 

labelled CP 20C, CP 20M denotes samples treated with combination of 

GaCl3+CdCl2+CdF2 while CP 20S refers to CdTe based device structures treated with 

mixture of GaCl3+CdCl2. The full details of the sample ID and status are illustrated in 

Table  9.2. The annealing temperature and time for samples in Table  9.2 are 400
o
C and 

15 minutes in air. 

As expected, drastic improvements were seen in solar cells fabricated from device 

structures treated with Ga incorporation into CdCl2 solution when compared to solar 

cells fabricated from device structures treated only with CdCl2. These experimental 

results show that mixture of GaCl3+CdCl2 solution would be an effective means of 

treating CdTe top surface prior to metal evaporation. The reason for the improvement in 

device structures treated with chemical solutions containing Ga, Cd and Cl ions can be 

attributed to the ability of the trio to remove Te precipitates, reduce structural defects 

and doping effects [11]. Removal of Te precipitates can take place when CdTe thin 

films are deposited or when their surfaces are treated in a medium containing Cd or Cl 

ions [20,21]. As previously explained in section  9.3 and reported by Sochinskii et al. 

[10] and Fernandez [11], Te precipitates can also be successfully removed after 

annealing CdTe in Ga melt and Cd vapour media. Therefore, getting a solution 

containing Ga
3+

, Cd
2+

 and Cl
-
 would be an effective means of removing Te precipitates. 
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Table 9.2. Summary of solar cell parameters fabricated from device structures annealed 

in the presence of CdCl2, GaCl3+CdCl2+CdF2 and GaCl3+CdCl2 solutions. The 

highlighted sample ID denotes cells with highest efficiency for each of the three 

different conditions. 

Samples Measured values per unit cell Average measured values 

Sample 

status 

Sample 

ID 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Rs 

(Ω) 

Rsh 

(Ω) 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Rs 

(Ω) 

Rsh 

(Ω) 

A
n

n
ea

le
d

 w
it

h
 C

d
C

l 2
 

in
 a

ir
 

CP 

20C_32 
620 13.4 0.23 1.9 2195 2330 

620 14.1 0.23 2.0 2551 2147 
CP 

20C_14 
620 14.3 0.23 2.0 3194 2077 

CP 

20C_33 
620 14.5 0.24 2.2 2263 2033 

A
n

n
ea

le
d

 w
it

h
 G

aC
l 3

 

+
 C

d
C

l 2
 +

 C
d

F
2
 i

n
 a

ir
 CP 

20M_12 
560 26.8 0.32 4.8 625 1737 

570 30.6 0.32 5.6 569 1687 
CP 

20M_13 
570 31.4 0.31 5.6 588 1647 

CP 

20M_14 
580 33.6 0.32 6.2 493 1676 

A
n

n
ea

le
d

 w
it

h
 G

aC
l 3

 

+
 C

d
C

l 2
 i

n
 a

ir
 

CP 

20S_24 
620 37.4 0.29 6.7 508 1165 

607 37.8 0.31 7.1 457 1386 
CP 

20S_23 
600 36.6 0.31 6.8 442 1566 

CP 

20S_22 
600 39.4 0.32 7.6 420 1426 

 

An additional Cd precursor containing fluorine atoms (CdF2) was also incorporated into 

the GaCl3 treatment to observe its effect in sample CP-20M. This is due to the earlier 

reports given by Mazzamuto et al. [22] and Echendu et al. [23] that incorporation of 

fluorine atoms into the chlorine atmosphere during surface treatment rapidly promotes 

grain growth and increase device efficiency. Even though CP-20M showed better 

results than CP-20C in terms of improvement in Jsc and FF, better device efficiencies 

were obtained from samples CP-20S which had no fluorine incorporation as shown in 

Table  9.2. Due to this and subsequent results obtained from other experiments involving 

CdF2 incorporation into the mixture of GaCl3 and CdCl2 solution which are not reported 

in this thesis; therefore, the incorporation of CdF2 into GC+CC was discontinued. 
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As observed in the initial work discussed in section  9.7, a remarkable improvement was 

seen in the FF of device structures treated with GaCl3 solution while CdCl2 treatment 

drastically improves the Jsc. By combining the two chemical treatments together, a great 

improvement in all solar cell parameters was observed as shown in Table  9.2 when 

compared to the initial results stated in Table  9.1. As seen in Table  9.2, drastic 

improvements were observed in Jsc and FF of samples treated with chemical solutions 

containing Ga
3+

, Cd
2+ 

and Cl
-
. This improvement can be mainly attributed to the 

complementary efforts of these three ions to effectively combat Te precipitates. As 

discussed in Chapter 8, CdTe thin films which were chemically treated with mixture of 

GaCl3+CdCl2 produced bandgap which corresponds to the energy bandgap of bulk 

CdTe thin films, sharpest absorption edge, highest crystallinity, least resistivity, highest 

conductivity, moderate doping density, higher mobility and larger grains when 

compared with CdTe thin films treated only with CdCl2. The excellent collective 

features displayed by the GaCl3+CdCl2-treated CdTe layers thus enhance the 

transportation of mobile charge carriers across the device structure. This is therefore one 

of the likely reasons why solar cells fabricated from GaCl3+CdCl2-treated device 

structures with CdTe as an absorber layer showed improved solar cell parameters 

especially in the Jsc and FF. It could also be observed from Table  9.2 that the 

incorporation of Ga into CdCl2 treatment solution has helped in further reducing the Rs 

as seen from samples CP-20M and CP-20S. The J-V curves of the best cells for each of 

the three treatments explained in Table  9.2 are diagrammatically shown in Figure  9.4.  

 

Figure 9.4. J-V curves obtained for best cells fabricated from samples annealed in air 

with: CdCl2 treatment only (CP20C_33), GaCl3+CdCl2+CdF2 treatment (CP 20M_14) 

and with GaCl3+CdCl2 treatment (CP 20S_22). 
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9.9 Effect of pH variation of GaCl3+CdCl2 treatment solution on efficiency of 

glass/FTO/n-CdS/n-CdTe/Au solar cells 

In this section, the effect of variation in the pH of GaCl3+CdCl2 treatment solution was 

investigated on glass/FTO/n-CdS/n-CdTe/Au device structures. Three different pH 

values have been used namely 2.40±0.02, 1.20±0.02 and 0.60±0.02. Several cells were 

measured for each of the different pH treatments but to summarise, the best cell was 

selected from each set of pH values for easy comparison. Figure  9.5 shows typical J-V 

curves of the three different cells and their pH treatment values.  

 

Figure 9.5. Typical J-V curves illustrating the effect of pH variation of GaCl3+CdCl2 

solution on glass/FTO/n-CdS/n-CdTe/Au solar cell device structures.   

As illustrated in Figure  9.5, the Voc remains fairly the same with a slight variation. The 

comparable Voc shows that the Fermi level is pinned at similar position thus making the 

ϕb to be almost the same value. These very results explain that the variation in pH 

treatments may not affect the defects which determine the position at which Fermi level 

pins. However, it can be seen that parameters such as the FF and Jsc were influenced by 

this variation. The mostly influenced solar cell parameter is the Jsc. The measured solar 

cell parameters at different pH of the chemical solutions used for surface treatments are 

given in Table  9.3. As seen in Table  9.3, a reduction in the pH causes an increase in the 

Jsc. This increase can be attributed mainly to the low Rs observed at very low pH value. 

At a low pH of 0.60±0.02, the Rs was minimal. This is because as the pH becomes 

acidic, more Cd is preferentially removed from the top surface of the CdTe absorber 

layer thereby leaving a thin Te-rich layer at the surface of the CdTe. The presence of 

thin Te-rich layer creates a p
+
 material on the n-n+SB device structures and this changes 
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the device architecture. It is therefore possible for the device configuration to become n-

n-p
+
 at low pH of 0.60±0.02. 

Table 9.3. Summary of solar cell parameters obtained from n-n+SB device structures 

treated with GaCl3+CdCl2 solution prior annealing and metallisation. 

 Measured values under AM1.5 

illumination condition 

Sample 

ID 
pH±0.02 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Rs 

(Ω) 

Ol_1 2.40 561 4.8 0.22 0.6 5733 

Ol_2 1.20 559 9.8 0.33 1.8 1274 

Ol_3 0.60 567 28.7 0.36 5.8 319 

 

As previously explained, the incorporation of thin layer of p
+
 material on  hetero-

junction semiconductors before coating with metal helps in reducing the Rs [24]. These 

results therefore show that pH variation of the chemical treatment solutions is another 

effective way of modifying the surface of the CdTe layer. The highest efficiency 

obtained in this experimental set was ~5.8% using a low pH of 0.60±0.02 for surface 

treatment. This treatment condition was further applied to solar cells of other device 

configurations such as the n-n-p and n-n-n multi-junction graded bandgap solar cells 

and solar cell efficiencies in the range (8.0-12.8)% were obtained.   

9.10 Characterisation of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au solar cells 

The effect of having a p-CdTe layer on n-n+SB device structures have been investigated 

and this will form the basis of discussion in this section. After the deposition of the n-n 

hetero-structure, the layer was removed from the CdTe deposition bath, rinsed with de-

ionised water and dried with nitrogen gas before dipping it again into the CdTe 

electrolytic bath to grow a p-CdTe layer at a cathodic potential of 1350 mV. The 

introduction of a p-CdTe layer to glass/FTO/n-CdS/n-CdTe changes the device structure 

from a two-layer to multi-junction graded bandgap structure. The new device structure 

now becomes glass/FTO/n-CdS/n-CdTe/p-CdTe. The fabricated graded bandgap solar 

cells have two interfaces namely n-n hetero-junction interface and n-p homo-junction 

interface. Since the semiconductors forming the n-p homo-junction were made from the 

same material, it is expected that the lattice mismatch between them is zero or kept to 
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the barest minimum. Despite the lattice mismatch between CdS and CdTe thin films 

which is ~10%, the CdS/CdTe hetero-structure has been a good combination for 

excellent photovoltaic activity [25]. Since the deposition of p-CdTe on n-CdTe does not 

introduce additional lattice mismatch to the device structure, the new n-n-p device 

structure is therefore expected to perform better. 

The deliberate introduction of p-layer to the n-n hetero-structure is also another 

effective means of pinning the Fermi level of the absorber material close to the valence 

band. If this is successfully achieved, it will lead to the creation of excellent band 

bending. A good band bending is synonymous to strong internal electric field in the 

solar cell structure and it allows electrons and holes to be separated and effectively 

transported across the device structure to external circuit where they are collected for 

current generation [26]. By so doing, the amount of photo-generated charge carriers 

recombining within the bulk of the material is minimised and this will lead to Jsc 

enhancement.  

Table  9.4 gives the summary of solar cell parameters obtained from glass/FTO/n-

CdS/n-CdTe/p-CdTe/Au solar cells. The thicknesses of the thin films used were ~150 

nm, 1500 nm and 120 nm for n-CdS, n-CdTe and p-CdTe layers respectively. CP19-2B 

represents n-n-p device structures annealed ordinarily in air, CP19-2C represents n-n-p 

device structures treated with CdCl2 before being annealed in air while CP19-2S are 

samples treated with mixture of GaCl3+CdCl2 before annealing in air. The samples 

described in Table  9.4 were originally part of the n-n hetero-structure samples 

summarised in Table  9.1; the main difference is that the samples were divided into two. 

The first part was left as n-n device structures (the results are shown in Table  9.1) while 

for the second part, a p-type CdTe with thickness of ~120 nm was grown on it to form 

n-n-p multi-junction graded bandgap device structures (the results are shown in 

Table  9.4). To be able to compare both results together, it is essential to use the same 

annealing temperature and time used for samples in Table  9.1. For this reason, 

annealing temperature and time of 450
o
C and 10 minutes in air were used for the 

processing of the n-n-p device structures.  
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Table 9.4. Summary of n-n-p solar cell parameters obtained from device structures 

(glass/FTO/n-CdS/n-CdTe/p-CdTe/Au) annealed: ordinarily in air, in the presence of 

CdCl2 and mixture of GaCl3+CdCl2. The highlighted sample ID denotes best cells for 

each of the three different conditions. 

Samples Measured Values per Unit Cell Average Measured Values 

Sample 

Status 

Sample 

ID 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Rs 

(Ω) 

Rsh 

(Ω) 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Rs 

(Ω) 

Rsh 

(Ω) 

A
n

n
ea

le
d

 o
rd

in
ar

il
y

 i
n

 

ai
r 

CP19-

2B_31 
520 15.8 0.40 3.3 839 7373 

520 19.5 0.40 4.1 699 5898 
CP19-

2B_12 
520 22.1 0.37 4.3 710 5161 

CP19-

2B_23 
520 20.5 0.42 4.5 548 5161 

A
n

n
ea

le
d

 w
it

h
 C

d
C

l 2
 

in
 a

ir
 

CP19-

2C_33 
560 26.2 0.41 6.0 436 3441 

573 27.6 0.39 6.2 455 3193 
CP19-

2C_34 
580 26.8 0.40 6.2 445 3128 

CP19-

2C_32 
580 29.7 0.37 6.4 484 3011 

A
n

n
ea

le
d

 w
it

h
 G

aC
l 3

 

+
 C

d
C

l 2
 i

n
 a

ir
 

CP19-

2S_45 
520 41.1 0.38 8.1 210 1129 

533 41.1 0.38 8.3 231 1312 
CP19-

2S_46 
520 41.0 0.39 8.3 226 1087 

CP19-

2S_48 
560 41.1 0.37 8.5 258 1720 

 

The results stated in Table  9.4 show that the highest solar cell efficiency comes from n-

n-p device structures that were annealed in an atmosphere of GaCl3+CdCl2. The average 

measured FF obtained for the different heat-treatment conditions are comparable 

ranging in-between 0.38-0.40.  In these set of devices, Rsh seems not to have a great 

influence on the solar cell parameters most especially the FF. Even though samples 

labelled CP19-2B have the highest Rsh and FF while samples labelled CP19-2S have the 

lowest Rsh and FF, the difference between the FF's are not so obvious. The main focus 

of this section would be on the contributions made by the mixture of GaCl3+CdCl2 in 

reducing Rs and enhancing the Jsc and overall solar efficiency. As shown in Table  9.4, 

the device structures with the lowest Rs have the highest Jsc and solar cell efficiency; 

these have also been diagrammatically represented in Figure  9.6 (a-c). The J-V curves 
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of the best cells for each of the treatment conditions as explained in Table  9.4 are shown 

in Figure  9.7. 

  

 

Figure 9.6. Typical diagrams explaining how the three different conditions affect (a) the 

series resistance, (b) the short-circuit current density and (c) the solar cell efficiency. 
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Figure 9.7. J-V characteristics of the best solar cells recorded in Table 9.4 for device 

structures annealed ordinarily in air (CP19-2B_23), with CdCl2 treatment (CP19-

2C_32) and with mixture of GaCl3+ CdCl2 treatment (CP19-2S_48). 

9.11 Comparative study of n-n and n-n-p device structures annealed at 450
o
C 

Some of the average measured values of solar cell parameters for n-n and n-n-p were 

extracted from Table  9.1 and Table  9.4 and the results are tabulated in Table  9.5 for 

easy comparison. Under all treatment conditions, the n-n-p with p-CdTe of ~120 nm 

showed better electronic device quality than n-n device structures. The summarised 

results given in Table  9.5 are to show the trends and not necessarily the complete 

picture of the behaviour of n-n hetero-structure. The result however shows that 450
o
C 

may not be suitable for n-n device structures while for device structures with p-CdTe 

layer (n-n-p), it might be appropriate to use higher annealing temperature. The results in 

Table  9.5 confirm the earlier investigations carried out in this research on the effect of 

annealing temperatures on electronic properties of CdTe thin films. The details of this 

investigation have been discussed in Chapter 8 and it simply reveals that n-CdTe have 

the least resistivity and highest mobility at 400
o
C while at 450

o
C, the least resistivity 

and highest mobility were observed in p-CdTe. Due to this, it is expected that the n-

CdTe layers and p-CdTe layers would display optimum electronic performance at 
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annealing temperatures of 400
o
C and 450

o
C respectively when used in solar cells 

fabrication. It should be recalled that by lowering the annealing temperature of the n-n 

hetero-structure from 450
o
C (see Table  9.1) to 400

o
C (see Table  9.2), improvement was 

seen in the solar cell efficiency. Results from other experimental investigations that are 

not reported in this thesis also show that 400
o
C is an appropriate annealing temperature 

for solar cell device structures having n-CdTe as an absorber layer. 

Table 9.5. Summary of the average measured values of results from Table 9.1 and 

Table 9.4 demonstrating the adverse effect of higher annealing temperature (450
o
C) on 

n-CdTe absorber layer. 

Device structures with treatment conditions Average measured values 

Device structure Sample status 
Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

n-n 
Annealed ordinarily in air 350 3.7 0.22 0.29 

Annealed with CdCl2 in air 273 12.9 0.27 0.95 

      

n-n-p 
Annealed ordinarily in air 520 19.5 0.40 4.1 

Annealed with CdCl2 in air 573 27.6 0.39 6.2 

9.12 Effect of variation in thickness of p-CdTe layer on glass/FTO/n-CdS/n-

CdTe/p-CdTe/Au solar cells efficiency 

The incorporation of thin layer of p
+
 semiconductor material on hetero-junction 

semiconductors before coating with metal have been seen as means of reducing the Rs 

[24] and enhancing the barrier height [9]. The application of contact materials that can 

bring the Fermi level close to EVmax also helps to reduce the Rs. One of such materials is 

Cu metal; if a metal contact such as Au is alloyed with a small quantity of Cu and used 

as a back metal contact to CdTe, the Fermi level will be brought near EVmax due to the 

presence of Cu which is a p-type dopant of CdTe. This will then form a low resistance 

contact when the Fermi level is pinned close to EVmax [27]. Woodcock et al. [28] 

explained that if the CdTe top surface is modified in such a way that Te content is 

higher than Cd content before back contact deposition; the contact resistance will be 

reduced. A reduction in contact resistance will also help in minimising the series 

resistance since contact resistance is one of the factors that influence Rs [18]. As 

reported by Rohatgi et al. [18], etching the top surface with saturated dichromate 

etchant can assist in reducing the Rs which comes from Schottky contact. This is 



Chapter 9     Development of CdTe-based solar cells 

272 
 

because the acidic etchant attacks Cd preferentially and makes the CdTe top surface to 

be Te-rich [6]. If the Rs is successfully minimised, it will lead to enhancement in Jsc. 

Another possible way of achieving the explanation given by Woodcock et al. [28] is to 

deposit a Te-rich p-type CdTe layer on the n-n+SB device structures. It is expected that 

this will reduce the resistance between the metal contact and CdTe thin films. Also, it is 

another possible way of deliberate positioning of the Fermi level close to the valence 

band. When the Fermi level is brought close to the EVmax, higher barrier height is 

expected to be formed under an ideal condition. However, the ideal situation may not 

always exist due to the defects introduced when the p-CdTe layer is grown in the Te-

rich region. For this reason, it is of utmost importance to optimise the thickness of the p-

CdTe layer that would be deposited on the n-CdTe so as to avoid Te-related defects 

[26]. As later seen in the reports presented in this work, it is important that the bulk of 

the material remains n-type while modifying the top surface to be p-type in electrical 

conduction. With the n-n+SB device structure, the Fermi level can also be pinned at any 

of the defect levels close to the valence band via post-growth treatments (see Figure 9.8 

(a)) [6]. 
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Figure 9.8. Energy band diagrams showing the different defect levels for (a) n-n+SB 

device structure and (b) n-n-p device structure. 

The growth of p-layer on glass/FTO/n-CdS/n-CdTe/ device structures entirely changes 

the electronic properties of n+n+SB device structures. Apart from causing the Fermi 

level position to move towards the EVmax, the deposition of p-layer on glass/FTO/n-

CdS/n-CdTe device structures also forms multi-junction graded bandgap solar cells 

which improve the slope of the energy band diagram as illustrated in Figure 9.8 (b). The 

main electrical contacts to n+n+SB are the front ohmic and back Schottky contacts. Due 
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to the Schottky diode formation between the metal and semiconductor interface, 

depletion region are formed at the M/S interface and extends into the bulk of the 

material as shown in Figure 9.8 (a). For the n-n-p device structure, ohmic contacts are 

formed at the front and back of the semiconductors. The depletion region formed 

therefore extends from the n-n to n-p interface as illustrated in Figure 9.8 (b). 

9.12.1 Current-voltage (I-V) measurement technique 

n-n+SB device structure indicated as D4 in Table  9.6 was first developed and briefly 

studied using I-V measurement technique before the deposition of p-type CdTe layer. 

The summary of the results are presented in Table  9.6.  

Table 9.6.  Summary of I-V parameters obtained for n-n+SB (glass/FTO/n-CdS/n-

CdTe/Au) and n-n-p (glass/FTO/n-CdS/n-CdTe/p-CdTe (different thicknesses)/Au 

device structures. 

Thickness, L (nm) 0 (D4) 35 (D3) 150 (D2) 1200 (D1) 

 I-V measured parameters under dark condition 

RF 10
2.1

 10
4.0

 10
0.3

 10
0.0

 

n 2.21 1.58 4.10 6.91 

Is (A) 15.9×10
-9

 7.9×10
-9

 63.1×10
-6

 158.5×10
-6

 

     

ϕb (eV) >0.73 >0.75 >0.52 >0.49 

Rs (Ω) 4082 414 478 798 

Rsh (Ω) 0.79×10
6
 8.81×10

6
 1259 848 

 I-V measured parameters under AM1.5 illumination condition 

Voc (mV) 560 640 560 330 

Jsc (mAcm
-2

) 26.6 37.0 38.0 28.1 

FF 0.38 0.46 0.35 0.25 

η (%) 5.7 10.9 7.5 2.3 

Rs (Ω) 591 388 414 477 

Rsh (Ω) 5955 6365 1697 382 

 

The thicknesses of the n-CdS and n-CdTe layers used in the fabrication of n-n+SB 

device structures were ~150 nm and ~1200 nm respectively. The n-n+SB device 

structures possess rectifying ability with a rectification factor of 10
2.1

 when measured 

under dark condition. Under dark condition, the Schottky diode has high Rs of 4082 Ω 

and ideality factor in excess of 2.00. As explained by Li et al. [29], when metals are 

used as back contacts to CdTe, they form large Schottky barriers with high contact 
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resistance. The high contact resistance introduced between metal and semiconductor 

interface may be one of the reasons for the observed high Rs value in n-n+SB device 

structures [18] under dark condition. The large n value indicates the presence of large 

number of defects which act as electron traps in the device structure. Tunnelling through 

the device and presence of high Rs as seen in the fabricated Schottky diodes are other 

possible factors that can cause n value to exceed 2.00 [30]. Once electrons are trapped 

in the device structure, there will be loss of current; the leakage current is ~15.9 nA as 

stated in Table  9.6. The presence of large n value however underestimates the barrier 

heights of the n-n+SB device structures. Figure  9.9 (a) and 9.9 (b) illustrate the log-

linear and linear-linear IV curves of the n-n+SB diodes respectively. Under 

illumination, a decrease was observed in the Rs value from ~4082 Ω to ~591 Ω. This 

behaviour further explains the photoconductivity of the fabricated Schottky diodes 

under illumination. The total efficiency obtained for this device structure as stated in 

Table  9.6 was ~5.7%.  

   

Figure 9.9. I-V characteristics of glass/FTO/n-CdS/n-CdTe/Au (n-n+SB) device 

structures under dark condition plotted in (a) Log-linear and (b) Linear-linear scales. 

To study the effect of thickness of p-CdTe on n-n+SB device structures, three different 

thicknesses (~1.2 µm, 150 nm and 35 nm) of p-CdTe layers were used. The results 

obtained from the I-V characteristics have been summarised in Table  9.6. As seen in 

Table  9.6, under dark and illumination conditions, the incorporation of p-CdTe layer has 

helped in reducing series resistance of the n-n-p device structure as compared to the n-

n+SB device structure. Under both measurement conditions, the n-n-p device structure 

with p-CdTe thickness of ~35 nm showed the least Rs. This is a good indication that the 
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incorporation of p-CdTe layer to the n-n+SB device structure helps in lowering the Rs of 

the initial n-n+SB device structure under both dark and illumination conditions. 

Table  9.6 further shows that as the thickness of the p-CdTe layers reduce, the Rs and Rsh 

measured under dark condition decreases and increases respectively. Since the sets of 

device structures discussed here are modified p-n junctions (that is, n-n-p), it is expected 

that the three structures possess rectifying ability when measured under dark. As 

illustrated in Figure  9.10, for the diode structure labelled 'p-CdTe (~1200 nm) or D1', the 

p-CdTe has same thickness with n-CdTe (~1200 nm) and it showed an ohmic response 

under dark condition while for the diode labelled 'p-CdTe (~35 nm) or D3', the p-CdTe 

thickness is ~35 nm and it exhibited a good diode response. Diode denoted as 'p-CdTe 

(~150 nm) or D2' with p-CdTe thickness of ~150 nm showed a non-linear response and 

the I-V characteristic behaviour of D2 lies in between D1 and D3.  

 

Figure 9.10. Linear-linear I-V characteristics of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au 

(n-n-p) device structures under dark condition with emphasis on variation of thickness 

of p-CdTe layers. 

The log-linear I-V characteristics of diodes D1, D2 and D3 are described in Figure  9.11 

(a), 9.11 (b) and 9.11 (c) respectively. Diode D1 has zero RF due to its ohmic behaviour. 

The RF of D2 is very poor due to the non-ohmic or poor Schottky response observed 

while D3 has the best RF as a result of its good Schottky behaviour. The perfect linear 

response of D1 can be mainly attributed to the large thickness of the p-CdTe layer. The 

high thicknesses of p-CdTe layers promote the defects in the device structure; these 

defects come mainly from the excess Te in the p-CdTe layer. The effect of these defects 
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can be seen in the high value of ideality factor (n=6.9 for diode D1 and 4.1 for diode 

D2). Diode with large n value usually exhibit low Rsh and large leakage current. This is 

why Diode D1 has the largest leakage current in order of microamperes while D3 has the 

least leakage current in the order of nanoamperes. The low n value obtained in D3 

indicates that the level of recombination and generation centres in the n-n-p multi-

junction solar cells have been minimised with reduced thickness of p-CdTe layer. 

 

Figure 9.11. Log-linear I-V characteristics of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au (n-

n-p) device structures under dark condition for (a) p-CdTe of ~1200 nm thickness (D1), 

(b) p-CdTe of ~150 nm (D2) and (c) p-CdTe of ~35 nm thickness (D3). 

The Voc depends on the potential barrier height (ϕb). The ϕb is a function of the pinning 

position of the Fermi level and it can also depend on the Is. Five defect levels have been 

identified to exist within the bandgap of CdTe below the conduction band minimum 

[26]. The positions of the 5 defect levels as reported by Dharmadasa et al. [6,26] are: 

E1=0.40±0.04, E2=0.65±0.02, E3=0.73±0.02, E4=0.96±0.04 and E5=1.18±0.02 eV. 

Depending on the CdTe preparation and post growth treatment, the Fermi level can pin 

at any of these defect levels. As explained by Dharmadasa et al. [26], the band bending 

will be minimal if the condition under which the CdTe is prepared favours the pinning 

of Fermi level at E1. From the results of Voc and ϕb of D1 given in Table 9.6, the band 

bending at the interface between the n-CdTe and p-CdTe will be minimal. This would 

lead to generation of weak electric field within the depletion region and production of  

solar cell with very poor efficiency as seen in diode D1 under illumination (efficiency of 

D1 is ~2.3% as stated in Table  9.6). The comparable Jsc values between D2 and D3 is 

possibly due to the fact that the band bending for these two diodes is sufficient to collect 
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the photo-generated charge carriers on both sides of the external circuits [31]. As 

explained by Dharmadasa et al. [31], pinning the Fermi level at E2 (just below E3 defect 

level) can result to low Voc and high Jsc. The high Jsc comes when the E3 defect level is 

filled and once this happens; there would be a drastic reduction of R&G activities which 

is dominant at E3 defect level. Researchers have shown that defect levels E1, E2 and E3 

are common for CdTe layers that are Te-rich while E4 and E5 defect levels are dominant 

for CdTe thin films that are rich in Cd  [6,26,32]. Using the results of the ϕb obtained in 

this work, it can be inferred that the Fermi level pinning of the three diodes were 

determined by defect levels E1-E3. These are defect levels associated with Te-rich CdTe 

layer. The Te-richness is likely to arise from the topmost p-CdTe grown on n-CdTe 

layer. The band diagram showing the defect levels and the likely pinning position of the 

Fermi level for diode D3 is illustrated in Figure 9.12.  
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Figure 9.12. Energy band diagram showing the different defect levels and the likely 

pinning position of the Fermi level for n-n-p device structure with p-CdTe of ~35 nm 

thicknesses (D3). 

The J-V characteristic curves of the n-n+SB and n-n-p device structures are shown in 

Figure 9.13. The n-n+SB J-V curve is included in Figure 9.13 since it serves as the 

reference for comparison with the n-n-p J-V curves. As seen in Figure 9.13, the J-V 

characteristics of D1 under illumination exhibited a very poor FF when compared to the 

others. The poor FF comes mainly from low Rsh observed in D1 while the improved FF 

observed in D3 arises from low Rs and large Rsh values. The solar cells efficiencies 

obtained for D1, D2 and D3 are ~2.3, 7.5 and 10.9% respectively while the cell 

efficiency for the n-n+SB is ~5.7%. These results show that the thickness of the p-CdTe 
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layer deposited on the n-CdTe layer greatly influences the electronic properties of the n-

n-p multi-junction solar cells.  

 

Figure 9.13. J-V characteristics of glass/FTO/n-CdS/n-CdTe/Au {n-n+SB or p-CdTe (0 

nm)} and glass/FTO/n-CdS/n-CdTe/p-CdTe/Au (n-n-p) device structures under 

illumination condition with emphasis on different thicknesses of p-CdTe layers. 

Based on the experimental results obtained in this work, the thickness of the p-CdTe 

thin films should be kept to the barest minimum so as to achieve highest solar-to-

electric conversion efficiency. It should also be noted that the Fermi level pinning 

position of these diodes differ from one another due to the differences in the thickness 

of the p-CdTe layer. Therefore, when employing the n-n-p multi-junction device 

structure for solar cells fabrication, there is need to further optimise the thickness of the 

p-CdTe so as to obtain optimum efficiency.  

9.12.2 Capacitance-voltage (C-V) measurement technique 

The C-V technique was used to find the doping density of the fabricated device 

structures. The C-V and Mott-Schottky plots of the n-n+SB device structures are shown 

in Figure  9.14 (a) and 9.14 (b) respectively. The depletion capacitance (Co) was 

estimated from Figure  9.14 (a) as 366 pF; using Equation (3.38), the depletion width, W 

was estimated to be 836 nm. The doping density of the n-n+SB hetero-structure was 
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estimated as 2.08×10
16

 by substituting the slope of the Mott-Schottky plot in 

Figure  9.14 (b) into Equation (3.35). The ratio of the depletion width to the thickness of 

the absorber layer (W:L) was estimated as ~0.70. The details of parameters obtained 

from C-V and Mott-Schottky plots are tabulated in Table  9.7. 

  

Figure 9.14. (a) Capacitance-voltage plot and (b) Mott-Schottky plot of n-n+SB device 

structure under dark condition. 

Table 9.7.  Summary of C-V parameters obtained for n-n+SB (glass/FTO/n-CdS/n-

CdTe/Au) and n-n-p (glass/FTO/n-CdS/n-CdTe/p-CdTe (different thicknesses)/Au 

device structures. 

Thickness, L (nm) 0 (D4) 35 (D3) 150 (D2) 1200 (D1) 

 C-V measured parameters under dark condition 

Co (pF) 366 491 487 354 

W (nm) 836 623 628 864 

W:Le 0.70 0.50 0.47 0.36 

Doping density (cm
-3

) 1.73×10
16

 4.71×10
15

 8.85×10
15

 2.47×10
16

 

EF-EV (eV) 1.34 0.15 0.14 0.11 

EC-EF (eV) 0.10 1.29 1.30 1.33 

The C-V plots of the n-n-p device structures denoted as D1, D2 and D3 are described 

using Figure  9.15 (a), 9.15 (b) and 9.15 (c) respectively. The Co values obtained from 

these C-V plots are stated in Table  9.7.  The corresponding widths were calculated by 

substituting the Co values into Equation (3.38). Comparing the three widths of D1 to D3 

together, n-n-p device structure labelled D1 has the largest width while D3 has the 

lowest depletion width. As earlier discussed, a wider depletion width is required for 
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solar cell to be efficient. However, it is also important to stress here that the depletion 

width must be healthy and not full of defects. If the depletion region is wide and full of 

defects as seen in D1, the solar cell efficiency would be low because the electrons and 

holes generated within the depletion region will recombine again within the device 

structure and this will lead to loss of photo-generated currents. Since different 

thicknesses of p-CdTe layers are used in this investigation, it would be more appropriate 

and accurate to relate the width to the total thickness of the absorber layers. The 

effective absorber layer thickness (Le) is the summation of the thickness of n-CdTe and 

p-CdTe used in this work. D3 has the highest W:Le ratio and best efficiency when 

compared to D1 and D2. Comparing D3 with n-n+SB device structures, n-n+SB has a 

larger W:Le ratio than D3. The solar cell efficiency obtained in n-n+SB is however 

smaller than that of D3; this is because there are more defects and leakage currents in n-

n+SB as seen from the values of n, Io and Rsh in Table  9.7. 

   

Figure 9.15. C-V plots of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au (n-n-p) device 

structures under dark condition at room temperature for (a) p-CdTe of ~1200 nm 

thickness (D1), (b) p-CdTe of ~150 nm (D2) and (c) p-CdTe of ~35 nm thickness (D3). 

Mott-Schottky plots used for the estimation of doping densities for D1, D2 and D3 are 

shown in Figure  9.16 (a), 9.16 (b) and 9.16 (c) respectively. Other parameters such as 

the doping density and Fermi level positions obtained from C-V measurements for D1, 

D2 and D3 are summarised in Table  9.7. The results from Table  9.7 explain that as the 

doping density increases from the order of 10
15

 to 10
16

 cm
-3

, the solar cell efficiency 

reduces. This illustrates that there is an optimum doping density for solar cells to 

perform more efficiently.  

3.44E-10

3.48E-10

3.52E-10

3.56E-10

-1.1 -0.3

C
ap

ac
it

an
ce

 (
F

) 

Bias Voltage (V) 

(a) 

 

3.80E-10

4.20E-10

4.60E-10

5.00E-10

-1.1 -0.3

C
ap

ac
it

an
ce

 (
F

) 

Bias Voltage (V) 

(b) 

3.0E-10

3.5E-10

4.0E-10

4.5E-10

5.0E-10

-1.1 -0.3

C
ap

ac
it

an
ce

 (
F

) 

Bias Voltage (V) 

(c) 



Chapter 9     Development of CdTe-based solar cells 

281 
 

   

Figure 9.16. Mott-Schottky plots of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au (n-n-p) 

device structures under dark condition at room temperature for (a) p-CdTe of ~1200 nm 

thickness (D1), (b) p-CdTe of ~150 nm (D2) and (c) p-CdTe of ~35 nm thickness (D3). 

9.13 Characterisation of n-n-p solar cell device structures with other p-type 

semiconductors 

Other p-type semiconductors such as p-ZnTe and p-CdMnTe were also used as back 

layers to n-CdS/n-CdTe device structures; the obtained results for some of the measured 

cells are summarised in Table  9.8. As seen in Table  9.8, the n-n-p device configurations 

with p-ZnTe as back layer demonstrate higher Voc and FF than when using n-n-p device 

configurations with p-CdMnTe as back layer. The main shortcoming of the 

glass/FTO/n-CdS/n-CdTe/p-ZnTe/Au solar cell device structure is the low Jsc as seen in 

the solar cell parameters of Table  9.8. On the other hand, n-n-p device configurations 

with p-CdMnTe as back layer possess poor FF and low Voc while the Jsc is exceptionally 

high when compared to the n-n-p device configurations with p-ZnTe as back layer. 

Table 9.8. Solar cell parameters obtained from n-n-p device configurations with ZnTe 

and CdMnTe as p-layers.  

glass/FTO/n-CdS/n-CdTe/p-ZnTe/Au glass/FTO/n-CdS/n-CdTe/p-CdMnTe/Au 

Sample ID 
Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 
Sample ID 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Olu_P9_13 520 6.6 0.42 ~1.4 Olu_P10_35 350 30.3 0.27 ~2.8 

Olu_P9_22 590 10.0 0.40 ~2.4 Olu_P10_25 402 26.0 0.27 ~2.9 

Olu_P9_24 590 10.4 0.40 ~2.5 Olu_P10_36 393 29.4 0.27 ~3.1 
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Even though it may not be right to conclude at this stage with these preliminary results; 

the results in Table  9.8 however point to the fact that if another ternary compound 

semiconductor which is CdZnTe is being made used of as a back layer to n-CdTe thin 

films, there is the chance of all solar cell parameters to be enhanced. The J-V 

characteristic curves of the best solar cells for glass/FTO/n-CdS/n-CdTe/p-ZnTe/Au and 

glass/FTO/n-CdS/n-CdTe/p-CdMnTe/Au given in Table  9.8 are illustrated in 

Figure  9.17 (a) and 9.17 (b) respectively. 

  

Figure 9.17. Typical J-V curves obtained for solar cells fabricated from (a) 

glass/FTO/n-CdS/n-CdTe/p-ZnTe/Au device structures and (b) glass/FTO/n-CdS/n-

CdTe/p-CdMnTe/Au device configurations. 

9.14 Characterisation of n-n-n+Schottky barrier solar cell device structures  

CdS has been a suitable window layer to CdTe-based solar cells [33] and researchers 

working on photovoltaic (PV) materials have identified some factors which cause a 

reduction in the CdS/CdTe solar cell efficiency. One of the identified factors which 

cause a reduction in the efficiency of CdS/CdTe based solar cell is the formation of 

pinholes [34]. Non-uniformity of the CdS window layer can lead to the formation of 

pinholes after annealing. This non-uniformity is mostly experienced when the CdS layer 

is very thin ~(40-80) nm.  Thus, the presence of pinholes will create shunting paths 

within the device structure. These unwanted shunting paths cause a reduction in all three 

solar cell parameters and the overall solar cell efficiency. Therefore, to prevent the 

formation of pinholes on CdS layers after annealing, thicker CdS thin films (>200 nm) 

is needed. One major disadvantage of using thick CdS is that it causes the short circuit 
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current density (Jsc) to reduce under illumination [34,35]. To prevent further 

degradation of solar cell parameters such as the Jsc, Voc and FF through the use of very 

thin CdS layer, a buffer layer with higher bandgap than that of CdS is needed as an 

intermediate layer between the conducting substrate and CdS window layer [36]. With 

the incorporation of buffer layer, the CdS thickness can still be maintained at thickness 

<200 nm without necessarily causing a loss in the Voc and FF.  

Semiconductor materials containing Zn element such as ZnO [37], ZnS [30], ZnSnO 

[36],  are generally being preferred as buffer layers to CdS/CdTe solar cells due to their 

large bandgap and resistive nature; these two features are the main characteristic 

features of buffer layers. This therefore means that buffer layers must not have high 

conductivity; if they do, they will become extension of the conducting glass substrates 

[36,38]. As explained by Jonathan et al. [36], the Voc can be lowered by high 

conductivity. A resistive layer will therefore be needed on FTO substrates to be able to 

increase Voc. These resistive layers are called buffer layers and they allow the growth of 

CdS layers on them without resulting to any losses in solar cell performance [36].  

In this section, two Zn-related binary compound semiconductors namely ZnTe and ZnS 

thin films have been used as buffer layers to CdS/CdTe solar cells. ZnTe has been used 

in this work due to its resistive nature. The actual bandgap of bulk ZnTe thin film is 

~2.26 eV. For it to be useful as a buffer layer to CdS/CdTe based solar cells, there is 

need to tune the bandgap of ZnTe material to be higher than that of CdS. As earlier 

explained in section 5.4.3, the ZnTe Eg was tuned by controlling the growth time. 

Therefore, a growth time of ~15 minutes was used in this experiment to deposit ZnTe 

layers so as to achieve a  suitable Eg of ~2.6 eV. Thus this higher Eg obtained makes the 

n-ZnTe layers suitable as buffer layers to CdS window layers. The n-ZnTe layers used 

for this investigation were grown at a cathodic potential of 1650 mV in the Zn-rich 

region [39]. This is in line with the experimental report given by Jonathan et al. [36] 

that high FF was observed with Zn-rich buffer layers. The ZnS layers used in this work 

were provided by a fellow researcher in the group and it has a thickness of ~100 nm and 

bandgap of ~3.70 eV. Full details of the ZnS material characterisation can be found in 

the work published by Madugu et al. [40]. 
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9.14.1 Characterisation of glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au solar cells 

The thicknesses of n-ZnTe, n-CdS and n-CdTe used in the glass/FTO/n-ZnTe/n-CdS/n-

CdTe/Au solar cell device structures were ~100 nm, 150 nm and 1200 nm respectively.  

Table  9.9 shows parameters of 4 measured cells in the glass/FTO/n-ZnTe/n-CdS/n-

CdTe/Au device configurations. The solar cells efficiencies range between (6.8 to 8.1)% 

as seen in Table  9.9. 

 

Table 9.9. Solar cell parameters obtained from n-n-n+SB device structures fabricated 

from glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au solar cells.  

 Measured values per unit cell Average measured values 

Sample ID 
Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

JZ69-1_21 600 22.8 0.50 6.8 

610 26.1 0.48 7.6 
JZ69-1_12 600 28.0 0.45 7.6 

JZ69-1_11 620 25.7 0.49 7.8 

JZ69-1_23 620 27.7 0.47 8.1 

 

For further analysis under dark condition, the best cell from Table  9.9 (JZ69-1_23) was 

selected. The log-linear and linear I-V characteristics of JZ69-1_23 are described in 

Figure  9.18 (a) and 9.18 (b) respectively while the J-V curve under AM1.5 illumination 

is shown in Figure  9.19. The obtained electronic parameters of JZ69-1_23 under dark 

and AM1.5 illumination conditions are summarised in Table  9.10. When the parameters 

of glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au stated in Table  9.10 are compared with the n-

n+Schottky barrier in Table  9.6, it was observed that the n-n-n+SB fabricated from n-

ZnTe/n-CdS/n-CdTe exhibited better diode and solar cell performance than n-n+SB 

device structures. 
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Figure 9.18. I-V characteristics of glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au (n-n-n+SB) 

device structures under dark condition plotted in (a) Log-linear and (b) Linear-linear 

scales. 

 

Figure 9.19. Typical J-V curve obtained for best solar cells fabricated from 

glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au device structures. 

Table 9.10. Best solar cell parameters obtained from glass/FTO/n-ZnTe/n-CdS/n-

CdTe/Au device structures under dark and illumination conditions. 

Under dark condition  (JZ 69-1_23) Under illumination (JZ 69-1_23) 

RF n ϕb Is Rs Rsh Voc Jsc FF η Rs Rsh 

(eV) (nA) (Ω) (MΩ) (mV) (mAcm
-2

)  (%) (Ω) (Ω) 

3.4 1.98 >0.78 2.51 4494 24.1 620 27.7 0.47 8.1 339 8871 
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9.14.2 Fabrication of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cells 

Three-layer device structures fabricated from n-n-n+Schottky barrier device structures 

are known to be more efficient in terms of solar-to-electric conversion efficiency than 

two-layer device structures fabricated from n-n+Schottky barrier [30]. The three-layer 

device structures discussed in this section were fabricated from glass/FTO/n-ZnS/n-

CdS/n-CdTe solar cell device structure. The device structure is a combination of two n-

n heterojunctions (HJ's) and a large Schottky barrier at the interface between the n-CdTe 

absorber layer and Au metal contact [27]. The results obtained from characterisation 

techniques such as PEC cell and optical absorption measurements discussed in the 

previous chapters are useful to obtain the actual energy band diagram of the device 

structure. The higher energy bandgap of ZnS thin films obtained from optical absorption 

measurements [40] makes the ZnS thin films suitable for use as a buffer layer to 

CdS/CdTe solar cells. With the higher bandgap of ZnS layer, pinholes can be minimised 

while bandgap grading is introduced to the device structure during heat treatments. The 

energy band diagram for n-n-n+SB device structure is shown in Figure  9.20.  
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Figure 9.20. Energy band diagram of n-n-n+SB device structure showing the formation 

of ZnxCd1-xS and CdSxTe1-x as a result of interdiffusion of atoms at two different 

interfaces during annealing. 

The formation of ZnxCd1-xS and CdSxTe1-x ternary compound semiconductors are 

illustrated in Figure  9.20. As explained by Echendu et al. [30], the formation of ZnxCd1-

xS at the interface between the ZnS/CdS HJ is due to the interdiffusion of Zn and Cd 

during annealing process. The same explanation applies to the formation of CdSxTe1-x at 
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the CdS/CdTe interface. Due to heat-treatment, S and Te interdiffuse to form CdSxTe1-x. 

Chu et al. [41] explained that treating the CdTe surface with CdCl2 solution causes a 

reaction to take place at the interface between CdS and CdTe thin films thus producing 

a thin layer of CdSxTe1-x. According to Potter et al. [42],  the formation of CdSxTe1-x 

alloy near the CdS/CdTe interface is being promoted through the CdCl2 annealing 

process. Apart from ZnS functioning as a buffer layer, the incorporation of ZnS into the 

CdS/CdTe HJ likewise leads to the formation of graded bandgap device structure as 

described in Figure  9.20. Also, the formation of ZnxCd1-xS and CdSxTe1-x tend to 

contribute to the bandgap grading of the device structure. Due to the graded bandgap 

structure, there is therefore a high tendency for this device structure to start absorbing 

high energy photons from the blue-end and low energy photons from the infrared region 

of the solar spectrum. This therefore maximises optical absorption from the solar 

spectrum, minimises thermalisation and improve collection of photo-generated charge 

carriers [43]. Since there is no p-layer in this device structure, the depletion region is 

therefore formed at the band bending created at the metal/semiconductor (n-CdTe/Au) 

interface. The depletion region provides a strong electric field to separate the photo-

generated charge carriers created within the device structure. The fast separation of the 

photo-generated electrons and holes to the external circuit reduces the recombination of 

these charge carriers within the device structure. This therefore leads to generation of 

higher short circuit current density. 

Due to the difference in the energy bandgap of these materials, the slope of the energy 

band diagram which represents the built-in electric field can be improved upon. 

Therefore, the formations of n-n HJ at the ZnS/CdS and CdS/CdTe interface also 

complement the creation of the built-in electric field within the device. The fabrication 

of rectifying n-n and p-p semiconductors have been well demonstrated by researchers in 

the field [44]. Due to the presence of defect states, it is difficult to have an ideal 

interface at the n-CdTe/Au contact. The existence of these states (shown as E1 to E5 in 

Figure  9.20) in the bandgap introduce strong pinning of the Fermi level and with an 

adequate surface processing of the absorber layer, the Fermi level can be pinned at E5 

which is close to the valence band (VB). Due to this Fermi level pinning effect, the 

potential barrier height is not always a dependant of the metal work function [6]. 

Existence of experimentally observed defect levels (E1-E5) is a real cause for 

reproducibility; and for high efficiency devices, Fermi level should be pinned at E5 level 

closer to the valence band. 
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9.14.2.1 Characterisation of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cells using 

current-voltage (I-V) technique 

In solar cells fabrication, the thickness of the semiconductor material is of utmost 

importance. The thicknesses of n-ZnS, n-CdS and n-CdTe used in the glass/FTO/n-

ZnS/n-CdS/n-CdTe/Au solar cell device structures were ~100 nm, 150 nm and 1200 nm 

respectively. Table  9.11 shows the parameters of 5 measured cells in the glass/FTO/n-

ZnS/n-CdS/n-CdTe/Au device configuration under AM1.5 illumination condition. The 

efficiencies of the solar cells with an active area of ~0.031 cm
2
 range from ~(9.1 to 

12.8)% as seen in Table  9.11. For further analysis under dark condition, the best cell 

(MO1_5) was selected. The log-linear and linear-linear I-V characteristics of MO1_5 

obtained under dark condition are shown in Figure  9.21.  

Table 9.11. Measured solar cell parameters fabricated from glass/FTO/n-ZnS/n-CdS/n-

CdTe/Au device structures 

 Measured values per unit cell Average measured values 

Sample ID 
Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

Voc 

(mV) 

Jsc 

(mAcm
-2

) 

FF 

 

η 

(%) 

MO1_1 640 35.7 0.40 ~9.1 

630 35.9 0.47 10.6 

MO1_2 620 34.4 0.48 ~10.2 

MO1_3 620 34.1 0.49 ~10.4 

MO1_4 600 34.0 0.51 ~10.4 

MO1_5 670 41.5 0.46 ~12.8 

 

  

Figure 9.21. I-V characteristics of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au (n-n-n+SB) 

device structure under dark condition plotted in (a) Log-linear and (b) Linear-linear 

scales. 

-10

-8

-6

-4

0.0 0.5 1.0

L
o
g
 I

 

Bias Voltage (V) (a) 

-0.04

0.01

0.06

0.11

0.16

0.21

-1.0 -0.5 0.0 0.5 1.0

C
u
rr

en
t 

(m
A

) 

Bias Voltage (V) 

(b) 



Chapter 9     Development of CdTe-based solar cells 

289 
 

The parameters obtained from Log I vs V curve were: rectification factor (RF), ideality 

factor (n), reverse saturation current (Is), potential barrier height (ɸb); from the linear-

linear I-V curve, the series resistance (Rs) and shunt resistance (Rsh) were obtained from 

the high forward and reverse regions of the curve respectively. The J-V curve of 

MO1_5 under AM1.5 illumination is shown in Figure 9.22. The measured solar cell 

parameters of MO1_5 under dark and AM1.5 illumination conditions are summarised in 

Table  9.12. 

 

Figure 9.22. J-V characteristics of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cells (n-n-

n+SB device structure) under AM1.5 illumination condition. 

Table 9.12. Parameters for best device measured from glass/FTO/n-ZnS/n-CdS/n-

CdTe/Au solar cells under dark and illumination conditions. 

Under dark condition  (MO1_5) Under illumination (MO1_5) 

RF 

 

Slope 

 

n 

 

ϕb Is Rs Rsh Voc Jsc FF η Rs Rsh 

(eV) (nA) (Ω) (MΩ) (mV) (mAcm
-2

)  (%) (Ω) (Ω) 

10
4.3

 11.03 1.52 >0.81 0.76 1250 81 670 41.5 0.46 12.8 134 3819 

The RF obtained for diodes fabricated from n-n-n+SB device structure under dark 

condition is 10
4.3

. As reported by Dharmadasa [8], RF of 10
3.0

 is sufficient to obtain 

over 12% efficiency from the CdTe-based solar cells. For the CdTe-based solar cells 

with lower efficiency, it is therefore possible to have RF of lesser orders of magnitude 

as observed in a previous work [45]. The value of the ideality factor helps to determine 
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the type of current transport mechanism which takes place within the device structure. 

For the solar cells fabricated and reported in this work, the ideality factor of 1.52 was 

obtained. This shows that two current transport mechanisms (thermionic emission and 

recombination and generation (R&G) process) take place in parallel [8]. As reported by 

Rhoderick,  n>1.00 due to carrier recombination [46]. When n>1.00, the ϕb is always 

being underestimated.  

The Is is obtained from the intercept of the straight line section of best tangent of the 

forward current curve on the Log I axis (Figure  9.21 (a)). The obtained Is value is ~0.79 

nA. This Is value was used in estimating the barrier heights. The estimated ϕb for n-n-

n+SB diode is >0.81 eV. The n value <2.00, high RF and larger ϕb obtained for n-n-

n+SB diode illustrate how healthy the depletion width of the device structure is. It also 

shows the strength of the electric field produced in the depletion region. The healthy 

depletion region and strong electric fields work together to effectively separate and 

transfer the photo-generated electrons and holes to the external circuit. This explains the 

reason for the high Jsc observed in the n-n-n+SB device structures. 

The Rs and Rsh values estimated from linear-linear dark I-V curve (see Figure  9.21 (b)) 

of n-n-n+SB device structure are ~1250 Ω and 81 MΩ respectively. The shape of the 

reverse curve of diode in Figure  9.21 (b) showed infinite Rsh. The incorporation of ZnS 

as a buffer layer in to the n-CdS/n-CdTe device structure leads to a great improvement 

in the Rsh when compared to the Rsh obtained for glass/FTO/n-CdS/n-CdTe/Au device 

structures without ZnS buffer layer (see n-n+SB device structure in Table  9.6). The 

presence of large Rsh indicates that the leakage paths for the photo-generated charge 

carriers are minimised; therefore, the amount of current loss through the leakage path is 

reduced and the current that flows through the external circuit will increase and this 

eventually leads to an improvement in the cell performance. With reduced leakage 

current paths, an improvement in the Jsc is expected. This improvement was observed in 

the experimental work with n-n-n+SB device structures.  

The solar cell parameters of MO1_5 (n-n-n+SB solar cells) carried out at room 

temperature under AM1.5 illumination condition as stated in Table  9.12 comprises of 

the following parameters: Voc = 670 mV, Jsc = 41.5 mAcm
-2

, FF = 0.46 and η = ~12.8%. 

The estimated Rs and Rsh under light are ~134 Ω and ~3819 Ω respectively. The 

reduction of the Rs from ~1250 Ω under dark condition to ~134 Ω under AM1.5 

illumination condition shows that the fabricated solar cell has a good photo conductivity 
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effect. The low Rs value also helps in enhancing the Jsc value. Some of the other 

possible reasons for high Jsc value are given in the next section. Also the larger bandgap 

of ZnS (~3.70 eV) in the front of the device structure has assisted in creating a steep 

slope to ease the transportation of electrons to the front contact. In this device structure, 

all three layers are active in PV conversion and the thermalisation effects are minimised. 

Other n-n-n+SB device structures such as glass/FTO/n-CdS/n-CdSe/n-CdTe/Au solar 

cells were also studied but the results yielded poor efficiency. These results are not 

reported in this thesis for brevity.  

9.14.2.2 Discussion/reasons for observed high Jsc   

The strength of electric field in the depletion region depends on the quality of the solar 

cell parameters obtained under dark and illumination conditions. Since the charge 

carriers are generated within the depletion region, there is the need to quickly separate 

them to external circuits before they recombine in the material. The drift velocity of the 

charge carriers are increased when the electric field is very strong. By so doing, the 

photo-generated charge carriers are prevented from recombining within the bulk of the 

material and this leads to Jsc enhancement.  The presence of high RF of ~10
4.3

, ϕb >0.81 

eV and low n value of ~1.5 in MO1_5 all contribute to the formation of healthy 

depletion region and strength of the electric field. This is one of the basic reasons why 

the electronic parameters of n-n-n+SB under dark and illumination conditions improved 

when compared to n-n+SB device structures. 

The Jsc obtained from the five measured cells of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au 

solar cells given in Table  9.11 are higher than the reported Jsc limit [47] for single p-n 

junction CdTe solar cell. This increase can be attributed to the graded bandgap 

structures used in this work [48]. To ensure the authenticity of the Jsc observed in this 

work, the surroundings CdTe layers were carefully removed to ensure that current is not 

being collected from the immediate CdTe surrounding layers. It was observed that after 

carefully removing the surrounding CdTe layers around the gold contact, the Jsc still 

remains. This shows that there was no lateral current collection around the measured 

solar cell contact in these devices. As suggested by Basol [49], the absence of current 

collection from the surroundings can be mainly due to the high resistivity and ultra-thin 

CdTe layers being used as an absorber. Due to the grading of the device structure, it is 

also possible to have the presence of impurity PV effect and impact ionisation. When 

either or both phenomena are present in a device structure, there is high tendency for the 
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Jsc to rise. Multi-junction graded bandgap solar cells such as the n-n-n+SB or n-n-p 

provide effective means of harvesting photons from various regions (UV, Vis, and IR 

regions) of the solar spectrum. 

Due to the presence of IR radiations in the environment, photons with energy smaller 

than the CdTe energy bandgap can be absorbed from the surroundings to create 

electron-hole (e-h) pairs that can add to the previously generated charge carriers. The 

created electrons can be promoted from the valence band to any of the 5 defect levels 

earlier mentioned. Due to the strong electric field in the depletion region, the holes 

being created acquire sufficient kinetic energy and quickly move to the ohmic contact at 

the back. The quick drifting of the holes towards the back Au metal contact does not 

therefore permit the electrons to fall back into the valence band to recombine with holes 

[50]. The absorption of other low-energy infrared photons into the device structure can 

also create useful e-h pairs which can now promote the initial electron at the defect level 

to the conduction band where they are being finally drifted towards the front FTO 

contact for current generation. This phenomenon is known as impurity PV effect. On 

the other way round, another electron accelerating from the back contact towards the 

front contact can give energy to the electron at the defect level and re-promote them to 

the conduction band where they are eventually drifted towards the front contact. The 

collection of all these photo-generated currents via impurity PV effect and impact 

ionisation give rise to high short circuit current density at the output. This same 

explanation can be applied to the high Jsc observed in glass/FTO/n-CdS/n-CdTe/p-CdTe 

device structures. 

9.14.2.3 Characterisation of glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cells using 

capacitance-voltage (C-V) technique 

The depletion capacitance and the doping density of the glass/FTO/n-ZnS/n-CdS/n-

CdTe/Au device structure were determined using the C-V characterisation technique.  

The C-V measurements were carried out under dark condition at room temperature 

using AC frequency of 1 MHz. Figure  9.23 (a) and 9.23 (b) show the C-V 

characteristics and Mott-Schottky plots of the n-n-n+SB device structures respectively. 

The depletion capacitance of the n-n-n+SB multi-junction solar cell at zero bias is 264 

pF as shown in Figure  9.23 (a). This value remains fairly constant with applied bias 

from the reverse region to the forward bias at V=~0.2 V. As the forward bias voltage 

increases beyond 0.2 V, increase of the depletion capacitance with applied forward bias 
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voltage was observed.  The constant depletion capacitance from the reverse bias region 

is an indication that the solar cell device structure is fully depleted even at bias voltage 

of ~0.2 V [51]. For an almost or fully depleted device structure, the width of the 

depletion region is almost equal to the thickness of the electroplated layer. The 

theoretical thickness obtained for the absorber layer in the device structure is ~1200 nm 

while the depletion width obtained for the n-n-n+SB using Equation (3.38) is ~1160 nm. 

The correlation between the estimated theoretical thickness and measured depletion 

width further attest to the fully depleted nature of the n-n-n+SB device structure.  

      

Figure 9.23. (a) Capacitance-voltage plot and (b) Mott-Schottky plot of n-n-n+SB 

device structures under dark condition. 

One other electronic parameter which is also important in obtaining a good solar cell 

with optimum performance is the doping density. For solar cells to have higher 

efficiency, it must have a moderate doping. The doping density for glass/FTO/n-ZnS/n-

CdS/n-CdTe/Au was estimated to be 5.20×10
15

 cm
-3

 and this value falls within the 

range of doping densities reported in the literature for solar cells having efficiency 

greater than 10% [21,28,52,53]. It should be noted that the straight line segment of 

Mott-Schottky plot is obtained after ~0.5 V forward bias and the depletion region is 

mainly within the CdTe layer. Therefore, the value obtained (5.20×10
15

 cm
-3

) represents 

the doping concentration of n-type CdTe layers. Since the majority carriers are electrons 

in n-n-n+SB device structure, the obtained doping density (ND-NA) from the C
-2

 vs V 

plot (Mott-Schottky plot) is synonymous to the electron donor density in the solar cell 

device structures.  
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By substituting the estimated values of ND-NA into Equation (9.1), the position of Fermi 

level (Ec-EF) for the n-CdTe used was estimated. The Ec-EF was found to be at ~0.13 eV 

below the conduction band minimum. 

   









n

N
kTEEE C

FC ln        (9.1) 

Where EC is the lowest energy of the conduction band, EF is the Fermi level, k is the 

Boltzmann constant, T is the room temperature measured in Kelvin and NC is the 

effective density of states in the conduction band edge of CdTe semiconductors.  

To compare the C-V results of n-n+SB discussed in section 9.12.2 with n-n-n+SB, the 

C-V parameters of the two device structures are tabulated together. The C-V plots of n-

n+SB fabricated from glass/FTO/n-CdS/n-CdTe/Au solar cells have already been 

described in Figure  9.14. As seen in Table  9.13, the doping density of glass/FTO/n-

CdS/n-CdTe/Au heterojunction solar cell is 2.08×10
16

 cm
-3

 while the doping density of 

glass/FTO/n-ZnS/n-CdS/n-CdTe/Au multi-junction solar cell is 5.20×10
15

 cm
-3

. The 

decrease in the doping density can be attributed to the use of ZnS semiconductor as a 

buffer layer to CdS/CdTe solar cell. Since the doping density of the n-n-n+SB multi-

junction device structure is lower than the n-n+SB device structure, it is therefore 

expected that the mobility of electrons and holes (majority and minority carriers 

respectively) in the n-n-n+SB multi-junction solar cells be higher than those of the n-

n+SB solar cells. The probability of electrons and holes (charge carriers) recombining 

within the depletion region will be low since the rate at which they move to external 

circuit after being generated is higher in n-n-n+SB multi-junction than n-n+SB device 

structures. Since the level of R&G process is greatly reduced in n-n-n+SB multi-

junction cells due to the high mobility of electrons and holes and wider/healthier 

depletion width, the solar cell device parameters will be greatly improved as seen in this 

experimental work. 
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Table 9.13. Summary of C-V parameters obtained for glass/FTO/n-CdS/n-CdTe/Au and 

glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar cell structures. 

 C-V Measurement under Dark Condition at 1 MHz 

Device Structure 

 

Co 

(pF) 

W 

(nm) 

Slope 

(F
-2

V
-1

) 

ND-NA 

(cm
-3

) 

EC-EF 

(eV) 

EF-EV 

(eV) 

n-n + SB 366 836 7.5 × 10
17

 1.73 × 10
16

 0.10 1.34 

n-n-n +SB 264 1160 2.5 × 10
18

 5.20 × 10
15

 0.13 1.31 

9.15 Summary 

Solar cells of different device configurations have been successfully fabricated and 

assessed using I-V and C-V techniques. The positive effects of Ga incorporation into 

the usual CdCl2 treatments have been demonstrated on the optoelectronic properties of 

CdTe-based device structures. The initial experiments carried out on device structures 

comprising of n-CdS, n-CdTe and Au metal contacts showed that the device structures 

(glass/FTO/n-CdS/n-CdTe/Au) treated with mixture of GaCl3+CdCl2 solution produced 

better solar cell efficiencies than the ones treated only with CdCl2. The inclusion of Ga 

into CdCl2 solution has been seen to aid the reduction of series resistance thus leading to 

enhancement in short circuit current density and fill-factor. This improvement in solar 

cell parameters demonstrate the ability of Ga
3+

, Cd
2+ 

and Cl
-
 in the GaCl3+CdCl2 

solution to effectively reduce Te precipitates which contribute to the recombination and 

generation of photo-generated charge carriers in the device structure. The highest solar 

cell efficiency obtained for glass/FTO/n-CdS/n-CdTe/Au device structures was ~7.6% 

and this was achieved with the mixture of GaCl3+CdCl2 surface treatment. The 

experimental studies carried out to examine the effect of variation in pH of 

GaCl3+CdCl2 solution on the device efficiency showed that the glass/FTO/n-CdS/n-

CdTe device structures treated at a pH of 0.60±0.02 prior annealing and metallisation 

produced better solar cell efficiency than the ones treated at pH of 1.20 and 2.40±0.02. 

It was observed that acidic pH of 0.60 used for chemical treatments of glass/FTO/n-

CdS/n-CdTe produced the least series resistance under illumination. The experimental 

results revealed the tendency of more acidic pH of 0.60±0.02 to modify the top surface 

of n-CdTe absorber layers and create a thin layer of p
+
 material on the n-n+SB device 

structure to make it n-n-p
+
 graded bandgap solar cell.  
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Experimental investigations involving the incorporation of p-CdTe layer of different 

thicknesses on n-n+SB device structures to form multi-junction graded bandgap solar 

cells were also explored. The results showed that when a larger thickness of p-CdTe is 

deposited on glass/FTO/n-CdS/n-CdTe, the efficiency of the device suffers. Likewise, 

the positions of Fermi levels of diodes fabricated from glass/FTO/n-CdS/n-CdTe/p-

CdTe/Au (n-n-p) device configuration differ from one another due to the differences in 

the thicknesses of the p-CdTe layers. The highest efficiency of ~10.9% was observed 

with p-CdTe thickness of ~35 nm in the n-n-p device configuration. Overall, the 

fabrication of graded bandgap solar cells with the structure glass/FTO/n-CdS/n-CdTe/p-

CdTe/Au showed better results than solar cells fabricated from glass/FTO/n-CdS/n-

CdTe/Au. Other p-type semiconductor layers such as p-CdMnTe and p-ZnTe used as 

back layers to glass/FTO/n-CdS/n-CdTe yielded solar cell efficiency less than 4%.  

Other multi-junction graded bandgap solar cells involving n-n-n+SB device 

configurations were also studied. Solar cells with glass/FTO/n-ZnTe/n-CdS/n-CdTe/Au 

device architecture yielded highest efficiency of ~8.1% while solar cells fabricated from 

glass/FTO/n-ZnS/n-CdS/n-CdTe/Au device structures yielded highest solar-to-electric 

conversion efficiency of ~12.8%. The summary of the electronic parameters obtained 

from I-V and C-V measurement techniques for glass/FTO/n-ZnS/n-CdS/n-CdTe/Au 

solar cells showed that the n-n-n+SB device structure is a potential device architecture 

that can be further developed for high efficiency solar cell fabrication. The large 

bandgap in the front of the n-n-n+SB device structure has assisted in creating a steep 

slope to ease the transportation of electrons to the front contact and the production of 

strong electric field within the depletion region has helped in separating the holes and 

electrons to the back and front contacts respectively where they are collected for 

effective current generation. The overall effect of this process was seen in the improved 

short-circuit current density of the n-n-n+SB device structures. Future work on the 

graded bandgap device structures should be focused on improving the efficiency of 

glass/FTO/n-CdS/n-CdTe/p-CdTe/Au and glass/FTO/n-ZnS/n-CdS/n-CdTe/Au solar 

cells using optimised electroplated semiconductor materials.  
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Chapter 10 -  Conclusions, challenges and suggestions for future work 

10.1 Conclusions 

The knowledge of subjects from chemistry, physics, material science and electronics 

have been utilised in this work to investigate the properties of electrodeposited 

semiconductor materials. The semiconductor materials studied in this work are CdSe, 

ZnTe, CdS, CdMnTe and CdTe thin films. ZnS thin films grown by one of our PhD 

researchers at the Solar Energy Research Group in Sheffield Hallam University was also 

made use of as a buffer layer in developing multi-junction graded bandgap solar cells.  

The main experimental findings carried out during this research work are presented in 

Chapters 4 to 9. The main focus of Chapters 4 and 5 are on the development of CdSe 

and ZnTe thin films for electronic device applications. CdSe thin films as reported in 

this thesis have been successfully used in fabricating Schottky diodes while ZnTe thin 

films have been employed in fabricating homo-junction diodes with the device 

structures glass/FTO/n-ZnTe/p-ZnTe/Au. The electroplating of n-ZnTe thin films was 

achieved in this work by intrinsic doping. Chapter 6 discusses the growth and 

optimisation of n-CdS thin films for application as hetero-partner to other II-VI binary 

compound semiconductors such as ZnTe and CdTe. The optimised cathodic deposition 

potential to grow nearly stoichiometric CdS thin films was established at 1200 mV. 

Chapter 7 focuses on the application of n-CdS/p-ZnTe hetero-structures for applications 

in electronic devices. The main application areas investigated under this section include 

the fabrication of one-sided rectifying p-n junction diodes and solar cells from n-CdS/p-

ZnTe hetero-structures layer.  

Chapter 8 describes the growth and characterisation of CdTe thin films as the main solar 

cell absorber material while Chapter 9 is focused on solar cells development using 

CdTe-based device structures. The effects of GaCl3 inclusion in the usual CdCl2 

treatments have been explored in relation to the material and opto-electronic properties 

of CdTe thin films and associated devices. It was observed that CdTe thin films and 

CdTe-based device structures treated with mixture of GaCl3+CdCl2 showed improved 

crystallinity and better solar cell performance than un-treated CdTe layers and CdTe 

layers treated only with CdCl2 solution. Likewise, the effects of varying the pH of 

GaCl3+CdCl2 solution for surface treatment of CdTe thin films have been studied. 
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Results of this investigation revealed that CdTe based devices treated with mixture of 

GaCl3+CdCl2 at low pH of 0.60 ± 0.02 exhibited larger grains and enhanced solar cell 

efficiencies. 

Different device structures have been reported in this thesis but the most important ones 

are the multi-junction graded bandgap solar cells based on glass/FTO/n-ZnS/n-CdS/n-

CdTe/Au and glass/FTO/n-CdS/n-CdTe/p-CdTe/Au device structures. While keeping 

the thickness of n-CdTe layers fixed at ~1200 nm, the effects of varying the thickness of 

p-CdTe layer used in glass/FTO/n-CdS/n-CdTe/p-CdTe/Au device structures were also 

investigated. A p-CdTe layer of ~1200 nm thickness in the above device structures 

showed a pure ohmic behaviour under dark and a poor solar cell with poor fill factor 

and efficiency under illumination conditions. When a p-CdTe layer of ~35 nm thickness 

was used, good rectifying behaviours under dark and better solar cells with efficiency 

>10.0% were achieved under illumination conditions. These experimental investigations 

revealed that the thinner the p-CdTe layer in the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au 

device structures, the better the solar cell performance. The highest efficiency reported 

in this thesis is ~12.8% and this was achieved using the glass/FTO/n-ZnS/n-CdS/n-

CdTe/Au device structures. However, the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au device 

structures seem to be a better candidate for high efficiency solar cells if the thicknesses 

of the semiconductor layers used in the multi-layer graded bandgap solar cells are well 

optimised.  

10.2 Challenges encountered during the current investigations and proposed 

solution 

Achieving solar cells with high efficiencies and maintaining the efficiency consistence 

is one of the main challenge faced in this work. Some of the factors responsible for this 

are non-uniformity of electroplated layers and achieving materials with same electronic 

quality at every deposition stage. With ED technique, it is difficult to maintain the pH 

and concentration of cations and anions salts in the bath during growth. Even though 

these parameters are regulated at the start of deposition, they however change as soon as 

the deposition commences. In this technique, the amounts of ions which make up the 

electrolytic bath is gradually being used up and they become unknown after carrying out 

the first deposition. This leads to problem of reproducibility of the thin films and for 

these reasons, the opto-electronic properties of these layers differ from batch to batch. 

Therefore to overcome these challenges, it is imperative to use a computerised 
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concentration analyser that can detect the amount of ions present in the electrolyte at 

each given period and a programmable automated pumping system that can constantly 

feed the electrolytic bath with the ions being used up.  

Another basic challenges encountered in this work is the deterioration of carbon rod 

(anode electrode) with time. Continuous usage of the carbon rod without replacement 

kills the electrolytic bath. When it becomes obvious that the carbon rod is deteriorating 

visually, it can quickly and easily be replaced with new ones. In a situation where there 

is a gradual leakage of carbon into the bath from the anode, then this becomes a 

problem. This occurrence was observed after carrying out EDX analysis on one of the 

electroplated CdTe samples. The observed results are shown in Figure  10.1. As seen in 

Figure  10.1 (a), in a CdTe bath that is supposed to have mainly Cd and Te constituents, 

it was found out that the atomic % of carbon is much higher than Cd and Te combined 

together. The introduction of carbon into the atomic composition comes mainly from 

the leakage of carbon into the bath during deposition. The source of this leakage is the 

carbon rod being used as the anode. With the atomic % of C, the material being formed 

is no longer CdTe but Cd1-xCxTe. As seen in Figure  10.1 (a), the ternary compound 

formed is Cd0.32C0.68Te while in Figure  10.1 (b), the ternary compound formed is 

Cd0.37C0.63Te. Carbon being a group IV element when bonded with CdTe introduces a 

dangling bond into the CdTe lattice. As explained in Chapter 2, dangling bond is one of 

the main causes of surface defects in a semiconductor material. To prevent this problem, 

it is proper to replace carbon rod from time to time or to completely seek for an 

alternative anode to carbon electrode. 

 

(a) 
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Figure 10.1. (a,b) Typical EDX spectra obtained at different times for CdTe thin films 

with emphasis on carbon anode degradation. 

10.3 Suggestions for future work 

The following are some of the suggestions for future work: 

(i) To further develop the multi-junction graded bandgap solar cells based on 

glass/FTO/n-CdS/n-CdSe/n-CdTe/Au device structures for efficiency enhancement. 

(ii) To explore the thickness of p-CdTe layers used in glass/FTO/n-CdS/n-CdTe/p-

CdTe/Au device structures in-between 0-35 nm. It is anticipated that if the investigation 

of p-CdTe thin films as a back contact layer to n-CdTe thin films is successfully carried 

out between 0 and 35 nm, there is a high tendency to achieve solar cell efficiencies 

greater than 20%. 

(iii) To investigate the effect of Ga as an extrinsic dopant in CdTe thin films. Since 

the effects of GaCl3+CdCl2 have been explored in this research work as surface 

treatments to CdTe thin films, it is vital to further study what happens when Ga is 

introduced into the CdTe electrolyte as an external dopant. Therefore, part of the future 

work would be focused on this study. 

 

(b) 


