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Abstract
Environmental and economic issues related to the aeronautic 

transport, with particular reference to the high-speed one are opening 

new perspectives to pulsejets and derived pulse detonation engines. 

Their importance relates to high thrust to weight ratio and low cost of 

manufacturing with very low energy eficiency. This papers presents 
a preliminary evaluation in the direction of a new family of pulsejets 

which can be coupled with both an air compression system which is 

currently in pre-patenting study and a more eficient and enduring 
valve systems with respect to today ones. This new pulsejet has bee 

speciically studied to reach three objectives: a better thermodynamic 
eficiency, a substantial reduction of vibrations by a multi-chamber 
cooled architecture, a much longer operative life by more affordable 

valves. Another objective of this research connects directly to the 

possibility of feeding the pulsejet with hydrogen. This paper after a 

preliminary analysis of the pulsejet takes into account two necessary 

stages of this activity with the initial deinition of the starting point of 
this activity, which aim to deine an initial thermodynamic balance of 
a Lenoir cycle and a preliminary but effective estimation of the 

thermal problem. It analyses the heat transfer process through the 

wall of the combustion chamber of a pulsejet for aeronautic 

propulsion. The inside wall is exposed to burning gases with an 

average temperature of 1500 K, which oscillates with an amplitude 

500 k and a frequency of 50 Hz. It has been considered the possibility 

of using Hydrogen injection to reduce the environmental impacts at 

the price of introducing a cooling water envelope at an average 

temperature of 80 °c. The water mass low to ensure this condition 
has been evaluated and it has been evaluated both the average 

temperature proile within the wall and the effects of the oscillations 
of gas temperature inside the combustion chamber. Obtained results 

have allowed starting an effective activity through a radically new 

pulsejet architecture, which is expected to outclass any former 

pulsejet in term of operative life and of compression ratio with a 

consequent step increase in terms of thermodynamic eficiency.

Introduction

Generalities

A pulsejet engine is a jet engine with combustion occurring in pulses. 

It is made with no moving parts [1] or a simple moving valve [2]. It is 

capable of running statically (i.e. it does not need to have air forced 

into its inlet typically by forward motion). Pulsejet engines are a 

lightweight and cheap jet propulsion, but the usually suffer of both 

poor compression ratio and low speciic impulse. Pulsejets operate 
according to Lenoir cycle [3], which has not any compression process 

and leads to lower thermal eficiency than Otto and Diesel cycle [4].

Historic Background

Pulsejet is probably the oldest jet propulsion system. Early attempts 

to utilize the power from explosions for propulsive applications date 

back to late 17th-early 18th centuries and the contributions of 

Huygens and Allen are note worthy. In 1729, Allen proposed a 

jet-propelled ship by explosion of gunpowder in a proper engine [4]. 

Berthelot and Vieille, and Mallard and Le Chatelier moved their 

attention to gaseous explosions and combustion modes. They 

discovered [5] a combustion mode propagating at a velocity ranging 

from 1.5 to 2.5 km/s. They obtained this result by igniting gas with a 

high-explosive charge. Similar effects have been produced in long 

tubes even when gas was ignited by non-explosive means (spark or 

open lame). Flame acceleration along the tube, often accompanied 
with lame speed oscillations, was detected prior to onset of 
detonation. It has been also discovered that detonation velocity is 

independent of the ignition source and tube diameter. It is primarily a 

function of the composition of the explosive mixture, with severe 

mechanical effect implying the development of high pressure in the 

propagating wave, which is governed by adiabatic compression of the 

explosive mixture rather than by molecular diffusion of heat [6]. 

Initially, the interest in detonation was associated only with 

preventing explosions in coalmines. Mikhelson (1890), Chapman 
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(1899), and Jouguet (1904) estimated the detonation parameters by 

considering one-dimensional (1D) low, mass, momentum and energy 
conservation laws according to the shock wave theory of Rankine and 

Hugoniot. This model describes the detonation wave as a pressure 

discontinuity coupled with the reaction front (instantaneous reaction) 

and presents a good agreement with observed detonation velocities.

During the irst decades of the 20th century, a fundamental 

advancement has produced by experimentation and analysis of 

detonations, which deal with the development of reciprocating 

internal combustion engines [7]. Lorin (1913) designed the irst 
subsonic pulsejet, which has never achieved high enough speed for 

operating. Fonó (1915) studied a ramjet propulsion unit to launch 
heavy projectiles with long range and low initial velocity from 

lightweight guns.

The historic milestone for pulsejet development has been the German 

Fieseler Fi 103 (V1 middle range bomb) [8, 9], which was propelled by 

Argus As 014 pulsejet. The research activity that produces such an 

engine was based on the design of a pulsejet engine by Paul Schmidt. 

Schmidt and Madelung (1934) proposed a "lying bomb" powered by 
his pulsejet. In 1938, they demonstrated that a pulse jet-powered 

unmanned bomber could be realized even if the prototype lacked range 

and accuracy and was expensive. Further developments of this project 
leaded to the Argus engine [10], which equipped the V1 bombs.

Figure 1. Fieseler Fi 103 - V1 Bomb

Figure 2. Schema of Argus As 014 pulsejet engine of V1 bomb.

Argus As 014 has been probably the valved pulsejet with the longer 

operative life (around 40 minutes).

After WW II, the pulsejet has been nearly abandoned. Other 

architectures had preferred because of vibration-induced problems, 

acoustic impacts, low operative life, low thrust and speciic fuel 
consumption.

Derived concepts such as ramjets and scramjets achieved a higher 
success level because of higher performances.

Pulsejet Potential and Limits
The key advantage of pulsejets lays on its simplicity with respect to 

any other propulsion system. The construction of pulsejets is cheap 

and not sophisticated. It is a fundamental advantage in the ield of 
miniature propulsion. Thermodynamic cycle of a pulsejet can be 

approximated by the Lenoir cycle, because unsteady pulsating 

combustion does not happen at constant pressure such as in most jet 

propulsion systems. Pulsejets burn fuel intermittently in a quick 

succession of detonating pulses. The consequent pressure shocks and 

formation of gaseous product of combustion produces the thrust of 

the system with a net pressure gain between the air intake and outlet. 

The absence of a compression stage reduces the thermodynamic 

eficiency, but also eliminates the energy consumption by the 
compressor. The gain by pulsating combustion is dificult to be 
utilized for propulsion. It can be stated that pulsation is both the 

central problem and the main beneit of this propulsion system. Some 
historic realizations demonstrate that the eficiency of a pulsejet can 
be increased when it is used as a combustor of a turbine engine. If the 

air is preliminary compressed the pressure gain is multiplied by the 

high-pressure environment. The architecture of British centrifugal 

turbojets such as Rolls Royce Derwent (Figure 3) is a demonstration 

of this statement.

Figure 3. Rolls Royce Derwent

Figure 4. Detail of combustion chamber of Rolls Royce Derwent

It is evident that the combustion chamber of Derwent (Figure 4) has 

the same architecture of a valueless pulsejet.
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If compared to traditional constant pressure combustors, pulsejets 

have smaller mechanical losses and lower fuel consumption or higher 

fuel eficiency. The system irregularity produces problems with axial 
turbine blades. Radial turbines are more solid on this point of view 

but they have lower eficiency especially with intermittent lows.

The effects of pulsation and high temperatures are also evident on the 

pulsejets with petal valve, which have a very low operative life. They 

generate evident accelerated fatigue stresses, which appears the main 

cause of these failures.

Today Valved Pulsejet Architecture
Today, pulsejets seem promising as a low cost solution for alternative 

propulsion purposes in the subsonic velocity range. The main 

problem is that valved pulsejets, which are the more viable for high 

thrusts, suffers of a very low operative life of the valves There are 

three basic types of valve systems used in the average pulsejet 

engine. The calculator generates the dimensions of all three types 

regardless of how much thrust you want from the engine.

The irst type is a petal valve system, and is the most common type 
used in small pulsejet engines. The petal valve system has two key 

elements: a surface with drilled holes, a disk with valve petals that 
covers the holes. This system is simple, economic, easy to 

manufacture, but presents different problems: low affordability and 
large reduction of valve area. It is not used for larger engines, but it 

gives optimal performances in small pulsejets. If the thrust of your 

engine falls in the range of thrust between 1 to 5 kg. Some 

applications up to 50 kg of static thrust have been produced but they 

look ineficient and have a very low operative life. Today valved 
pulsejets uses petal valves, which have a very short life span. When 

subject to the extreme temperatures, pressures and very high 

frequency, tests performed at NASA Glenn [13] demonstrated that the 

valves last approximately ifty seconds. This is detrimental to pulsejet 
performance and hinders research efforts. Figure 6 presents two 

images depicting a failed valve (left) and the valve head (right).

High eficiency petal valve system is similar to the regular petal valve 
system in that it is a circular array of valve holes, but uses valve plate 

area by adopting optimized and shaped valve holes. The optimized 

shape of the inlet holes increases the eficiency of the pulsejet and 
requires a smaller diameter combustion chamber for the same amount 

of thrust. In particular, this solution has reduced drag and better 

airlow through the engine. On the other side, it has higher costs 
because each valve hole must be machined to the correct shape and 

size, instead of simply drilling the hole. The applications range 

spaces from 1 to 50 kg.

Larger pulsejet engines (Figure 7) adopt the valve grid system, which 

is directly derived from the original design of the Argus engine of the 

V1 bomb. A valve grid is a rectangular array of valved holes. Unlike 
the previous two types, the valved holes are not perpendicular to the 

axis of the combustion chamber. Valves are still reed valves, which 

are constituted by a set of thin plates and are placed on inclined 

planes. They open when the pressure in the combustion chamber 

decreases allowing the airlow through the holes, and closes when 
pressure increases.

 

“Wedge” Shape Holes Circular Drill Holes

Figure 5. Small pulsejets’ valve designs

Figure 6. Image of failed valve (left) and the valve head (right) [13]

Figure 7. Architecture and valve detail of a high thrust pulsejet based on Argus 
0.14 design.

Figure 8. High temperatures during a Lockwood-Hiller experiment

The must have limited dimensions in order to seal correctly the 

combustion chamber. This architecture allows a more optimized luid 
dynamic of the inlet section and a larger area of openings. Thus, they 

further reduce the luiddynamic losses and have a smaller diameter of 
the combustion chamber and less aerodynamic drag. Usually this 
architecture is used for engines with a thrust above 20 kg and 

increases it competitiveness with increasing thrust.
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A New Pulsejet Development Hypothesis
This paper is a preliminary step of an independent research project 

with the aim of increasing both the performances and the robustness 

of pulsejet related propulsion. The irst step relates to an effective 
preliminary analysis of the thermodynamic cycle of a pulsejet. This 

analysis will be the reference for the design activity of pulsejets with 

a preliminary air compression stage. The second stage focuses on the 

possibility of using more robust valve systems which use requires an 

effective reduction of the temperatures on the envelop of the 

combustion chamber and an increased thermal stability of the system. 

In particular, to reach this goal a cooling system has been taken into 

account and analysed.

Calculation Assumptions
It has been assumed that the combustion chamber is exposed to 

burning gases with an average temperature of 1500 K, oscillating 500 

K at 30 Hz. Inside the chamber it has been assumed a convective 

coeficient in line with values of ICE (Internal Combustion Engine): 
U = 1000 W/(m2·K) including radiation transfer [11, 12].

The outside is exposed to cooling water at 353 K, with a heat transfer 

coeficient including convection and radiation of 5000 W/ (m2·K) 

[12, 13]. In addition, this case is in line with the values assumed for 

ICE. The wall is supposed made of stainless steel 2 mm thick with 

the following values of conductivity:

Dimension of combustion chamber have been evaluated to be a 
cylinder with diameter 0.25 m and length 0.8 m.

Lenoir Cycle
The thermodynamic cycle that best describes the pulsejet behaviour 

is the Lenoir cycle. It is composed by four main phases: 

1-2. Constant volume (isochoric) heat addition; 

2-3. Isentropic expansion with no heat interaction and production of 

work; 

3-1. Constant pressure (isobaric) heat rejection with consume of 

some work.

Figure 9. PV and TS Diagram of Lenoir cycle.

Constant Volume Heat Addition (1-2)

The heat addition phase (combustion) of a Lenoir cycle is an 

isochoric (constant volume) transformation. In the ideal gas version 

of the traditional Lenoir cycle, the irst stage (1-2) involves the 
addition of heat in a constant volume manner. This results in the 

following for the irst law of thermodynamics:

and from the deinition of constant volume speciic heats for an ideal 
gas:

There is no work during the process because the volume is held 

constant:

The pressure after the heat addition can be calculated from the ideal 

gas law:

Isentropic Expansion (2-3)

The second stage involves a reversible adiabatic expansion (in the 

ideal case) or an isentropic expansion of the luid back to the original 
pressure. For an isentropic process, the second law of 
thermodynamics can be expressed by the following expression:

Where p
3
 = p

1
 for this speciic cycle. The irst law of thermodynamics 

results in the following for this expansion process:

because for an adiabatic process: Q
23

 = 0

Constant Pressure Heat Rejection (3-1)

The inal stage (3-1) involves a constant pressure heat rejection back 
to the original state and according to the irst law of thermodynamics 
it can be described by

From the deinition of work assumes the following expression:

And the amount of heat rejected during this process is:

where
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Efficiency

The overall eficiency of the cycle is determined by the total work 
over the heat input,

Note that pulsejets gain work during the expansion process but lose 

some during the heat rejection process.

Numerical Results

The volume V of the combustion chamber is 39 dm3, and the 

frequency f is 50 Hz. According to the above ideal model, a total 

work of 490 KJ can be evaluated with about 25 kN at the speciied 
frequency.

Assuming that the fuel is gasoline with a LHV of 43.4 MJ/kg the fuel 

consumption can be evaluated according to [14] and [15]. Mass of air 

is about 0.04 kg and requires about 0.0032 kg of fuel/explosion. It 

means 0.16 kg fuel/s. It means that the energy introduced by mean of 

fuel is around 6.9 MJ/s with fuel eficiency around 7.1%.

Assuming that the combustible is Hydrogen it is necessary 0.00115 

kg fuel/explosion with a unitary consumption of 0.046 Kg fuel/s.

Those results show clearly that a serious improvement is necessary to 

make the pulsejet energetically competitive against other propulsion 

systems. But on the other side very low cost very high simplicity and 

large improvement potential opens large spaces for the research on 

new and more eficient architectures of controlled pulsejets.

Reducing Thermal Stresses
This paper is a preliminary part through an effective deinition of a 
new pulsejet architecture. This architecture is designed to take 

advantage of traditional spring actuated valves. Those valves will 

problems in the range of temperatures at which the combustion 

chamber of a pulsejet operates.

It has been then assumed the possibility of analyzing the opportunity 

of cooling the combustion chamber of a pulsejet by modelling the 

heat transfer through the walls. It can be then possible to evaluate the 

average state of the temperature proile within the wall and the effect 
of the oscillations of gas temperature.

Steady State Solution

The geometry and nomenclature are graphically presented in Fig. 10, 

together with the expected solution. Notice that a planar geometry is 

assumed because the wall thickness is assumed much smaller than the 

diameter of the cylinder.

Figure 10. Temperature profile across the walls of the combustion chamber in 
a pulsejet.

The planar approximation allows simplifying the average temperature 

proile within the wall, 0<x<L by a linear function

The end values, and the unitary heat lux, are:

from which

and

Transient Analysis

Transient analysis of the speciic case is a complex problem also by 
mean of numerical simulation by mean of CFD or other codes 
because of its transient periodic nature. The simplest solution seems 

to be the analytical one, by integrating the heat equation considering 

a periodic boundary condition in a semi-ininite slab.

A solution can be reached assuming that the thickness of the pipe is 

adequate and that the high-frequency excitation produces only a small 

penetration depth of the oscillations. This paper in particular does not 

look at the initial transient condition when the engine starts started. It 

focuses on the periodic solution when the system has reached the 

operating regime.
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The following solution gives the If we try a solution to the heat 

equation within the solid wall. The period is assumed τ=1/30 s, and 

decays exponentially with a penetration x
c
. Those conditions lead to 

the following law of temperature:

By substituting this expression into heat equation, it results:

and then

and assuming t>>τ it results

where T
0,mean

 and T
0,max

 are the average and peak values of the 

temperature oscillation on the solid surface.

Instead of the solid-surface temperature, the far-ield temperature in a 
luid in contact with that surface is imposed,

This equation can be solved by introducing a damping in surface-

temperature amplitude and a phase-shift in the time response. They 

can be computed from the convective heat-transfer equation:

The temperature ield within the solid can be expressed as a function 
of Biot number in line with Dumas and Trancossi [16, 17] former 

solution to a crosslow heat exchanger.

with T
1,mean

=1500 K the mean temperature of the combustion gases, 

T
1,max

=1500+500=2000 K is maximum value (i.e. the gas temperature 

oscillates from 1000 K to 2000 K sinusoidally at 50 Hz).

The characteristic penetration depth is 0.37 and Biot number: 0.0074.

The value for the amplitude damping at the surface-temperature is

Figure 11. Temperature oscillations in the wall (they are only noticeable near 
the internal surface of the combustion chamber).

It means that the surface temperature oscillates only 500·0.0052=2.6 K 

(to be superposed to the mean temperature value of 582 K, previously 

found), and the phase shift relative to the imposed gas oscillations

Some temperature proiles have been presented are in Fig. 11.

Analysis of the Results and Future Directions
The presented results are a preliminary milestone through the design 

of a new pulsejets' family that can overcome the well-known 

limitations of today ones. In particular, they can be analysed 

separately with speciic reference to the speciic aspects, which have 
been analysed in this paper.

The thermodynamic analysis shows clearly that an increase of the air 

pressure at the inlet can produce a major increase of thermodynamic 

and fuel eficiency. In particular, inlet pressures around 2 bars can 
almost double the eficiency of the system. Further increases are 
possible by much higher pressures. Another important aspect relates 

to the fact that an increase of pressure could allow a reduction of the 

dimensions of the combustion chamber. The known problems related 

to the use of axial turbines forces to take into consideration different 

architectures such as a centrifugal turbine similar to the one of Rolls 

Royce Derwent. In addition, pass-through fans will be considered 
together with other breakthrough conigurations.

The preliminary heat exchange analysis shows that some cooling of 

the combustion chamber could be possible. This result is fundamental 

for an effective design of more eficient and enduring valve systems, 
which can be an effective element of the preliminary compression 

system. The pulsating nature of combustion authorizes to explore also 

the hypothesis of a pulsejet with a double chamber; a compression 

one and combustion one. When the valves are closed, air is 

compressed in one chamber and combustion is produced in the other. 

At the end of the combustion pressure decreases in the combustion 

chamber and compressed air pressure opens the valves and produces 

air inlet into the combustion chamber.
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Conclusions
This paper has analyzed pro and contra of pulsejet propulsion 

focusing on valved pulsejets. In particular, after presenting the nature 

of the thermodynamic cycle it has focused on the deinition of the 
guidelines for future improvements analysing also pro and contra of 

pulsejet propulsion. The intrinsic weakness related to valves allows 

taking into considerations new architectures. In particular, to verify 

the feasibility of a new coniguration, which is currently under study 
it has been, analyzed the eficacy of possible cooling system 
considering both steady values and transient ones. This analysis has 

veriied that water-cooling can be effective authorizing the 
continuation of the investigation through new pulsejet architecture 

with much longer life-cycle and much higher thermodynamic 

performances.
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Definitions/Abbreviations
α - Positive constant of heat equation

γ - heat capacity ratio

τ - Period [s]

c
p
 - Speciic heat at constant pressure [kJ/kg K]

c
v
 - Speciic heat at constant volume [kJ/kg K]

h - Convection coeficient [W/(m2·K)]

k - Thermal conductivity [W/(m K)]

p - Pressure [Pa]

q - Heat for unitary surface [J/m2]

 - Heat lux [J/(s m2)]

t - Time [s]

x - Thickness [mm]
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x
c
 - Penetration [m]

Q - Heat [J]

R - Universal gas constant [8.31446 JK-1 mol-1]

T - Temperature [K]

U - Overal heat transfer coeficient (including radiation) [W/(m2·K)]

V - Volume [m3]

W - Work [J]

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the session organizer. The process 
requires a minimum of three (3) reviews by industry experts. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or 

otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.

ISSN 0148-7191

http://papers.sae.org/2016-01-1998

Downloaded from SAE International by Michele Trancossi, Monday, November 07, 2016

http://papers.sae.org/2016-01-1998

