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Lead-free piezoceramics with the composition (1 – x)(K1 – yNay)
NbO3-x(Bi1/2Na1/2)ZrO3 (KNyN-xBNZ) were prepared using
a conventional solid-state route. X-ray diffraction, Raman
spectroscopy, and dielectric measurements as a function of
temperature indicated the coexistence of rhombohedral (R) and
tetragonal (T) phase, typical of a morphotropic phase boundary
(MPB) as the BNZ concentration increased and by adjusting
the K/Na ratio. High remnant polarization (Pr = 24 lC/cm2),
piezoelectric coefficient (d33 = 320 pC/N), effective piezocoeffi-
cient (d"33 = 420 pm/V), coupling coefficient (kp = 48%), and
high strain (S = 0.168%) were obtained at room temperature,
but significant deterioration of Pr, d

"
33, and kp were observed

by increasing from room temperature to 160°C (17.5 lC/cm2,
338 pm/V, and 32%, respectively) associated with a transition
to a purely T phase. Despite these compositions showing pro-
mise for room-temperature applications, the deterioration in
properties as a function of increasing temperature poses chal-
lenges for device design and remains to be resolved.

Keywords: lead-free ceramics; piezoelectric materials/proper-
ties; potassium-sodium niobate/KNN

I. Introduction

P IEZOELECTRIC materials have being extensively investi-
gated because of their widespread applications ranging

from medical, environmental, and industrial process monitor-
ing to robotics, energy harvesting, and high-frequency com-
munication systems.1,2 Most commonly used materials are
based on lead zirconate titanate Pb(Zr,Ti)O3 (PZT) due to
their high piezoelectric performance.3–5 However, regulations
against hazardous substances such as lead in electric and
electronic equipment has stimulated research in lead-free
piezoelectrics over the last two decades.6–14

Potassium-sodium niobate (K,Na)NbO3 (KNN) is one of
the leading candidates to replace PZT and has been exten-
sively investigated due to its moderately large piezoelectric
coefficient (d33) and high Curie temperature (TC),

15,16 since
its discovery in the 1950s.17 In particular, research on KNN
accelerated when Saito et al. (2004) reported giant d33 #
416 pC/N, comparable to those of PZTs, in textured (Li,Ta,

Sb)-modified KNN,18,19 However, disadvantages such as
attaining well-densified ceramics due to the high volatility of
the alkaline components and low piezoelectric properties in
polycrystalline ceramics have prevented KNN being commer-
cialized.20–24 In general, dopants in KNN enhance piezoelec-
tricity (d33 > 200 pC/N) by pushing the orthorhombic (O) to
tetragonal (T) transition boundaries closer to room tempera-
ture.25–44 This effect is well documented for dopants such as
LiSbO3, LiTaO3, Bi0.5Na0.5TiO3, and BaTiO3.

25–32 But coex-
istence of rhombohedral (R) and O phases has been reported
for dopants with the general formula AZrO3 (A=Ba, Sr, or
Ca) or BiMO3 (M=Fe, Sc, Co).33–38 Compositions which rely
on R-O coexistence generally, however, exhibit d33 ≤ 230 pC/
N that are significantly lower the compositions which utilize
the O-T phase boundary to optimize d33.

Recently, PZT-like morphotropic phase boundary (MPBs)
(R-T) have been reported in KNN-based ceramics by inte-
grating compositions which were previously used to optimize
the O-T and R-O phase boundaries.39–50 In 2011, Zuo et al.
reported R-T phase coexistence in (Li,Ta,Sb) and BaZrO3

multimodified KNN lead-free ceramics and obtained a high
d33 = 365 pC/N.39–41 For similar compositions, Wu et al.
obtained d33 # 425 pC/N.42 But more recently, Sb together
with (Bi,M)NO3 (M=Na, K, Li, Ag, N=Zr, Hf, Sn) have
been used to enhance d33 and electromechanical strain (S)
with d33 and S improved to >400 pC/N and 0.46% at 3 kV/
cm, respectively.43–49 Despite promising d33 and S values
there are still a number of concerns. For Sb doping, TC is
reported to decrease alarmingly and de-poling may jeopar-
dize some applications. More importantly, however, to our
knowledge, the temperature dependence of the piezoelectric
properties is rarely reported. It is likely that the supposed
MPB in many KNN-based compositions is not temperature
independent and therefore phase coexistence and high d33/S
are not maintained during high-temperature applications or
at high field cyclic loading in which temperature is likely to
increase. Given the above concerns, this contribution pre-
sents the composition and temperature dependence of the
piezoelectric properties (1$x)(K1$yNay)NbO3-x(Bi1/2Na1/2)
ZrO3 (KNyN-xBNZ) lead-free ceramics in which LiSbO3

dopants have been excluded to maintain a high TC.

II. Experimental Procedure

The KNyN-xBNZ ceramics with compositions of (1$x)
(K1$yNay)NbO3-x(Bi1/2Na1/2)ZrO3 (x = 0, 0.02, 0.03, 0.04,
0.045, 0.05, 0.06, 0.08, and y = 0.6) and (x = 0.045, and
y = 0.4, 0.45, 0.49, 0.53, 0.56, 0.6, 0.65, and 0.7) were pre-
pared using a conventional solid-state reaction. Raw materi-
als, including Na2CO3 (99.9%, Fisher Scientific), K2CO3
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(99.7%, Fisher Scientific), Nb2O5 (99.5%, Sigma-Aldrich),
ZrO2 (99%, Sigma-Aldrich), and Bi2O3 (99.9%, Sigma-
Aldrich) were batched stoichiometrically according to the
nominal compositions and ball-milled in isopropanol for 24 h.
The dried mixed powders were calcined at 850°C for 6 h to
synthesize the compound and then ball milled in isopropanol

for 12 h. The calcined powders were mixed with a polyvinyl
alcohol (PVA) binder solution, granulated and pressed into
pellets with 10 mm in diameter. Following binder burnout at
550°C, the pellets were sintered in a sealed crucible with sacri-
ficial powders at 1150°C–1230°C for 3–6 h.

The density of the sintered samples was measured by the
Archimedes method. The relative density of all studied
samples was higher than 95%. The phase structure of the
sintered samples was studied using a Bruker D2 Phaser X-
ray powder diffraction (XRD) and in situ XRD performed
for selected samples using a Siemens D5000 HTXRD in the
temperature range 30°C–350°C. Ceramic morphology and
microstructure was examined using an FEI Inspect F scan-
ning electron microscope (SEM). Raman spectra were
acquired from $150°C to 350°C using a Renishaw inVia
Raman microscope. For electrical tests, sintered samples
were electroded using fire-on silver paste, followed by the
samples being poled in silicon oil at room temperature with
an applied electric field of 30–40 kV/cm. Piezoelectric coeffi-
cient (d33) was measured using a Piezotest PM300 d33 meter.
Polarization hysteresis and strain-electric field behavior were
determined using an aixACCT TF 2000 ferroelectric tester at
a frequency of 1 Hz from room temperature to 160°C. The
displacement data were synchronously captured by a laser
interferometer. The temperature-dependent dielectric permit-
tivity from 25°C to 600°C was measured using an Agilent
4184A multifrequency precision LCR meter. The planar elec-
tromechanical coupling factor (kp) was determined from the
resonance and antiresonance frequencies, which were mea-
sured using an Agilent 4294A Impedance/Gain-phase ana-
lyzer according to IEEE standards on piezoelectricity.51,52

III. Results and Discussion

(1) Compositional Evolution of Structure–Property
Relations
The room-temperature XRD patterns of KNyN-xBNZ in
the 2h range of 20°–70° are shown in Fig. 1. All peaks

Fig. 1. Room temperature XRD patterns of KNyN-xBNZ (a)
KN0.6N-xBNZ and (b) KNyN-0.045BNZ; amplified XRD patterns
simulated by Gaussian for (c) KN0.06N-0.02BNZ (d) KN0.06N-
0.045BNZ (e) KN0.06N-0.08BNZ.

Fig. 2. Rietveld refinement analysis of KN0.6N-0.045BNZ using
the GSAS+EXPGUI package. Two phases R3c + P4 mm were used.
Rp = 6.2%, Rwp = 9.7% and v2 = 1.88.

Fig. 3. Room temperature Raman spectra of KNyN-xBNZ (a)
KN0.6N-xBNZ, inset shows the Raman amplified peaks around
600 cm$1 simulated by Gaussian and (b) KNyN-0.045BNZ.
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could be attributed to perovskite phases, indicating that a
stable solid solution was formed in the studied range.
Diffraction peaks shifted to a lower and higher diffraction
angle with increasing BNZ and Na concentration, respec-
tively, consistent with differences in relative ionic radius of
the dopant/substituent ions with the matrix composition.

Splitting of (200) peak at ~2h = 45° was used to determine
the likely symmetry of compositions. In the expanded XRD
patterns [Fig. 1(a)], O phase was dominant in KN0.6N-
xBNZ with x ≤ 0.02, but R, O and T phases coexisted for
compositions of 0.03 ≤ x ≤ 0.04. As x increased further,
ceramics with 0.045 ≤ x ≤ 0.05 showed mixed R and T

Fig. 4. High electric field bipolar polarization hysteresis and strain loops for KNyN-xBNZ (a) KN0.6N-xBNZ and (b) KNyN-0.045BNZ.

Fig. 5. Ferroelectric and strain properties of KNyN-xBNZ (a) Pr and EC as a function of BNZ, (b) Pr and EC as a function of Na, (c) S and
d"33 as a function of BNZ, (d) S and d"33 as a function of Na.

KNN-BNZ Lead-Free Ceramics 3



Fig. 6. Dielectric and piezoelectric properties of KNyN-xBNZ (a) er and tand as a function of BNZ, (b) er and tand as a function of Na, (c) d33
and kp as a function of BNZ, (d) d33 and kp as a function of Na.

Fig. 7. Temperature dependence of er and tand for KNyN-xBNZ (a) KN0.6N-xBNZ, (b) KNyN-0.045BNZ, (c) TC and TO/R-T as a function of
BNZ, (d) (c) TC and TO/R-T as a function of Na.

4 Journal of the American Ceramic Society—Wang et al.



phases. For x > 0.05, a single peak emerged, suggesting
that R phase dominated. For compositions in which x was
maintained at 0.045 (KNyN-0.045BNZ), the splitting of
(200)/(002) peaks gradually disappeared as y increased, sug-
gesting the coexistence of R and T for a wide variation in
Na:K ratio, Fig. 1(b). To confirm the phase evolution in
KNyN-xBNZ as a function of composition, simulations
were performed, Fig. 1(c–e), which are consistent with
experimental data and also the interpretation by Wang
et al.43–50 Rietveld refinement analysis of the MPB compo-
sition KN0.6N-0.045BNZ was also performed using the
GSAS+EXPGUI package,53,54 where a two phases refine-
ment (R3c + P4 mm) was used, as shown in Fig. 2. A good
agreement between the observed and calculated patterns
was obtained with Rp = 6.2%, Rwp = 9.7% and chi-squared
(v2) = 1.88, indicating the coexistence of R (R3c, 32.5%)
and T (P4 mm, 67.5%) phases in the MPB composition.

To further confirm phase evolution as a function of com-
position, room-temperature Raman spectra of KNyN-xBNZ
ceramics were obtained as shown in Fig. 3. Among the full
Raman active mode of KNN, m1, m2, and m3 are stretching
modes, m5 and m6 are bending modes of the NbO6

octahedra.55 The strongest peak around 600 cm$1 is related
to the m1 mode; whereas the left and right weaker peaks are
assigned to the m2 and m3 mode, respectively, as indicated by
the simulated data shown in the inset of Fig. 3(a). With
increasing BNZ content, the m1 and m2 peaks were found to
shift to lower wave number as shown in Fig. 3(a). On the
other hand, the m1 and m2 peaks shift to higher wave number
with an increase in Na content as shown in Fig. 3(b). The
peak shift to a lower/higher frequency is due to an increase/
decrease in binding strength caused by the expansion/shrink-
age of the distance between Nb5+ and its coordinated oxy-
gen, resulting in the corresponding variation in crystal cell
volume.55,56 However, the clear but gradual symmetry
changes observed by XRD were not apparent in the Raman
spectra, as evidenced by the absence of the appearance of
new symmetry related modes. Raman, however, is not only
sensitive to the macroscopic symmetry but is influenced
strongly by local distortions to the lattice. It is postulated
that within the KNyN-xBNZ system there are compositional
regions dominated by “pseudosymmetry” in a manner dis-
cussed for La-doped BiFeO3 compositions by Khesro et al.57

and Bi1/2(K1$xNax)1/2TiO3 by Levin and co-workers.58,59 In
these compositions, there are local perturbations in the aver-
age macroscopic symmetry more commonly associated with
adjacent phases within the phase diagram, for example,
short-range antipolar order in the paraelectric phase for La-
doped BiFeO3. We propose a similar model for KNyN-
xBNZ based on the absence of new symmetry modes in
Raman and the gradual changes in peak splitting in XRD
but extensive transmission electron microscopy (TEM) work
is required before this can be proved conclusively.

The SEM images for the surface of KNyN-xBNZ ceramics
(not shown) revealed that the grain size of KN0.6N-xBNZ
decreased with increasing BNZ content, from ~5 lm for
x = 0 and to ~1 lm for x = 0.08 but the grain size of
KNyN-0.045BNZ was insensitive to the K/Na ratio.

The high electric field bipolar polarization hysteresis and
strain loops for KNyN-xBNZ as a function of BNZ and Na
content are shown in Fig. 4, from which the remnant polar-
ization (Pr), coercive field (EC) and average electric field
induced strain (S) as a function of BNZ and Na content can
be obtained, Fig. 5. The normalized strain coefficient d"33,
representing the average strain per unit of electric field, is
calculated by, d"33 ¼ Smax=Emax, where Emax is the maximum
electric field value, and Smax is the average value of the cor-
responding maximum strain. As shown in Fig. 5(a and b),
with increasing BNZ and Na concentration in KNyN-xBNZ,
Pr increased and then decreased after reaching a peak value,
at which point the lowest EC was obtained. The highest value
of Pr = 24 lC/cm2 and lowest value of EC = 10.5 kV/cm
was achieved for x = 0.045, y = 0.6 at the MPB.60,61 The S
and d"33 values increased with increasing BNZ and Na con-
tent, reaching maximum values of 0.163%, 408 pm/V at
x = 0.045, y = 0.6 and 0.168%, 420 pm/V at x = 0.045,
y = 0.56, respectively, above which they reduced, Fig. 5(c
and d). d"33 is dominated by extrinsic effects, mainly domain
wall motion, which the coexistence of R and T phases
encourages at the MPB.61–63

The dielectric and piezoelectric properties of KNyN-
xBNZ as a function of BNZ and Na content are shown in
Fig. 6. The room-temperature permittivity (er) of KN0.6N-
xBNZ increases with BNZ concentration, whereas it ini-
tially increases and then decreases as a function Na/K
ratio, Fig. 6(a and b). tand initially decreased with BNZ
and Na concentration but then became stable for a broad
range of compositions, Fig. 6(a and b). d33 and kp both
increased significantly with increasing BNZ and Na concen-
tration as shown in Fig. 6(c and d), reaching a maxima of
310 pC/N and 48% for x = 0.045, y = 0.06, and 320 pC/N
and 50% for x = 0.045, y = 0.056, respectively, and then
decreasing for BNZ > 0.05 and Na > 0.6. As with d"33, d33
is optimized at the MPB largely through extrinsic

Fig. 8. In situ temperature dependence of Raman spectra for
KN0.6N-0.045BNZ (a) $150°C–10°C, (b) 20°C–350°C, (c) m1 peak
shift as a function of temperature.

KNN-BNZ Lead-Free Ceramics 5



contributions. The facile rotation of the polarization vector
between states of similar free energy facilitated by phase
coexistence, allows the domain walls to displace reversibly,
resulting in a strong extrinsic contribution to the piezoelec-
tric properties.61,64

(2) Evolution of Structure–Property Relations as a
Function of Temperature
The temperature dependence of dielectric permittivity and
loss for KNyN-xBNZ with different BNZ concentration and
K/Na ratio is given in Fig. 7. It is well-known that KNN
exhibits two dielectric peaks above room temperature, corre-
sponding to the ferroelectric O-T phase transition at ~176°C
(TO-T) and the T-cubic (C) phase transition at ~381°C (Curie
temperature, TC). With increasing BNZ concentration, the

maximum er at TC (emax) increased and TC decreased contin-
uously, meanwhile, TO-T decreased and merged with the fer-
roelectric R-O phase transition (TR-O), resulting in
coexistence of R and T phases at room temperature,
Fig. 7(a,c), which is consistent with the XRD results (Fig. 1)
and previous reports.43–50 However, TC remained at ~310°C
and TR-T increased with increasing Na concentration, sug-
gesting the K/Na ratio had little effect on the ferroelectric-
paraelectric phase transition of KNyN-xBNZ and that its
major influence is on lower temperature transitions. We note
also that broad relaxor-like peaks are observed in all compo-
sitions if the BNZ concentrations exceeds, x = 0.08. Relaxor
behavior, however, is not the focus of this study and we note
only that KNyN-xBNZ follows trends typically observed in
ferroelectric to relaxor compositional transitions with a
transformation from a clearly defined macroscopic symmetry

Fig. 9. In situ temperature dependence of XRD patterns for KN0.6N-0.045BNZ (a) 2h = 20°–70°, (b) 2h = 44°–47°; simulations of splitting of
the {200} peaks with different temperatures (c) 30°C, (d) 50°C, (e) 70°C, (f) 100°C, (g) 150°C, (h) 200°C, (i) 250°C, (j) 300°C, and (k) 350°C.
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(x = 0) to pseudosymmetry (x > 0.08) that is associated with
loss of long range ferroelectric order through chemical disor-
der that induces local competition/frustration between phases
of similar free energy.

To clarify the structural evolution of KNyN-xBNZ as a
function of temperature, in situ temperature dependence of
Raman and XRD measurements for the selected MPB com-
position KN0.6N-0.045BNZ were performed, the results
from which are plotted in Figs. 8 and 9. As shown in Fig. 8,
the general trend is that the m1 peak shifted to lower wave
number and broadens, accompanied by a gradual fading of
the m2 peak. More specifically, the m1 peak [Fig. 8(c)] revealed
a gradual shift in frequency (wave number) up to 70°C–
100°C after which there was a sharp change in frequency,
coincident with the broad peaks in er at the same tempera-
ture range in Fig. 7.

In situ high-temperature XRD data for KN0.6N-
0.045BNZ is shown in Fig. 9 which focused on evolution of
splitting of the {200} peaks. Phase coexistence was apparent
at room temperature as shown by broad multiple peaks that
gradually disappeared to become a single peak at high tem-
peratures in the cubic phase. To confirm the phase evolution
as a function of temperature, simulations were performed,
Fig. 9(c–k). As temperature increased, the coexistence of R-T
phases remained up to 70°C–100°C, after which the phase
structure total transformed to a T and then C phase above
TC, consistent with experimental er and Raman spectroscopy
data as function of temperature.

The in situ temperature dependence of high electric field
bipolar polarization hysteresis and strain loops for two MPB
compositions (KN0.49N-0.045BNZ and KN0.6N-0.045BNZ)
are shown in Fig. 10, from which the Pr and d"33 as a func-
tion of temperature were obtained, Fig. 11. As temperature
increased, Pr and d"33 for both MPB compositions decreased
linearly, coincident with a similar temperature dependence of
kp, as shown in the inset of Fig. 11. The piezoelectric effect
in ferroelectric ceramics is attributed to both intrinsic (lattice
deformation) and extrinsic (domain wall motion) contribu-
tions. Normally, Pr reflects intrinsic contribution, and d"33
and kp contain both components.40,48 However, detailed
knowledge of the domain morphology is required to fully
appreciate how the extrinsic contributions is likely to vary as
a function of temperature and composition and extensive
transmission electron or piezoforce microscopy is required.
Nonetheless, the data presented in this contribution clearly
illustrates that KNN-BNZ suffers from extreme temperature

Fig. 10. In situ temperature dependence of high electric field bipolar polarization hysteresis and strain loops for two MPB compositions (a)
KN0.49N-0.045BNZ and (b) KN0.6N-0.045BNZ.

Fig. 11. Pr and d"33 as a function of temperature for KN0.49N-
0.045BNZ and KN0.6N-0.045BNZ, inset shows the temperature
dependence of kp.

KNN-BNZ Lead-Free Ceramics 7



dependence which may inhibit its usage in high drive applica-
tions and high-temperature applications despite the attractive
values of kp and d33 at room temperature.

IV. Conclusion

In this work, KNN based lead-free ceramics with the composi-
tion (1$x)(K1$yNay)NbO3-x(Bi1/2Na1/2)ZrO3 were success-
fully prepared by a conventional solid-state route. With the
increase in BNZ content, the phase structure of KNN gradu-
ally transformed from O to mixed R-T and then R phase,
indicative of the construction of an R-T based MPB with
0.045 ≤ BNZ ≤ 0.05 and 0.4 ≤ Na ≤ 0.7. Optimum ferroelec-
tric, piezoelectric, and strain properties were obtained for the
MPB compositions with Pr, d33, kp, S, and d"33 of 24 lC/cm2,
320 pC/N, 48%, 0.168%, and 420 pm/V, respectively. How-
ever, despite these attractive room-temperature values at the
MPB, there is a dramatic decrease in properties with tempera-
ture indicating the MPB is not temperature independent unlike
in PZT. Hence there are concerns about the viability of these
compositions for high-temperature or high field applications.
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